
 1

Ministry of Transport and Communication of Ukraine
Ukraine State Committee of Communications and Informatization

Odessa National Academy of Telecommunications Named After A.S. Popov

Sub-faculty of information technologies

COMPUTER SCIENCE
Module 2

Programming of problems with loops and arrays

Part 1

Lecture notes

Odessa 2012

 2

УДК 004.43 План УМИ 2012 г.

Compiler – Y. V. Prokop

These lecture notes contain theoretical information and examples of programs in

С++ Builder with loops and arrays. The lecture notes will be useful for students of
the Academy of Telecommunications who are studying in English, fixing theoretical
material, preparing to laboratory training and exercises in the discipline of Computer
science in the second module.

It is intended for the acquisition of skills for operation on a personal computer
and programming by students of the academy studying in English, with the purpose
of further usage of these skills in daily professional work. Also, it will be useful for
users of personal computers wishing to learn programming in C ++ Builder
environment.

The lecture notes have been approved by the sub-faculty IT meeting

Minutes № 7 from 27.02.2012

The lecture notes are considered and approved by the faculty of Informational

Networks meeting

Minutes № 16 from 23.03.2012

 3

Contents

Introduction .. 4

1. Loop statements. .. 7

2. Functions. .. 24

3. Arrays .. 39

4. Multi-dimensional arrays. .. 50

 4

Introduction
Structure of the module

The discipline of Computer science is studied in I - II semesters and is intended
for the training of students for the professional use of personal computers.

The purpose of the Computer science course is to form knowledge and skills in
areas such as:

 architecture of a personal computer
 operation of Windows operating system
 algorithmization of computing processes
 compilation of programs in C ++ programming language
 acquaintance to object-oriented programming on the example of solution of

elementary tasks in C ++ Builder programming environment.

The course program consists of four modules:

 module 1 – “The basics of the personal computer and the organization of
computing processes”;

 module 2 – “Programming loops and arrays”;
 module 3 – “Programming structured data”;
 module 4 – “Programming lists and files. Basics of object-oriented

programming”.
According to the curriculum, the structure of the module is:

Type of activity Hours

Lectures 8
Exercises 16
Laboratory Training 16
Total Classwork Hours 40
Individual Work and Self-study 27
TOTAL 67

The subject schedule of lectures in module 2
Lecture 1. Loop statements.
Lecture 2. Functions.
Lecture 3. Arrays.
Lecture 4. Multi-dimensional arrays.

The list of exercises in module 2
1. Programming loop statements.
2. Programming functions.
3. Programming one-dimensional arrays.
4. Programming multi-dimensional arrays.

 5

The list of laboratory trainings in module 2
1. The organization of cyclic calculations by means of the FOR loop statement.
2. The organization of cyclic calculations by means of the FOR loop statement.
3. Calculations with the use of conditional loop statements.
4. Calculations with the use of conditional loop statements.
5. Programming functions.
6. Programming one-dimensional arrays.
7. Programming one-dimensional arrays.
8. Programming multi-dimensional arrays.

Recommendations for students’ self-study

Sort of activity Hours
Working up lectures 4
Studying additional information 4
Preparing to exercises 4
Preparing to laboratory trainings 9
Execution of the complex task on the theme: “Creating algorithms and programs
with cyclic structure and arrays”. 6

Total: 27

The teacher gives out individual variants of the complex task.
The complex task must be written in a separate exercise-book. Each problem must contain:
 scheme of the algorithm;
 form of the project;
 text of the program in С++ Builder;
 results of calculation.

Prerequisites

The study of computer science is based on the high-school course of computer
science (students should possess the knowledge in the size of the school course of
computer science according to the program of the Ministry of Education) and is based
on the school courses of mathematics and some topics of higher mathematics, such as
functions, formulas of conversion, factorial, series, integral calculus, matrices, etc.

It is supposed that, starting learning the content of the module 2 of Computer
Science course, the student has already studied module 1 material, and has acquired
the following knowledge and skills:

knowledge on the themes:
 architecture of computer;
 OS Windows;
 С++ Builder IDE;
 algorithm, its properties and means of description;
 elements of С++ programming language and programs with linear

structure;
 logical expressions and their priority;
 flow control;

 6

skills:
 operating with files in Windows;
 creating algorithms and programs with linear and branching structure in

C++ Builder and executing them on a computer.

Literature
1. Prokop Y. V. Computer Science. Module 1. – ОНАС, 2009.
2. Леонов Ю.Г., Угрік Л.М., Швайко І.Г. Збірник задач з програмування. –

Одесса: УДАЗ, 1997.
3. Трофименко О.Г., Прокоп Ю.В., Швайко I.Г. та iн. С++. Теорiя та

практика. – Одесса: ОНАЗ, 2011. – 587 с.
4. Архангельский А.Я., Тагин М.А. Программирование в С++ Builder 6 и

2006. – М.: «Бином», 2007. – 1184 с.
5. Архангельский А.Я. Программирование в С++ Builder 5.– М.:«Бином»,

2000.– 1152с.
6. Березин Б.Н., Березин С.Б. Начальный курс С и С++. – М.: «Диалог-

МИФИ», 2000. – 288 с.
7. Бьерн Страуструп Язык программирования С++. – СПб.– М.: Бином,

1999. – 991 с.
8. The cplusplus.com tutorial – http://www.cplusplus.com

 7

1. Loop statements
Loops are used to repeat a statement or a series of statements a certain number

of times or while a condition is true.

The for loop

For loop is a C++ construction that allows you to repeat a statement or a set of

statements for a known number of times or until some condition is true. It is usually

used to construct loops that must execute a specified number of times. The syntax for

the for loop is as follows:

 for (Initialization; Condition of continuation; Modification of

parameters)

 {StatementBlock;}

where

 Initialization initializes the loop control variable, for example

 i = 0;

 This expression is executed only once. Control then passes to Condition of

continuation;

 Condition of continuation is a test that will stop the loop as soon as it is false.

Or, in other words, the repetition will continue as long as the condition is true;

 Modification of parameters is a statement that modifies the loop control

variable appropriately, for example i = i+1 or i++;

 StatementBlock is either a single statement or a group of statements inside the

braces {...}.

 Example 1.1: Make a piece of program that prints out the first 10 positive

integers, together with their squares.
 for (int i = 1; i < 11; i++)

 Memo1->Lines->Add(IntToStr(i) + “ ” + IntToStr(i*i));

 You can see the three parts that make the for loop.

 8

1. i is initialized to 1.

2. Then the condition i < 11 is checked. As it is true, the values of i and i*i (1

1) are added to Memo1.

3. After that, the value of i increases by 1 (it becomes 2), and the program

returns to the step 2 (checking the condition).

Repetition will stop when on the second step the condition is false. The loop will

repeat for these values of variable i: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Afterwards, i will be

equal to 11, and the condition 11<11 will be false.

 Example 1.2: Write a piece of program that prints out all positive odd integers

between 1 and 100, together with their squares.

 The program is similar to the above; except that this time we will simply add 2

to i instead of just 1. Here's the code:

 for (int i = 1; i < 11; i += 2)

 Memo1->Lines->Add(IntToStr(i) + “ ” + IntToStr(i*i));

 Example 1.3: Write a program that prints out all positive even integers

between 1 and 100, together with their squares.

 Again, the program is as before, but we simply start the loop at 2 instead of 1 to

catch all even integers. Here's the code:
 for (int i = 2; i < 11; i += 2)

 Memo1->Lines->Add(IntToStr(i) + “ ” + IntToStr(i*i));

 Initialization and Condition of continuation in for loop can contain multiple

statements separated by the comma. For example:
 for (int i = 5, int j = 10 ; i + j < 20; i++, j++)

 Memo1->Lines->Add(IntToStr(i + j));

 If Condition of continuation is omitted, it is considered true and the for loop

will be infinite. For example:
 for(int i=0; ;i++)

 {

 // Statements to be executed.

 }

 9

 Infinite loop runs endlessly and is a bug of the program. One of the ways of

quitting the loop is a break statement.

 Example 1.4: Write a program that finds the sum of the first 100 positive

integers.

 We need to use a loop where some variable changes from 1 to 100. This

variable is i. Besides that, we need a variable to store the sum. We’ll call it sum. As

the numbers are integer, the sum is also integer. In the beginning, the sum is 0. Then

we add numbers to it sequentially one by one.

1. Start with sum = 0. If we do not assign 0 to the sum, compiler may assign any

number to it (for example, a negative number with 5 digits).

2. Start a loop with i = 1 (the numbers we need to add begin from 1).

3. Add i to sum and save the result back into the sum (now sum is 1).

4. Increase i by 1 (now it is 2).

5. Again add i to sum and save the result back into sum (now sum is 3).

6. Increase i by 1 (now it is 3).

7. Again add i to sum, and save the result back into sum (now sum is 6)

8. Increase i by 1 (now it is 4)

9. And so on, until i reaches 100.

 Here is the code that will accomplish this:

int sum = 0;

for (int i = 1; i <= 100; i++)

 sum += i;

Edit1->Text = IntToStr(sum);

 The scheme of for loop is:

 Although the three fields of the for

statement are normally used for initialization,

testing for termination, and incrementing, they

are not restricted to these uses. For example, the

following code calculates the sum of the first 20

positive integers. In this case, StatementBlock is the null statement:

no

yes

i=0,9

statements

 10

int i, sum;

for (sum = 0, i = 1; i <= 100; sum += i, i++)

 ;

 The following code is equivalent:
int sum = 0, i = 1;

for (; i <= 100;)

 { sum += i;

 i++;

 }

 Example 5: Write a program that counts the number of positive doubles in
Memo.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

int N = Memo1->Lines->Count; //number of lines in Memo
double x;

int kol = 0; //at first kol must be 0
for (int i = 0; i < N; i++)

 {x = StrToFloat(Memo1->Lines->Strings[i]); //read a number from Line i

 if (x > 0) kol++; //if the number is positive, kol increases by 1
 }

Edit1->Text = IntToStr(kol);

}

 11

The scheme is:

Each repetition of the loop is called iteration.

The while loop (loop with precondition)

 While loop is used when we do not know how many times we need to repeat

statements, but we do know the condition of repeating. Its format is:

while (Condition)

 {statements;}

and its purpose is to repeat statements while Condition is true.

The compiler first examines the Condition. If the Condition is true, then it

executes the Statements. After executing Statements, Condition is checked again. As

long as the Condition is true, it will keep executing the Statements. Once the

Condition becomes false, it exits the loop.

Examples 1-3 can be rewritten with while loop:

Example 1.1a: Make a piece of program that prints out the first 10 positive

integers, together with their squares.

yes

no

no

yes

i = 0, N-1

Read a number

begin

N = Memo1->Lines->Count;

kol = 0

x > 0

kol++

kol end

 12

int i = 1;

while(i < 11)

 {Memo1->Lines->Add(IntToStr(i) + “ ” + IntToStr(i*i));

 i++;

 }

 Example 1.2a: Write a piece of program that prints out all positive odd

integers between 1 and 100, together with their squares.

int i = 2;

while (i <11)

 {Memo1->Lines->Add(IntToStr(i) + “ ” + IntToStr (i*i));

 i += 2;

 }

Example 1.3a: Write a program that prints out all positive even integers

between 1 and 100, together with their squares.

int sum = 0, i = 1;

while (i <= 100){

 sum = sum + i;

 i++;

}

Edit1->Text = IntToStr(sum);

Example 1.6. Make a program to print out positive integer numbers from 1

until their sum becomes greater than 20. We will add a number x to the sum while the

sum is less than or equal to 20.

int x = 1; //first number is 1
int sum = 0;

while (sum <= 20) {

 Memo1->Lines->Add(IntToStr(x));

 sum += x; //sum = sum + x;

 x++;

}

 13

1. At first, x = 1 and sum = 0. As the sum < 20, the condition is true and while

loop begins to work.

2. Number 1 is added to Memo1.

3. sum becomes 1.

4. x becomes 2

5. Return to condition. It is true.

Items 2. 4. repeat again and again.

sum 0 1 3 6 10 15 21

x 1 2 3 4 5 6 7

From the table above we see that when x = 6 , the sum becomes 21. When we

come to the condition sum < 20, it is false and while stops.

The scheme of while loop is:

The scheme of the last example is:

no

yes

statements

condition

no

yes

x++

sum<=20

begin

x=1

sum=0

x

sum+=x

end

 14

The do-while loop (loop with postcondition)

The do-while loop is used when it is convenient to check up the condition after

the statements.

Format:
do{

 statement;

} while (condition);

The do-while loop executes a Statement first. After the first execution of the

Statement, it examines the Condition. If the Condition is true, then it executes the

Statement again. It will keep executing the Statement AS LONG AS the Condition is

true. Once the Condition becomes false, the looping (the execution of the Statement)

would stop.

If the Statement is made of one line, you can simply write it after the do

keyword. Like the if and while statements, the Condition being checked must be

included between parentheses. The whole do-while loop must end with a semicolon.

If the Statement spans more than one line, start it with an opening curly bracket and

end it with a closing curly bracket.

The previous example with do-while loop is:

Example 1.6b: Make a program to print out positive integer numbers from 1

until their sum becomes greater than 20. We will add a number x to sum while sum

will be less than or equal 20.

int x = 1; //first number is 1
int sum = 0;

do{

 Memo1->Lines->Add(IntToStr(x));

 sum += x; //sum = sum + x;

 x++;

}while(sum <= 20);

 15

1. At first, x = 1 and sum = 0.

2. Number 1 is added to Memo1 (without any conditions).

3. sum becomes 1.

4. x becomes 2
5. Check up the condition. It is true. And we repeat until sum becomes 21.

Then the loop stops.

We use the do-while loop if we want to execute a statement at the first step
without checking any condition.

The scheme of do-while is:

The scheme of the previous example is:

 no

yes

x++

sum<=20

begin

x=1

sum=0

x

sum+=x

end

no

yes

statements

condition

 16

Jump statements

Using break, we can exit the loop even if the condition for its end is not

fulfilled. It can be used to end loop that would otherwise become infinite, or to force

a finite loop to end before its natural end.

The continue instruction causes the program to skip the rest of the loop in the

current iteration as if the end of the statement block would have been reached,

causing it to jump to the following iteration.

The purpose of exit is to terminate a running program with a specific exit

code. Its prototype is:
void exit (int exit code);

The exit code is used by some operating systems and may be used by calling

programs. By convention, an exit code of 0 means that the program finished normally

and any other value means an error happened.

Example 1.7: Write a program that reads numbers from Memo until number

zero is found. Find the smallest number.

While searching for the smallest (largest) number, we use the following

algorithm:

1. The first number is declared as the smallest, and its value is assigned to a

temporary variable, which presents the current minimum.

2. We search through the other numbers, and if one of them is smaller than our

current minimum, we update our temporary variable to the new current minimum.

3. After we process all numbers, the temporary variable will store the real minimum

number.

Example:

The numbers are: 5, 6, 3, 9, 4, 7, 2, -1, 5.

5 6 3 9 4 7 2 -1 5

 6<5? 3<5? 9<3? 4<3? 7<3? 2<3? -1<2 5<-1

min=5 min=3 min=2 min=-1

 17

Answer: minimum number is -1.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 int min, x,i=0;

 int n=Memo1->Lines->Count;

 x=StrToInt(Memo1->Lines->Strings[0]);

 min = x; //we assume the first given number is the

smallest
 while (x != 0 && i<n) {

 i++;

 x = StrToInt(Memo1->Lines->Strings[i]);

 if(x < min)

 min = x;

 }

 Edit1->Text = IntToStr(min);

}

Example 1.8: Write a program that reads numbers from Memo until number

zero is found. Find the smallest positive number.

 The difficulty is to find the first positive number and assign it to min. We use

two loops: the first one to exclude the negative numbers in the beginning of Memo and

the second – to search for the minimum.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 18

 int min, x, i = 0;

 int n = Memo1->Lines->Count;

 do{

 x = StrToInt(Memo1->Lines->Strings[i]);

 i++;

 }while(x <= 0 && i < n);

 min = x; // we assume the first given number is the

smallest
 while (x != 0 && i < n) {

 x=StrToInt(Memo1->Lines->Strings[i]);

 if(x > 0 && x < min)

 min = x;

 i++;

 }

 Edit1->Text =IntToStr(min);

}

This is one more way to find the minimum.

Example 1.8a: Write a program that reads numbers from Memo until number

zero is found. Find the smallest positive number. Use another method to find the

minimum

We read numbers from Memo. If the number is negative, we ignore it. If the

number is positive and min is 0, it means that this is the first positive number, and we

need to assign it to min without any comparison. If the number is positive and min is

not 0, it means that this positive number is not the first one and min has some value

(temporary minimum). In this case, we compare the number with min and assign the

number to min if it is smaller than min.
void __fastcall TForm1::Button1Click(TObject *Sender)

{

 int min=0, x,i=0;

 int n=Memo1->Lines->Count;

 do{

 19

 x=StrToInt(Memo1->Lines->Strings[i]);

 if(x > 0)

 if(min == 0 || x < min)

 min = x;

 i++;

 }while(x != 0 && i < n);

 Edit1->Text = IntToStr(min);

}

Nested loops

The placing of one loop inside the body of another loop is called nesting.

When you "nest" two loops, the outer loop takes control of the number of complete

repetitions of the inner loop. While all types of loops may be nested, the most

commonly nested loops are for loops.

When working with nested loops, the outer loop changes only after the inner

loop is completely finished (or is interrupted).

The syntax for a nested for loop statement in C++ is as follows:
for (Initialization; Condition of continuation; Modification of

parameters)

{

 for (Initialization; Condition of continuation; Modification of

parameters)

 {

 statements;

 }

 statements;

 }

The syntax for a nested while loop statement in C++ is as follows:

while(condition)

{

 20

 while(condition)

 {

 statements;

 }

 statements;

}

The syntax for a nested do...while loop statement in C++ is as follows:
do

{

 statements;

 do

 {

 statements;

 }while(condition);

}while(condition);

You may nest different flavors of loops. For example:
while(condition)

{

 for (Initialization; Condition of continuation; Modification of

parameters)

 {

 statements;

 }

 statements;

}

You should never use the same loop variable for both inner and outer loops.

Example 1.9: Write the code that uses a nested for loop to find the prime

numbers from 2 to 20.

int i, j;

for(i = 2; i < 20; i++) {

 21

7,1k

S = 0

begin

end

output S

S = S +
k

x
k

k





2

1

Input х

 for(j = 2; j*j <= i; j++)

 if(!(i%j)) break; // if factor found, not prime

 if(j > (i/j)) Memo1->Lines->Add(IntToStr(i) + " is prime");

 }

This would produce the following result:

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime

Example 1.10: Calculate the value of 







7

1

1

,
2

)(
k

k

k

k
xxf enter from the screen

the value of х.

The number of addends in this example is 7 and we have to

repeat the loop 7 times. The addends are
k

x
k

k





2

1

, where k is an

order number of addend. We may use k as a loop counter (usually
it is variable i).

Let x = 2. Instruction
for (int k = 1; k <= 7; k++)
 s += pow(x,k+1)/(pow(2,k)+k);

means that:

1. At first k = 1. We put this value in the addend’s formula (33.1
3
4

3
2

12

2

1

11




x)

and add it to sum (s becomes 1.33). After this k increases by 1 and becomes 2.
2. We check up the condition k<=7. It is true, therefore we repeat again. Put the

value of k=2 in the addend’s formula 33.1
6
8

6
2

22

3

2

12




x and add it to sum:

s=1.33+1.6=2.93. After this, k increases by 1 and becomes 3.

 22

3. Again check up the condition k<=7. It is true. We put the value of k=3 in the

addend’s formula 45.1
11
16

11
2

32

4

3

13




x and add it to sum: s=2.66+1.45=4.11.

After this, k increases by 1 and becomes 4.
4. Repeat the same for values of k: 4, 5, 6, 7. After this k becomes 8. The

condition k<=7 is false and the loop stops.
5. Now we have only to output the result.

The code of this example is:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 float x=StrToFloat(Edit1->Text);
 float s=0;
 for (int k=1; k<=7; k++)
 s+=pow(x,k+1)/(pow(2,k)+k); //s=s+pow(x,k+1)/(pow(2,k)+k);
 Edit2->Text = FormatFloat("0.000",s);
}

Example 1.11: Calculate the value of 


 



3

12 1
1 n

k

m

n k
k

n
nS ,

enter from the screen the value of m.

This example is similar to the previous one, but a little

more complex.

The number of addends is m+3. The addend is 


 
 3

1 1
1 n

k k
k

n
n .

Therefore, on each step we have to add 


 
 3

1 1
1 n

k k
k

n
n to the sum.

To do this, we have to calculate the product 


 

3

1 1

n

k k
k . It consists

mn ,2

11

P=P*k/(k+1)

begin

end

output
S

3,1  nk

P=1

S=S+P*(n+1)/n

Input m

n≠-1, n≠0

yes

no
нет

S=0

 23

of n+3 multipliers:
1k

k .

To calculate each addend, we write the for loop:
for (k = 1; k <= n+3; k++)

 if (k != -1 && k != 0)

 p *= (float) k/(k+1); //or p = p*k/(k+1.);

When k = -1, there is zero in denominator. When k = 0, the multiplier equals

to 0 (and all product also equals 0). To exclude these values we check up the

condition:
if (k != -1 && k != 0).

To calculate the sum, we must write another for loop:

for (n = -2; n <= m; n++) //loop for calculation of the sum
 if (n != -1 && n != 0)

 { p = 1; //first value of product is 1

 for (k = 1; k <= n+3; k++)//loop for calculation of the product
 if (k != -1 && k != 0) p *= (float) k/(k+1);

 S += (float)(n+1)*p/n;//adding the addend to the sum
}

The condition if (n != -1 && n != 0) is used to exclude division by 0 and

zero addend.

Note that the loop with parameter k is inside the loop with parameter n

(parameters are different!). When one loop is inside another, their parameters must be

different.

The code of the program is:
void __fastcall TForm1::Button1Click(TObject *Sender)

{ int n, k, m = StrToInt(Edit1->Text);

 float S = 0, p;

 for (n = -2; n <= m; n++)

 if (n != -1 && n != 0)

 { p = 1;

 24

 for (k = 1; k <= n+3; k++)

 if (k != -1 && k != 0) p *= (float) k/(k+1);

 S += (float)(n+1)*p/n;

 }

 Edit2->Text = FloatToStrF(S, ffGeneral, 4, 3);

}

Function FloatToStrF(S, ffGeneral, 4, 3) converts the float number S to the

string. Parameter ffGeneral is the General number format.

2. Functions
Functions allow us to group a series of steps under one name. Imagine that you

are washing your clothes in a washing machine. You have to perform the following

steps:

- put clothes into the washing machine

- put a powder

- select a washing mode

- run the machine

- wait until the washing machine stops

- take out your clothes

In C++, as well as in most modern programming languages, you can give a

name to a series of steps. Let's say we want to call this procedure "wash clothes".

We've just created a function to do the work for us. In this example, what you would

do is write a function called washClothes (note that C++ won't let you use spaces in

the names of functions or variables) that performs the series of steps above, and then,

whenever you wanted to wash clothes, you would call the function washClothes,

which would execute the lines of code necessary to carry out the procedure.

Note: When we say that you are calling the function washClothes, we do not

mean that you are giving it the name washClothes – you've already done that by

 25

writing the function. We mean you are executing the code in the function

washClothes. "Calling a function" really means "telling a function to execute".

The first reason why functions are useful is that functions let us create logical

groupings of code. If someone is reading your code and he sees that you call a

function washClothes, he knows immediately that you are washing clothes. The point

is that functions make your code much easier to read.

There is an even better reason to use functions: they can make your code

shorter. Having fewer lines of code is not always desirable, but every time you write

a line of code, there is a possibility that you are introducing a bug. Functions start to

reduce the number of lines of code when you call them repeatedly.

There are other reasons to use functions, at least same or even more important.

First, by eliminating redundant code, you reduce the compilation time and the size of

the executable. Second, you make it easier to maintain the program.

Suppose that you want to mail out invitations to eight of your friends for a

cocktail party. Let's assume that you need to do the following steps in order to invite

your friend Alex.

- write Alex's name on the invitation

- write Alex's name and address on the envelope

- place the invitation into the envelope

- seal and stamp the envelope

- drop the envelope into the mail box

It takes five lines of pseudo-code to invite one friend, so it takes 40 lines of

pseudo-code to invite eight friends. That's a lot of repeated code, and any time you

repeat the code like this, you are more likely to add a bug to your program.

Functions can substantially reduce the amount of pseudo-code you need to

write to invite your eight friends to the party. At the first glance, it seems surprising

that you'd be able to reduce that amount at all – each of your friends should receive

their own personally addressed invitation, and all of the envelopes have to be sealed

and stamped and placed in the mail. How are we going to reduce the number of lines

 26

of code? Let's create a function called inviteToParty which performs the following

procedure:

- write Alex's name on the invitation

- write Alex's name and address on the envelope

- place the invitation into the envelope

- seal and stamp the envelope

- drop the envelope into the mail box

Now that we have this function, we can call it eight times to invite our eight friends:

 inviteToParty

 inviteToParty

 inviteToParty

 inviteToParty

 inviteToParty

 inviteToParty

 inviteToParty

 inviteToParty

You probably noticed a problem with doing it this way. We're inviting Alex eight

times, and none of our other friends is going to receive invitations! Alex will get

invited eight times because the function invites Alex to the party, and the function is

being called eight times. The solution is to modify the function so that it invites

friend to the party, where friend can be any of your friends. We'll change our function

so that it looks like this:

- write friend's name on the invitation

- write friend's name and address on the envelope

- place the invitation into the envelope

- seal and stamp the envelope

- drop the envelope into the mail box,

and then we'll change the way in which we call the function:

 inviteToParty (Alex)

 inviteToParty (Anna)

 27

 inviteToParty (Mark)

 inviteToParty (Serge)

 inviteToParty (Tanya)

 inviteToParty (Boris)

 inviteToParty (Peter)

 inviteToParty (Nick)

Now, each time we call the function, friend is a different person, and each of

our eight friends will be invited. We've just reduced the number of lines of pseudo-

code from 40 to 13 by using a function, and our code became much easier to read.

A function can take some input, do some stuff, and then produce an output.

If you later decide to add the return address to the envelope, you will need to

do that in one place rather than looking for occurrences of invitation-sending

throughout your program.

Function definition:
type name (parameter1, parameter2, ...) { statements }

where:

 type is the data type specifier of the data returned by the function.

 name is the identifier by which it will be possible to call the function (name of

the function).

 parameters (as many as needed): each parameter consists of a data type

specifier followed by an identifier, like any regular variable declaration (for

example: int x) and which acts within the function as a regular local variable.

They allow passing arguments to the function when it is called. Multiple

parameters are separated by commas.

 statements is the function's body. It is a block of statements surrounded by

braces { }.

Example: function addition calculates the sum of two integer numbers.

 //function definition
int addition (int a, int b)

 28

{

 int r;

 r = a + b;

 return r;

}

…Button1Click…

{

 int z;

 z = addition (5, 3); //call of function addition with parameters 5 and 3
 Edit1->Text = IntToStr(z);

}

The parameters and arguments have a clear correspondence. We called the

function addition passing two values: 5 and 3, which correspond to int a and int b

parameters declared for the function addition.

At the point at which the function is called from Button1Click, the control is

lost by Button1Click and passed to function addition. The values of both arguments

passed in the call (5 and 3) are copied to the local variables int a and int b within

the function.

Function addition declares another local variable (int r), and by means of the

expression r = a+b, it assigns to r the result of a+b. Because the actual parameters

passed for a and b are 5 and 3 respectively, the result is 8.

The following line of code:
return r;

finalizes function addition, and returns the control back to the function that called it

(in this case, Button1Click). At this moment, the program follows its regular course

from the same point at which it was interrupted by the call to function addition. The

return statement in function addition specified a value – the content of variable r,

which at that moment had a value of 8; this value becomes the value of the function.

The call to a function (addition (5,3)) is literally replaced by the value it returns (8).

 29

The return statement (regardless of whether it returns a value) may be

anywhere within the function, but it is considered a good style by many to have a

single one at the end of the function. Even if not, it is mandatory for functions that

return something that all their execution paths have a return statement.

Scope of Variables in Function

The scope of the variables can be broadly classified as

 Local Variables

 Global Variables

Local Variables

The variables defined local to the block of the function would be accessible

only within the block of the function and not outside the function. Such variables are

called local variables. That is, in other words, the scope of the local variables is

limited to the function in which these variables are declared.

Let us see this in a small example:
int ex(int x, int y)

{

 int z;

 z = x + y;

 return(z);

}

…Button1Click…

{

 int b;

 int s = 5, u = 6;

 b = ex(s, u);

 Edit1->Text = IntToStr(b);

}

In the above program the variables x, y, z are accessible only inside the

function ex() and their scope is limited only to the function ex() and not outside

 30

the function. Thus, the variables x, y, z are local to the function ex(). Similarly, one

would not be able to access variable b inside the function ex() as such. This is

because variable b is local to Button1Click.

Global Variables

Global variables are visible in any part of the program code and can be used

within all functions and outside all functions used in the program. The method of

declaring global variables is to declare the variable outside the function or block. For

instance:

int x, y, z; //Global Variables

float a, b, c; //Global Variables
int sum(){

 int S = x + y;

 return S;

}

…Button1Click…

{

 int s, u; //Local Variables

 float w, q; //Local Variables
 s = sum();

 …

}

In the above code, the integer variables x, y, and z and the float variables a, b,

and c declared outside all functions are global variables, and the integer variables s, S,

and u and the float variables w and q declared inside the function block are local

variables.

Thus, the scope of global variables is between the point of declaration and the

end of compilation unit whereas the scope of local variables is between the point of

declaration and the end of innermost enclosing compound statement. We can use

 31

global variables (x, y, z, a, b, c) in both sum() and Button1Click. Local variable S is

known only in sum(), we can not use it in Button1Click. Local variables s, u, w, and q

are known only in Button1Click and we can not use them in sum().

In order to understand the concept of local and global variables scope in detail,

let’s look at an example that has a number of local and global variable declarations

with a number of inner blocks.

int g; //Global variable
void ex()

{

 g = 30; //Scope of g is throughout the program

 //and so is used between function calls
}

…Button1Click…

{

 int a=1; //Local in Button1Click, global in if-block
 if (a!=0)

 {

 int b; //Local in if block
 b=25;

 a=45; //Global in if block

g=65; //Global in program
 }

 a=50;

 ex();

}

In this example, the scope of b is till the first braces shaded. The scope of a is

till the end of Button1Click brace.

Global variables should be avoided as much as possible.

 32

Functions of void type

In the syntax of a function declaration:
type name (argument1, argument2, ...) statement

you see that the declaration begins with a type, which is the type of the function

itself (i.e., the data type that will be returned by the function with the return

statement). But what if we want to return no value?

 Imagine that we want to make a function just to show a message on the screen.

We do not need it to return any value. In this case, we should use the void type

specifier for the function. This is a special specifier that indicates the absence of any

type: void.

void printmessage ()

{

 ShowMessage("I'm a function!");

}

…Button1Click…

{

 printmessage ();

}

Void functions can have void return statements.

void can also be used in the function's parameter list to explicitly specify that

we want the function to take no actual parameters when it is called. For example,

function printmessage could have been declared as:
void printmessage (void)

{

 ShowMessage("I'm a function!");

}

It is optional to specify void in the parameter list, however. In C++, a

parameter list can simply be left blank if we want to write a function with no

parameters.

 33

The parentheses clearly indicate that this is a call to a function and not the

name of a variable or some other C++ statement. The following call of a function is

incorrect:
printmessage;

Arguments passed by value and by reference
 Until now, in all functions we have seen, the arguments passed to the

functions have been passed by value. This means that when calling a function with

parameters, what we have passed to the function were copies of their values but never

the variables themselves. For example, suppose that we called our function addition

using the following code:
int x = 5, y = 3, z;

z = addition(x, y);

What we did in this case was the call to function addition passing the values of

x and y, i.e. 5 and 3 respectively, but not the variables x and y themselves.

This way, when the function addition is called, the value of its local variables

a and b become 5 and 3 respectively, but any modification to either a or b within the

function addition will not have any effect on the values of x and y outside it because

variables x and y were not themselves passed to the function, but only copies of their

values at the moment the function was called.

 But there might be some cases where you need to manipulate the value of an

external variable from inside a function. For that purpose, we can use arguments

passed by reference, as in the function duplicate of the following example:
void duplicate(int& a, int& b, int& c)

{

 a *= 2;

 b *= 2;

 c *= 2;

}

…Button1Click…

 34

{

 int x = 1, y = 3, z = 7;

 duplicate(x, y, z);

 Edit1->Text = "x=" + IntToStr(x) + ", y=" + IntToStr(y) + ", z=" +

IntToStr(z);

}

The first thing that should draw your attention is that in the declaration of

duplicate the type of each parameter was followed by an ampersand sign (&). This

ampersand specifies that the corresponding arguments are to be passed by reference

instead of by value.

When a variable is passed by reference, we are not passing a copy of its value,

but we are somehow passing the variable itself to the function, and any modification

that we do to the local variables will have an effect on their counterpart variables

passed as arguments in the call to the function.

To explain it in another way, we associate a, b and c with the arguments passed

on the function call (x, y and z) and any change that we do on a within the function

will affect the value of x outside it. Any change that we do on b will affect y, and the

same with c and z.

That is why our program's output that shows the values stored in x, y and z

after the call to function duplicate, shows the values of all three variables of

Button1Click doubled.

If, when declaring the following function:
void duplicate (int& a, int& b, int& c)

we had declared it this way:
void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have passed not the variables by

reference, but a copy of their values instead, and therefore, the output of our program

on the screen would have been the values of x, y and z without having been

modified.

 35

Passing by reference is also an effective way to allow a function to output more

than one value. For example, here is a function that outputs the previous and next

numbers of the first parameter passed.
void prevnext (int x, int& prev, int& next)

{

 prev = x-1;

 next = x+1;

}

…Button1Click…

{

 int x = 100, y, z;

 prevnext (x, y, z);

 Edit1->Text = "Previous=" + IntToStr(y);

 Edit2->Text = "Next=" + IntToStr(z);

}

Example 1.11 can be written with a function that calculates the product.

Example 2.1: Calculate the value of 


 



3

12 1
1 n

k

m

n k
k

n
nS , enter from the screen

the value of m.

These are the schemes of the function prod and Button1Click

 36

P=P*k/(k+1)

begin

end

output
P

3,1  nk

P=1

The code of the program is:
//function prod calculates the product
double prod(int n)

{

 double p = 1;

 for (int k = 1; k <= n + 3; k++)

 if (k != -1 && k != 0) p *= (float) k/(k + 1);

 return p; //return calculated value of product to Button1Click
}

void __fastcall TForm1::Button1Click(TObject *Sender)

{ int n, k, m = StrToInt(Edit1->Text);

 float S = 0, P;

 for (n = -2; n <= m; n++)

 if (n != -1 && n != 0)

 {

 P = prod(n); // call to the function prod
 S += (float)(n + 1) * p/n;

 }

 Edit2->Text = FloatToStrF(S, ffGeneral, 4, 3);

}

mn,2

11

begin

end

output
S

Input m

n≠-1, n≠0

yes

no
нет

S=0

P=prod(n)

S=S+P*(n+1)/n

 37

In this example, function prod has one parameter – integer number n. It returns

a value of double type. The value of n is entered in Button1Click. Parameter n is

passed to function prod by value.

Note that the variable p is local in function prod and its value is not accessible

in Button1Click.

Example 2.2: Calculate the sum of the series  


 



1

2

)!12(2
1

k

kk

kk
xy , add only those

terms of the series whose absolute values are greater than the given exactitude
410 . Define the number of addends. Enter the value of x (-2<x<2) from the

screen. Use a function to calculate the sum.

 
)!12(2

21





kk

kk

k
xu ,    

)!32)(1(2)!1)1(2)(1(2 2

2)1(21

1
11










 kkkk x
xxu

kkkk

k

Recurrent:

)12(2

2

1 


 kk
x

u
u

r
k

k .

In a program to calculate 2u , we have to know the value of 1u (addend with k=1)

before it:

 
)!12(2

21

1
1





xu =
2

2x
 .

//function calculates the sum

 double sum (double x, double eps, int &k)

 { double u, r, y;

 38

 u=-x*x/2; y=u; //calculate the first addend and output it in

Memo1

 do

 {k++; //increment k to calculate the next addend

 r = -x*x/(2*k*(2*k-1)); //calculate the recurrent factor

 u *= r ; //calculate the addend

 //(multiply the previous addend by recurrent factor)

 y += u; //add the calculated addend to sum

 }while(fabs(u)>=eps); //the loop continues while fabs(u)

 //is greater than eps

 return y; //return calculated value to Button1Click

 }

 //Button1Click inputs x and eps, calls to the function sum and outputs the

result

 void __fastcall TForm1::Button1Click(TObject *Sender)

 { int k = 0;

 float x, Y, eps;

 Memo1->Clear();

 x = StrToFloat(Edit1->Text);

 eps = StrToFloat(Edit2->Text);

 Y = sum(x, eps, k); // call to function sum

 Edit3->Text = FloatToStr(Y);

 Edit4->Text = IntToStr(k);

}

In this example function sum has three parameters – double numbers n and eps

and integer number k. It returns a value of double type. Parameters n and eps are

passed to function sum by value. Parameter k changes in function sum and its new

value is used in Button1Click. In such cases, the parameter is usually passed by

reference (with & - symbol) and not by value.

 39

3. Arrays
If you want to use a group of objects that are of the same kind, C++ allows you

to identify them as one variable.

An array is a group of values of the same data type. Because the items are

considered in a group, they are declared as one variable, but the declaration must

indicate that the variable represents various items. The items that are part of the group

are also referred to as members or elements of the array.

Declaration of array:
DataType ArrayName[Dimension];

The declaration of array starts by specifying a data type, the DataType in our syntax.

This indicates the kind of values shared by the elements of the array. It also specifies

the amount of memory space that each member of the array will need to store its

value. Like any other variable, an array must have a name, which is the ArrayName in

our syntax. The name of the array must be followed by an opening and closing square

brackets "[]". Inside of these brackets, you have to type the number of items that the

array is made of; that is the Dimension in our syntax.

Examples of declaration:

int student [10]; //array of 10 integer elements

double a [5]; //array of 5 double elements

float b [5]; //array of 5 float elements

When declaring an array, before using it, we saw that you must specify the

number of members of the array. This declaration allocates an amount of memory

space to the variable. The first member of the array takes a portion of this space. The

second member of the array occupies memory next to it:
 a[0] a[1] a[2] a[3] a[4]

a

 40

Each member of the array can be accessed using its position. The position is

also referred to as an index. The elements of an array are arranged starting at index 0,

followed by index 1, then index 2, etc. To locate a member, type the name of the

variable followed by opening and closing square brackets. Inside the brackets, type

the zero-based index of the desired member. After locating the desired member of the

array, you can assign it a value, exactly as you would any regular variable.

For example, to assign the value 7.5 to the third element of array b declared

above, we could write the following statement:
b[2] = 7.5;

and, for example, to pass the value of the third element of b to a variable called a, we

could write:
a = b[2];

Therefore, the expression b[2] is for all purposes like a variable of type float.

Notice that the third element of b is specified b[2] since the first one is b[0],

the second one is b[1], and therefore, the third one is b[2]. For the same reason, its

last element is b[4]. Therefore, if we write b[5], we would try to access the sixth

element of b and will therefore exceed the size of the array.

To initialize the array at the time of declaration:
int student[5] = {0, 1, 4, 9, 16};

float b [] = {16, 2, 7.7, 40, 120.71};

int a[] = {1, 2, 3};

//a[0] = 1

//a[1] = 2

//a[2] = 3

int array [4] = {1, 2};

//array[0] = 1

//array[1] = 2

//array[2] = 0

//array[3] = 0

 41

The numbers in {} are called initializers. If the number of initializers is less

than the number of the array elements, the remaining elements are automatically

initialized to zero. There must be at least one initializer in the {}. Such kind of

expression can only be used in a declaration. You can’t use “{0, 1,...}” in an

assignment.

Instead of directly placing a figure such as 10 in the braces of the array

declaration, it is better to place a constant variable. That way, when you want to

change the array size, you only need to change it in one place.
const int size = 10;

int array[size];

The other reason is to avoid hard-coded numbers: if number 10 frequently

appears in the program and other irrelevant 10 happens to appear, it can mislead the

reader those tens have something to do with each other.

Only a constant variable can be used as array size. Therefore, you can not make

the array size dynamic by inputting an integer from keyboard at run time and use it as

array size. You cannot even use a non-constant variable assigned deterministically in

the code, but you can #define preprocessor directives for array size.

In C++, an array is just an address of the first array element in memory.

Declaring the size of the array can only help compiler to allocate memory for the

array, but the compiler never checks whether the array bound or size is exceeded:

int a[3] = {10, 100, 27}; //we may use indexes 0, 1, 2

a[4]=3; //if we try to use index 4, the compiler will not notice this

error

The problem that will happen if you exceed the array bound is: because the

compiler was told that the array was only consisting of 3 elements, so it may have put

other variables in the succeeding memory locations. Therefore, by declaring an array

of 3 elements and then putting a value into the 4th element, you may have

overwritten other variables and produced very serious logical errors which are very

difficult to find out.

The size of an array should be carefully observed.

 42

We usually use for loop to process arrays.

Input array from Memo
for(int i = 0; i < size; i++)

 a[i] = StrToInt(Memo1->Lines->Strings[i]);

Input array from horizontal StringGrid
for(int i = 0; i < size; i++)

 a[i] = StrToInt(StringGrid1->Cells[i][0]);

Output array to Memo
for(int i = 0; i < size; i++)

 Memo1->Lines->Add(IntToStr(a[i]);

Output array to horizontal StringGrid
for(int i = 0; i < size; i++)

 StringGrid1->Cells[i][0]=IntToStr(a[i]);

Sum of array:
int sum=0;

for(int i = 0; i < size; i++)

 sum += a[i];

Very few operations are legal for arrays. Some valid operations with arrays are:
a[0] = x;

a[x] = 75;

b = a[x+2];

a[a[x]] = a[2] + 5;

No assignment. Use a loop to copy elements from one array to another or to

assign to array elements some values.

No comparisons. Use a loop to compare elements of two arrays.

No arithmetic operations. Use a loop to perform arithmetic operations between

two arrays.

Example 3.1: Input an array of 10 float elements and calculate the product of

non-zero elements of this array.

 43

The program code:
void __fastcall TForm1::Button1Click(TObject *Sender)

{ float a[10], P = 1;

 for(int i = 0; i < 10; i++)

 { a[i] = StrToFloat(Memo1->Lines->Strings[i]);

 if(a[i] != 0) P *= a[i];

 }

 Edit1->Text = FormatFloat("0.000", P);

}

Example 3.2: Input an array of 7 integer elements. Find the

minimum of array elements and its index.

min=A[0], ind=0

 6,1i

min=A[i], ind=i

begin

min, ind+1

end

min>A[i]
yes

no

 6,0i

input
A[i]

input a[i]

begin

end

P = 1

9,0i

P=P*a[i]

output P

a[i]0
 yes

no

 44

The program code:
void __fastcall TForm1::Button1Click(TObject *Sender)

{ int A[15] ; int i;

 for(i = 0; i < 7; i++)

 A[i] = StrToInt(Memo1->Lines->Strings[i]);

 int min = A[0], ind = 0;

 for(i = 1; i < 7; i++)

 if(min > A[i])

 {min = A[i]; ind = i;}

 Edit1->Text = IntToStr(min);

 Edit2->Text = IntToStr(ind+1);

}

Example 3.3: Input an array of 10 integer numbers. Create a new array of the

first array elements divided by the sum of its elements with odd indexes.

To get a new array, at first we have to calculate the sum of elements with odd

indexes. After that, we can sequentially divide all elements by sum and assign the

result to elements of the new array. New array has the double type (after division).

 Let’s input the first array and output the new array in StringGrid (from

Additional panel). This component is used to represent tables. It consists of Cells.

Each Cell has Column and Row indexes. In this example StringGrid consists of 1 row

and 10 columns. To use StringGrid in the program do the following:

 Place StringGrid on the form. Its Name property is StringGrid1. Enter the new

name for it: SG1.

 Change the properties ColCount (количество столбцов) = 10 and RowCount

(количество строк) = 1.

 Change the properties FixedCols (количество фиксированных столбцов) = 0

and FixedRows (количество фиксированных строк) = 0.

 Resize your StringGrid.

 We want to input numbers into Cells of StringGrid. Change the property

Options – goEditing to true value and goTabs – also to true.

 45

 Copy this StringGrid and Paste. Rename new StringGrid to SG2. This

StringGrid is for the new array.

Text of the program:
void __fastcall TForm1::Button1Click(TObject *Sender)

{

 const int N = 10;

 int a[N], i, sum = 0; //a is the first array

 float b[N]; //b is the new array
 for (i = 0; i < N; i++)

 a[i] = StrToInt(SG1->Cells[i][0]);

 for (i = 0; i < N; i++)

 if (i%2 != 0) sum += a[i];

 Edit1->Text = IntToStr(sum);

 if (sum != 0)

 { for (i = 0; i < N; i++)

 b[i] = 1.*a[i]/sum; //calculate b[i]
 for (i = 0; i < N; i++)

 SG2->Cells[i][0] = FormatFloat("0.0", b[i]);

 }

 else ShowMessage ("sum=0, cannot divide");

}

 46

Example 3.4: Input an array of 10 or less double numbers. Create a new array
of the non-zero elements.

We do not know the number of non-zero elements in the first array. Therefore,
we declare a new array with 10 elements. In Example 3.3, indexes of the elements in
both arrays were equal. In this example, indexes are not equal because zeroes will be
dropped.

Text of the program:
void __fastcall TForm1::Button1Click(TObject *Sender)

{

 const int N = 10;

 float a[N], b[N];

 int i, j = 0, sum = 0;

 for (i = 0; i < N; i++)

 { a[i] = StrToInt(SG1->Cells[i][0]);

 b[i] = 0; //elements of the new array are at first 0
 }

 for (i = 0; i < N; i++)

 if (a[i] != 0) {

 b[j] = a[i];//if element a[i] is non-zero, we assign it to b[j]and
increment j
 j++;}

 SG2->ColCount = j; //now we know the real number of cells in SG2
 for (i = 0; i < j; i++)

 SG2->Cells[i][0] = FormatFloat("0.0", b[i]);

}

 47

SORTING

The problem is to place array elements in ascending order.
The technique: Make several passes through the array. On each pass,

successive pairs of elements are compared. If a pair is in increasing order (or values
are identical), do nothing. If a pair is in decreasing order, swap the values. This
algorithm is called bubble-sorting.

Assume you have an array a[10]. First, the program compares a[0] to a[1], then
a[1] to a[2], then a[2] to a[3], and so on, until it completes the pass by comparing a[8]
to a[9]. Although there are 10 elements, we
need only 9 comparisons. On the first pass,
the largest value is guaranteed to move to
a[9]. On the second pass, the second largest
value is guaranteed to move to a[8]. On the 9-
th pass, the 9-th largest value will move to
a[1], which will leave the smallest value in
a[0].

The advantage of bubble sort
algorithm is that it is easy to program. And the disadvantage is that it runs slowly, not
appropriate for large arrays.

Text of the program:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 const int SIZE = 10;
 int a[SIZE];

 int i, temp; //temp will be used in swap
 //Input the array to sort
 for (i = 0; i < SIZE; i++)
 a[i]=StrToInt(Memo1->Lines->Strings[i]);

 //Sorting
 for (int j = 0; j < SIZE - 1; j++) //repeat SIZE-1 times
 {

 for (i = 0; i < SIZE - 1; i++) //for each element (except the last)
{ if (a[i] > a[i + 1])//if thet element the next element are in wrong
order

 { temp = a[i]; // swap them
 a[i] = a[i + 1];
 a[i + 1] = temp;

 48

 }
 }
 }

 //Output the sorted array
 for (i = 0; i < SIZE; i++)
 Memo2->Lines->Add(IntToStr(a[i]));
}

This algorithm can be optimized: repeat passes until the array becomes sorted

(there can be less than SIZE-1 passes). We may write do-while loop instead of first
for, and the condition is: while array is not sorted. We need to indicate in a special
variable whether the array is sorted or not. We may count how many times we
replaced elements during this pass, and a non-zero value shows that array is not
sorted.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 const int SIZE = 10;
 int a[SIZE];
 int i, temp;

 int counter; //number of replacements on each pass
 for (i = 0; i < SIZE; i++)
 a[i] = StrToInt(Memo1->Lines->Strings[i]);

 do{ // passes
 counter = 0; // before each pass counter is 0
 for (i = 0; i < SIZE - 1; i++)

 { if(a[i] > a[i + 1]) // compare elements and if they are in wrong
order
 { temp = a[i]; // swap them
 a[i] = a[i + 1];
 a[i + 1] = temp;

 counter++; //and increment the counter
 }
 }

 }while(counter > 0); //if the array is sorted, the counter will be 0 after
the pass
 for (i = 0; i < SIZE; i++)
 Memo2->Lines->Add(IntToStr(a[i]));
}

 49

Example 3.5: Input an array of 11 or fewer integer numbers in Memo. Write
function to sort these numbers in ascending order.

The elements of the array will change after sorting, and we want to save this

changing. Arrays are passed to functions by reference, therefore it is not necessary to
write symbol & before the array’s name in function parameters.

The program code:
sort(int a[], int n)
{ int i, j, tmp;
 for (i = 0; i < n - 1; i++)
 for (j = i + 1; j < n; j++)

 if (a[i] > a[j]) // compare two elements
 { tmp = a[i]; // replace elements a[i] and a[j]
 a[i] = a[j]; // variable tmp is necessary for
 a[j] = tmp; // temporary storage of a[i]
 }
}
void __fastcall TForm1::Button1Click(TObject *Sender)
{ int n, i, a[11];
 n = Memo1->Lines->Count;
 if (n > 11) n = 11;
 for (i = 0; i < n; i++)
 a[i] = StrToInt(Memo1->Lines->Strings[i]);
 sort (a, сn);
 Memo2->Clear();
 for (i = 0; i < n; i++)
 Memo2->Lines->Add(IntToStr(a[i]));
}

 50

4. Multi-dimensional arrays

An array may have more than one dimension (i.e., two, three, or higher). The
organization of the array in memory is still the same (a contiguous sequence of
elements), but the programmers perceived organization of the elements is different.

For example, suppose we wish to represent the average seasonal temperature

for three Ukrainian cities (see Table 4.1).

Table 4.1 Average seasonal temperature.
 Spring Summer Autumn Winter
Odessa 10 22 12 0
Kiev 9 20 8 -3
Lviv 8 17 8 -2

This may be represented by a two-dimensional array of integers.

Two-dimensional arrays

A two-dimensional array is a collection of components, all of the same type,
structured in two dimensions, (referred to as rows and columns). Individual
components are accessed by a pair of indexes representing the component’s position
in each dimension.

The common convention is to treat the first index as denoting the row and the
second as denoting the column.

Syntax:
 DataType ArrayName [Rows][Columns] ;

Examples of declaration:

 51

int table[5][3]; // 5 rows, 3 columns
// (row variable changes from 0 to 4, column variable changes from 0 to 2)
float a[3][4]; // 3 rows, 4 columns
// (row variable changes from 0 to 2, column variable changes from 0 to 3)

double b[52][7]; // 52 rows, 7 columns
// (row variable changes from 0 to 51, column variable changes from 0 to 6)

Average seasonal temperature for three Ukrainian cities:
int seasonTemp[3][4];
The organization of this array in memory is as 12 consecutive integer elements.

The programmer, however, can imagine it as three rows of four integer entries each.
We can access elements of a two-dimensional array by 2 indexes (row and

column). For example, Odessa’s average summer temperature (first row, second
column) is given by seasonTemp[0][1].

Initializing a two-dimensional array in declaration (works for small arrays)
includes sets of braces for each row. Example:

int table[2][3] = {{14, 3, -5}, {0, 46, 7}};
Processing a multidimensional array is similar to a one-dimensional array, but

uses nested loops instead of a single loop.
We usually use a StringGrid component for two-dimensional arrays.
Input of a float array a with 3 rows and 4 columns declared above from

StringGrid:
for(int i = 0; i < 3; i++)
 for(int j = 0; j < 4; j++)
 a[i][j] = StrToFloat(StringGrid1->Cells[j][i]);

The inner for loop totals the elements of the array one row at a time. It fills all
columns of a row. The outer for loop increments the row index after each iteration.
When the outer loop starts with the row index 0, the inner loop is executed the
number of times equal to the number of columns, i.e. 4 in our program. Thus, the first
row is completed for the 4 columns with positions [0,0], [0,1], [0,2] and [0,3]. Then
the outer loop increments the row index to 1, and the inner loop is again executed,
which completes the second row (i.e. the positions [1,0], [1,1], [1,2] and [1,3]). Then
the outer loop increments the row variable to 2 and the inner loop is again executed,
which completes the second row (i.e. the positions [2,0], [2,1], [2,2] and [2,3]).

Output of array a to StringGrid:
for(int i = 0; i < 3; i++)
 for(int j = 0; j < 4; j++)

 52

 StringGrid1->Cells[j][i] = FloatToStr(a[i][j]);

Sum of array a elements:
float sum = 0;
for(int i = 0; i < 3; i++)
 for(int j = 0; j < 4; j++)
 sum += a[i][j];

Sums of array a columns:
float sum[4];
for(int j = 0; j < 4; j++)
{ sum[j]=0;
 for(int i = 0; i < 3; i++)
 sum[j] += a[i][j];
}

C++ does not have a limit on the number of dimensions an array can have.

Example of the three-dimensional array:
int graph[10][20][30];

Example 4.1: Fill the matrix 5x3 with numbers by formula:

 1ln

23






ji

ji
aij .

Calculate the number of elements, which are less than 2.

This formula can be calculated for all values of i and j except i=0 and j=0
simultaneously (let in this case aij=0).

#include <math.h>
//”Start” button
void __fastcall TForm1::Button1Click(TObject *Sender)
{

 53

double a[5][3];
int i, j, k = 0;
//Calculation of matrix elements
for (i = 0; i < 5; i++)
 for (j = 0; j < 3; j++)
 if (i == 0 && j == 0) a[i][j] = 0;
 else a[i][j] = sqrt(fabs(pow(i,3)-j*j))/log(i+j+1);
//Output the elements
for (i = 0; i < 5; i++)
 for (j = 0; j < 3; j++)
 SG1->Cells[j][i] = FormatFloat("0.00", a[i][j]);
//Counting elements <2
for (i = 0; i < 5; i++)
 for (j = 0; j < 3; j++)
 if (a[i][j]<2) k++;
Edit1->Text = IntToStr(k);
}
//”Clear” button
void __fastcall TForm1::Button2Click(TObject *Sender)
{
for (i = 0; i < 5; i++)
 for (j = 0; j < 3; j++)
 SG1->Cells[j][i] = "";
Edit1->Clear();
}

Example 4.2: Input an integer

matrix 4x3. Calculate the product of
elements which are multiple at least to
one of its indexes.

Text of the program:

void __fastcall
TForm1::Button1Click(TObject
*Sender)
{
int a[4][3];
int i, j, k = 0;
long p=1;

//Input matrix elements

 54

for (i = 0; i < 4; i++)
 for (j = 0; j < 3; j++)
 a[i][j] = StrToInt(SG1->Cells[j][i]);

//Calculate the product
for (i = 0; i < 4; i++)
 for (j = 0; j < 3; j++)
 if (i != 0 && a[i][j]%i == 0 || j != 0 && a[i][j]%j == 0)
 {p *= a[i][j];
 k++;}
if (k > 0) Edit1->Text = IntToStr(p);
else ShowMessage ("No numbers");
}

Example 4.3: Input float matrix 3x4. Create a vector of an average of row

elements.

 Text of the program:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
float a[3][4],s, b[3];
int i, j, k;
long p = 1;
//Input matrix elements
for (i = 0; i < 3; i++)
 for (j = 0; j < 4; j++)
 a[i][j] = StrToFloat(SG1->Cells[j][i]);
//Calculate the averages and assign them to elements of new array
for (i = 0; i < 3; i++)
{ s = 0;
 for (j = 0; j < 4; j++)
 s += a[i][j];
 b[i] = s/3;
}

 55

//Output the new array
for(i = 0; i < 3; i++)
 SG2->Cells[0][i] = FormatFloat("0.00", b[i]);
}

Example 4.3: Input two integer matrices 2x4 and 4x3. Multiply these matrices.

The result is a matrix with 2 rows and 3 columns.

The program code:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 int a[3][5];
 int b[5][4];
 int result[3][4];

 int i, j, k; // Loop counters in FOR loops
 int temp; // Used to build result

 // Read values for first array
 for (i = 1; i < 3; i++)
 for (j = 1; j <5; j++)
 a[i][j]=StrToInt(SG1->Cells[j][i]);

 // Read values for second array
 for (i = 1; i < 5; i++)
 for (j = 1; j <4; j++)
 b[i][j]=StrToInt(SG2->Cells[j][i]);

 //Calculate results in result array
 for (i = 1; i <3; i++)

 56

 for (j = 1; j <4; j++)
 {
 temp = 0;
 for (k = 1; k <5; k++)
 temp += a[i][k] * b[k][j];
 result[i][j] = temp;
 }

 //Now display the results
 for (i = 1; i <3; i++)
 for (j = 1; j <4; j++)
 SG3->Cells[j][i] = IntToStr(result[i][j]);
}

