
Ministry of Transport and Communication of Ukraine

Ukraine State Committee of Communications

Odessa National Academy of Telecommunications Named After A.S. Popov

Sub-faculty of information technologies

COMPUTER SCIENCE
Module 1

The main data on a personal computer and about the organization

of computing processes

Part 1

Lecture notes

Odessa 2008

2

УДК 004.43 План УМИ 2008 г.

Composer - Y. V. Prokop

These lecture notes contain brief information on personal computers, Windows

XP operating system, Microsoft Word text processor, and theoretical data and
examples of projects in С ++ Builder for calculation of complex mathematical
formulas and solving problems with branching. These lecture notes will be useful for
students of the Academy of Telecommunications who are studying in English, fixing
theoretical material, preparation for laboratory works, and practical occupations in
the discipline of Computer science in the first module.

It is intended for the acquisition of skills for operation on a personal computer
and programming by students of the academy studying in English, with the purpose
of further usage of these skills in daily present and future professional work. Also, it
will be further useful for users of personal computers, wishing to learn programming
in the C ++ Builder environment.

The lecture notes have been approved by the sub-faculty IT meeting

Minutes № from

The head of the chair Leonov Y. G.

The lecture notes are considered and approved by the faculty of Informational

Networks meeting

Minutes № from

The dean of the faculty Strelkovskaya I. V. В.

3

Contents
Introduction..4
Lecture 1. Introduction. Personal computer. Microsoft Windows. Microsoft Word..........................7

Personal computer..7
Memory..10
Number systems...11
Microsoft Windows..14
Microsoft Word Text Processor ...20

Lecture 2. Introduction to programming. C++ Builder IDE..44
Introduction to Borland C++ Builder IDE ...45
Variables and Data Types ..50
Input/Output ...56

Lecture 3. Arithmetic expressions in C++. Programs with linear structure.......................................59
Math Functions ..59
Console application..63

Lecture 4. Conditions. If and switch conditional statements ...72
Conditions ..72
If statement...73
The switch statement..79

Application 1 Description of Microsoft Word Standard and Formatting Toolbars...........................85
Application 2 Precedence of operators ..88
Application 3 The list of reserved words ...89
Application 4 Vocabulary ..90
Application 5 The list of functions and instructions ..93

4

Introduction

Structure of the module

The discipline of Computer science is studied in I - II semesters and is intended
for the training of students for the professional use of personal computers.

The purpose of the Computer science course is to form knowledge and skills in
areas such as:

• architecture of a personal computer

• operation in Windows operating system

• algorithmization of computing processes

• compilation of programs on C ++ programming language

• acquaintance to object oriented programming on an example of solution of the
elementary tasks in C ++ Builder programming environment.

The course program consists of four modules:

• module 1 – “The main data on a personal computer and about the organization
of computing processes”;

• module 2 – “Programming of tasks with loops and arrays”;

• module 3 – “Programming of tasks with the structured data”;

• module 4 – “Programming of tasks with lists and files. Bases of object oriented
programming”.

According to the curriculum, the structure of the module is as following:

Type of activity Hours

Lectures 8
Exercises 16

Laboratory Training 16
Total Classwork Hours 40
Individual Work and Self-study 27

TOTAL 67

The subject schedule of lectures

Lecture 1. Introduction. Personal computer. Microsoft Windows. Microsoft
Word.

Lecture 2. Introduction to programming. C++ Builder IDE.
Lecture 3. Arithmetic expressions in C++. Programs with linear structure.
Lecture 4. Conditions. If and switch conditional statements.

The list of exercises in module 1

1. Binary, octal and hexadecimal number systems. Windows operating system.
2. Mathematical expressions. Programs with linear structure.
3. Console. Conditions.
4. Programs with if and switch statements.

5

The list of laboratory trainings in module 1

1. Operation with files and folders in Microsoft Windows. Text document
creation.

2. Creation and formatting the text in Microsoft Word processor.
3. Tables’ creation and processing in Microsoft Word. Graphic images and

formula editor in Word.
4. Introduction to Borland C++ Builder IDE: project, form, components

properties and events.
5. Mathematical expressions. Programs with linear structure.
6. Console application.
7. Programs with branching.
8. Programs with the operator of variants.

The list of knowledge and skills with which the student should start learning

a contents of the given module

The study of computer science is based on the school course of computer
science (students should own knowledge in size of school course of computer science
according to the program of the Ministry of Education) and is based on school
courses of mathematics and the discipline of Higher mathematics (functions,
formulas of conversion, a factorial, numbers, an integral, a matrix, operations with
matrixes, etc.).

Literature

1. Буката Л. Н., Кузнецов В.Д. Информатика. Модуль 1. – ОНАС, 2008.
2. Архангельский А.Я., Тагин М.А. Программирование в С++ Builder 6 и

2006. – М.: «Бином», 2007. – 1184 с.
3. Леонов Ю.Г., Угрік Л.М., Швайко І.Г. Збірник задач з програмування. –

Одесса: УДАЗ, 1997.
4. Архангельский А.Я. Программирование в С++ Builder 5.– М.:«Бином»,

2000.– 1152с.
5. Березин Б.Н., Березин С.Б. Начальный курс С и С++. – М.: «Диалог-

МИФИ», 2000. – 288 с.
6. Бьерн Страуструп Язык программирования С++. – СПб.– М.: Бином,

1999. – 991 с.
7. The cplusplus.com tutorial – http://www.cplusplus.com

6

Guidelines to self-study of the student

For self-study and execution of individual tasks 27 hours are given to the
student. It is recommended to arrange this time as follows:

Type of activity Hours

Studying of lectures 4

Learning of an additional material to lectures 4
Preparation for exercises 4
Preparation for laboratory works 9
Execution of the complex individual task on a theme: “Compilation
of algorithms and programs with linear and branching structure”

6

Total: 27

7

Lecture 1. Introduction. Personal computer.
 Microsoft Windows. Microsoft Word

Personal computer

Computers consist of hardware and software components:
Hardware is the physical equipment: integrated circuit boards, disk drives,

terminals (the screen and keyboard together), tape drives, printers, and plotters.
Software is the programs that instruct the hardware to do something.
Every computer has the following general structure (fig. 1.1):

Hardware

Hardware is all of the electronic equipment that
a computer includes. If you can touch it, pick it up, or move it around, it is hardware.

A computer consists of a system unit, and external devices such as a monitor,
keyboard, mouse, printer, etc. (fig. 1.2).

There are 8 basic parts to a computer:
1. Case houses all of the important computer components. If it stands up tall, it is

a tower case (fig. 1.3). If it sits flat, it is a desktop case (fig. 1.2).
2. Power Supply is a case that holds a transformer, voltage control, and a cooling

fan, and supplies power to the rest of the computer.
3. Mainboard (motherboard) is a large Printed Circuit

Board (PCB) with fixed components and sockets that accept
smaller PCBs and other components, hosting:

− The microprocessor or Central Processing Unit
(CPU), with its own heat sink and cooling fan.

− Small PCBs with fast Random Access Memory
(RAM).

− Interface boards (PCBs) for Hard Disk (HD) Drives,
Floppy Disk Drives (FDD), Compact Disk (CD) Drives and
external peripherals (the connectors on the back of the base
unit are integral parts of the interface boards for external peripherals).

4. CPU (central processing unit) is the “brain” of the computer. Every
instruction given to the computer passes through the electronic circuits of the CPU.
When you program a computer to add two numbers together, the arithmetic is
performed in the CPU. When you want something sorted, the CPU controls the task
from start to finish. The type of CPU in a computer determines how fast the computer

Fig. 1.1 General structure of computer
Fig. 1.2 Personal computer

with desktop case

Fig. 1.3 Tower case

8

can operate. A CPU generates a lot of heat, so there is usually a small fan nearby to
cool it down.

5. Memory. Each program you run is loaded into RAM (random access
memory). However, when the computer is switched off, all of this information
disappears. RAM is also referred to as thinking memory. If computer has more RAM,
it works (thinks) faster.

6. Video Card (video display controller) produces the output for the computer
display. This will either be built into the motherboard or attached in its own separate
slot (PCI, PCI-E or AGP), in the form of a Graphics Card.

7. Hard Disk (HDD) stores all the information in a computer even when it is
switched off.

8. CD or DVD Drive. A CD-ROM can only read information from the disk.
Many computers have a CD-RW (RW stands for ReWrite) instead of a CD-ROM.
CD-RW allows you to write information to the disk as well as read from it. Also, new
computers may have a DVD (Digital Video Disk) drive instead of a CD-ROM or
CD-RW. A DVD holds much more information.

In fig. 1.4 you can see how components are placed inside a system unit.

Fig.1.4 System unit: Components inside a computer

The computer can also contain:
Sound cards enable computers to output sound to audio devices, as well as

accept input from a microphone. Most modern computers have sound cards built-in to
the motherboard, though it is common for a user to install a separate sound card as an
upgrade.

Networking connects the computer to the internet and/or other computers:

• modem – for dial-up connections. The modem is an expansion card that
allows computers to communicate with each other. A modem plugs the computer in
to a phone or cable line so that information can be transferred between computers.

• network card – for DSL/Cable internet, and/or connecting to other
computers.

Input devices
There are several ways to get new information or input into a computer. The

two most common ways are the keyboard and the mouse. The keyboard has keys for
characters (letters, numbers and punctuation marks) and special commands. Pressing
the keys tells the computer what to do or what to write. The mouse allows you to

9

move the cursor around on screen. By clicking on the buttons on the mouse, you give
the computer directions on what to do. There are other devices similar to a mouse that
can be used in its place. A trackball has the ball on top and you move it with your
finger. A touchpad allows you to move your finger across a pressure sensitive pad
and press to click.

Other types of input devices allow you to put images into the computer. A
scanner copies a picture or document into the computer. There are several types of
scanners and some look very different, but most look like a flat tray with a glass pane
and a lid to cover it. You can input photographs into a computer with a digital

camera.
Output Devices

Output devices display information in a way that you can understand. The most
common output device is a monitor. It houses the computer screen. The monitor
allows you to “see” what you and the computer are doing together.

Speakers are output devices that allow you to hear sound from your computer.
Computer speakers are like stereo speakers.

A printer is another common part of a computer system. It takes what you see
on the computer screen and prints it on paper. There are three types of printers. An
inkjet printer uses inks to print. It is the most common printer used with home
computers and it can print in either black and white and/or color. Laser printers run
much faster because they use lasers to print. Laser printers are mostly used in
businesses. Black and white laser printers are the most common, but some print in
color, too. Also, there is an old type of printer called the matrix printer. Basically
they are used in cash registers for printing receipts, tickets, etc.

Ports
Ports are on the outside of the computer case where you plug in hardware. On

the inside of the case, they are connected to expansion cards. The keyboard, mouse,
monitor, and printer all plug into ports. There are also extra ports to plug in extra
hardware like joysticks, gamepads, scanners, digital cameras and the like. The ports
are controlled by their expansion cards which are plugged into the motherboard and
are connected to other components by cables which are long, flat bands that contain
electrical wiring.

System bus

All communication between the individual major components is via the system

bus. The bus is merely a cable which is capable of carrying signals representing data
from one place to another.

When data must be sent from memory to a printer then it will be sent via the
system bus. The control signals that are necessary to access memory and to activate
the printer are also sent by the CPU via the system bus.

A crucial component of a computer is the BIOS (Basic Input Output System)

chip. In very simple terms, the BIOS chip wakes up the computer when you turn it on
and reminds it what parts it has and what they do.

10

Memory

The fundamental unit of data storage in a computer is called a bit or binary
digit. A bit is similar to a two-way switch. Just like a switch has two states (off or on),
a bit also has two states (0 or 1). Often these two states represent the values false or
true and are implemented inside a computer by using a low voltage value or a high

voltage value. Since bits provide the foundation for all data storage, it is not
surprising that the binary number system is very important to computers.

By themselves, bits are not very interesting or useful. In order to store more
complex forms of data, bits are joined together into larger groups known as bytes.
Every byte is made up of eight bits and can store one character symbol. Integer
numbers can be stored in 2 or 4 bytes. The word “computer” occupies 8 bytes.

We can assign particular patterns of bits to represent common symbols such as
letters, punctuation marks, and numerals. One very common representation of these
symbols is ASCII, the American Standard Code for Information Interchange.

The main memory of a computer (RAM) is composed of millions of storage
cells similar to the one illustrated in fig. 1.5. The size of the storage cells is known as
the word size for the computer. In some computers, the word size is one byte while in
other computers the word size is two, four, or even eight bytes. Each storage cell in
the main memory has a particular address which the computer can use for storing or
retrieving data. This arrangement of cells is somewhat similar to a computer
spreadsheet where each box of the spreadsheet can hold various data. Just like the
boxes of the spreadsheet are identified by a row and column combination
(e.g., A2, C4, etc.), the cells of a computer’s main memory are identified by a
particular address (e.g., Cell 1, Cell 2, etc.). The addresses begin at 0 and increases by
1 until the end of the main memory is reached.

Fig. 1.5 Model of computer memory

Because computers have such large amounts of RAM, the size of the main

memory is usually measured in megabytes (MB) rather than just bytes. One megabyte
is equal to 220 bytes or 1,048,578 bytes. Some other common measures for quantities
of bytes are listed in the table 1.1.

Table 1.1 Measures for quantities of bytes

Kilobyte (KB) 1024 or 210 bytes 1,024 bytes Thousands of bytes

Megabyte (MB) 10242 or 220 bytes 1,048,578 bytes Millions of bytes

Gigabyte (GB) 10243 or 230 bytes 1,073,741,824 bytes Billions of bytes

Terabyte (TB) 10244 or 240 bytes 1,099,511,627,776 bytes Trillions of bytes

11

Number systems

With digital devices it is necessary to deal with various types of information. It
is mostly the binary information, such as whether the device is switched on or off, the
device is serviceable or not. The information can be presented in the form of a text. It
is necessary to encode characters of the alphabet by means of binary levels of a
signal. Often the information can represent numbers. Numbers can be presented in
various number systems. Number systems may be positional or not positional.

Not positional systems are such number systems in which each character saves
the value irrespective its position among other characters representing a number. An
example of a not positional number system is the Roman system.

The number system is named positional if the same digit has various values,
determined as a position of digit in the sequence of digits representing a number. An
example of a positional number system is the decimal system used in a daily life.

The quantity p of the various digits used in the positional system defines the
name of a number system and is called a base number − "p".

In the decimal system, ten digits are used: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This system
has the basis number ten.

Any number N in a positional number system with the basis p can be presented
in the form of a polynomial from:

N = anp
n
+an-1p

n-1
+ ... +a1p+a0+a-1p

-1
+a-2p

-2
+ ...

Here N = number, aj = coefficients (digits of number), p = a base number (p> 1). It is
accepted to represent numbers in the form of a sequence of digits:

N = anan-1 ... a1a0…
In the COMPUTER positional number systems without decimal basis are

applied: binary, octal, and hexadecimal (table 1.2).
Table 1.2 The Most important number systems

Binary
(base number 2)

Octal
(base number 8)

Decimal
(base number 10)

Hexadecimal
(base number 16)

0
1

0
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

12

The binary number system uses two digits: 0 and 1. In binary system any
number can be presented in the form of:

N = bnbn-1 ... b1b0
where bi are 0 or 1.

The octal number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, 7. For
representation of one digit in the octal system three binary bits (triad) are used
(Table 1.2).

The hexadecimal number system uses 16 digits. The first ten digits of this
system are designated by digits from 0 up to 9 and six uppercase Latin characters:
A, B, C, D, E, F. For the representation of one digit in the hexadecimal number
system (table 1.2) four binary bits (tetrad) are used.

The translation of numbers from one number system to another
The translation of numbers to the decimal system is carried out by a

compilation of a power series with the basis of that system from which the number is
translated. Then the value of the sum is added up.

Examples 1
1. Translate 10101101.1012 "10" n. s.

10101101.1012 = 1 27+ 0 26+ 1 25+ 0 24+ 1 23+ 1 22+ 0 21+ 1 20+ 1 2-1+ 0 2-2+ 1 2-3 =
173.62510

2. Translate 703.048 "10" n. s.
703.048 = 7 82+ 0 81+ 3 80+ 0 8-1+ 4 8-2 = 451.062510

3. Translate B2E.416 "10" n. s.
B2E.416 = 11 162+ 2 161+ 14 160+ 4 16-1 = 2862.2510

The translation of the integer decimal numbers to the not decimal number

system is carried out by a sequential division of a decimal number by the basis of that
system in which it is translated until it will turn out to be the quotient smaller than
basis. The number in the new system is written in the form of the rests of division,
beginning from the last.

Examples 2
1. Translate 18110 "8 " n. s.

Result: 18110 = 2658

2. To translate 62210 "16" n. s.

Result: 62210 = 26E16

13

For the translation of octal or a hex number to the binary form, it is enough
to substitute each digit of this number with an appropriate three-bit binary number
(triad) (Tab. 1.2) or four-digit binary number (tetrad) (Tab. 1.2), thus discard
unnecessary zero in seniors and low-order digits.

Example 3
Translate 305.48 " 2 " n. s.

1. Translate 7B2. E16 "2" n. s.

In order to transition from the binary to the octal (hexadecimal) system do

the following: move from a point to the left and to the right, divide binary number
into groups on three (four) bits, supplementing, if necessary, in the zero extreme left
and right groups. Then a triad (tetrad) will be substituted in the corresponding octal
(hexadecimal) digit.

Example 4
Translate 1101111001.11012 " 8 " n. s.

To translate11111111011.1001112 " 16 " n. s.

Translation from the octal in hexadecimal system is also carried out through

the binary system by means of triads and tetrads.
Example 5

Translate 175.248 " 16 " n. s.

Result: 175.248 = 7D.516.

Binary arithmetic
Rules of arithmetic operations above binary numbers are set by table 1.3 binary

additions, subtraction and multiplying.
Table 1.3 Binary arithmetic

The table of binary

addition

The Table of binary

subtraction

The Table of binary

multiplying
0+0=0 0-0=0 0 0=0
0+1=1 1-0=1 0 1=0

1+0=1 1-1=0 1 0=0
1+1=10 10-1=1 1 1=1

At addition of binary numbers each pair of digits is added. Thus, it is necessary to
consider that 1+1 results in zero in the given bit and 1 is carried in previous bit.

14

Example 6

Add binary numbers:
X=1101, Y=101;

Result 1101+101=10010.
X=1101, Y=101, Z=111;

Result 1101+101+111=11001.
The subtraction of binary numbers in the given bit 1 of high bit is engaged if
necessary. This borrowed unit is equal to two units in a given bit.

Example 7
Binary numbers X=10010 and Y=101 are set. Calculate X-Y.

Result 10010 - 101=1101.

Microsoft Windows

Software is the program that controls everything the computer does for you.
The software makes the computer run and determines whether the computer acts as a
text processor, graphic artist, office manager, or performs any of the hundreds of
tasks that a computer can do for you.
 There are two types of software:

Application software – programs designed to perform specific tasks that are
transparent to the user;

System software – programs that support the
execution and development of other programs. Two
major types of system software are operating systems
and translation systems.

An operating system oversees and directs the
processing of all programs (fig. 1.6). It provides basic
functions for computer such as:

• Controls hardware (printer, monitor, etc.)

• Runs programs

• Organizes information.

Fig. 1.6 Operating system

15

The most famous operating system is Microsoft Windows. Other operating
systems are Unix, Linux (for network), OS/2, Macintosh etc.

A translation system is a set of programs used to develop software. A key
component of a translation system is a translator. Some types of translators are:

• Compiler – converts from one language to another

• Linker – combines resources
Examples: Microsoft Visual C++®, CBuilder®, g++, Code Warrior®. They

perform compilation, linking, and other activities.

When you turn a computer on, it will go through a process called booting. That

is short for bootstrapping. When you press the “On” switch, a small program called a
bootstrap loader runs. This program, in turn, loads the operating system which
controls your PC’s functions. This process is, in effect, the computer “pulling itself
up by its own bootstraps”.

During bootup, you will normally see a black screen with text summaries as the
system checks itself over. After about a half of a minute, you will see the Windows
startup screen displayed and then Windows itself will start. Then you will be
presented with the Windows Desktop, your working and playing environment.
 Microsoft Windows has Graphical User Interface (GUI). We use a mouse to
operate it.

Mouse

The mouse allows you to choose commands on menus and toolbars as well as
select objects on the screen. As you move the mouse, a cursor moves on the screen.
The cursor can take different shapes and is sometimes called an arrow of pointer.
When you use a mouse, you first point the cursor to some object, then use the mouse
button. Some mouse terms are:

• Click: press and release the left mouse button

• Click and Drag: press the left mouse button and hold it down while you move
it over a text or an object. If an instruction says to drag, it assumes that you hold
down the left mouse button while you are dragging.

• Double-click: quickly press and release the left mouse button twice

• Right-click: press and release the right mouse button

• Waiting cursor: when you see an hour-glass, it means you should wait while
your computer completes a task.

Sometimes you will see an instruction like this: Ctrl + click. That means to
hold down the Ctrl key while you click with the mouse. You can see a similar
instruction with the Shift and Alt keys.

If you see a command that instructs to choose or select an item, it means that
you should point and click.

Introducing the Desktop
The Windows Desktop is a metaphor for your real-world desk, although it is

more like an office-top than a desktop. The Desktop is highly customizable, so no
two Windows Desktops look exactly the same. For example, you can see something
very similar to the Desktop displayed in Fig. 1.7.

16

Fig. 1.7 Microsoft Windows XP Desktop

Figure 1.8 shows a Windows XP Desktop with the Start Menu open (you open
it by clicking the “Start” button at the bottom left corner). Windows XP is the latest
in the line of Microsoft operating systems which includes Windows 95, Windows 98,
Windows 98 Second Edition, Windows Millennium and Windows 2000. If you are
using any of Windows XP’s predecessors your Desktop will look a little different but
all the key features and functions will be present. Your desktop will have a Taskbar
(access to all opened programs and files), Start Button (for opening files and
running programs), My Computer (allows you to view folders and files), and a
Recycle Bin (stores deleted files and allows you to retrieve them).

Fig. 1.8 Desktop with Start Menu open:

A – Start Button, B – The Start Menu, C – Icons, D – Recycle Bin,
E – My Documents, F – My Computer, G – Desktop,

H – Notification Area, I – The Taskbar, J – The Quick Launch Bar.

17

If you open several programs or windows, the buttons with their names appear
on the Taskbar. You can click the mouse to toggle between them or press Alt+Tab
keys.

Shutting down
It is important you turn your computer off correctly. Simply hitting the power

switch without shutting down properly is a sure way to lose documents you have
been working on or even to damage data or programs on your system.

Here is how to exit from Windows:
1. Close any open programs or documents. Do so by clicking the little X in the

top right-hand corner of each open window. If there appear, to be two Xs, one above
the other in a window, click the topmost X.

2. Click the “Start” button and select Turn Off Computer. A Turn Off
Computer dialog box will appear. Click “Turn Off”. A colored screen will appear
indicating that Windows is shutting down. After a little while, your computer should
shut off automatically.

Files
The information in a computer is stored on a hard disk in files. To understand,

what a file is, imagine a book. Books are kept on shelves or in a case. In a computer,
files (books) are placed in folders (shelves or cases). Small folders can be inside
larger folders. Thus, a tree of folders is formed. The most external folder is the root.

A file name consists of two parts: name and extension. The name consists of
250 or less characters: Latin, Russian, or Ukrainian letters, digits and some other
symbols. It cannot contain symbols: «/», «\», «*», «,» «:» «?», « “», «<», «>», «|».

The extension shows what we can do with a particular file. For example:
Diary.txt – diary is the name, txt is the extension. Txt-files we can read, create

(write) and edit. These files may only contain the simple text (non-formatted).
Letter.doc – has extension doc. This file can be opened with a special text

editor – Microsoft Word or another other editor. This file we also can read, create and
edit. Doc-files contain formatted text (colored text, bold etc.), pictures, tables, and
other objects.

Game.exe has the extension exe. This file can be run. We cannot create or edit
this file without special knowledge.

Windows divides all files on executed files, files with data and system files.

• An executed file is file which can be run.

• Data files contain text, tables, pictures, music, etc.

• System files contain special information and instructions for a system.
Disks, paths and filenames

Disks are identified by a drive letter. On most computers the parts of a hard
disk are C: and D:, the CD-ROM is E:. If your computer has additional drives these
identifiers may slightly differ.

A folder path is a list of folders and sub-folders you must look through to find a
file. The folder path of a file you place in the Correspondence sub-folder within the
My Documents folder is:

\My Documents\Correspondence\
The backslashes are used to separate each element in the path.

18

(Actually, in Windows XP, the My Documents folder is a sub-folder within other
folders, so the path is more likely to look something like this:

\Documents and Settings\username\My Documents\Correspondence
where username is your Windows log on name.)

A full filename takes the form:
driveletter:\folderpath\filename

For example:
C:\My Documents\My Pictures\Jumbo.jpg

Despite initial appearances, the two filenames are unique. If you make a copy of
Jumbo.jpg on a floppy, its unique filename will be A:\Jumbo.jpg.

Notice that the Desktop, which you think of as your screen, is really just
another sub-folder, stored within the Windows folder.

You can use “My computer” or “Explorer” to work with files and folders.
The “My computer” icon is on the Desktop. In the My computer window you

can move from one folder to another by double-clicking.
To run “Explorer” you can right click on the “My computer” icon and choose

“Explore”. Explorer window consists of two parts. The left part is a tree of folders. If
you choose a folder in the left part, the right part will show you consistence of this
folder (files and folders).

You can change views of the right part. You have to option to view only file
names (Tiles, Icons, List) or full information about files (Details): time and date of
the last saving, size, type. You can arrange files by name, type, size, or a creation
date.

The basic operations with files and folders in Windows

Running a file:

• Choose a file to run (with mouse).

• Double click on it or press the “Enter” key.
Making a Folder:

• Find an open area (no icons below).

• Right Click and go to New – Folder.

• Once the folder is created, you will see that the New Folder’s name is “New
Folder” and it is selected or highlighted in Blue which means it is ready for you to
type the name of your choice.

• You must type the folder’s name and press “Enter”.
Creating a file:

 Right-click and go to New, and choose a type of new file. Then, type the name
of the file. The file will be empty. To write something in it: double-click on the file (it
will open). Type what you need and save changes (File – Save). If you do not want to
save changes, close the file and press “No” – not to save.

Copying Files:
There are multiple ways to copy a file from one folder to another.
Right-click method:

1. Right click on the file.
2. Choose Copy. The file will be copied into the computer’s memory.

19

3. Enter the folder where you want to paste the file.
4. Find an open area and right-click.
5. Go to Paste.

Edit-menus method:
1. Click on the file.
2. Go to Edit and choose Copy. The file will be copied into the computer’s

memory.
3. Enter the folder, where you want to paste the file.
4. Go to “Edit” and “Paste”.

With keyboard:
1. Click on the file.
2. Press Ctrl+C. The file will be copied into the computer’s memory.
3. Enter the folder where you want to paste the file.
4. Press Ctrl+V.

If you want to move a file instead of coping it, you must choose Cut instead of
Copy or press Ctrl+X instead of Ctrl+C.

To delete a file or folder you must click on it. Then press “Delete” key or
right-click on the file and choose Delete.

To rename a file or folder you must right-click on the file and choose
Rename. Then type in a new name.
 To undo an action you can press Ctrl+Z or go to Edit menu and choose Undo.

Searching files
1. Click “Start” button. Then Search to open the Search Companion.
2. Choose the appropriate type of search (if you are not sure what type of file you

are trying to locate, select “All Files and Folders”).
3. Type the search criteria into the boxes provided. The search criteria changes

depending on the type of search. For example, if you are searching for multimedia
files, you can specify whether you are looking for an audio, video or graphics. If you
are searching for a document, you can specify the time frame in which it was created
and enter any part of the filename which may help identify it.

4. Click Search to start the search.
5. When the search has completed, you can either refine the search or click “Yes,

Finished Searching” to close the search panel and display a Task Pane.
Selecting multiple files
Often you will want to copy, move, delete, or open more than one file at a time.

To do this, you need to select multiple files simultaneously. Here is how:

• Hold down the Ctrl key while you click each file you wish to select (this is
called Ctrl-clicking).

• To deselect an already selected file Ctrl-click it.

• To select a whole list of files or folders, click the top file in the list, hold down
the Shift key, and then click the last file in the list.

Selecting files by corralling them
For an even quicker method of selecting multiple files, you can click-and-drag

a box around the files. Click in a vacant spot to the left of the first file icon you want

20

to select and drag the mouse slightly downwards and to the right. Notice how, as you
do so, a dotted outline of a box appears? This is called a selection rectangle.

You can use this same corralling technique in Windows Explorer, and even in
Open and Save As dialog boxes within applications.

Shortcut
Shortcut is a special type of file. It contains the address of a file (the whole

path and name of the executed file). When the shortcut is run, Windows passes the
file its address and runs it. It is convenient to have shortcuts for files that often used.
To create a shortcut on the Desktop you must right-click on the file and choose Send

to Desktop. To create a shortcut in a current folder, you must right-click on the file
and choose Create Shortcut.

Microsoft Word Text Processor

To start up Word click the “Start” button, Programs and then Microsoft
Word.

Fig. 1.9 Screen with Microsoft Word window

Once started up, Word automatically loads a new document – Document1 as
identified in the title bar. This is a temporary area in which you enter your text. Once
you have entered data that you do not want to lose, you can save it as a file. Your
screen should look the same as the one shown in fig. 1.9, i.e. the Standard and

Menu bar
Title bar

Standard toolbar
Formating toolbar Task pane

Insertion point

Horizontal ruler

Status bar

Scroll bars
View
buttons

Drawing
toolbar

21

Formatting toolbars and the task pane are displayed. The ruler, status bar, and the
scroll bars are all visible.

Commands in Word are accessed through the task pane, menus, toolbars and
keyboard shortcuts.

Commands may be accessed by choosing an option from the menu bar at the
top of the Word screen. By clicking on an option, the user is often faced with a
second selection from either a sub-menu or a dialog box before the command can be
carried out.

Toolbars provide a shortcut to many commands (fig. 1.10). Using the mouse,
point and click on the required button. Different toolbars can be displayed and hidden
at different times. In Application 1 you can see the description of the Standard and
Formatting toolbars.

Fig. 1.10 Microsoft Word toolbars

The insertion point flashes in the document area of the screen which indicates
where the text you type will appear. In Word 2003 you can move the insertion point
to anywhere in your document by double-clicking at the point where you would like
it to go.

Word, like most word processing packages, incorporates word-wrapping. This

means that you should not press the “Enter” key ↵ at the end of each line. Only press
“Enter” when you wish to end a paragraph or leave a blank line.

To correct simple typing mistakes either press the “Backspace” key ← to
delete to the left of the insertion point or the “Delete” key to delete to the right of the
insertion point.

As you type, your work is held in the computer’s temporary memory. If the
computer is switched off or develops a fault, you may lose work that is not saved.
Always save your work regularly.

When saving a document for the first time, Word displays the “Save As” dialog
box (fig. 1.11). When prompted to name the file, name it, and select a folder and
drive to place the file. To save the file:

1. In the File menu, click Save, or press Ctrl+S. The Save As dialog box appears
(fig. 1.11).

2. Choose the appropriate drive and folder, using the drop-down arrow in the
“Save in” box. When you save a file for the first time, check where it is stored.

3. Name the file. Word automatically adds the file extension .doc. It is important
to retain this default as, by international convention, any file with the extension .doc
will be recognised by Windows as a Word document and associated with Word.

4. Click Save.
Once the document has been saved, the file name will appear in the title bar at

the top of the screen. To re-save a document quickly with its existing name, location
and file format, click “Save” on the Standard toolbar, or press Ctrl+S.

Standard toolbar Formatting toolbar Toolbar Options arrow

22

The “Save As” command can be used when you do not wish to overwrite the

old file, but wish to save your work in a new file with a different name, in a different
location, or in a different format:

1. From the File menu click Save As. The Save As dialog box appears (fig. 1.11).
2. If necessary, select a different drive and folder or change the type of file.
3. Change the file name.
4. Click on Save.

Opening a document
1. In the File menu click Open, press Ctrl+O, or click Open icon on the toolbar:

. You will see the Open dialog box (fig. 1.12).

2. Choose the appropriate drive and folder.
3. Select a file from the files listed and click “OK”.

The default for Word is to open files with a .doc extension. If your document has any
other extension you will need to alter the Files of type option.

Enter your file
name here.

Select the
appropriate drive
here – click on the
arrow for a list.

Select the folder
here – double-click
on the folder icon to
open it.

Fig. 1.11 Save As dialog box

Select the appropriate
drive here – click on
the arrow for a list.

Select the folder
here – double-click
on the folder icon to
open it.

Any files in the current
folder are displayed here.

Select the file type
here – click on the
arrow for a list.

Fig. 1.12 Open file dialog box

23

Before you can move, edit, delete, format or otherwise change any text or
graphic in the document you must select (or highlight) the item first. To select text
with mouse:

1. Position the insertion point at the start of the text.
2. Left-click and drag over the area to be selected.
3. Release the mouse button when you have selected the desired text.

These shortcuts will help you work faster in any Word document:

To highlight Method

A single word Double-click on the word

A line of text Click in the selection bar to the left of the line

Multiple lines of text Drag in the selection bar to the left of the lines

A sentence Hold down Ctrl and click anywhere in the sentence

A paragraph Double-click in the selection bar to the left of the
paragraph or triple-click anywhere in the paragraph

An entire document Triple-click in the selection bar (or Ctrl+A)

Individual characters Shift+← or Shift+→

Non-adjacent text Select the first piece of text then hold down the Ctrl
key while you select the next bit of text, and so on
(New in Word 2003)

Copying a text
� Select the text to be copied.

� In the Edit menu, click Copy, press Ctrl+C, or click on the Copy icon:
� Move the insertion point to the new location.

� In the Edit menu, click Paste, press Ctrl+V, or click on the Paste icon:

Moving a text
� Select the text to be moved.

� In the Edit menu, click Cut, press Ctrl+X, or click on the Cut icon:
� Move the insertion point to the new location.

� In the Edit menu, click Paste, press Ctrl+V, or click on the Paste icon:

Searching a word

� Position the insertion point at the beginning of the text. In the Edit menu, click
Find or press Ctrl+F. The Find and Replace dialog box appears with the Find tab
on top (fig. 1.13).

� Enter the word you wish to find in the Find what box.
� Click on the “Find Next” button to start the search.

Microsoft Word begins its search based on where your cursor is positioned in
the document.

24

Word also lets you conduct expanded searches for such things as matching
case, whole words, wildcards, sounds like, all word forms, character formats, and
special punctuation. To access these features, click the More button in the Find and
Replace window.

Fig. 1.13 Find and Replace dialog box

Replacing a word

• Position the insertion point at the start of the text.

• In the Edit menu, click Replace, or press Ctrl+H.

• Enter the text you wish to replace in the Find what box.

• Enter the replacement text in the Replace with text box.

• Click the Find Next button to find the next instance of the word in the text.

• Click the Replace button to replace this instance of the word found in the text.

• Click the Replace All button to replace all instances of the word in the text.
Be careful when using Replace All. You might change things you don't mean

to change. (For example, if you didn't choose the "Find whole words only" option,
and changed "Smith" to "Jones," you would find that "Smithers" had changed to
"Jonesers" - probably not what you intended.)

Formatting a text
Writing in Microsoft Word is more than just typing. Using MS Word also

consists of formatting your document. There are several methods to edit and format
your document. You can Copy, Paste, Bold, Italic, and Underline words or sentences.
You can Align text to the right, center, or left. Among others, you may also add
Bullets and Numbers to the content.

When you begin typing a new document, the text appears in the font (typeface)

and font size (measured in points) that are predefined for Word. To achieve a
different look, you can choose other formats for Word to use. You can apply formats

Fig. 1.14 Format toolbar

Enter the
word you
wish to
find.

Click on “Find
Next” to start the
search.

25

Fig. 1.16 Align

text icons

by clicking appropriate buttons on the Formatting toolbar (fig. 1.14), by pressing
shortcut keys or by clicking Font in the Format menu.

The Formatting toolbar contains the most commonly applied formats.
However, there are more options available in the Font dialog box.

To access the Font dialog box:
� Select the text to format.
� In the Format menu select Font.

The Font dialog box will appear
(fig. 1.15).

Align a text
You may want to center a title,

put your address on the right side of the
screen, keep your text aligned on the
left, or justify your type across the
entire line.

Align Right means the text will
be flush with the documents right
border.

Align Left means the text will be
flush with the documents left border.

Align Center means the text will
be centered across the document.

Justify means the characters will spread out across the
line to fill the space.

� Select the text content you want to align.
� Click the icon on the Formatting Toolbar (fig. 1.16) to

modify the text alignment.

Formatting paragraphs
Some formatting options within Word apply to paragraphs, such as, alignment,

line spacing, borders and shading, and indentation and tabs. A paragraph may consist
of several lines of a text, a single word, or no text at all. A paragraph is created every
time the “Enter” key is pressed. The end of each paragraph is defined by a paragraph
mark: ¶.

Paragraph formats can be applied in a number of different ways: in the Format
menu, the Formatting toolbar, the ruler, shortcut keys, or the Reveal Formatting
task pane. To make several different types of changes to the paragraph(s) at the same
time, you can click the Paragraph option in the Format menu. You can determine
the indentation, alignment, line spacing, and tabs in the Paragraph dialog box as
shown in fig. 1.17.

Fig. 1.15 Font dialog box

26

Inserting non-English characters one-by-one

To insert non-English characters in your document, in the Insert menu, select
Symbol (fig. 1.18).

In Font box, selecting Normal text will give you access to a range of

characters in the same font that you are currently using.
Scroll slowly down to find the character you are looking for. The full range of

characters for Western European languages will always be available. Depending on
which font you are working with, you may also find other character sets - for
example Greek, Hebrew, and Arabic.

Fig. 1.18 Symbol dialog box

First line and
hanging
indentation can be
set here.

You can set
indentation from the
left-hand margin here.

You can set
indentation from the
right-hand margin
here.

You can set line
spacing here.

Alignment can be
specified here.

You can set
tabs here.

Fig. 1.17 Paragraph dialog box

27

If the characters you want are not available in your normal text font, select
Arial Unicode. This has an extensive choice available from the Subset list. It includes
character sets from all the main languages (for example Chinese, Arabic, Japanese).

Using Column Layout
You will not see columns in their proper position unless

View is set to Print Layout. In the Toolbar, click Columns
(fig. 1.19), and then click on the number of columns you need.

To start a new column at a fixed point in the Insert
menu, select Break and then Column Break.

For a more sophisticated column formatting select
Columns in the Format menu (fig. 1.20). If you want uneven
column widths: switch off the “Equal Column Width” checkbox, then set “Width and
Spacing”. Notice the preset column format options that are available. Alter “Apply
To” if necessary. A section break will be added automatically if you set it as “From
this Point”.

Drop Caps

A drop cap is a large letter that begins a paragraph and drops through several
lines of text as shown in fig. 1.21.

To add a drop cap to a paragraph follow these steps:
� Place the cursor within the paragraph whose first letter will be dropped.
� Select Format|Drop Cap from the menu bar.
� The Drop Cap dialog box allows you to select the position of the drop cap, the

font, the number of lines to drop, and the distance from the body text.
� Click OK when all selections have been made.
� To modify a drop cap, select Format|Drop Cap again to change the attributes,

or click on the letter and use the handles to move and resize the letter.

Fig. 1.20 Columns dialog box

Fig. 1.19
Columns button

28

Bullets and Numbering
Lists provide a great way to present a lot of information in an easy-to-

understand format. Two types of lists are commonly used: bulleted and numbered.
There are two ways of inserting bullets or numbering. You can click the icon

(fig. 1.22) from the Formatting Toolbar first and then type the
text content in the document window. Every time you press
“Enter”, the bullets or numbering setting will be applied to that
sentence. Or you can type the text content in the document
window first, highlight the content, and then click the icon from
the Formatting Toolbar.

You can apply different styles of Bullets and Numbering
by going to Format − Bullets and Numbering. When the

Bullets and Numbering window opens (fig. 1.23), choose a style to apply in your
document.

On the Numbering tab, you can choose to restart numbering if this is a new list,
or continue numbering if numbers in your list are separated by text or graphics.

Fig. 1.21 Drop Cap

Fig. 1.23 Bullets and Numbering dialog box

Fig. 1.22

Numbering and
bullets icons

29

Nested Lists

To create a nested list, such as a numbered list inside of a bulleted list, follow
these steps:

� Type the list and increase the indentation of the items that will make up the
nested list by clicking the Increase Indent button for each item.

� Highlight the items and click the Numbered List button on the formatting

toolbar.
Headers and footers

Do not confuse “Headers” with “Headings”. Headings are formatted within the
main text of your document. Headers and footers are created separately on the top
and bottom margins respectively and appear on every page. They may contain
document title, chapter titles, page number, number of pages, date of creation,
creator, date last saved, filename, or pathname.

If simple page numbering is only required, go to the Insert menu and select
Page Numbers (fig. 1.24).

Fig. 1.24 Page Numbers dialog box

Adding headers or footers:

• In the View menu, select Header/Footer. The Header and Footer window and
toolbar will appear (fig. 1.25).

• Move the cursor slowly over the toolbar buttons to see their functions. You
can insert page numbers and the date from here. More useful options are available
from Insert Autotext – these include “Page X of Y”, and File Name. You can
include any combination of items, along with your own text.

• Switch between headers and footers with the third button from the right. The
other buttons on the right relate to document sections. If you want different headers
and footers for different sections of your document, close the Header and Footer
Toolbar, and divide your document into sections. Format items in a header or footer
just as you would within the main document text.

30

If you want headers and footers positioned differently for odd and even pages,
or on your first page, click on “Page Setup” in the Header and Footer Toolbar. The
Page Setup dialog box will be displayed, with the Layout tab selected. Check the
appropriate Header and Footer options.

Paper size
The page margins of the document can be changed using the rulers on the page

(fig. 1.26) and the Page Setup window. The ruler method is discussed first:

• Move the mouse over the area where the white ruler changes to gray.

• When the cursor becomes a double-
ended arrow, click with the mouse and drag
the margin indicator to the desired location.

• Release the mouse when the margin
is set.

The margins can also be changed
using the Page Setup dialog box:

• In the File menu, click Page Setup.
The Page Setup dialog box will appear.
Click the Margins tab in the dialog box
(fig. 1.27).

• Enter margin values in the Top, Bottom, Left, and Right boxes. The Preview
window will reflect the changes.

• If the document has Headers and/or Footers, the distance this text appears
from the edge of the page can be changed.

• Click OK when finished.

Fig. 1.25 Header and Footer window

Fig. 1.26 Left page margin on the

horizontal ruler

31

Paper tab

Select a
paper size

Select the part of the
document to which you
want your new settings to
apply.

Fig. 1.27 Page Setup dialog box. Margins tab

Click the Paper tab to change the orientation of the page (fig. 1.28). In the

Paper Size list select an appropriate paper size e.g. A4 and click OK.

Fig. 1.28 Page setup dialog box

Styles and Headings
To allow Microsoft Word to generate a table of contents based on your text,

you must use headings.
A style is a set of formatting characteristics that you can give to text. Word

contains many built-in styles, such as Title, Heading 1, Normal, Body Text, and
along with others.

32

When you want a top-level heading, do not just highlight the text and then
format it to give the appearance you want. Instead, apply the Title style. For all major
headings use the Heading 1 style. For subheadings or sections use style Heading 2
and so on. You can see how the style name for the headings reflects the logical
structure of the document. To apply a style put the cursor in the text and then select
the style from the Styles list (as shown in fig. 1.29). Alternatively, use Format –
Style and select the style from the list that appears.

Fig. 1.29 Select the style from the Styles list

Now, you may not like the appearance of your headings and subheadings. The

great thing is that you can change all of them quickly. For example, you might want
all your chapter headings to be 15pt (that is just less than about 1½ times the height
of the usual text size), dark blue, bold and centered on the page.

To change the appearance of a particular style choose Format – Style. The
Style box will appear. Highlight, for example, “Heading 1” and click Modify. Then,
the Modify Style box will appear. Click Format – Font and change the Font color
(blue) and the Size (15pt) option.

Click “OK” to return to the Modify Style box. Click Format – Paragraph.
Change, for example, the Alignment to the Center. Then click “OK” repeatedly to
close all the boxes. Now, all your top-level headings are centered, blue, and 15pt.
When you make a single change, every instance of a style is changed.

Automatic table of contents
With a large document you often want a table of contents that shows chapters

and subheadings with corresponding page numbers. Now, you can do this the tedious
way, by finding every instance of a heading and making a note of the page number.
Then you can type out the headings and their corresponding page numbers. However,
what do you think happens when you insert a few pages in the middle of the
document? You have to remember to modify your table of contents. If you have used
styles, Word can automatically generate a table of contents for you. If page numbers
of headings change because you add or delete text, or if you change the heading text,
all you need to do is press one key, and Word automatically re-generates a new table
of contents.

You can insert a table of contents anywhere in your document; it need not be at
the front. Although this is usually best to place it in the beginning.

Styles list

Select the style from

the list

The paragraph that

contains the cursor

will have the style

you select

Formatting buttons

33

To create a table of contents place the cursor where you want the table of
contents to appear. Choose Insert – Index and Tables. The Index and Tables box
appears (fig. 1.30). Select the Table of Contents tab. Click “OK”.

Word creates a table of contents from your headings and subheadings. You will
have noticed that there are various options, such as whether or not you want the page
number to be included. You can of course use these to specify the appearance of your
table of contents.

If you click on a heading or page number in the table of contents, Word jumps
to that page.

Fig. 1.30 Index and Tables dialog box

Format Painter
A handy feature for formatting text is the Format Painter located on the

standard toolbar. For example, if you have formatting a paragraph heading with a
certain font face, size, and style and you want to format another heading the same
way, you do not need to manually add each attribute to the new headline. Instead, use
the Format Painter by following these steps:

• Place the cursor within the text that contains the formatting you want to copy.

• Click the Format Painter button in the standard toolbar. Notice that your
pointer now has a paintbrush beside it.

• Highlight the text you want to add the same format to with the mouse and
release the mouse button.
To add the formatting to multiple selections of text, double-click the Format Painter
button instead of clicking once. The format painter then stays active until you press
the ESC key to turn it off.

Table of Contents tab

Generally, you want to see page

numbers aligned on the right

34

Tables

Tables are used to format all or part of the document into columns and rows.
There are several ways to build a table in Word. Begin by placing the cursor

where you want the table to appear in the
document and choose one of the methods. The
most common method is: select Table –
Insert – Table from the menu bar. Select the
number of rows and columns for the table
(fig. 1.31) and click “OK”.

Each block in a table is called a cell.
Use the Tab key to move from cell to cell
from left to right. Use Shift-Tab to move from
one cell to another cell from right to left. You
can also move to a cell by clicking in the cell.
In addition, you can move around the table by
using the left, right, up, and down arrow keys.

In each cell there's a sign like . That's
the end-of-table-cell marker. It is analogous to
¶, which is the end-of-paragraph marker. (If
you don't see the , press the ¶ button on the

Standard Toolbar.)
By default, the table is positioned just left of the left margin, and stretches to

just right of the right margin. Word's default puts the table on the page so that text in
the left column of the table will line up with text outside a table.

There is always a paragraph after a table. Even if the table is the last thing in
the document, there will be a paragraph after it, and you can't delete that last
paragraph mark.

Inserting Rows and Columns
Once the table is drawn, insert additional rows by placing the cursor in the row

you want to be adjacent to. Select Table – Insert – Rows Above or Rows Below, or
select an entire row and right-click with the mouse. Choose Insert Rows from the
shortcut menu.

Much like inserting a row, add a new column by placing the cursor in a cell
adjacent to where the new column will be added. Select Table – Insert – Columns

to the Left or Columns to the Right. You may also select a column, right-click with
the mouse, and select Insert Columns.

Moving and Resizing a Table
A four-sided moving arrow and open box resizing handle will appear on the

corners of the table if the mouse is placed over the table. Click and drag the four-
ended arrow to move the table and release the mouse button when the table is
positioned where you want it. Click and drag the open box handle to resize the table.
Change the column widths and row heights by clicking the cell dividers and dragging
them with the mouse.

Fig. 1.31 Insert Table dialog box

35

Tables and Borders Toolbar

The Tables and Borders toolbar allows you to add border styles, shading, text
effects, alignment, and more options to your table. Access the toolbar by clicking
Table – Draw Table or View – Toolbars – Tables and Borders.

You will need to highlight the cells of the table you want to format. Click and
drag the mouse over the cells, or use the following shortcuts:

Selection Menu Method Mouse Method

One cell Table – Select – Cell
Click the bottom, left corner of the
cell when a black arrow appears

One row Table – Select – Row
Click outside the table to the left of
the row

One column
Table – Select –

Column
Click outside the table above the
column when a black arrow appears

Several rows (none)
Click outside the table to the left of
the row and drag the mouse down

Several
columns

(none)
Click outside the table above the
column

Entire table Table – Select – Table Triple-click to the left of the table

Table Properties
The Table Properties dialog box (fig. 1.32) is used to modify the alignment of

the table with text and the text within a table. Access the box by selecting Tables –
Table Properties.

• Size – Check the Preferred width box
and enter a value if the table should be an
exact width.

• Alignment – Highlight the illustration
that represents the alignment of the table in
relation to the text of the document.

• Text wrapping – Highlight “None” if
the table should appear on a separate line from
the text or choose “Around” if the text should
wrap around the table.

• Borders and Shading – Select from a
number of border styles, colors, and widths
(fig. 1.33). Click the “Shading” tab to change
the background color and pattern.

• Options – Click the “Options” button in
the Table Properties window. To change the spacing between the document text and

Fig. 1.32 Table properties window

36

the table borders under Default cell margins. Check the Allow spacing between

cells box and enter a value to add space between the table cells.

Fig. 1.33 Borders dialog box

The Preview section will show you what your borders will look like. You can
change one part of the border selecting a new border style, color, and/or width, then
clicking on the small boxes in the Preview section.

NOTE: The Apply to: box can be changed to
select the entire table or cell.

Resizing column width
You can resize your column widths by placing

the cursor on the line that separates two columns. This
causes the width indicator to appear. After the width
indicator appears left-click and drag with the mouse to
adjust the column width (fig. 1.34).

Sorting data
With Microsoft Word, it is easy to sort the data in

your table. To sort your table data by one of the fields:
1. Click anywhere on your table.
2. Choose Table – Sort from the menu.

You will see the Sort dialog box (fig. 1.35).
3. Select field in the Sort By field.
4. Select “Text”, “Number”, or “Date”

in the Type field.
5. Select “Ascending” or “Descending”.
6. Select Header Row (if your table has

titles across the top of the table).
7. Click “OK”.

Fig. 1.35 Sort dialog box

Fig. 1.34 Resizing width

of the column Dolls

Change the color and
width of the border here:

Select the style of the
border here:

With the Borders tab
selected, you can change
the borders by making
selections to the setting:

Click on the one you
want.

37

Deleting a Column or a Row

You can delete columns from your table.

• Place your cursor anywhere in the column (or row) that you want deleted.

• Choose Table – Delete – Columns (or Rows) from the menu.
Merge Cell

Using Microsoft Word you can merge cells (convert two or more cells into one
cell). Select cells you want to merge and choose Table – Merge Cells from the
menu.

Split a cell into multiple cells in a table

• Select the cells you want to split.

• On the Table menu, click Split Cells.

• Type the number of columns or rows you want to split
each cell into.

Applying calculations to a table

A simple formula can be applied to a
numerical table within Word. To total a column or
row of figures quickly:

• Click in the cell below or to the right of the
data.

• In the Tables & Borders toolbar, click
Autosum (fig. 1.36).

A wider range of formulas can be applied from
the Table – Formula menu (fig. 1.37).

Table AutoFormat
You can use AutoFormats to apply borders,

shade, use special fonts, and to color tables.
Microsoft Word lists all Formats in the Table
AutoFormat dialog box. While in the Table AutoFormat dialog box, click a format to
see the format displayed in the Preview box. You can customize how the format is
applied. Check the features you want in the Formats to Apply and the Apply Special
Formats To Frames. Microsoft Word comes with a long list of AutoFormats.

Converting a Table to Text
Creating tables out of text in Word is a relatively simple process. However, if

you want to take text out of the table format, things seem a little trickier. You may
think your only option is to cut the text from the table and paste it into a different
section of your document.

Fortunately, Word has a simple solution to the problem. It gives you the option
of converting tables to text. To convert a table to text, follow these steps:

1. Select your table.
2. Click the Table menu
3. In the Convert submenu, select Table to Text…
4. Select how you would like to separate the column entries.
5. Click OK.

Fig. 1.36

Autosum button

Fig. 1.37 Formula dialog box

38

Tips for working faster with Word tables

Word tables have a million handy uses, from organizing tabular data to
building an attractive page layout.

The following list of pointers (table 1.4) is a set of reliable timesavers for users
who need to perform some basic table tasks without getting bogged down in feature
subtleties.
Table 1.4 Tips for working faster with Word tables

Selecting and rearranging

Action Function

Select an entire table Click the table move handle, visible when the mouse
pointer is over the table in Print Layout View

Select a column Position the mouse pointer above the top of the
column so it turns into downward-pointing arrow
and click

Select from the current cell to
the top or bottom of the
column

Press Alt+Shift+Page Up or Alt+Shift+Page Down

Select from the current cell to
the beginning or end of the
row

Press Alt+Shift+Home or Alt+Shift+End

Deleting

Delete a selected table Press Backspace

Delete the contents of a
selected table

Press Delete. (You can also delete the contents of
specific cells by selecting them and pressing Delete)

Navigating

Jump from one cell to another Press Tab (to move forward); press Shift+Tab (to
move backward)

Jump to the first or last cell in
a row

Press Alt+Home (to move to the first cell); press
Alt+End (to move to the last cell)

Jump to the first or last cell in
a column

Press Alt+Page Up (to move to the first cell; press
Alt+Page Down (to move to the last cell)

Formatting

Split a table Click in the row above which you want the split to
occur and press Ctrl+Shift+Enter. (If you are at the
beginning of the first table cell, this will insert a
blank paragraph above the table)

39

Continuation of the Table 1.4 Tips for working faster with Word tables

Action Function

Add a row to the bottom of a
table

Click at the end of the last table cell and press Tab

Insert multiple rows in a table Select as many rows as you want to add, right-click,
and choose Insert Rows. Word will add the new
rows above your selection. (The new rows will all be
formatted the same as the first row in your selection)

Move a row (or rows) up or
down

Select the row(s), hold down Alt+Shift, and press the
up or down arrow key as many times as needed to
move the selected row(s) to the spot you want

Automatically resize a column
to fit its contents

Double-click on the boundary to the right of the
column you’re resizing

Resize a column without
affecting the table width

Drag the right boundary of the column you want to
resize. Word will adjust that column and the one on
its right but keep the table the same width.
Or hold down Ctrl+Shift as you drag the boundary.
Word will change the width of the column to the left
and resize the columns to the right proportionally,
leaving the table width unchanged

Resize a column with more
precision

Hold down Alt as you drag a column boundary.
Word will display the margins and column widths on
the horizontal ruler. It will also give you finer
control over the dragging process (similar to
overriding the Snap to Grid feature for drawing
objects)

Insert a tab in a table cell Press Ctrl+Tab

Graphics in Word
In Word you can:

• Add Clip Art from Microsoft’s extensive library (Insert – Picture – Clip Art)

• Place your own pictures in a document (Insert – Picture – From file)

• Create drawings and diagrams with Office drawing tools

• Add a wide range of effects: background patterns and pictures, page borders,
and fancy headings with Word Art.

Charts
You can create a chart by using existing data that is contained within a table in

your document. To insert a chart in your document do the following:
1. Select your table (or part of it).
2. Click Insert − Picture − Chart.

40

Word will launch Microsoft Graph, which automatically creates a chart based
on your table.

Additionally, Word adds two new menus, Data and Chart, to the menubar.
These menus provide additional help with working with your chart.

You can modify the information displayed in the chart by modifying the data in
the Datasheet view (just copy the corresponding data from your table).

There are many ways you can modify the chart visuals. Right-clicking on the
chart provides options such as modifying the borders and shading. You can right-
click on the chart elements to change shapes, change the chart type (doughnut,
column, bubble, and pie charts), and much more.

Note that after editing the chart and returning to the rest of the Microsoft Word
document, the Datasheet may disappear. Double-click the chart to bring the datasheet
back and/or if you wish to modify the chart visuals.

Example of the chart is shown in fig. 1.38.

Spell Check

Word checks your spelling and grammar as you type. Spelling errors are
displayed with a red wavy line under the word. Grammar errors are displayed with a
green wavy line under the error. If you want to spell check your entire document,

press F7 or click the spelling icon or choose Tools – Spelling and Grammar
from the menu.

If you want to spell check part of your document, highlight the area you want

to spell check and then press F7, click the spelling icon , or choose Tools –
Spelling and Grammar from the menu.

The Spelling and Grammar dialog box will notify you of the first mistake in
the document and misspelled words will be highlighted in red (fig. 1.39). If the word
is spelled correctly, click the Ignore button or click the Ignore All button if the word
appears more than once in the document.

If the word is spelled incorrectly, choose one of the suggested spellings in the
Suggestions box and click the Change button or Change All button to correct all
occurrences of the word in the document. If the correct spelling is not suggested,
enter the correct spelling in the Not In Dictionary box and click the Change button.

Fig. 1.38 Example of the table and chart

41

If the word is spelled correctly and will appear in many documents you type
(such as your name), click the Add button to add the word to the dictionary so it will
no longer appear as a misspelled word.

Fig. 1.39 Spelling and Grammar dialog box with spelling error

As long as the Check Grammar box is checked in the Spelling and

Grammar dialog box, Word will check the grammar of the document in addition to
the spelling. If you do not want the grammar checked, remove the checkmark from
this box. Otherwise, follow these steps for correcting grammar:

• If Word finds a grammar mistake, it will be shown in the box as the spelling
error. The mistake is highlighted in green text (fig. 1.40).

Fig. 1.40 Spelling and Grammar dialog box with grammar error

• Several suggestions may be given in the Suggestions box. Select the
correction that best applies and click Change.

• If no correction is needed, click the Ignore button.

42

Microsoft Equation Editor
To write a formula in your document:
1. In the Insert menu, click Object.
2. In the Insert Object dialog box, click the Create New option, and then click

Microsoft Equation 3.0.
Equation Editor will insert a blank working area into your document, and the

Equation toolbar and menus will appear within the Office program’s window.
The formula you insert is an embedded object created by the Equation Editor

program.
Use the following instructions to write a mathematical expression:
1. To enter numbers or variables, simply type them using the keyboard, such as

the y typed to begin the following example equation:

2. To enter a mathematical operator that appears on the keyboard, such as the

plus sign (+), the minus sign (–), or the equals sign (=), you can simply type it. For
instance, you could add an equals sign to the example equation, as shown here:

3. To enter an operator or symbol that does not appear on the keyboard, click

the appropriate button on the top row of the Equation toolbar and then click the
desired symbol on the drop-down menu of symbols. For example, clicking the
symbol shown in fig. 1.41 will add a plus-or-minus symbol:

4. To enter an expression such as a fraction, square root, exponent, or integral,
click the appropriate button on the bottom row of the Equation toolbar, and then
click one of the templates on the drop-down menu. For example, click the
following template to add a square-root expression to the example equation, as
shown below (fig. 1.42):

Fig. 1.42 Microsoft Equation toolbar (symbol selected)

Fig. 1.41 Microsoft Equation toolbar (± symbol selected)

43

5. Enter the desired numbers and variables into the area marked by dotted lines
within the template. For example, you could type the following into the radical
expression in the example equation:

44

Lecture 2. Introduction to programming. C++ Builder IDE

Some Remarks about Programming
Computer programming (often shortened to programming or coding) is the

process of writing, testing, debugging/troubleshooting, and maintaining the source
code of computer programs. This source
code is written in a programming language.
The code may be a modification of an
existing source or something completely
new. The purpose of programming is to
create a program that exhibits a certain
desired behavior (customization). The
process of writing a source code requires
expertise in many different subjects,
including knowledge of the application

domain, specialized algorithms, and formal logic.
In other words, programming is the craft of transforming requirements into

something that a computer can execute.
An idealized picture is:

Unfortunately things are not as easy as they appear. In particular, the

"specification" cannot be given to the computer using natural language. Moreover, it
cannot just be a description of the problem or task, but it has to contain information
about how the problem is to be solved or how the task is to be executed.

A program is a set of instructions executed by the Central Processing Unit
(CPU) one after another. Those commands are generally very simple (like sums,
multiplications, reading data from the Random Access Memory (RAM)), but are
combined to do more complicated tasks. Typically a program consists of thousands to
millions of such simple commands.

Each program must be written in a special language, which is called
programming language. There are many different programming languages and
many ways to classify them. For example, "high-level" programming languages are
languages whose syntax is relatively close to natural language, whereas the syntax of
"low-level" languages includes many technical references to the nuts and bolts (0’s
and 1’s, etc.) of the computer. "Declarative" languages, as opposed to "imperative"
or "procedural" languages, enable the programmer to minimize his or her account of
how the computer is to solve a problem or produce a particular output. "Object-

oriented languages" reflect a particular way of thinking about problems and tasks in
terms of identifying and describing the behavior of relevant "objects". One of the
most popular programming languages is C++. It includes facilities for object-oriented
programming, as well as for more conventional procedural programming.

Fig. 2.1 Computer

Problem or task
specification COMPUTER

Solution or
completed task

45

The Origins of C++

C++ was developed by Bjarne Stroustrup of AT&T Bell Laboratories in the
early 1980’s, and is based on the C language. The name is a pun; "++" is a syntactic
construct used in C (to increment a variable), and C++ is intended as an incremental
improvement of C. Most of C is a subset of C++, so that most C programs can be
compiled (i.e. converted into a series of low-level instructions that the computer can
execute directly) using a C++ compiler.

C is in many ways difficult to categorize. In comparison to assembly language,
it is high-level, but it nevertheless includes many low-level facilities to directly
manipulate the computer’s memory. It is therefore an excellent language for writing
efficient “systems” programs. However, for other types of programs, the C code can
be difficult to understand, and C programs can therefore be particularly prone to
certain types of error. The extra object-oriented facilities in C++ are partly included
to overcome these shortcomings.

Introduction to Borland C++ Builder IDE

C++ is a powerful general-purpose programming language. It can be used to
create small programs or large applications. It can be used to make CGI scripts or
console-only DOS programs. C++ allows you to create programs to do almost
anything you need to do.

An Integrated Development Environment (IDE) is an application that provides
a friendly interface for creating computer programs. We will write our programs in
Borland C++ Builder (BCB) IDE.

BCB uses a “visual” programming paradigm with C++ as its underlying
language. This means you use the mouse to design the look of your application such
as arranging “components” (buttons, scroll bars, menus etc) on skeleton windows
(“forms”). This leaves you with a series of files (C++ source code, C++ headers,
forms definitions and resources) to which you add the code which makes your
application carry out its function. The attributes of each component (size, position,
font of lettering etc) are specified interactively at design time or may be modified
dynamically by the program.

There is no need to master the complexities of Windows programming, as the
components act as an interface between your program and the operating system.

A Borland C++ Builder IDE screen is shown in fig. 2.2.
Across the top of the window is the title bar with the “minimize”, “maximize”

and “close” buttons on the right-hand side. Under the title bar are ten menus.
The File, Edit and Search menus have all the usual Windows options, whilst

the other menus contain options specific to the C++ Builder environment.
The View menu allows you to view a number of windows containing program

and environment information.
The Project menu is for the manipulation of project files and control of all

aspects of a project, allowing you to compile all or part of a program.
The Run menu provides facilities testing and debugging the application.
The Component menu allows for defining, specification and insertion of

external objects into the application.

46

The Database menu provides ways of interacting with several types of live
database.

The Tools menu allows you to run other programs, tools and utilities useful in
the development of Windows applications, without leaving the IDE.

The Help menu gives you access to on-line help including tutorials,
programming syntax, examples and library information.

The main part of the IDE screen is taken up by a blank form. You will place

different components in it. It will allow the user of your program to interact with the
computer. The easiest way to add a control to a form is to click it on the Component
Palette (fig. 2.2), and click on the form. At the beginning we will use controls such
as: Button, Edit Box, Label, and Memo.

Each application is represented by a project. A new project automatically
contains the following files:

• Project1.cpp − a source-code file associated with the project.

• Unit1.cpp − a source-code file associated with the main project form. It is
called a unit file.

• Unit1.h − a header file associated with the main project form. It is called a unit

header file.

• Unit1.dfm − a resource file that stores information about the main project form.
It is called a form file.

Object
Inspector

Component Pallet

Tool bar

Class
Explorer

Code
Window

Form

Fig. 2.2 C++ Builder IDE screen

47

You should save these files to your folder by choosing Save All from the File
menu. You do not need to worry about these files, but do not delete them.

Setting Properties
A property is anything that characterizes or describes an object. The properties

include the name of the control, its color, dimensions, and many other features that
set a control apart from the others. These are visual characteristics accessible every
time the object is displayed.

The properties of a control can be changed either at design or run time. To
change the properties of a control at design time, you will use the Object Inspector
(fig. 2.2).

Each field on the Object Inspector has two sections: the property’s name and
its field value. The box on the right side of each name represents the value of the
property that you can set for an object.

The Caption of a form or a control is the word or group of words that
display(s) on the form’s title bar or on the control.

An important property of a control is its Came. The name of a control allows
you and the compiler to relate to the control.

Depending on what you are trying to do, sometimes you will not want the user
to see a control until another action has occurred. To hide a control, use the Visible
property. It toggles the appearance and the disappearance of a control. Choose False
if you do not want to see a button or True if you want to see it.

The Label Control
A label is a control that serves as a guide to the user. It provides a static text

that the user cannot change but can read to get information about another control on
the form. The programmer can also use it to display simple information to the user.
The most used property of the label control is the caption. The Caption controls what
the user would see or read.

Edit Boxes
An Edit Box is a Windows control used to get or display text for the user’s

interaction. Typically, an Edit Box serves as a place to fill out and provide
information. Like most other controls, an edit box should be accompanied by a Label
that defines its purpose.

The most important Edit Box property is the Text. When you add an Edit
control, C++ Builder initializes it with the name of the control; this would be Edit1
for the first edit box, Edit2 for the second, etc. If you want the control to display text
when the form launches, type the text in the Text property field. Otherwise, if you
want the Edit Box to be empty when it comes up for the first time, delete the content
of the Text field.

Another important property of the Edit control is the Name. It makes it easy
for you to identify the control and its events when writing code.

The Command Button
A Button is a Windows control used to initiate an action. From the user’s

standpoint, a button is useful when clicked, in which case the user positions the
mouse on it and presses one of the mouse’s buttons.

48

There are various kinds of buttons. The most popular button used in Windows
applications is a Command Button – a rectangular control that displays a word or a
short sentence that directs the user to access, dismiss, or initiate an action or a suite of
actions. From the programmer’s standpoint, a button needs a host; this could be a
form, a toolbar, or another container.

To add a command button to your form, click the Button control from the
Standard tab of the Component Palette and click on the form.

From the user’s point of view, the only things important about a button are the
message it displays and the action it performs. The Caption of a button is a word or
phrase displayed on top of the control, indicating what the button is used for. To
change the caption on a control, in the Object Inspector, click the word Caption and
type the desired caption.

To the programmer, one of the most important properties of any control is the
Name. This allows you and the compiler to know what control you are referring to
when the program is running. By default, the first button you add to a form is named
Button1, the second would be Button2. Since a program usually consists of many
buttons, it would be a good idea to rename your buttons and give them meaningful
names. The name should help you identify what the button is used for. For example,
OKButton, ExitButton, SolveButton.

The typical action a user performs with a button is click it. To initiate the
OnClick event on a button, double-click it.

There are many other controls we will get acquainted with later.
When the interface of the program is ready, it is time to write a code of the

program that directs the computer as to what to do, when, and how. This is done in an
appropriate window called the Code Editor (fig. 2.2). To access the Code Editor, if
you have a form opened, you can press F12.

Controls Events
An event is an action that occurs in the life of a control. The job of a

programmer consists of writing instructions, what computer must do, when an event
occurs.

The users of your program will mainly use a mouse and keyboard to interact
with your application. These two objects are the primary sources of using events. We
will consider two main events – OnClick and OnChange. OnClick event occurs when
a user clicks the Button or other control. OnChange event occurs, for example, when
a user writes something in the Edit Box.

Event handlers are special functions which are invoked automatically when a
certain event occurs. Almost all components have a set of event handlers, which can
be seen on the Events page of the Object Inspector.

To program an event (write event’s handler), you must double click on the
control, which “owns” the event. The name of an event is made up of a combination
of a control that “owns” the event and the name of the event. For example, if a button
called Button1 fires an OnClick event, the compiler would call it Button1Click event
(fig. 2.3).

49

Do not try to write or paste-in the code of the event handler header yourself. In

the fig. 2.3, Button1 has been placed on Form1 and has been double-clicked to create
the highlighted event handler. When an event handler is created properly (through the
Borland IDE) many references to it are also created and stored in files other than
Unit1.cpp. When an event handler is destroyed properly (through the Borland IDE)
all references to it in other files are also destroyed.

To DELETE an event handler simply delete the contents of the handler (inside
the braces {}). When you link and compile the program, Borland will then delete the
event-handler and all references to it. However, you may delete the button yourself.
DO NOT delete the event-handler yourself, if you do you will get the following error
message:

Another way to create an event handler:
1. Select a control that “owns” the event.
2. In the Events tab of Object Inspector select appropriate event in the left part

(for example, onMouseMove).
3. Double click in the right part of this event.

Code Editor
Besides designing applications, one of your most regular jobs will consist of

writing code that directs the computer as to what to do, when, and how to do it. This
is done in an appropriate window called the Code Editor.

The Code Editor is a featured text editor adapted for coding purposes. It is
programmed to recognize the parts of a program that are recognized by C++ or not.
To access the Code Editor, if you have a form opened, you can press F12. The Code
Editor manages your jobs by organizing its files into property pages (also called
tabs). If your project contains more than one file, you can click the desired tab to
access one of the files.

Fig. 2.3 Button1 and its onClick event’s handler

50

To display the header file of the form, you can right-click the source file and
click Open Source/Header File. Indeed, this action is used to toggle both displays.
Since the source and the header file go in pair (when using classes), they hold the
same name but have different extensions:

When your program is ready, you can execute and test it. To execute a
program, you can press F9 or you can use the main menu where you would click

Run – Run. In the toolbar, you can also click the Run button . The executing of a
program begins from compiling (translation from C++ to machine language). If the
program is successfully compiled it begins to execute.

Our purpose is to learn basic commands of C++ and how to use these
commands in program.

Remember, that:
1. each operator in your program should end with a semicolon (;)
2. C++ is case sensitive (C++ distinguishes lower case and uppercase letters).

Variables and Data Types

We can work with various kinds of information, such as numbers, characters,
strings, sets of numbers. We can use integer numbers or numbers with a floating
point. Different types of information demand different amounts of memory space and
allow doing different operations with them. For example, we can add and multiply
numbers, but we cannot do the same with strings.

All data, with which the program works, are during its execution in the RAM.
There the information is stored in variables.

Variable is a piece of memory in which we store information during the
program’s work. Each variable has a name. The name of a variable:

• Starts with an underscore “_” or a Latin letter, lowercase or uppercase, such as

a letter from a to z or from A to Z. Examples are Name, gender, _Students,
pRice

• Can include letters, underscore, or digits. Examples are: keyboard, Master,

Junction, Player1, total_grade, _Score_Side1

• Cannot include special characters such as !, %,], or $

• Cannot include an empty space

• Cannot be any of the reserved words (the Application 3 contains the list of
reserved words)

• Should not be longer than 32 characters (although allowed)
Note, that A and a are different names.
We access to data, which are stored in a variable, on its name. Variables must

be declared before they may be used. The syntax to declare a new variable is to write
the specifier of the desired data type (like int, bool, float...) followed by a valid
variable identifier:

data_type name_of_the_variable;
A data type provides two valuable pieces of information to the compiler:

• the amount of space the variable will use;

51

• the kind of information allowed.
After declaring a variable, the compiler reserves a space in memory for that variable.

The basic numeric data types
int − stores an integer value. For example: 3, -56, 1000;
float − stores a floating point or real value. For example: 3.7, -56.0, 1000.87;
char − stores a single character. A literal or constant character value is a value

enclosed in single quotes for example: ‘K’, ‘9’,’*’;
bool − stores a value representing true or false. We look at this in detail in the

next lecture.
Full information about numeric data types in C++ is shown in table 2.1.
Examples of declaration:

int a; // a is an integer variable

int a1, c; // a1 and c are integer variables

float b, x; // b and x are floating point variables

The integer data types char, short, long and int can be either signed or
unsigned depending on the range of numbers needed to be represented. Signed types
can represent both positive and negative values, whereas unsigned types can only
represent positive values (and zero). This can be specified by using either the
specifier signed or the specifier unsigned before the type name. For example:

unsigned int Num;

signed int M;

By default, if we do not specify either a signed or unsigned compiler assume the type
to be signed.

Table 2.1 Numeric data types in C++

Name Description Size Range

char character or small integer 1 byte
signed: -128 to 127
unsigned: 0 to 255

short int

(short)
short integer 2 bytes

signed: -32768 to 32767
unsigned: 0 to 65535

int integer 4 bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

long int

(long)
long integer 4 bytes

signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

bool
boolean value. it can take one of
two values: true or false

1 byte true or false

float floating point number 4 bytes +/- 3.4e +/- 38 (~7 digits)

double
double precision floating point
number

8 bytes +/- 1.7e +/- 308 (~15 digits)

long double
long double precision floating
point number

8 bytes +/- 1.7e +/- 308 (~15 digits)

52

It is possible to initialize a variable’s value at the declaration:
int a=1;

float b=8.3;

Scope of variables
A variable can be either of global or local scope. A global variable is a variable

declared in the main body of the source code, outside all functions, while a local
variable is declared within the body of a function or a block. Variables I, a, s, Num in
fig. 2.4 are global. Variables Age, ANumber, AnotherOne are local.

Global variables can be referred from anywhere in the code, even inside
functions, whenever they are after a variable’s declaration.

The scope of local variables is limited to the block enclosed in curly brackets
({}) where they are declared. For example, if they are declared at the beginning of the
function body (like in function Button1Click in fig. 2.4) their scope is between its
declaration point and the end of that function. In fig. 2.4, this means that if another
function exists in addition to Button1Click (for example Button2Click), the local
variables declared in Button1Click could not be accessed from this function.

Assignment (=)
To set or change a variable’s value, it must be assigned. The assignment

operator assigns a value to a variable.
 a = 5;

Fig. 2.4 Scope of variables

53

This statement assigns the integer value 5 to the variable a. The part at the left
of the assignment operator (=) is known as lvalue (left value) and the right one as
rvalue (right value). The lvalue has to be a variable whereas the rvalue can be either
a constant, a variable, the result of an operation or any combination of these.

The most important rule when assigning is the right-to-left rule: “The
assignment operation always takes place from right to left, and never the other way
around”:
 a = b;

This statement assigns the value contained in variable b (the rvalue) to the variable a
(the lvalue). The value, that was stored until this moment in a, is not considered in
this operation. In fact, that value is lost.

Consider also that we are only assigning the value of b to a at the moment of
the assignment operation. Therefore, a later change of b will not affect the new value
of a.

Consider the variables:
int a, c;

float b;

double x;

Examples of assignment:
a=15;

b=-2.7;

x=2+5.1; (after this x is 7.1)

b=a; (in this case a value of b will be 15.0)

c=x; (in this case a value of c will be 7, digits after point are rejected)

a=a+1; (the value of variable a increases on 1, now a is equal to 16)

The following expression is valid in C++:
 a = b = c = 5;

It assigns 5 to the all the three variables: a, b and c.
Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are: +
(addition), - (subtraction), * (multiplication), / (division), % (modulus).

Modulo is the operation that gives the remainder of a division of two values.
For example, if we write:

a = 11 % 3;

then the variable a will contain the value 2, since 2 is the remainder when dividing 11
by 3.

Examples of arithmetic operators (let int a=5, float b=6.5, int c,x):

x=3-a; // x=-2

c=a*(b-a); // c=7, digits after point are rejected

a++; // a=6

c--; // c=6

b=c/2; // b=3

b=(a+1)/3; // 7/3=2, b=2

a=10%4; // a=2 – reminder of the division

54

Note that int divided by int gives int.
There are some issues which need your attention when dealing with arithmetic

operations.
Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the variable’s value with performing an operation on
the value currently stored in that variable we can use compound assignment
operators:

expression is equivalent to

a += b; a = a + b;

a -= 5; a = a - 5;

a /= b; a = a / b;

a *= b + 1; a = a * (b + 1);

Increase and decrease (++, --)
The increase operator (++) and the decrease operator (--) increase or reduce by

one the value stored in a variable. They are equivalent to +=1 and to -=1,
respectively. Thus:

c++;

c+=1;

c=c+1;

are all equivalent in its functionality. These three statements increase on one the
value of c.

A characteristic of this operator is that it can be used both as a prefix and as a
suffix. That means that it can be written either before the variable identifier (++a) or
after it (a++). Although in simple expressions like a++ or ++a, both have exactly the
same meaning, in other expressions in which the result of the increase or decrease
operation is evaluated as a value in an outer expression they may have an important
difference in their meaning. In the case that the increase operator is used as a prefix
(++a) the value is increased before the result of the expression is evaluated and
therefore the increased value is considered in the outer expression; in case that it is
used as a suffix (a++) the value stored in a is increased after being evaluated and
therefore the value stored before the increase operation is evaluated in the outer
expression. Notice the difference:

Example 1 Example 2

B=3;

A=++B;

//A contains 4, B contains 4

B=3;

A=B++;

//A contains 3, B contains 4

In Example 1, B increases before its value is copied to A. While in Example 2, the
value of B is copied to A and then B increases.

Examples (let x=1, y=2)

x = x + 1; // This increments x, x=1

x++; // This increments x, x=2

++x; // This increments x, x=3

55

z = y++; // After this z = 2, y = 3

z = ++y; // After this z = 4, y = 4

y = y - 1; // This decrements y, y=3

y--; // This decrements y, y=2

--y; // This decrements y, y=1

y = 3;

z = y--; // After this z = 3, y = 2

z = --y; // After this z = 1, y = 1

a = a + 12; // This adds 12 to a

a += 12; // This adds 12 more to a

a *= 3.2; // This multiplies a by 3.2

a -= b; // This subtracts b from a

a /= 10.0; // This divides a by 10.0

Precedence of operators
When writing complex expressions with several operands, we may have some

doubts about which operand is evaluated first and which later. For example, in this
expression:

a = 5 + 7 % 2

we may doubt if it really means:

a = 5 + (7 % 2) // with a result of 6,

or

a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is an
established order with the priority of each operator, and not only the arithmetic ones
(those whose preference come from mathematics) but for all the operators which can
appear in C++. From greatest to lowest priority, the priority order is shown in
Application 2.

All these precedence levels for operators can be manipulated or become more
legible by removing possible ambiguities using parentheses signs (and), as in
previous examples.

If you want to write a complicated expression and you are not completely sure
of the precedence levels, always include parentheses. It will also become a code that
is easier to read.

Preprocessors: #include
 The preprocessor is used to give a special instruction to the compiler. It is
typically placed at the beginning of a line and it is followed by a word that would
perform an action. There are various actions you could ask the compiler to perform.
 The #include is used to include an external file in the current file. The file to
include is called a header file, a library, or another kind of file you want the
compiler to consider before going any further.

56

Input/Output

We can use the assignment statement to set a variable value. Another way to
give some value to a variable is to input it from the keyboard (or from the form). For
this purpose we must place Edit Boxes on the form for each variable. By default, the
content of a text control, such as an Edit Box, is a string. If you want the value or
content of such a control to participate in a mathematical operation, you must first
convert a string value to a valid data type.

To read (input) the value from the Edit1 in integer variable x we must write:
x=StrToInt(Edit1->Text);

This command converts Edit1->Text (a string) to an integer value with the StrToInt
function and then assign this value to x.

To read (input) the value from the Edit1 in the float variable x we must write:
x=StrToFloat(Edit1->Text);

This command converts Edit1->Text (a string) to a float value with the StrToFloat
function and then assign this value to x.
 If we want to get a value of a variable, we must output it on the form also in the
Edit Box.

To write (output) the value of integer variable x in Edit1 we must write:
Edit1->Text=IntToStr(x);

This command converts an integer number x to the string with an IntToStr function
and then writes this value in Edit1.

To write (output) the value of a float or double variable x in Edit1 we must
write:

Edit1->Text=FloatToStr(x);

This command converts the float or double number x to the string with the
FloatToStr function and then writes this value in Edit1.

Another way to convert a float or double to string is to use the FormatFloat
function:

Edit1->Text=FormatFloat(“0.00”,x);

The number will result in 2 digits after the decimal point.

Comments
Comments are parts of the source code disregarded by the compiler. They

simply do nothing. Their purpose is only to allow the programmer to insert notes or
descriptions embedded within the source code.

C++ supports two ways to insert comments:
// line comment

/* block comment */

The first of them, known as line comment, discards everything from where the pair of
slash signs (//) is found up to the end of that same line. The second one, known as a
block comment, discards everything between the /* characters and the first
appearance of the */ characters, with the possibility of including more than one line.

Example 2.1 of the project
The task: Input one integer and one float numbers and calculate their sum.

57

The form of the project contains the following components: three Labels, three
Edit Boxes and three Buttons. You can see their captions in table 2.2:

Table 2.2 Captions of the components

Name Caption

Label1 Input integer number:

Label2 Input float number:
Label3 Sum=
Button1 Calculate

Button2 Clear
Button3 Exit

The form of the program with inputted values and calculated sum is shown in

fig. 2.5:

Fig. 2.5 Form of the project with result

Complete code of the program:

#include <vcl.h>

#pragma hdrstop

#include "Unit1.h"

//---
#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---
__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

//”Calculate” button
void __fastcall TForm1::Button1Click(TObject *Sender)

{

int a; //integer variable a

float b; //float variable b

float sum; //sum is also float

58

a=StrToInt(Edit1->Text); //input a from Edit1

b=StrToFloat(Edit2->Text); //input b from Edit2

sum=a+b; //calculate the sum

Edit3->Text=FloatToStr(sum); //output result in Edit3

//the same is: Edit3-

>Text=FormatFloat(“0.00”,sum);

}

//---
//”Clear” button
void __fastcall TForm1::Button2Click(TObject *Sender)

{

Edit1->Clear();

Edit2->Clear();

Edit3->Clear();

}

//---
//”Exit” button
void __fastcall TForm1::Button3Click(TObject *Sender)

{

Close();

}

If we write
FormatFloat(“0.00”,sum)
instead of
FloatToStr(sum),

then the sum will have only 2 digits after the decimal point and the form with result
will be as the following (fig. 2.6).

Fig. 2.6 Form of the project with alternative
result

59

Lecture 3. Arithmetic expressions in C++. Programs with linear
structure

By means of a mathematical library in C ++ it is possible to calculate values of
complex mathematical expressions (formulas).

Preprocessor instructions
The preprocessor runs before your compiler each time the compiler is invoked.

The preprocessor translates any line that begins with a pound symbol (#) into a
special command, getting your code file ready for the compiler.

Include is a preprocessor instruction that says, "What follows is a filename.
Find that file and read it in right here." The angle brackets around the filename tell
the preprocessor to look in all the usual places for this file. If your compiler is set up
correctly, the angle brackets will cause the preprocessor to look for the file in the
directory that holds all the H files for your compiler.

Math Functions

Math library contains a lot of mathematical functions. If you are going to use
arithmetic functions, you must include header file math.h to your program and write:

#include <math.h>
at the beginning of the program. The short list of mathematical functions:

int abs (int x) – computes absolute value of integer x
double fabs (double x) – computes absolute value of float x
double sqrt(double x) – computes the square root of x
double pow (double x, double y) – computes x raised to the power y
double exp(double x) – computes exponential of x
double log(double x) – computes ln x
double log10 (double x) – computes log to the base 10 of x
double sin(double x) – computes sine of angle in radians
double cos(double x) – computes cosine of angle in radians
double tan(double x) – computes tangent of angle in radians
double acos(double x) – computes arc cosine of x
double asin(double x) – computes arc sine of x
double atan(double x) – computes arc tangent of x

Examples of mathematical expressions in C++

 Now we will write the following mathematical formulas on C++ language.

1.
32

ln

12

34
2

2

+
+

+

−
=Υ

x

x

x

x
x

Y=(4*x*x-pow(3,x))/(2*x*x+1)+log(x)/(2*x+3)

2. () p
eyp

yy
N

++

++
=

ln

13 2

60

N=(3*y*y+sqrt(y+1))/(log(p+y)+exp(p)

3.
))arccos((arcsin

))cos((sincos
272

253257

axa

azxabx
f

−+

−++−
=

f=(pow(cos(b*pow(x,5)),7)-sin(a*a)+cos(pow(x,3)+

pow(z,5)-a*a)))/ (asin(a*a)+acos(pow(x,7)-a*a))

4. y= ()()lg ln .5 3 6 2 9 2
3 3 817x x e arctg x tg x

x
+ + − +

y=pow(log10(pow(pow(x,3)*pow(log(pow(x*x+1.7,9)+

exp(sqrt(x)),2),6)),5)-atan(abs(pow(x,1./3)+

pow(tan(pow(x,8)),3)))

5. () 32224 ;;sin kbttbabay +=+=+=

t=b*b+pow(k,3);

a=sqrt(b+t);

y=pow(sin(a*a+b*b),4);

Example 3.1 of project with mathematical expression

The task: Enter x from the screen and calculate:
32

ln

12

34
2

2

+
+

+

−
=Υ

x

x

x

x
x

The form will look like in fig. 3.1:

Fig. 3.1 Form of the project with result

The complete program is:
//---
#include <vcl.h>

#include <math.h> //for math functions
#pragma hdrstop

#include "Unit1.h"

//---
#pragma package(smart_init)

61

#pragma resource "*.dfm"

TForm1 *Form1;

//---
__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//”Calculate” button

//---
void __fastcall TForm1::Button1Click(TObject *Sender)

{

float x, y; //declare float variables

x=StrToFloat(Edit1->Text); //read the value of x from Edit1

y=(4*x*x-pow(3,x))/(2*x*x+1)+log(x)/(2*x+3);

 //calculate y

Edit2->Text =FormatFloat("0.00",y);//output the result in Edit2

}

//---
//”Clear” button
void __fastcall TForm1::Button2Click(TObject *Sender)

{

Edit1->Clear();

Edit2->Clear();

}

//---
//”Exit” button
void __fastcall TForm1::Button3Click(TObject *Sender)

{

Close();

}
//---

Flowcharts

For visualization the algorithm can be presented in the form of flowcharts by
means of the special standard figures. Some of these figures are shown in Table 3.1.

Table 3.1 Some of standard figures which are used in flowcharts

figure description

 Begin or finish program

 Input or output values

 Calculations and other actions

Start

Enter m

Calculate. z

62

Flowchart of example 3.1 is shown in fig. 3.2:

Fig. 3.2 Flowchart of the program (example 3.1)

Constants
 Constants are expressions with a fixed value. If the value must not change in a
program, it would be declared as a constant. Examples:

const int n=10; //integer constant n has value 10

const float d=2.5; //float constant d has value 2.5

The math.h library defines many constants. One of them is: M_PI. Its value is
14.3≈π .

Example 3.2

The task: Input the radius of the sphere and calculate the values of the sphere

dimensions: diameter, circumference, area and volume.

The form with results is shown in fig 3.3:

The text of the program:

 #include <math.h>

 //---
//”Calculate” button

 void __fastcall TForm1::btnCalculateClick

(TObject *Sender)

 {

 double Rad, Diam, Circumf, Ar, Vol;

Start

Enter x

Calculate y

Output y

End

Fig. 3.3 Form with results

63

 Rad = StrToFloat(Edit1->Text);

 Diam = Rad * 2;

 Circumf = Rad * 2 * M_PI;

 Ar = Rad * Rad * M_PI;

 Vol = pow(Rad, 3)* 4.00 * M_PI / 3;

 Edit2->Text = Diam;

 Edit3->Text = Circumf;

 Edit4->Text = Ar;

 Edit5->Text = Vol;

 }

 //---

Message box

A message box is a relatively small dialog box used to display a message and
provide one or more buttons. A message box is used to provide information to the
user or to request a decision (by the user). By clicking on one of the buttons, the user
makes a decision and the program continues.

The ShowMessage() function provides the most fundamental message box of
Borland’s applications. This function takes one string argument and does not return
any value. It displays a message to the user. He can close it by clicking the OK
button. Here is an example (fig. 3.4).
ShowMessage("Please fill out your time sheet before

leaving.");

Console application

The console is a screen monitor and the keyboard considered to be a uniform
device. The console application is the program for which the input device is the
keyboard, and the output device is the monitor working in a mode of the character
information (the character, digit and special signs).

Console application does not have visual forms.
 To create a console application, you may use C++ Builder:

1. Start Borland C++ Builder. From the main menu, click File − New − Other (or
File − New). You will see the window as in Fig. 3.5.

Fig. 3.4 Message box

64

Fig. 3.5 New Items dialog box

2. From the New Items dialog box, click the Console Wizard icon and click OK.
3. In the Console Wizard dialog, make sure the C++ radio button is selected

(fig. 3.6):

Fig. 3.6 Console Wizard dialog box

4. Click OK.
Every console application starts with a function called main(). Notice that the

console application has no form. When we run the console application, we see a
black window instead of the form.

Console input/output
The execution of a console application occurs in a black screen. To enter data,

it is necessary to write a special command. At execution, this commands the program
to stop and wait, until the user enters data and presses the Enter key. An output of
results is made in the same black screen and always requires remarks and hints to the
user.

To output text in the console window, we use the cout<< command and write
text in inverted commas:
 cout<<”text”;

65

To output the value of a variable, we also use the cout<< command and write a
variable without inverted commas. For example, to output the value of variable x, we
write:
 cout<<x;

To output the variable x with a hint, we write:
 cout<<”Value of variable x is: ”<<x;

If we want to move the cursor on a new line after the output of the information, it is
necessary to write <<endl at the end of the command:
 cout<<”Value of variable x is: ”<<x<<endl;

To input the value of a variable x, we use the cin>> command:
 cin>>x;

After the program finishes its work, the black window closes. Usually it
happens so quickly that we do not have the opportunity to see results. To pause the

program we must write getch at the end of it before return 0:
 getch();

The same action is when we use cin.get().
Notice! To use cin and cout we must write

 #include <iostream.h>

at the beginning of the program.
To use getch() we must write

 #include <conio.h>

at the beginning of the program.
Example 3.2 of console program

The following program demonstrates console output:
1
2
3
4
5
6
7
8

9
10
11
12

13
14

// Listing 2.2 using cout
#include <iostream.h>

#include <conio.h>
int main()
{
cout << "Hello there.\n";
cout << "Here is 5: " << 5 << "\n";
cout << "The manipulator endl writes a new line to the

screen."

 <<endl;
cout << "Here is a very big number:\t" << 70000 <<

endl;
cout << "Here is the sum of 8 and 5:\t" << 8+5 <<

endl;
cout << "Here's a fraction:\t\t" << (float) 5/8 <<

endl;

cout << "And a very very big number:\t" << (double)

7000 * 7000

 <<endl;

getch ();
return 0;}

66

The result of this program:

Hello there.

Here is 5: 5

The manipulator endl writes a new line to the screen.

Here is a very big number: 70000

Here is the sum of 8 and 5: 13

Here's a fraction: 0.625

And a very very big number: 4.9e+07

Don't forget to replace Jesse Liberty with your name...

Jesse Liberty is a C++ programmer!

On line 2, the statement #include <iostream.h> causes the iostream.h

file to be added to your source code. This is required if you use cout and its related

functions.

On line 3, the statement #include <conio.h> causes the conio.h file to

be added to your source code. This is required if you use getch() function.

On line 6, the simplest use of cout, printing a string or series of characters, is

shown. The symbol ‘\n’ is a special formatting character. It tells cout to print a

newline character to the screen.

Three values are passed to cout on line 7, and each value is separated by the

insertion operator. The first value is the string "Here is 5: ". Note the space after the
colon. The space is part of the string. Next, the value 5 is passed to the insertion
operator and the newline character (always in double quotes or single quotes). This
causes the line
 Here is 5: 5

to be printed to the screen. Because there is no newline character after the first string,
the next value is printed immediately afterwards. This is called concatenating of two
values.

On line 8, an informative message is printed, and then the manipulator endl is

used. The purpose of endl is to write a new line on the screen.

On line 9, a new formatting character, \t, is introduced. This inserts a tab
character and is used on lines 8-12 to line up the output. Line 9 shows that not only

integers, but long integers as well can be printed. Line 10 demonstrates that cout

will do simple addition. The value of 8+5 is passed to cout, but 13 is printed.

On line 11, the value 5/8 is inserted into cout. The term (float) tells

cout that you want this value evaluated as a decimal equivalent, and so a fraction is

printed. On line 12 the value 7000 * 7000 is given to cout, and the term (double)

is used to tell cout that you want this to be printed using scientific notation.

67

Example 3.3 of console application with mathematical expression

The task: Enter k from the screen and calculate:

() 32224 ;;sin kbttbabay +=+=+= ,

where constant b=2.1.

The complete program:
//---
#include <iostream.h>

#include <conio.h>

#include <math.h>

#include <vcl.h>

#pragma hdrstop

//---
#pragma argsused

int main(int argc, char* argv[])

{

const double b=2.1;

 double a, k, t, y;

 cout<<"Input k: "; //print a prompt to input k

 cin>>k; //input k

 //calculation
t=b*b+k*k;

 a=sqrt(b+t);

 y=pow(sin(a*a+b*b),4);

 //output rezults
cout<<"Rezults:"<< endl;

 cout<<"t="<<t<<endl;

 cout<<"a="<<a<<endl;

 cout<<"y="<<y<<endl;

 getch(); //pause the program

 return 0;

}

//---

Results of the program are shown in fig. 3.7.

68

Fig. 3.7 Results of example 3.3

If you run this program again, you will see the previous results in the black
screen. If you want to clear the screen every time you run the program, you must use
the clrscr() command from conio.h:
 clrscr();

There is one more way to input and output in console. You may use the scanf

and printf commands from stdio.h.
printf

The printf command can be used to output text or data in the console window.
It allows outputting formatted data. The number of required arguments varies, but the
first argument you pass should be a string.

Recall that a string must be surrounded by double quotation marks. For
example, output the string constant "Hello World!":

printf("Hello World!\n");
The ‘\n’ is the new line character and acts like a line break.

Printing out a variable, requires you to embed a format specifier in your text
string, and to pass extra arguments to the printf function. An example:

printf("x equals %d \n", x);

If x=5, the result of this statement is:
x equals 5

This statement prints out the value of x. We had to pass the value of x into the printf
function. When you pass arguments to functions, you separate each one with a
comma − here, "x equals %d \n" is the first argument, and x is the second argument.

There are several format specifiers. The one you use should depend on the type
of variable you wish to print out. Here are common ones:

Format Specifier Type

%d (or %i) int

%c char

%f float

%lf double

%s string

%x hexadecimal

69

Two or More Format Specifiers

You may use as many format specifiers as you want with printf, just as long as
you pass the correct number of arguments.

The sequence of the arguments matters. The first one should correspond to the
first format specifier in the string and so on. For example:

printf("a=%d, b=%d, c=%d\n", a, b, c);

If a, b, and c are integers, this statement will print the values in the correct order.
Rewriting the statement as

printf("a=%d, b=%d, c=%d\n", c,a,b);

will still cause the program to compile OK, but the values of a, b, and c will be
displayed in the wrong order!

Scanf

Scanf allows reading variable values from the keyboard. It takes at least two
arguments. The first one is a string that can consist of format specifiers. The rest of
the arguments should be variable names preceded with the address-of operator. For
example:

printf("Enter a number ");

printf(" and press Enter: ");

scanf("%d", &a);

& is known as the address-of operator. You will use it a lot more when you meet
POINTERS at a later date.

We can picture the previous scanf statement by this: "Read in an integer from
the input string, then go to the address of the variable called a, and put the value
there". Remember that a variable is like a container in your computer’s memory; each
one has a different address.

As with printf, the number of arguments after the string argument should match
the number of format specifiers contained in that string. Similarly, the type of the
format specifier should match the type of the corresponding variable. The ordering of
the variables also matters.

If you have multiple format specifiers within the string argument of scanf, you
can input multiple values. All you need to do is separate each format specifier with a
delimiter, a string that separates variables. For convenience, the delimiter should be
one character that is a punctuation mark, like a comma or a space. As a default, scanf
stops reading in a value when a space, tab or Enter is used.

Consider
scanf("%d %d", &x, &y);

(assume that x and y have been declared beforehand!). If we enter:
1 2

and press Enter, 1 will get assigned to x, and 2 will get assigned to y. But if we enter
1, 2

and press Enter, x would equal 1, but y would not get assigned 2 because scanf was
not expecting a comma in the input string.

Now consider:
scanf("%d, %d, %d", &x,&y,&z);

70

If we enter

1 2 3
and press enter, 1 will get assigned to x but 2 and 3 will not get assigned to y or z,
simply because we do not separate the numbers with commas.

Scanf ignores spaces, tabs and carriage returns immediately after the
delimiters.

Do not put a space, tab, or carriage return before the delimiter!
Note that you should not put a delimiter after the last format specifier!

Example 3.4 of console application with mathematical expression and

printf/scanf
The task: Enter k from the screen and calculate:

() 32224 ;;sin kbttbabay +=+=+= , where constant b=2.1. Use printf and scanf.

The complete program:
//---
#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <vcl.h>

#pragma hdrstop

//---
#pragma argsused

int main(int argc, char* argv[])

{

 const double b=2.1;

 double a, k, t, y;

 printf("Input k: ");

 scanf("%lf",&k);

 t=b*b+k*k;

 a=sqrt(b+t);

 y=pow(sin(a*a+b*b),4);

 printf("Rezults:\n");

 printf("t=%f\n",t);

 printf("a=%f\n",a);

 printf("y=%f\n",y);

 getch();

 return 0;

}

//---
Results of the program are shown in fig. 3.8.

71

Fig. 3.8 Results of the program

If you want to see two digits after a decimal point, you must write precision:
 printf("t=%5.2f\n",t);

where 5 is the total number of digits (2 before decimal point, 2 after it and the point
itself) and 2 is the number of digits after point.

72

Lecture 4. Conditions. If and switch conditional statements

A program usually is not limited to a linear sequence of instructions. During its
process it may bifurcate, repeat code, or make decisions (fig. 4.1). For that purpose,
C++ provides control structures that serve to specify what and how our program has
to perform.

Conditions

C++ provides six relational operators for comparing numeric quantities (table
4.1). Relational operators evaluate to 1 (representing the true outcome) or 0
(representing the false outcome).

Table 4.1 Relational operations in C++

Operator Name Example

== equality 5==5 //gives 1

!= inequality 5!=5 //gives 0

< less than 5 < 5.5 // gives 1

<= less than or equal 5 <= 5 // gives 1

> greater than 5 > 5.5 // gives 0

>= greater than or equal 6.3 >= 5 // gives 1

It is possible to unite two or more conditions in one by means of logical AND,

OR, and NOT:
&& – logical AND
|| – logical OR
! – logical NOT
Examples of conditions:

x>0 (x is a positive number)

x==9 (x equals to 9)

x!=y (x is not equal y)

Fig. 4.1 Flow of execution variants

73

x%2==0 (x is an even number)

x%6!=0 (6 is not multiple to x)

x>0&&x<10 (0<x<10, x is greater than 0 and less than 10)

x<0 || x>10 (x<0 or x>10)

!x (x==0)

Priority of relational operations is lower than arithmetical operations (look the

Application 2).

If statement

 The if statement allows your program to make a decision. Its syntax is:
if (condition)

 { action1 }

else

 { action2 }

 If the condition in parenthesis is true, all code inside the first braces is
executed, if it is not, the code inside the first braces is ignored and the code inside the
second braces after else is executed.

Condition is a value or an expression that is used to determine which code
block is executed, and the curly braces act as "begin" and "end" markers. Note that
conditions always are written in parenthesis.
 If you have only one statement in action1 or action2, then the correspondent
braces are not required.

Pay your attention, that commands in action1 are written a little more to the
right of the if statement and commands in action2 are written a little more to the right
of the else statement. It is done for visual selection of these commands. The program
becomes clearer, it is easier to find and correct errors in it.

Examples of use conditions in the program:
1. Calculate the quotient of two numbers (if y is not 0, we calculate the quotient).

if (y!=0)

 r=x/y;

2. Calculate the square root of the variable x, if it is possible (if x is not negative,
we calculate the square root, otherwise we output the message with error).

if (x>=0)

 y=sqrt(x);

else

 ShowMessage(“Can not calculate”);

3. If variables x and y are equal, calculate their product. Otherwise, calculate an
absolute value of their difference.

74

if(x==y) r=x*y;

else r=fabs(x-y);

In the previous examples braces are not necessary.

4. If absolute values of x and y are less than 10, increase them twice; otherwise
reduce them twice.

if (fabs(x)<10&&fabs(x)<10)

{ x=x*2;

 y=y*2; }

else

{ x=x/2;

 y=y/2; }

In this example two statements must be executed if the condition is true. Therefore,
we must use braces.

Statements in braces are called a block of statements.

In the flowcharts an if statement is drawn as:

The flowchart of the last example is:

Nesting if – else – if statement
There may be any statements instead of Action1 or Action2, including another

if statement. Example: to define the sign of the variable x (it may be positive,
negative or zero).

if (x>0) ShowMessage (“positive”);

else

 if (x<0) ShowMessage(“negative”);

 else ShowMessage (“zero”);

yes no
Condition

Action 1 Action 2

yes no

x=x*2;

y=y*2;

1010 << yandx

x=x/2;

y=y/2;

75

First else means that x is a negative number or zero. Therefore, we should check

both of these possibilities.

Example 4.1 of program with branching
The task: Convert marks from 100-balls system to 5-balls system.
The program with if statements:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 int m100, m5;

 m100=StrToInt(Edit1->Text);

 if (m100>=95) m5=5;

 if (m100>=80 && m100<95) m5=4;

 if (m100>=60 && m100<80) m5=3;

 if (m100<60) m5=2;

 Edit2->Text=IntToStr(m5);

}

The same program with nesting if – else – if.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 int m100, m5;

 m100=StrToInt(Edit1->Text);

 if (m100>=95) m5=5;

 else

 if (m100>=80) m5=4;

 else if (m100>=60) m5=3;

 else m5=2;

 Edit2->Text=IntToStr(m5);

}

In the second variation of the program, it is not necessary to check the right border of
the interval.

Conditional (Ternary) Operator
The conditional operator (?:) is C++’s only ternary operator; that is, it is the

only operator to take three terms.
The conditional operator takes three expressions and returns a value:
(expression1) ? (expression2) : (expression3)

This line is read as "If expression1 is true, return the value of expression2;
otherwise, return the value of expression3." Typically, this value would be assigned
to a variable.

Example 4.2 A demonstration of the conditional operator
This console program shows an if statement rewritten using the conditional

operator.

76

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <iostream.h>

int main()

{

 int x, y, z;

 cout << "Enter two numbers.\n";

 cout << "First: ";

 cin >> x;

 cout << "\nSecond: ";

 cin >> y;

 cout << "\n";

 if (x > y)

 z = x;

 else

 z = y;

 cout << "z: " << z;

 cout << "\n";

 z = (x > y) ? x : y;

 cout << "z: " << z;

 cout << "\n";

 return 0;

 }

 Result of the program:

Enter two numbers.

First: 5

Second: 8

z: 8

z: 8

Three integer variables are created: x, y, and z. The first two are given values
by the user. The if statement on line 12 tests to see which is larger and assigns the
larger value to z. This value is printed on line 17.

The conditional operator on line 20 makes the same test and assigns z the larger
value. It is read like this: "If x is greater than y, return the value of x. Otherwise,
return the value of y." The value returned is assigned to z and printed on line 22. As
you can see, the conditional statement is a shorter equivalent to the if - else statement.

77

Example 4.3 of program with branching

The task: Enter a value of x and calculate the value of y:









+

+

+

=

22

4

42 3

x

x

xx

Y when

3

31

1

≥

<<−

−≤

x

x

x

The form of the project with results is in fig. 4.2:

The code of the program:
//---
#include <math.h>

…

void __fastcall TForm1::Button1Click(TObject *Sender)

{

double x, y;

x=StrToFloat(Edit1->Text);

if(x<=-1) y=2*pow(x,3)+4*x;

if(x>-1 && x<3) y=x+4;

if(x>=3) y=2*x+2;

Memo1->Lines->Add("x="+FloatToStr(x)+"

y="+FormatFloat("0.00",y));

}

//---
void __fastcall TForm1::Button2Click(TObject *Sender)

{

Edit1->Clear();

Memo1->Clear();

}

//---
void __fastcall TForm1::Button3Click(TObject *Sender)

{

Close();

}

//---

Fig. 4.2 The form of the project and results (example 4.3)

78

Example 4.4 of program with branching

The task: Input coordinates of points A(x1, y1), B(x2, y2), C(x3, y3) from the

screen. Define whether these points are on one line. Output the answer with the

message.

The form of the project and results (for different inputted coordinates) are
shown in fig. 4.3 and 4.4:

Fig. 4.3 The form of the project with negative result

Fig. 4.4 The form of the project with positive result

The code of “Calculate” button:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

double x1, y1, x2, y2, x3, y3, a, b;

x1=StrToFloat(Edit1->Text);

y1=StrToFloat(Edit2->Text);

x2=StrToFloat(Edit3->Text);

y2=StrToFloat(Edit4->Text);

x3=StrToFloat(Edit5->Text);

y3=StrToFloat(Edit6->Text);

if ((y2-y1)*(x3-x1)==(x2-x1)*(y3-y1))

ShowMessage("Three points are on one line");

79

else

ShowMessage("Three points are not on one

line");

}

The flowchart of the “Calculate” button is shown in fig. 4.5:

Fig. 4.5 The flowchart of the “Calculate” button (example 4.4)

The switch statement

The next branching statement is called a switch statement. A switch statement
is used in place of many if statements. The switch statement allows selecting the
value of expression from one of several integer values and then executing actions
accordingly. The switch statement has the following syntax:

switch(expression){

 case constant1: action_1; break;

 case constant2: action_2; break;

 ...

 case constantn: action_n; break;

 default: action_n+1; // execute if expression is none of the above

}

End

Begin

Enter x1

yes no (y2-y1)(x3-x1)=

(x2-x1)(y3-y1)

Enter y1

Enter x2

Enter y2

Enter x3

Enter y3

On one line Not on one line

80

The first expression (called the switch tag) is evaluated, and the outcome is compared
to each of the numeric constants (called case labels) in the order in which they
appear, until a match is found. The statements following the matching case are then
executed. Each case may be followed by a zero or more statements (not just one
statement). If break is absent, the commands following the next cases are also
executed. The final default case is optional and is exercised if none of the earlier
cases provide a match.

Example 4.5 of program with switch statement
The task: Input the week day order number and show message with its name

(1-Monday and so on).
The fragment of the program:

int n=StrToInt(Edit1->Text);

switch (n){

 case 1: ShowMessage (“Monday”); break;

case 2: ShowMessage (“Tuesday”); break;

case 3: ShowMessage (“Wednesday”); break;

case 4: ShowMessage (“Thursday”); break;

case 5: ShowMessage (“Friday”); break;

case 6: ShowMessage (“Saturday”); break;

case 7: ShowMessage (“Sunday”); break;

default: ShowMessage (“The number is not

correct”); break;

}

Note that each case ends with a break statement. It stops the execution of a
program block. In this example if we have found a necessary case, break will prevent
us from checking other cases.

Example 4.6 of program with switch statement
The task: Make a flowchart and a project of the program which calculates the values

of function y for three variations of parameter values according to given formulas.

()

()













≥++

<<++−

≤+++

=

−

bxzxbxa

bxazxbxa

axxxbaarctga

y

lnif,ln

lnif,cos7

if,sin)(cos

2

323

225

()

()

()bxtgzba

bxtgzba

bxtgzba

cos;3.5;1.4.3

sin;4.6;9.8.2

sin;9.4;3.1.1

==−=

===

===

The user must input x and his choice n (integer numbers 1, 2 or 3). Variables a,

b, and z must be calculated in dependence on this choice. When the values of a, b, z
are defined, the program calculates the value of y.

The form of the project with results is shown in fig. 4.6:

81

Fig. 4.6 The form with results

The code of the program:
I method (with function which calculates y)

#include <math.h>

……

//---
void __fastcall TForm1::Button2Click(TObject *Sender)

{

Edit1->Clear();

Memo1->Clear();

}

//---
//definition of function func
double func(double x, double a, double b, double z)

{

double y;

if (x<=a)

y=pow(a,5)+atan(pow(cos((a+b)*x),2))+

sqrt(pow(sin(x),-2));

else

 if (x<=log(b))

 y=sqrt(pow(pow(a,3)-b*x,2)+7)+

pow(cos(z*x),3);

 else

 y=log(fabs(a+b*x+z*x*x));

return y;

}

//---
//Button1
void __fastcall TForm1::Button1Click(TObject *Sender)

{

82

int n;

double x,Y,a,b,z;

x=StrToFloat(Edit2->Text);

n=StrToInt(Edit1->Text);

//calculation of a, b, z in dependence on the choice of n
switch(n){

case 1: a=1.3; b=4.9;

z=sin(fabs(tan(b*x))); break;

case 2: a=2.9; b=6.4;

z=tan(fabs(sin(b*x))); break;

case 3: a=-4.1; b=5.3;

z=cos(fabs(tan(b*x))); break;

default:

ShowMessage("The choice is not correct");

}

Y=func(x, a, b,z); //call of function func
Memo1->Lines->Add("n="+IntToStr(n)+"x="+

FloatToStr(x)+" y="+FormatFloat("0.00",Y));

}

//---
The flowchart of subroutine is shown in fig. 4.7:

Fig. 4.7 The flowchart of the subroutine (function evaluation)

The flowchart of the program is shown in fig. 4.8.

no yes
x<=a

Begin

End

() xxbaarctgay
225 sin)(cos −

+++=

x<=lnb

yes no

() zxbxay 323 cos7 ++−=

2ln zxbxay ++=

y

83

Fig. 4.8 The flowchart of the Button1Click function

II method (without function which calculates y)
//---
#include <math.h>

……

//---
void __fastcall TForm1::Button1Click(TObject *Sender)

{

int n;

double x,y,a,b,z;

x=StrToFloat(Edit2->Text);

n=StrToInt(Edit1->Text);

//calculation a, b, z in dependence on the choice n
switch(n){

 case 1: a=1.3; b=4.9;

z=sin(fabs(tan(b*x))); break;

 case 2: a=2.9; b=6.4;

z=tan(fabs(sin(b*x))); break;

 case 3: a=-4.1; b=5.3;

z=cos(fabs(tan(b*x))); break;

 default:

ShowMessage("The choice is not correct");

}

Begin

Enter n

n

Enter x

a=1.3

a=1.
3; b=4.9;

b=4.9

z=sin(fabs(tan(b*x)
))

a=2.9

a=1.
3; b=4.9;

b=6.4

z=tan(fabs(sin(b*x)
))

a=-4.1

a=1.
3; b=4.9;

b=5.3

z=cos(fabs(tan(b*x
)))

The choice is
not correct

Y=func(x, a,
b,z);

Y

End

84

//calculation of value of y
if (x<=a)

 y=pow(a,5)+atan(pow(cos((a+b)*x),2))+

sqrt(pow(sin(x),-2));

else

 if (x<=log(b))

 y=sqrt(pow(pow(a,3)-b*x,2)+7)+pow(cos(z*x),3);

 else

 y=log(fabs(a+b*x+z*x*x));

Memo1->Lines->Add("n="+IntToStr(n)+

" x="+FloatToStr(x)+" y="+FormatFloat("0.00",y));

}

//---
Flowchart of the program is shown in fig. 4.9:

Fig. 4.9 The flowchart of the program

Begin

Enter n

n

Enter x

a=1.3

a=1.
3; b=4.9;

b=4.9

z=sin(fabs(tan(b*x)))

a=2.9

a=1.
3; b=4.9;

b=6.4

z=tan(fabs(sin(b*x)))

a=-4.1

b=5.3

z=cos(fabs(tan(b*x)))

The choice is
not correct

y=func(x, a,
b,z);

y

End

no ye
s x<=a

() xxbaarctgay
225 sin)(cos −

+++= x<=ln
ye
s

no

() zxbxay
323 cos7 ++−= 2ln zxbxay ++=

85

Application 1 Description of Microsoft Word Standard and
Formatting Toolbars

The Standard Toolbar

1. New Blank Document:

To begin a new document, click on the New Blank Document icon, shaped like
a blank sheet of paper.

2. Open

Clicking on this icon opens up a previously saved document on your computer.
3. Save

Clicking on the Save icon saves the document you are currently working on. If
you are saving a document for the first time, you can click on this button. However, if
you want to save a new file from a preexisting document, then you must go to the
menu bar and select File − Save As and give the file a new name. When working on
any document, you should be sure to save frequently, so that you don't lose any work.

4. Permission
Microsoft has enabled Information Rights Management (IRM) within the new

version of Word, which can help protect sensitive documents from being copied or
forwarded. Click this for more information and options.

5. Print
Clicking on the Print icon automatically prints the document currently active in

Word. If you wish to explore more print options, then go to the menu bar and select
File − Print

6. Print Preview
To get an idea of the appearance of your document in print before you actually

print it out, you can click on this icon to view your document from a zoom-out
distance.

7. Spelling and Grammar

Clicking begins a review of your document in search of spelling and
grammatical errors that may need to be corrected.

8. Copy
Copy the current selection to the clipboard, which can then be pasted elsewhere

in the document, or into a completely separate program/document.
9. Paste

Clicking on the Paste button inserts the text that has been most recently added
to the Clipboard (the text would have been added there by Cutting or Copying). With
Paste, you can either insert the copied text into a document or replace selected text.

10. Undo Typing
The Undo Typing button goes back and removes the last addition or change

made to your document.
11. Insert Hyperlink

You may find that you want to make links to a particular web site, web page, or
some other kind of online file in your Word document. Using the Insert Hyperlink

86

button, you can turn selected text into hyperlinks. When the icon is clicked, a window
will appear that will allow you to insert the URL (web address) of the web page you
want to link to. You can type in the URL yourself or insert a preexisting bookmark.
Once the link is inserted, the link in your Word document can be clicked and the web
page will open up in a web browser.

12. Insert Table
When this icon is clicked, a small window will appear in the form of a grid of

squares. Use this window as a guide to indicate how many rows and columns you
would like your table to contain. Once selected, a table will automatically appear in
Word. Clicking the Tables and Borders button will allow you to modify the table. To
modify an aspect of the table, select, or place the cursor in, the area and apply
changes such as borders and colors.

The Formatting Toolbar

1. Style

Styles in Word are used to quickly format portions of text. For example, you
could use the “Normal” or “Default Paragraph Font” for the body text in a document.
There are also three preset styles made for headings.

2. Font
Font is a simple but important factor in Word documents. The choice of font

(the style of the text itself) can influence the way others view documents, either on
the screen or in print. For example, Arial font looks better on screen, while Times
New Roman is clearer in print. To apply a font to text, select desired text with your
cursor, and choose a font from the font drop down menu.

3. Font Size
You may encounter times in which you need to display some text larger or

smaller than other text. Selecting desired text with the cursor and choosing a font size
from the drop down menu changes the size of text.

4. Bold

Places the text in bold.
5. Italic

Places the text in italics.
6. Underline

Underlines the text.
7. Align Left

Aligns the selection to the left of the screen/paper.
8. Center

Aligns the selection to the center of the screen/paper.
9. Align Right

Aligns the selection to the right of the screen/paper.
10. Justify

Aligns the selection to both the left and right of the screen/paper.
11. Line Spacing

Adjust the line spacing (single-spaced, double-spaced, etc.)

87

12. Numbering

Create a numbered list.
13. Bullets

Create an unordered, bulleted list.
14. Decrease Indent

Decreases the indentation of the current selection (to the left).
15. Increase Indent

Increases the indentation of the current selection (to the right).
16. Outside Border

Places a border around the current selection; click the drop-down for a wide
selection of bordering options.

17. Highlight
Highlight the current selection; default color is yellow.

18. Font Color
Change the font color; the default/automatic color is black.

88

Application 2 Precedence of operators

Level Operator Description Grouping

1 :: scope Left-to-right

2
() [] . -> ++ -- dynamic_cast
static_cast reinterpret_cast const_cast
typeid

postfix Left-to-right

++ -- ~ ! sizeof new delete unary (prefix)

* &
indirection and reference
(pointers)

3

+ - unary sign operator

Right-to-left

4 (type) type casting Right-to-left

5 .* ->* pointer-to-member Left-to-right

6 * / % multiplicative Left-to-right

7 + - additive Left-to-right

8 << >> shift Left-to-right

9 < > <= >= relational Left-to-right

10 == != equality Left-to-right

11 & bitwise AND Left-to-right

12 ^ bitwise XOR Left-to-right

13 | bitwise OR Left-to-right

14 && logical AND Left-to-right

15 || logical OR Left-to-right

16 ?: conditional Right-to-left

17 = *= /= %= += -= >>= <<= &= ^= |= assignment Right-to-left

18 , comma Left-to-right

89

Application 3 The list of reserved words

The C++ compiler has a list of words reserved for its own use and you must
not use any of these words to name your objects or functions. The reserved words
are:

C and C++ Reserved Words

auto
break
case
char
const
continue
default

do
double
else
enum
extern
float
for

goto
if
int
long
register
return
short

signed
sizeof
static
struct
switch
typedef

union
unsigned
void
volatile
while

Some of these words are used by Borland C++ Builder or could come in

conflict with the libraries used in Microsoft Windows. Therefore, avoid using these
additional words:

 C++ Reserved Words

asm
bool
catch
class
cin
const_cast
cout
delete

dynamic_cast
explicit
false
friend
inline
interrupt
mutable

namespace
new
operator
private
protected
public
register

reinterpret_cast
static_cast
string
template
this
throw
true

try
typeid
typename
union
using
virtual
wchar_t

Here are other words you should avoid using when programming in Borland

C++ Builder:

Other Reserved Words

__export
__fastcall
__huge
__import
__int16
__int32
__int64
__int8
__interrupt
__loads

__near
__pascal
__rtti
__saveregs
__seg
__ss
__stdcall
__thread
__try

_huge
_import
_interrupt
_loadds
_near
_pascal
_saveregs
_seg
_ss
_stdcall

ada
AnsiString
entry
far
fortran
huge
near
pascal

PASCAL
False
FALSE
True
TRUE

Avoid starting the name of a variable with two underscores; sometimes, the
compiler would think that you are trying to use one of the words reserved for the
compiler.

90

Application 4 Vocabulary

Lecture 1

English Russian

Hardware Оборудование

Alignment Выравнивание

Arrange Упорядочить (отсортировать)

Binary number system Двоичная система счисления

Bold Полужирный

Borders and shading Границы и заливка

Bullets or numbering Маркированный или нумерованный список

Case Корпус

Cell Ячейка

Central processing unit Центральный процессор

Copy Копировать

Cut Вырезать

Desktop Рабочий стол

Dialog box Диалоговое окно

Disk drive Дисковод

Explorer Проводник

Extension Расширение

Hexadecimal number system Шестнадцатиричная система счисления

Highlight Выделять

Indent Отступ

Inkjet printer Струйный принтер

Input Ввод

Insertion point Курсор, точка ввода

Italic Курсив

External peripherals Внешние устройства

Line spacing Межстрочный интервал

Motherboard Материнская плата

Margin Поле документа

Number system Система счисления

Octal number system Восьмиричная система счисления

Output Вывод

Page setup Параметры страницы

Paragraph Абзац

Paste Вставить

Power supply Блок питания

Random access memory Оперативная память

Recycle bin Корзина

Run Запуск

Shortcut Ярлык

91

English Russian

Software Программное обеспечение
Start button Кнопка «Пуск»

System bus Системная шина

Tabs Табуляция

Taskbar Панель задач

Toolbar Панель инструментов

Underline Подчёркивать

Lecture 2

English Russian

Application Приложение

Assignment Присваивание

Button Кнопка

Code of the program Текст программы

Compiler Компилятор

Edit box Текстовое поле

Float Вещественное (число)

Integer Целое (число)

Integrated Development
Environment

Интегрированная среда разработки

Label Надпись

Memo Поле мемо (большое текстовое поле)

Modulo Операция получения остатка от деления

Precedence Предшествование (порядок выполнения)

Programming language Язык программирования

Property Свойство

Variable Переменная

Lecture 3

English Russian

Flowchart of the algorithm Блок-схема алгоритма
Absolute value Абсолютная величина (модуль)

Console Консоль (монитор и клавиатура)

Constant Константа (постоянная величина)

Cosine Косинус

Exponential Экспонента (е в степени х)

Header file Заголовочный файл

Message box Сообщение

Power Степень

Sine Синус

Square root Квадратный корень

Tangent Тангенс

92

Lecture 4

English Russian

Linear sequence Линейная последовательность

Braces Фигурные скобки

Choice Выбор

Code block Блок команд

Condition Условие

Even Чётное (число)

Multiple to smth. Кратный чему-то

Nesting Вложенный

Odd Нечётный

Parenthesis Круглые скобки

Relational operator Операция отношения

Subroutine Подпрограмма

Switch Переключатель (оператор выбора вариантов)

93

Application 5 The list of functions and instructions

Type conversion and input/output

Function or

instruction
Explanation Example

StrToInt Converts string to int x=StrToInt(Edit1->Text);

StrToFloat Converts string to float x=StrToFloat(Edit1->Text);

IntToStr Converts int to string Edit1->Text=IntToStr(x);

FloatToStr Converts float to string Edit1->Text=FloatToStr(x);

FormatFloat Converts float to string Edit1-
>Text=FormatFloat(“0.00”,x);

Memo->Lines->Add Output in Memo Memo1->Lines->Add("x="+
FloatToStr(x)+" y="+
FormatFloat("0.00",y));

ShowMessage Output the message ShowMessage(“Incorrect number”);

Math functions (math.h)

Function Explanation Example

abs absolute value of integer x Y= abs (x)

fabs absolute value of float x Y= fabs (0.5*x)

sqrt square root of x Y= sqrt(x)

pow x raised to the power y Y= pow (x, 4)

exp exponential of x Y= exp(x)

log ln x Y= log(x)

log10 log to the base 10 of x Y= log10 (x)

sin sine of angle in radians Y= sin(x)

cos cosine of angle in radians Y= cos(3*x)

tan tangent of angle in radians Y= tan(M_PI+x)

acos arc cosine of x Y= acos(x)

asin arc sine of x Y= asin(x)

atan arc tangent of x Y= atan(x)

Console input/output

Function or

instruction
Explanation Example

cout<< output cout<<”Value of variable x is: ”<<x;
cin>> input cin>>x;

scanf formatted input scanf("%d", &a);

printf formatted output printf("x equals %d \n", x);

getch pause getch();

clrscr clears the screen clrscr();

94

Conditional statements

Instruction Explanation Example

if Checks the condition and
do action in dependence
on the result of condition

if (x>0) y=sqrt(x);
else ShowMessage (“Error”);

switch Selects on of the variants switch(n){
 case 1: ShowMessage (“One”);
break;
 case 2: ShowMessage (“Two”);
break;
 case 3: ShowMessage
(“Three”); break;
 default: ShowMessage
(“Incorrect number”);
}

95

96

