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PART I
THE LINEAR ALGEBRA

§ 1.1. n - dimensional vectors

Definition. A set of n numbers is said to be a vector.
a;

E:(al,az,...,an), or a=

ap

Numbers q,,a,,...,a, are called coordinates of a vector a .

Definition. Two vectors are equal if their coordinates are equal:

Cll :bl
a=b : (1.1.1)
a,=b,

Operations on vectors

1. Multiplication of a vector a by a scalar A:
a Aa,
Aa=A :|=| : | (1.1.2)
a,) \Aa,

2. The sum (difference) of vectors.

a b
Let the vectors a= 1 and b = 31 be given then
a, b,
a; T b
ath=| (1.1.3)
a, tb



§ 1.2. Linear Dependence of Vectors

Let us have a set of n-dimensional vectors

a,ay,...,d, . (1.2.1)
Definition. The expression
Aa, +Ayar+...+ A an (1.2.2)
is called a linear combination of the vectors (1.2.1).

Definition. If one of the vectors (1.2.1) is a linear combination of the remaining
vectors then a set of vectors (1.2.1) is called a linear dependent set of vectors.

Definition. A linear combination of vectors (1.2.2) is said to be trivial if all its
coefficients equal zero: 4, =4, =...=4, =0.
If at least one of A #0 then (1.2.2) is called non-trivial combination.

Theorem. The vectors (1.2.1) are linear dependent if and only if there exists a
non-trivial combination of these vectors equals zero.
1. Let vectors ay,a,,...,a, be linear dependent then one of these vectors is a

linear combination of the remaining vectors. For example this vector is a,.
So we have

where A, =—1# 0. It means that the linear combination (2.2) is non-trivial.
2. Now there exists non-trivial combination

where A, #0, so

As we see a,is a linear combination of the rest vectors. The theorem is proved.

Example.
1. Collinear vectors are linear dependent vectors. In fact, as we know



E| |l7 & b = a, so we have that

Aa—-b=0.

te [

2.The vectors /v are linear independent.

_

§ 1.3. Matrices

Definition. A rectangular array of numbers is called a matrix.

11 12 Tt aln
A _ azl a22 e azn
aml al’}h amn

This matrix has m rows and n columns. We call A a “m by n”” matrix or a matrix of
[mxn] dimension.
The element in the i-th row and j-th column of a matrix can be represented by

a;.

We denote matrices by letters A, B, C and their elements by a
A= (aij )’ B = (bij )’ C= (Cij)'

b

ij > Cij -

ij°

If m = n then a matrix is called a square matrix. It is called a matrix of order
n, for short.

Two matrices A and B are equal if and only if they have the same elements in
the same positions. For example, A = B if they are of one and the same dimension
and a; = b; forany iand j.

If we interchange columns and rows of a matrix A we get the transposed

. AT
matrix A’ :



= e e e | (1.3.1)

am

For example,
29
2 6 3)
=16 1|
910
30
Let the square matrix A be given. The diagonal containing
ai1>0rys---50y_1,_1> 4, 18 called the principal (main) diagonal.

Definition.If there are nonzero elements on the main diagonal of a square
matrix A and zeroes elsewhere then this matrix is called a diagonal matrix.

Definition. A diagonal matrix is said to be a unit-matrix if all diagonal
elements equal 1. It is denoted by 7 or E.

1 0 0
0 1 - 0

[=E= . (1.3.2)
0 0 1

Definition..Matrix, all elements of which situated under (over) its principal
diagonal is called a triangular matrix.

There are two following examples of the triangular matrices:

2 =7 0 1
-1 0 O

0 6 9 -4
, 12 00

0 0 6 1
0 4 5

0O 0 0 7



§ 1.4. Determinants

With square matrix of order n we associate a number called the determinant of
A and written sometimes detA and sometimes |A| with vertical bars (which do not

mean absolute value). For n = 1 and n = 2 we have these definitions:

detall =a11 (141)

ayp dpp
det( =
ar; dp

We introduce for a matrix of order #n = 3, first of all, these definitions:

ayp app
=day1dyy —andp;. (1.4.2)

ayr) dpp

Definition.. A minor M of an element @; of a matrix A is a determinant

obtained from a given matrix deleting the i-th row and j-th column.

Definition.. A quantity (— 1) M i 18 called a cofactor AZ:]' of an element 4&;;

1 2 3
Example 1.4.1. Calculate M,, and A,, of the matrix A={5 5 3|.
7 35
1 2
I 2
7 3

Ay = (=1 My =—(=11)=11.

Theorem. The sum of the products of elements aij of any row (column) of a

determinant and their cofactors is equal to one and the same number. This number is a
value of the given determinant.

2 3
Example 1.4.2. Calculate the determinant of the matrix A = 5 3.
35

N D =



1 2 3
5 3 5 3 5 5
det A = 2 z 53 =a, A, +a,A, +aA; =1 3 5 -2 7 5 +3- 7 3 =

=16-8-60=-52.

The expression a4, +a,A, +a;A;is called the expanding determinant by the
first row.

Note that we can calculate determinants of the third order using the following
rule:
1. supplement the first and the second rows accordingly,
2. take the sum of the products of the elements of the main diagonal and of the its
parallel,
3. subtract the products of the elements of the order diagonal and its parallel.
Using this rule we have

2
=1-5-5+5-3-3+47-2-3-(7-5-3+1-3-34+5-2-5)=

=25+4+45+42-105-9-50=52.

We now state some properties of determinants. You should know and be able to
use these facts, but we omit the proofs.

1. The determinant of the transposed matrix is equal to the given determinant:
|aT=[4].

2. If two rows (columns) of a determinant are identical (or are proportional),
the determinant is zero.

3. If two rows (columns) of a determinant are interchanged, the determinant
just changes its sign.

10



4. If each element of some row (column) of a determinant is multiplied by a
constant A, the determinant is multiplied by A:

a4y aip ot Ay
ﬂanl ;l’ann anl ann
arq ap a1y ajp A ot Apy
5 ay +b ay+by, - ay,+b,| Ay axy - ay, N
a a,n T ayn a, Ay - Ay,
aip ap dip
4 by, b, b,
anl an2 ann

6. If all elements of a determinant above the principal diagonal (or all below it)
are zero, the determinant is the product of the elements of the main
diagonal.

For example,

0 0
5 -2 0=(2)(=2)(7)=-28,
4 7

7. If each element of a row (or column) is multiplied by a constant ¢ and the
results are added to a different row (or column), the determinant is not
changed.

For example,

11



1 -2 3 1 1 -2 3 1 1 -2 3 1
2 1 0 2|H-21 [0 5 -6 0| |0 1 2 1 B
102 1 -20m+1 [0 0 4 -1 o 0 4 -1 -
0 1 2 1 01 2 1 0 5 -6 0|IY-5I
1 -2 3 1 1 -2 3 1
0 1 2 1 O 1 2 1
== = =—(-36)=36
0 O 4 -1 0O 0 4 -1
0O 0 -16 -5|IY+4III O 0 0 -9

§ 1.5. Operations with Matrices

e 1. Multiplying by a number.

To multiply a matrix A by a number A we multiply each element of this matrix
by A:

Example.
3005 -l 12 20 -4
A=|3 , then 4A=
Z -2 2 3 -8 8 )

e 2. Addition (Subtraction) of Matrices.

We can add and subtract the matrices of one and the same dimension. Their
sum (difference) is the matrix we get by adding (subtracting) corresponding elements
in the given matrices:

A*B=a; £b;). (15.2)

12



Example. Let the matrices

2 =7 -3 1 ,
A= , B= be given.
5 4 5 0

Find: 1) their sum, 2) difference B — A.

Solution.
2-3 —-T7+1 -1 -6
1) A+B= = ;
545 440 10 4
-3-2 1+7 -5 8
2) B—-A= = )
5-5 0-4 0O -4

e 3. Multiplication of Matrices.

a) The first step.
Multiplication of a matrix-row by a matrix-column (n-tuple row by n-tuple column)

by
(@ - a,)|-|= > a;b; - the sum of products of the corresponding elements.
b i=1
For example,
-2
(2 -1 3)-| 0 |=2-(—2)-1-0+3-4=8.
4

b) The second step.

Multiplication of a matrix [mxn] A by n-tuple column B. To form this product (a
matrix C), we take the elements of the first row of A in the order from left to right and
multiply by the corresponding of a matrix B. This is the first row of C. Then we repeat
the process using the second row of A. For example,

13



X
2 -1 3\ | (2x-y+3z
4 0 =5) 7|7\ 4x-5; )
Ve

c) The third step.
The multiplication a matrix A[mxn] by a matrix B[nxp] is a matrix C[mxp] whose

element Cij is the product of the i-th row of A and the j-th column of B:

n
cj =2 apby i=1,2, .. ,mandj=1,2,...p.
k=1

For example,

b
2 3 -] Z ; 2a+3d—x 2b+3e—y 2c+3f—z
. e =
4 -2 5 4a—2d +5x 4b—2e+5y 4c—-2f+5z)
Xy z

Properties of the Product of Matrices
1. In general AB # BA.

Examples.

2 1 1 2
a) A= , B=
1 2 4 3

2+4 4+3 6 7
AB: =
1+8 2+6 9 8

BA_12 2 1) (242 1+4) (4 5
4 3)11 2) \8+3 4+6) (11 10/

As we see 1n this case AB # BA.

14



0 3
2 1
b) A= , B=|-5
I 2
7

It is impossible to calculate AB, but it is possible to multiply B by A:

0 3 5 1 0+3 0+6 3 6
BA=|-5 2 -(1 2j= -10+2 -5+4|=|-8 —1|

7 1 14 +1 T+2 15 9
2 -1 9 200
¢c) A=|3 5 3|, B=|0 2 O
1 4 1 0O 0 2
2 -1 9 2 00 4 -2 18
AB={3 5 3|0 2 O|=|6 10 6|,
1 4 1 0O 0 2 2 8 2
2 00 2 -1 9 4 -2 18
BA={0 2 O[3 5 3|=|6 10 6
0O 0 2 1 4 1 2 8 2

In this case AB = BA.
2. (AB)C = A(BC)
3. (A+B)C=AC+BC orC(A+B)=CA+ CB

4. Let A and B be square matrices of the same order, then

det(AB)=det A-det B.

15



§ 1.6. The Inverse of a Square Matrix

Definition. A square matrix B is said to be an inverse matrix of A if

AB = BA =1 and itis denoted by the symbol A™'. So we have
AAT = ATA=1T (1.6.1)

Definition. Transposed matrix of cofactors of the corresponding elements of the
given matrix A is called the adjoint of A:

All Aln

Example 1.6.1.

Find the adjoint of the matrix A if

1 2 1
A=[2 1 3|
1 1 1
Solution.
All_\l 3\:_2, An__\z 3\:1, AB_V 1\:1;
11 11 11
A, = ‘2 1‘:_1’ A22:‘1 1‘: ’ 23__‘1 2‘:1;
1 1 11 1 1
O T L
1 3 2 3 2 1

16



So we have

-2 1 1 -2 -1 5
A=l-1 0 1|=1 0 -1
5 -1 -3 1 1 -3
Check up that
AA=AA=A-T=detA-I (1.6.3)
Theorem. A matrix A has an inverse if and only if its determinant is not equal to
zero.
1. Let detA =‘ A ‘ # 0 be given. Prove A™' exists.
Let us use the equality (1.6.3):
AA=AA=A-T=detA-I1= AA=A-1
but A#0, so

It means that

Al =2 (1.6.4)

2. A! exists, prove that A # 0. In fact,

A" A=1=detlA" A)=det 1 = det A det A=1=
—detA™ -A=1=A=0.
The theorem is proved.

The formula (1.6.4) gives the method of finding the inverse matrix:

1. be sure that A=| A|#0,
2. construct the matrix of corresponding cofactors and transpose it,
3. divide this matrix by | A|.

17



Example 1.6.2. Find the inverse of A if

2 3 -4
A=l1 2 3
3 -1 -1
Solution.

2 3 -4
1.LA=|1 2 3|=2:1-3-(-10)-4-(-7)=60 %0,
3 -1 -1

1 7 17
2.A=/10 10 10 , (see the solution of the example 1.6.1),
-7 11 1

3[—

1 7 17
A=—1]10 10 10|=
-7 11 1

|\10\I>—*
B ~o1—3[3

Bzoi=3|~

N
)

Definition. A matrix is said to be a nonsingular matrix if its determinant is not
equal to zero.

§ 1.7. Solution of System of n Linear Equation in » Unknowns
Definition. The system of equation of the form

allxl + a12X2 +...+ alnxn - bl

a21x1 + a222x +...+ azn.X2 = b2
) (1.7.1)

Ay X) + Xy +...+ 4, X, =b,

is called the system of n linear equation with n unknowns.

18



Denoting matrix of the coefficients as A, the column of unknowns as X and the
column of the constant terms as B it is possible to rewrite the system (1.7.1) in the
matrix form

AX =B (1.7.2)
app 4 o 4y, X1 by
a a ... a X b
Here A = 21 22 Zn’ X = 2, B= y) .
anl an2 ann xn bn

Assume that the matrix A is nonsingular matrix. It means that A~ exists. In this
case we have

AX =B= A"'AX =A"'B=(A"A)x =A"'B= IXx = A7'B,
or
X=A"B (1.7.3)

Conclusion. If the determinant of the system (1.7.1) does not equal zero then
this system has a unique solution defined by the formula (1.7.3).

Example 1. 8.1. Solve a system of equations

x1+2x2+ X3:3
2x1+ .X2 +3X3=2

xl+X2+ X3:2

The matrix form of the given system is AX = B, where

1 21 x| 3
A=|2 1 3|, X=|x,|| B=|2]
11 1 X 2

detA =

N
—_— = N

19



Thus we are able to use the formula (1.7.3):

X=A"'B.

As we know

Let us find A:
A_13_2A_21_1A 21_5
11_11_’ 21_11_’ 31_13_
A—23—1 A—ll—O A =1
A P 271 1|7 32 = =5
4 2 1_1 4 1 2 _ 4 12| 5
S U S U R P2 )
-2 -1 5
A=|1 0 -1
1 1 -3
AsdetA =1
-2 -1 5
Al=A=]1 0 -1
1 1 -3
Then
~2 -1 5Y(3) (-6-2+10 2
X=A"B=|1 0 -1]2]|=] 3+0-2 |=| 1
1 1 =3)12 3+2-6 ~1

Thus the solution of the given system is:

20



It is possible to prove Cramer’s Rule:
Let

allxl +a12X2 +...+a1n.xn =b1
a21x1 + a222x+... + a2nx2 :b2
<

a, X, +a,nx, +...+a,,x, =b,

be a system of n equations in n variables. The solution of the system is given by
(xl,xz,x3,...,xn), where

A A, A, A,
x1=K, X2=X, ey X =, L, X, =— (1.7.4)

and A is the determinant of the coefficient matrix, A # 0 . Ai 1s the determinant
formed by replacing the ith column of the coefficient matrix with the column of

constants by, b,,bs,...,b,.

Example 1.8.2. Using Cramer’s rule solve a system of equations
xl + 2XZ + X3 = 3
2x; + x5 +3x3 =2

X+ X9+ x3=2

Solution.

>

[l
[\ I
e \ ]
_— O

[l

[

H

-}

21



We are able to use formulae (1.7.4):

A A A
xlz_l, xzz—z’ x3=—3,
A A
where
3 2
A=12 1 3/=3.(-2)-2-(-4)=2=>x="=x=2,
2 1
1 3
Ay=|2 2 3|=—4+3+2=1=x,=1,
1 2
1 23
Ay=12 1 2|=—4+3=-1=x;=-1.
1 1 2

The answer: X| = 2, Xy = 1, X3 = —1.

® Remember:

A system of n linear equations in n variables has a unique solution if and
only if the determinant of the coefficient matrix is not zero.

§ 1.8. The Rank of Matrix

Let be given an arbitrary matrix A dimension of which is [mxn]:

22



Let us strike out k rows and k columns in this matrix.Then elements aij found at the

intersection of these rows and columns form the matrix of order k.

Definition. Determinant of this matrix is said to be minor of the k order of the
matrix A.

Definition. The highest order of the minor of matrix A different from zero is
called the rank of this matrix and denoted r(A).

Definition. Matrix A is equivalent to matrix B if their ranks are equal:
A ~ B, if and only if(A) = r(B) (1.8.1)
Elementary Operations on Matrices
1. Deleting any row (column) all elements of which are zeros.

2. Interchanging any two rows (columns).

3. Multiplying all elements in a row (column) by the same nonzero number.

4. Replacing a row (column) by the linear combination of this row (column) and any
other row (column).

You can prove the Gauss theorem:
Theorem. The elementary operations do not change a rank of a matrix.
Example. Using the elementary operations find the rank of the matrix A.

1323 -15 1 3 2 3-15

A2 2402 3 |R-2R 0 -4 0 -64-7 _
356318 |R-3R 0 -4 0 -6 4 —7|R,—R,
48 86 0 13)R,—4R, \0 -4 0 -6 4 —-7)R,—R,

23



1 3 2 3 -1 5

~O-40-64-7~1323_15
O 0 0 0 0 O 0 -4 0 -6 4 -7
O 0 0 0 0 O

1 3
Mzz‘ ‘=—4¢0:>r(A):2.

Remark.
To find the rank of a matrix reduce it to a triangular form. A number of nonzero rows

is the rank of the given matrix.
§ 1.9. System of Linear Equations in the General Case
Let be given m equations in n variables:

all.xl + a12X2 +...+ alnxn = bl

a21x1 +a22x2 +...+a2n.xn :b2
................................. (1.9.1)

a4 apy,
A= ayy Ay ary,
aml amZ amn

The matrix B is called the augmented matrix of the system (1.9.1):

24



ayp dyp aln‘ by

dr; dpy aZn‘ b,

ml Qma amn‘ bm

Definition. A system (1.9.1) having at least one solution is called a compatible
system.

Theorem. A system (1.9.1) is compatible if and only if the rank of matrix A
equals the rank of matrix B.

There is the Gauss Method. The goal of this method is to rewrite an augmented matrix
in triangular form. After that it is able to answer the next questions:

1. Is the given linear system compatible or not?
2. How many solutions has this system?
If the system is compatible you can find its solution.

We will now demonstrate how to solve a system of two equations in two
variables by the Gauss method. Consider the system of equations

le +5x2 =—1
3X1 _2X2 - 8

The augmented matrix for this system is

a2 5 |-1 2 5 |-1
13 -2 |8 )2R,-3R, (0 -19 [19)°
The system of equation written from the triangular matrix is:

'19X2 :19

2) 2x +5(-1) =—1=> 2x =4 = x, = 2.

25



The solution of the given system is (2, -1).

Example 1.9.1 .Solve by using the Gauss method

2x1+.x2+ X3+2X4: 8
xl - X2 +3X3 +X4 :10
X+ X, + x4=35
Solution.

Reduce the augmented matrix to triangular form:

2 1 12|38 1 1 0115

B=[1 -1 31|10 ~ 12 1 12| 8|R—-2R~
1 1 01| 5)R—>R 1 -1 31 |10)R,—R
1 1 015 1 1 01] 5

~ 10 -1 10|-2 ~ 10 -1 10]-2
0 -2 30| 5)R—2R, (0 0 10| 9

As we can see (A)=r(B)=3.Butn =4 > r = 3. It means that the general solution
depends on n—r arbitrary constants. Here is one constant in this case. Let x, = C,
then the equivalent system is

x|+ X, =5-C
— X, tXx3=-2
x3=9
Solving this system we have

26



X3:9,
_.X2+9=_2:>.XZ=11,

Check up this solution of the given system.
The answer: (-6-C, 11, 9).
§ 1.10. Homogeneous System of Equations

Definition. A linear system of equations for which the constant term is zero for
all equations is called a homogeneous system of equations.

allxl +a12x2 +...+a1nxn :O
a21x1 +a22x2 +...+ aznxn :O
(1.10.1)

System (1.10.1) is compatible as the solution (0.0.....0) is always the solution of

homogeneous system. If a homogeneous system has non-zero solutions you can find
them using the Gauss method.

Example 1.10.1. Solve the homogeneous systems of equations.

Xy +2x, —x7 +x, =0,
.xl _XZ +5.X3=0, ! 2 3 4

— X +2x2 _SX3 :O,

—x; +3xy —2x3 —x4 =0,

X1_3XZ+ .X3 +X4=O,

2x; — x5 + x3 +2x, =0.

Solution. Solve the system reducing the matrix of the system to a triangular
form.

I -1 5 I -1 5
a) A= |2 1 -4|R,-2R, ~|0 3 -14 ~

27



1 -1 5
~(0 3 -14].
0 O 4

Thus the equivalent system has the unique trivial solution:

xl_X2+SX3:O x1=0
3.X2 _14X3 =O:> .XZ =O.
4X3:O X3=O

1 2 -1 1 1 2 —-11
13 -2 —1|Ry+R |0 5 -3 0
I =3 1 1|Rs=R, |0 =5 2 0|R+R,

2 -1 1 2JR,-2R, \0 =5 3 O0JR,+R,

1 2 -1 1
|05 =30
00 -1 0f
00 0 O

As we can see r(A)=3. But n = 4 > r = 3. It means that the general solution
depends on n —r =4 —3 =1 arbitrary constants.

Let us write out the system, which is equivalent to the given one:

xl +2.X2_X3 +.X4:O,
SXZ_3X3 :O,

_X3 :O.
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0
Let x, = C, then the solution of the system 1s X = 0
C
As the given system can be written in the form
I 2 -1 1 X 0
-1 3 -2 -1 Xy 0
A-X =0, where A= , X = , 0= ,
I -3 1 | X3 0
2 -1 1 2 Xy 0
it is possible to check the solution in matrix form:
1 2 -1 1 -C -C+C 0
-1 3 -2 -1 0 Cc-C 0
I -3 1 1 0 -C+C 0
2 -1 1 2 C -2C+2C 0
-C
0
The answer: X = 0
C

§ 1.11. Miscellaneous Problems

1 0 3 4
1001 =2 3 , ,
1. Let the matrix A3 -5 be given. Calculate detA=| A |, using the
32 0 =5

properties of determinates.

2. Calculate minor M |3 and cofactor A,, of the matrix A from the previous problem.

3. Find the matrix D =2A -3B if
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1 2 -3 4 7 -2 0 3
A= , B= .
(5 -1 2 0] (1 5 2 -2)

4. Find the product of matrices

2 1 -3 1
a) S =7 4|1
13 0 -1 0

13
~2 -1
b)| 21 .
4 5
40

5%, There are two linear transformations

Vi=7X —Xp — X3 2 =9 32 F3ys
Yy =—X +4)C2 +7X3 ,and %) :2y1 +3y3

Y3 =8x; +x; —x3 3=y, 1t);3

Find the transformation Z through X.

2 -1 0
6. Find the inverse matrix A~ of the matrix A=|5 3 —6|. Check the equality
1 -2 3

AAT ' =ATA=1T.

7. Solve the system of linear equations using a)the matrix method, b) Cramer’s rule,
¢) Gauss method :

7x1 _5X2 :_1
2x1 +x2 _15.X3 :9.
xl +2.X:2 _9X3 :2
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8. Find the rank of the matrices

4 2 -1
I 9 8 -2
I 0 -7
a)A=|1 2 3 -2 b)B =
31 =5
2 -3 1 -4
2 -1 -3

9. Solve the system of linear equations

X +2xy +3x3 — x4 =1
3x; +2xy +x3 — x4 =1
2x; +3xy +x3 + x4 =1
Sx; +5x, +2x5 =2

10. Solve the homogenous system
X; — Xy +2x3 +4x, =0
4x;  +4x3 +9x, =0
3x; + x5 +2x53 +5x, =0

x) +3xy —2x3 -3x4=0

11%*. Let the function f(t)=—t> + 3t +4 be given. Find f(A), if

I 0 2
A=|3 -1 O
I 1 -2

12** Find characteristic numbers and characteristic vectors of the matrix

1 -3 3
A=|-2 -6 13
-1 -4 38
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PART II
ALGEBRA OF VEKTORS

§ 2.1. Definitions

Definition 2.1.1. Vector is a directed line segment.
B A is the initial point,

B is the terminal (end) point.
A// E = C_Z .

Definition 2.1.2. Vectors lying on the parallel
straight lines or on the one and the same straight

a
— - line are called collinear (kxonuneaphvie,
b ¢ napanienvule).
allbllc
a b

Definition 2.1.3. Vectors lying on the straight

lines parallel one and the same plane said to be
/ coplanar.

a,b,c,d are the coplanar vectors.

Definition 2.1.4. The length of a vector a is called its modulus ‘c_z ‘ .

Definition 2.1.5. The vectors aand b are called equal if they are collinear
and have the same length and direction.

b
_——
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|a|:b,
al | b, (2.1.1)
allh

§ 2.2. The Linear Operations

Triangle’s rule (the definition of the sum of two vectors).
Let a and b be the given vectors. Draw the vector b from the terminal point of the

vector @ . The sum a + b is the vector extending from the initial point of the vector
a to the terminal point of the vector b .

Example 2.2.1. Find the sum of the given vectors @ and b .
Solution. Let us take any point A in the plane. Draw the vector AB= a .

Then draw the vector BC=b . So by the triangle’s
rule the vector AC is equal to the sum of the given

vectors a and b .

r\

w
@
Q|
+
S|
Il
2
a

Definition 2.2.1. The product of a vector a by a scalar (number) A # O is the
vector b such that

=1l
aTlh. itr>o,
aTlb,if <o

(2.2.1)
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Example 2.2.2. Draw the vectors 2a and —%5 . Take the vectors @ and b

from the Example 2.2.1.

B
2a Solution.
A b c By the definition 2.1 the vector AB = 2a, and
— > [
b CD = ——b.
3

Parallelogram’s Rule.

Prove that
- — B
1)a+b = AC is the sum of vectors a = AB C
and b = E ﬂ
A D
2)a-b= DB - is the difference of the
vectors
aand b.
Example 2.2.3.
Let the vectors z and b be given. Find C
d+b and b —ain the one and the same drawing. B
Solution. To solve this problem construct a
parallelogram ABCD with the sides a
AB = [a| and AD = ‘I; , then the diagonal AC is the D
A b

sum of these vectors, and the other diagonal directed
to the vector- minuend is the difference of them

AC= a+b,
BD=a—-b.
§1.3. The Scalar Product of Two Vectors

Definition 2.3.1. The scalar product (dot product) of vectors a and b is the
number equal to the product of the moduli of these vectors and the cosine of the angle

¢ between them.
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a-b= (5,5)2‘5‘-‘5‘0%({):‘5‘&5 a,
a where Pr; @ is the vector projection of zonto b .
Pr; a =|a|cos@ (1.3.1a)
¢ b _ (a.p)
—_— Pr: a == 1.3.1b
Pr;a " D
_la.p)
cos @ = |c_1|-|l;| (1.3.2)

§ 2.4. The Properties of the Scalar Product

1. (c_z,l; ) = (l; , L_l) — commutative law of the scalar product.

2. (ﬂc_l b ) = /1(5, b ) — associative law with respect to multiplication by a
number. (The scalar A can be taken out of the scalar product).

3. (c_z, b+ E) = (C_l , b) + ((,7, E) — distributive law with respect to addition.

4. The scalar product of two non-zero vectors equals zero if and only if
they are perpendicular (orthogonal).

The proof.

(5,]3)20 & ‘c_z‘-‘l;‘cosga:O scosp=0& ¢:9OO.
We’ll use this property in such a way:

alb < (a,b)=0 (2.4.1)

5. The scalar product of a vector with itself is equal to the square of its
modulus.

(@,a)=l|a’
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§2.5. The Coordinates of a Vector

Let I, J, K be the unit and orthogonal vectors giving the direction of x-axis, y-

axis and z-axis accordingly.

Z

i|=|j=[|=1 iL jLlk.

a4 =0D=0A+AD=0B+0C+AD =
=xi +y ]_ +27k,

where

X=Pra=4a,,

C vy vy=Pr.a=a_,
j y

Z=PI‘I€ a = az

are the projections of the vector d

onto the vectors , ]_ and k accordingly. These

numbers are called the coordinates of the vector 5 .

a = (ax,ay,azj is the coordinate form of the vector a ;
a= axi +c_zy Jj +azk — the vector form of the vector a, or the expansion of the

vector d through the base i, J, k.

I. Leta = (ax,ay,az ), b= (bx,by,bz) be given vectors, then

2) “_“:\/“imiwg; 2.5.1)

by ra =la,,la,,Aa,) (2.5.2)

o) atb=(a,tb,,a,tb,,a b, (2.5.3)

d) (@b)=ab +ab +ab (2.5.4)
xx Tyy “zz

e albeab +ab +ab =0 (2.5.5)

X X y 'y Z Z

D al ‘5@%:%20 (2.5.6)

b, b, b,
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XX

\/ai +a; +af\/bf +b; +0b?

a. b +ayby +01ZbZ

o) cos(& A I;)z COS @ = (2.5.7)

Example 2.5.1.
Let the vectors a = (3;-2; 1) and b = (-6; 4; -2) be given. Then

a) ‘5‘ = J9+4+1 =414,

b) 3a =(9;-6;3);

¢) a+b=(B-6,-2+4;1-2) > a+b=(-3;2;-1);

d—b=(3-(6);2-41-(2)=a-b=(9-63)

d, e) (E,Ej =3G-6)+(-2)4+1(-2)=-18-8-2=-28#0, so these vectors are

not perpendicular;

p @llb,as >=—2-1__1
6 4 -2 2

= — 28 — 28
o) cos(a /\b)z =
V14456 28

2. Let two points A(xA;yA;ZA) and B(xB,yB,ZB ) be given, then

=—1= @ =arccos(-1) =7

a) a=AB= (xB —XasYp T VasZp _ZA) (2.5.7)

b) if x, y, z denote the coordinates of the point M dividing the segment AB in the

given ratio AM:MB = A, then
B

p x:M; _YatAys. it (25.8)
1+4 1+ 4 1+
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¢) in particular the coordinates of the midpoint of the given segment AB are

x=Xat¥p. y:yA"'yB; ,=2aTZp (2.5.9)
2 2 2

Example 2.5.2. Find the coordinates of

a) the vector AB,

b) the midpoint C of the segment AB;

c¢) the point M such that AM : MB =2 : 11f A(3; -5; 2), B(1; 4; -1).

Solution. o
a) Using the formula (2.5.7) we have AB= (1- 3; 4-(-5); -1-2),
s0 AB=(-2;9;-3).

b) By the formula (2.5.9) the coordinates of the midpoint C are

3+1 -5+4 1 2-1 1
X=——=x=2;y= > y=——;Z=""->=>7=—,
2 2 2 2

11
C2; ——:—).
so C( 22)

c) AsAM : MB =2 :1,then A =2. From the formula (2.5.8) we can find the
coordinates of the point M:

3+2-1 5 -5+8 2-2
X = =—, y= :L Z:—:O
1+2 3 3

So M(5/3; 1; 0).

§ 2.6. The Vector Product of two Vectors (the cross product)

Definition 2.6.1. If we indicate the sequence of order of the triple of
vectors,then this triple of vectors is called ordered triple of vectors.

Definition 2.6.2. The ordered triple of vectors is called a right (left) — handed

triple if the shortest rotation of the first vector to the second one is observed from the
end point of the third vector in the counterclockwise (clockwise).
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,b,c —is the left-handed triple,

ol
Q|

a,c,b - is the right-handed triple.

Q|

b
Definition 2.6.3. The vector product (cross product) of two vectors a and b is

the vector s such that

1) IS I=la Ilblsing, where ¢ is the angle
between @ and b;

2) sla, SLb (the vector § is orthogonal to
both of the vectors @ and b );

N 3) a,b,s is the right-handed triple of vectors.

s=la.b|=axb

Gl

§ 2.7. The Coordinate Form of the Vector Product

Let a = (ax dy,d, ) and p = (bx,by ,bz) be given vectors, then the

coordinate form of the vector product is

(2.7.1)

Tk
[a,b]: a, a, a|=i
b, b, b,

Example 2.7..1. Calculate lc_l,EJ it a=2i—-7j+4k, b =(1,-1,0).
Solution. As we know the coefficients of 1 , j, k are the first, second and third

coordinates accordingly of the vector d . So by the formula (2.7.1) we have

i j ok
_ / d7 4 P4 p -7
la.p]=]2 -7 4]=i N = —4i + 4] + 5k.
Lo oo
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§ 2.8. The Properties of the Vector Product

1. The vector product is anticommutative:
(@,b1=—|p,a]

2. The vector product is associative with respect to multiplication by the scalar:
[La,b]= [C_l, /lb 1= ?»[Zl,b], a scalar is taken out of the (square)
brackets.

3. The vector product is distributive with respect to addition:

[a+b,cl=[a,c]l+[b,c].
4. Let a #0, b #0, then [a ,l; ] = 0 if and only if these vectors are collinear:
[apl=0=al|b-
In fact,

Il[ab]ll=0esldll Elsin@=0@sin¢=0@¢=0,0f”‘:"7‘ ‘E-

5. Geometrical property of the vector product.
Let us construct the parallelogram on the given

vectors a and b as the sides. ¢ is the angle
b between these vectors (p=(a "~ b)).

As we know the area of a parallelogram is
calculated by the formula: S =‘E‘ ‘E‘ sin(a"l;)

QJ

But ‘5"E‘sin(a"l_))z‘a‘.‘];‘sin¢:‘[a,[;”. So
we have

S= \[5,1?]\ 2.8.1)

Geometrically a magnitude of the vector product is equal to the area of the
parallelogram constructed on these vectors.

Example 2.8.1.
Find the area of the parallelogram ABCD if A(9; 2;-5), B(2;1;1), D(9;2;0).

Solution.
First of all let us do a drawing.
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By the formula (2.8.1) we have

s =1[aB,AD|i
A —D
1). AB=(-7:-1:6), AD = (0;0;5);
i j k
2 [ABAD|-~T ~1 6-i-(-5)-]-(-35)k 0=-5i+35];
0 0 5

3). 1[AB,AD1=V5% +35% =/52(1+7%) = 5/50 = 25+5.

The answer: SABCD = 25\/5.

§2.9. Mechanical Properties of the Scalar and Vector Products

1. F is the force acting at the point B, § is the displacement , A is the v_vork, done
F by the force F' along the displacement S .
B As we know

¢ o _
A=I1F 11 Sicoso=(F.5) (2.9.1)

S
Mechanically: the scalar product is the work.

2. Let O is a pivot. As we know the torque
(Momenm épawjernus) LOJJ, LOJ_F and

Lo

| Li=1Fih=l FIIF sing=I[F,F ]l

Mechanically; the vector product is the torque
of the force :
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F.F|]=L (2.9.2)
Example. Find the torque Zoof the force FAif A(3;-1;7), 0(0;0;0),
F,=(2;8;-2).

Solution. Use the formula (2.9.2) where F=0A = (3;-1;7), FA= (2;8;-2). Thus

ik
L=loaFal-3 -1 7|=—sa7+207+26k
2 8 -2

§ 2.10. The Triple Scalar Product

Definition._The product (5 b ,E): ([5,13 15): (5, ll; ,EJ) is called the triple scalar
product.

la,b]=S.

H= ‘ C | cosp = + altitude of a box, His a

height,

| S Iis the area of the base , so

| S1=1allblsina,
then the volume of the parallelepiped

isV=‘§‘H=‘EHB‘sin04E‘cosgp:i‘§HE‘cosgp:i(E,E):i(ﬁ,l;,E).

The geometrical meaning of the triple scalar product is that the triple scalar
product equals the volume of the parallelepiped determined by these vectors taking
with the sign “+” if the triple is the right handed and with the sign “ - “ if it is the left
handed triple.

We’ll use it as

V=‘ (5,5,5)‘ (2.10.1)
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§ 2.11. The Coordinate Form of the Triple Scalar Product

Let az(ax,ay,az), Ez(bx,by,bz), Ez(cx,cy,cz), then

a, a, a,
(@.b,c)=|b, b, b, Q2.11.1)
C, €y

Prove formula (2.11.1) by steps:

. (a,b,¢)=(a,[b,c]);

k
2). [pcl=lp, b, b.|=5;
CZ

3). (a,s ):axsx +ta,s, +a,s,.

Example.
a) Calculate the volume of the parallelepiped constructed on the vectors

a=2i +5k, b=(1;3:-5)and c=AB, where A(-3:5;7), B(2:9:-5).

b) Is the triple of the vectors a, b, c the right-handed or the left-handed triple?

Solution.
a) Use the formula (2.11.1), where a =(2;0;5), b= (1; 3;-5), ¢ =(5,4,12).
So we have

(a.5,¢)=1 3=72+20+0-75+40—0=—87.

Thus V =1-871 = 87.

b) E,I;,Eis the left-handed triple as (El;;) =—-87<0.
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§ 2.12. Properties of the Triple Scalar Product
Prove that:
. (@.b.c)=—p,a,c)
(1a.,b.c)=Aa.b.c)
. @ +a,.b,c)=(a.b.c)+(@,.b.c)

[E—

N

W

4. Let g#0,b#0,¢C
(E,E,E):O(:) a,b,c are coplanar (2.12.1)

§ 2.13. The Questions for the Test Paper

A. How to find
1) the sum of the given vectors,
2) the difference of the given vectors,
3) the product of a vector and a scalar,
if the vectors are given
a) as directed segments;
b) in the coordinate form?

B. How to find the coordinates of

1) the vector AB and its length [AB |,

2) the midpoint of the segment AB,

3) the point dividing the segment AB in the given ratio A if the coordinates of
the points A and B are given;

4) linear combination & a + ,B I; + ¥ ¢, if the coordinates of the vectors
a,b, c are given;
5) the direction cosines of the vector a , if its coordinates are known?

C. How to find B
a) the projection of the vector @ in the direction of the vector b , if their
coordinates are given?

b) the work done by the force F=a along a displacement AB=b , 1f
the coordinates of these vectors are known?
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D. How to find
a) the interior (exterior) angle of a triangle ABC,
b) the area of a triangle ABC (parallelogram ABCD), if the vertices of the figure

are known?

E. How to find

a) the vector that is perpendicular to both of the vectors dand b ,
b) the torque ZA of the force F =CD, if the coordinates of the points A, C, D

are known?
F. How to find

a) the triple scalar product of the vectors a, b ,c?
b) the volume of the tetrahedron (parallelepiped), defined of the vectors

a, b, c, knowing their coordinates?
G. How to define, is the given triple of vectors ¢, b ,c the left-handed or the
right-handed triple?

H. How to verify whether the given vectors are
a) perpendicular (orthogonal)?
b) parallel (collinear)?
¢) coplanar?

§ 2.14. Miscellaneous Problems

In the exercises 1 — 5 express each of the vectors in the vector form :
Xi + yj+ zk , where x, y and z are the coordinates of a required vector.

1. P,P,, where P(1;3; 1), P,(2; -1, 0)

2. O_P if O is the origin (rauano koopounam) and P is the midpoint of the segment

B P, joining P1 (2;-1;3) and P2 (-4:;3;5).
3. The vector from the point A(2;3;-7) to the origin.

4. The sum of the vectors AB and C_D where A(1;-1;2), B(2;0;3), C(-1;3;0) and
D(-2;2:4).
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5. A unit vector of the same direction as the vector 3j —4 .

6. Suppose it is known that (5,51)= (6_1,1;2) and a #0.
Is it permissible to cancel a from both sides of the equality?
7. Find the angle ZABC of the triangle AABC whose vertices are the points
A(-1;0;2), B(2;1;-1) and C(1;-2;2). Construct this triangle in the Cartesian system of
coordinates.

8. Find the projection of the vector b in the direction of the vector @ if
a=i—2j-2k,b= (6; 3; 2). What does the sign of the projection mean?

9.Findaifc_l=(2;a;-l),E=(3;4;3a)and a |[;

10. Find aand Bif @ =2+ j—k, b=(3;4;p)and allp.

2 -1 2
11. Evaluate the given third order determinant |1 0 3|, expanding
0 2 1

a) by the first row;
b) by the second column.

12. Evaluate the given third order determinant, and find M ,,, A;5.

3 4
JAl=10 -2
0 O

13. Find the work done by the force F along the path AB if
F=2-3j+k, A(3;1;0), B(1;4;7).

14. Find the area of the AABC given in the Exercise 7.
15. Find the torque Lo of the force F =CD, if A(2; 1; 3), C(4; -1; 2), D(0;2;-3).

16. Find the direction cosines cosa, cosf, cosy of the vector g = 317+4j—5/€ ;

knowing that coso. = cos(i A @), cosP = cos (j" a), cosy = cos(k » @).
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17. Let A(-1;5;0), B(2;4;3), C(3;5;-2), D(-1;-2;0) be given points. Evaluate
a) the Triple Scalar Product of the vectors AB, ACand AD;
b) the volume of the tetrahedron ABCD,
c¢) a such that the vectors AB, AC and a = (1;-2; o) be coplanar,

d) B such that the triple AC, AD and b =( B;1;0) be left-handed.

18. Let the vectors @,b,c be given. Construct the vectors
1)a+band b—a;

/ \ 2) 2a, —lb 3c.

2) a+b+

_|_
S
I
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PART III. ANALYTIC GEOMETRY
A. PLANES AND LINES IN SPACE

§ 3A.1. The Equation for the Plane Through the Given Point
Normal to 7 = (A,B,C)
Suppose 7 1s a plane in space that passes
through a point P, (xo, yo,zo) and is normal

(perpendicular) to the nonzero vector n= (A, B,C )

n
} which is called a normal or a normal vector.
R p If a point P(x,y,z) lies on the plane 7 then

nLBP e (n,PP)=0s

F =(A,B,C)
- =
P0P=(x—x0,y—y0,z—z0)

Alx—xg)+B(y—yy)+Cl(z-27)=0 (3A.1.1)

When rearranged, this becomes
Ax + By + Cz — (Axy + By, + Cz,)=0, or

Ax+By+Cz+ D=0, (BA.1.2)

where D =—(Ax, + By, + Czg).
The equation (3A.1.2) is called the standard equation of a plane.
§ 3A.2. The Equation for the Plane through Three Given Points

Let there be given three points not lying on a straight line: P (xl, yl,zl),
Py(x5,v5,2,) and  Py(x3,v3,25). It is required to
P, P, write the equation of a plane passing through these three

/. points.
P

P; .
i Let us take a point P(x,y,z) on the plane 7 and
construct the vectors

PIP:(x_xl’y_yl,Z_Zl)’
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PP, :(xz —X1,Y2 T V1522 _Z1)9

PPy :(X3 — X5 Y3 — YV1>23 _Zl)-

These vectors lie on the plane 7, so they are coplanar and therefore their triple scalar
product is zero. Thatis (PP, PP, , PP;)=0, or

X=X y—W 771
Xp =X Yo=Yy 2—%|=0 (BA.2.1)

X3 =X Y3 =)V 37 %

§ 3A.3. Intercept Form of the Equation of a Plane
Let a plane 7 does not pass through an origin of coordinates and intercepts the
coordinate axes Ox, Oy and Oz at the points P,(a,0,,0), P,(0,,0) and P;(0,0,c).

Find the equation of such plane.
On substituting the coordinates of the points P, P, and P; into the equation

(3A.2.1) we get

The equation (3A.2.2) is called the intercept form of the equation of a plane.
§ 3A.4. The Distance from a Point to a Plane in Space

It is required to find the distance from the point Py(x,,y,,z) to plane 7
defined by the equation Ax+ By + Cz+ D =0.
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7 Let P (x;,y;,z; )€ 2 Then
|

d=[Pr. PR = .27 P_1P01 -
d ‘”‘
Q :‘A(xo—x1)+B(y0—y1)+C(z0—z1X_
P JA? +B? +C?
11

VA2 + B2+ C? VA% + B +C?

Hence
JA? + B2 +C2

(3A4.1)

Example 1. Find an equation for the plane through P, (- 3,0,7) perpendicular
to n=(5,2,~1).

Solution. We use the equation (3A.2.1) to get
D=—(5-(-3)+2-0+(-1)-7)=22.
Hence equation for the plane is 5x +2y —z +22=0.

Example 2. Given the vertices of the triangle: A(l,7,4), B(5,-1,8), C(5,2,3).
Find an equation of the plane on which the triangle ABC.
Solution. On using the equation (3A.2.1) we have

x—=1 y=-7 z-4
4 -8 4 |=0.
4 -5 -1

We expand this determinant to obtain

Tx+5y+3z-54=0.
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Example 3. Find the distance from the point F, (5,1,4) to the plane 7, given by
the equation 4x -3y —3z—-14=0.

Solution. Making use the formula (3A.4.1) we get

d_|4-5—3-1—3-4—14|_|—9|
Ja2 4 (37 (L3 V34

=1.54.

§ 3A.5. Angular Relations between Planes

Definition. The angle between two intersecting planes is defined to be the
(acute) angle made by their normal vector.
Let

be the equations of two given planes. It is
required to find the angle ¢ between
them and the conditions of the parallelism
and the perpendicularity. The normal
vectors of these planes are known, that is

n =(4,,B8,,C,), ny =(4,,B,,C,),
- hence
e cosp =1 (ﬁlni) (3A.5.1)
m)jns
—— A B C
07Z1H7[2<:>n1Hn2<:>A—1=B—1=C—1 (3A.5.2)
2 2 2

as the planes are parallel if and only if their normal vectors are collinear. Hence the
coordinates of the vector n; are proportional to those of the vector n, .

o 17y = nln, < AA,+ BB, +C,C,=0, (3A.5.3)
Planes 7, and 7, are perpendicular to each other if and only if the condition (3A.5.3)

1s satisfied.

51



Example. Compute the acute angle between the planes having the equations
9x+8y—-127—-85=0 and 24x-32y+9z+51=0.

Solution.To use (3A.5.1) calculate [ | =9 +82 +12% =17,

12| =242 +32% + 92 =41. Hence
9-24+8-(—12)+(-12)-9 148

cos @ =

17-41

= = @= arcc:osE =77.74°.
697 627

The acute angle between the planes is 77.74°.

§ 3A.6. A Straight Line in Space

Definition.. Every non-zero vector lying on the given line or parallel to it is
called the position vector of that line.

4

We denote the position vector of a straight line by s,
and coordinates of this vector by m, n, p, that is

s = (m,n, p). Suppose ¢ is a line passing through a
point F, (xo, Yo Zo) and lying parallel to a vector s .
Let P(x,y,z) be an arbitrary point of the straight
line, hence

RP|[s o BP=ts e —1y =is &7 =1 +15
(3A.6.1)

The equation (3A.6.1) is called the vector equation of a straight line. When we write

the equation (3A.6.1) in terms of i, Jj, and k — components and equate the
corresponding components of the two sides, we get three equations involving the

parameter ¢:

X=Xxy, +mt
y=Yyog tnt
Z:Z0+pt.

(3A.6.2)

We call the equations in (3A.6.2) the standard parametric equations.
In the equations (3A.6.2) ¢ is regarded as an arbitrarily varying parameter,
and x, y and z vary in such a manner that the point P(x, y,z) moves along the given

straight line. The parametric equations of a straight line are conveniently used in
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cases where it is required to find the point of intersection of the straight line with a
plane.
Solving for t the equations (3A.6.2) we get

X — X Y—Yo _ <72

f= = t (3A.6.3)
m n p
Equating the right-hand sides of (3A.6.3) we obtain
T X7 X740 (3A.6.4)

m n p

The equations (3A.6.4) are called the canonical equations of a straight line or the
equations of a straight line in the symmetric form.

In analytic geometry it is often required to write the equations of a straight line
two of whose points are given. We shall now find the general solution of this problem
letting Py(x;,y;,2;) and P,(x,,y,,z,) be two given arbitrary points of the line.

In order to solve the problem, it is sufficient to note that the vector S = PP,
can be taken as the position vector of the line in question, hence

m=Xx, =X, =Y, =YV, P=2p —4p-

Assigning to the point P, the role played by the point P, we have

ATh _ VTR 2T (3A.6.5)

Xo =X Yo=Y 2271

This is the two-point form of the equation of the straight line.

§ 3A.7. Angular Relations between Straight Lines in Space

Let
/ X=X Y=y T4
l- = =

my ny P1
/ X=Xy YT Yy 272y
2 = =

m ny P2

be the equations of two given straight lines. The angle ¢ between these lines is
revered to the angle between their position vectors. Hence we have
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(51.5,)

ecosp=1t— , (BA.7.1)
Si|-[s2
ol |, e85, e =P (3A.7.2)
my, np P
el 10,8, 1S, &(8,.5,)=0e mm,+nn,+ pp,=0. (3A.7.3)

§ 3A.8. Parallelism and Perpendicularity of a Line and a Plane

Let

S|
~

e

n

/|

sin ¢ = |cos y/| = COS(E,/\ Z)

.Sil’l([):T
2|

b

07&" ‘K@ZJ_E(:)Am+Bn+Cp:0,

SN
S |w

OﬂJ_E@ZHE(:) £
P

. X" %0 _ Y7 Yo _27 20
m n p
Z:Ax+ By+ Cz+ D =0 be given.
An angle ¢ between a straight line / and
a plane 7 is an angle between
this line and its projection on the plane.

l//=900 T@o=cosy=Fsing, or

(3A.8.1)

(3A.8.2)

(3A.8.3)

§ 3A.9. A Straight Line in Plane

A straight line in a plane may be determined by a normal vector or a position
vector. So for a straight line we get two groups of formulas. The first group is
associated with a normal vector. The second group is associated with a position

vector.
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¢ 1. The first group of equations
1. Alx—xy)+B(y—y,)+C=0 (3A.9.1)

This is the equation of a straight line through the point Py(x,,y,) with the

normal vector n = (A, B).
2). A general equation
Ax+By+C=0 (3A.9.2)

3). A distance from a point Py(x,, y,) to a straight line

d:|Axo + By, +C|

(3A.9.3)
VA? + B?

¢ 2. The second group of equations

1). A vector equation

r=ry+1s, (3A.9.4)
where

r:(x,y), o :(xo’yo)’ S:(m,")

2). A parametric equations

X = .xO + mt
(3A.9.5)
y=Yyo +nt
3). A canonical equation
X=X _ Y~ Yo (3A.9.6)
m n
4). A two-points equation
X=X _ YN (3A.9.7)

Xo =X Yo— N
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§ 3A.10. The Third Group of Equations of a Straight Line in a Plane
The third group is associated with a slope k.

The line /¢ forms the angle ¢ with the positive

direction of x-axis. This angle is called an angle of
inclination with respect to x-axis. The tangent of
an angle of inclination of a straight line is called
the slope of this line and denoted by k: k =tan ¢.

It follows from the triangle AABC that k = n
m

Using a canonical equation (3A.9.6) we get

y—yo =k(x—x,) (3A.10.1)
This equation is called the point — slope equation of a straight line.
Rearranging the terms of the equation (3A.10.1) we have

y=kx+b, (3A.10.2)

where b=y, — kx,, b is called the y-intercept of the line, and the equation (3A.10.2)
is called the slope-intercept equation of a straight line.

Now we find an angle between two straight lines.

Definition. The least angle through which it is necessary to rotate the straight
line /7, anticlockwise to reach the coincidence with the second line /7, is called the

angle between these straight lines.
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tan @ = tan - = ;
(02 -9) 1+ tan @, tan @,

k, —k
tan@=—2—L (3A.10.3)
1+ kk,

§ 3A.11. Conditions of Parallelism and Perpendicularity of
Sloping Straight Lines
Two straight lines are parallel if and only if their slopes are equal. In fact:

0] t, ©®0=0tanf=0& k, =k,, thus

o U\ |0, &k =k, (3A.11.1)
Two straight lines are perpendicular if and only if their slopes relate to each
other as k, = 1 . In fact:
1
(L0, <80=90° @cow:o@M:o@Hklkz =0 =k, __ 1
ky =k 1
0€1J_€2(:)k2:—kL (3A.11.2)

1

§ 3A.12. Solution of Problems

x=1 _ y-2 =z
0
space passing through the point (1,2,3) in the direction of the vector (1,0,2). These
equations can be replaced by the following equivalent ones:
y=2=0-(x-1),. [y=2,
ie.

{2(x—1)=z—3, {Z:2x+1.

Thus the straight line under consideration is an intersection of two planes
defined by the equations y=2 and z=2x+1.

Example 1. The equations ; 3 define the straight line in

Example 2. Let a straight line ¢ be defined by equations

x=3y+2z-4=0,
2x+y—-5z-15=0.
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Find a canonical equation of this line.
Solution.

The line / is an intersection of two planes 7z, : x —3y + 2z =0 and
T, :2x+y—5z—-15=0, hence its every point belongs to each of these planes. Find
one of them. For example, Py(x,,v,,2,) if 7o =0. Then x, and y,satisfy the
system of equations

Xg —3yo =4,

{Zxo +yo =15.
Solving this system we get x, =7, yo =1, and F, (7,1,0).

Next we find some vector parallel to the straight line /. Normal vectors of the
planes are n_1 = (1,—3,2), Z = (2,1,—5). Then the vector s = [Zl , Z] is parallel to the
straight line / and therefore is its position vector:

ik
-3 2

i
1 =13 +9; +7k.
2 1 =5

s=m.n |=

Using the equations (3A.6.4) we have the canonical equations of the straight line /:

Example 3. The straight lines ¢, and 7, are given by the equations:

x—3 y+5
gl. = =
1 4 5
x+8 y-9 z+10
-5 0 1

Find out whether these straight lines are parallel or perpendicular.

Solution. The position vectors of the straight lines ¢, and /¢, are

s, =(1,45), s, =(=50,).
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Using the condition (3A.7.2) we get % ;t% # % Hence the vectors Q and Q are

not collinear and the straight lines ¢, and ¢, are not parallel.

Let us verify that the condition of perpendicularity of these straight lines
(3A.7.3) 1s satisfied.

We have (S_1 S_2)= 1-(=5)+4-0+5-1=0. This means that the straight lines
¢, and ¢, are perpendicular.

Example 4. A straight line passing through the point P(- 2,3) forms with the x-
axis the angle 135°. Find an equation of this straight line.

Solution. An equation of this straight line we seek in the form y=kx+5b.

1). The slope of this straight line is k£ = tan 1359 =—1.

2). The straight line y=—x+ b passes through the point P(— 2,3), therefore
its coordinates x =—2, y = 3 satisfy the equation of this line, that is

3=—(—2)+ b= b=1. Hence the equation of the straight line has the form
y=—x+1.

B. SECOND ORDER CURVES
§ 3B.1. Parabolas

y Definition. A parabola is the set of
) points in a plane that are equidistant from a
F @, ) y =i€—p given fixed point and fixed line in this
plane. The fixed point is the parabola’s

P(x. y) focus F(0, p). The fixed line is the
X parabola’s directrix y=—p.
‘ In the notation of the figure, a point

Q (x, -p) P(x, y) lies on the parabola if and only if
Directrix y=-p PF = PQ . From the distance formula,

Fig. 3B.I PF=\(x-0) +(y-p)’ =

=Jx> +(y-p),

0
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PO=(x=x)* +(y (= p)? =4y + p)*.

When we equate these expressions, square and simplify, we get standard equation of

this parabola:

2
X

= E
This equation reveals the parabola’s symmetry about the y-axis. We call the y-axis
the axis of the parabola (short for “axis of symmetry”).

y (3B.1.1)

The point where a parabola crosses its axis, midway between the focus and
2

directrix, is called the vertex of the parabola. The vertex of the parabola y = z— lies
p

at the origin. The number p is the focal length of the parabola, and 4p is the width of
the parabola at the focus.

2
Example 3B.1.1 Find the focus and directix of the parabola y = %

Solution.
x? x?
Step 1. Find the value of p in the standard equation: y = 3 1s y= . with p = 2.
p
Step 2. Find the focus and directrix for the value of p = 2:
Focus: F(0, p)= F(0,2).
Directrix: y=—p = y=-2.
y If we interchange x and y in the formula
y=4 px 2
Y ==
| / y s
! 4
/\ we obtain the equation
X y2=4px (p>0) (3B.1.1)
R FQO, p) With the role of x and y now reversed,
the

graph is a parabola whose axis is the x-axis.
The vertex still lies at the origin.
Fig.3B.2 The parabola opens to the right.
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The chief application of parabolas involves their use as reflectors of light and
radio waves.

Rays originating at a parabola’s focus are reflected out of the parabola parallel
to the parabola’s axis (in Fig.3.B.2, the x-axis). Similarly, rays coming in parallel to
the axis are reflected toward the focus. This property is used in parabolic mirrors and
telescopes, in automobile headlamps, in spotlights of all kinds, radar and microwave
antennas, and in solar collectors. Parabolas are also used in bridge constructions, wind
tunnel photography, and submarine tracking.

§ 3B.2. Ellipses

Definition. An ellipse is the set of points in a plane whose distances from two fixed
points in the plane have a constant
sum. The two fixed points are the foci

Y of the ellipse

b The line through the foci of an ellipse

r —~_P(x, y) is the ellipse’s focal axis. The point of
| 2\' X the axis halfway between the foci is
° 0 ¢ 7 the ellipse’s center. The points where

| E(—C, 0) Fz(c’ 0) | the focal axis crosses the ellipse are

L == — _| the ellipse’s vertices.
If the foci are F,(-c,0) and F,(c,0),

and the sum of the
Fig.3.B.3 distances PF|+ PF, is denoted by

2a, then the coordinates of a point P

on the ellipse satisfy the equation

\/(x+c)2 + y2 +\/(x—c)2 + y2 =2a (3B.2.1)

To simplify this equation, we move the second radical to the right-hand side, square,
isolate the remaining radical and square again, obtaining

x—2+ Y o (3B.2.2)

Since the sum PF,+ PF, is greater than the length F|F, (triangle inequality for

triangle PF|F,), the number 2a 1s greater than 2¢. Accordingly, a is greater than ¢
and the number a* —¢? in equation (3B.2.2) is positive.

If b=+va’ —c? , then equation (3B.2.2) takes the more compact form
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L

2 2
a b2

=1 (standard equation) (3B.2.3)

The major axis of the ellipse described by equation (3B.2.3) is the line
segment of length 2a joining the points (a,0) and (- a,0).

The minor axis of the ellipse described by equation (3B.2.3) is the line
segment of length 2b joining the points (0,5) and (0,—b). The number a itself is
called the semimajor axis and the number b the semiminor axis. The number c,

which can be found as ¢ =va? —b? is the center-to-focus distance of the ellipse.

If we keep a fixed and vary ¢ over the interval 0 <c¢ <a the resulting ellipses
will vary in shape. They are circles if ¢ =0 (so that a =b) and flatten as ¢ increases.
In the extreme case ¢ =a, the foci and vertices overlap and the ellipse degenerates
into a line segment. We use the ratio of ¢ to a to describe the various shapes the
ellipse can take. We call this ratio the ellipse’s eccentricity.

Definition. The eccentricity of the ellipse is the number

2 2
poC_Na” —b” (3B.2.4)
a a
The planets in the solar system revolve around the sun in elliptical orbits with
the sun at one focus. Most of the planets, including Earth (e =0.02), have orbits that

are circular. Pluto, however, has a fairly eccentric orbit, with e¢=0.25, as does
Mercury, with e =0.21. Other members of the solar system have orbits that are even
more eccentric. Icarus, an asteroid about one mile wide that revolves around the sun
every 409 Earth days, has an orbital eccentricity of 0.83.

Ellipses appear in airplane wings (British Spitfire) and sometimes in gears
designed by racing bicycles.

Stereo systems often have elliptical styli, and water pipes are sometimes
designed with elliptical cross sections to allow for expansion when the water freezes.

The triggering mechanisms in some lasers are elliptical, and stones on a beach
become more and more elliptical as they are ground down by waves. There are also
applications of ellipses to fossil formation. The ellipsolith, once thought to be a
separate species, is now known be an elliptically deformed nautilus.

Example 3B.2.1. Find the standard-form equation of the ellipse with foci
(0, % 3) and vertices (0, 4).
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Solution.
The standard-form equation for an ellipse with foci (0,%c¢) and vertices
2 2

(0,%a) is x—2+y—2=1, where ¢ =va” —b? .In the ellipse at hand ¢ =3anda =4,
b a
50 3=v4% —b* =9=16-b* = b* =7. The equation we seek is
2 2

Xy
(\/7)2+42

Example 3B.2.2. The orbit of Halley’s comet is an ellipse 36.18 astronomical
units long by 9.12 astronomical units wide. Find its eccentricity.

Solution.
One astronomical unit is the semimajor axis of the earth’s orbit, about

92,600,000 miles. It’s eccentricity is

_Va?—p? _(36.18/2)* -(9.12/2)}

36.18/2

_ \/ (18.09) —(4.56)?

=0.97. (Rounded, with a calculator).
18.09

§ 3B.3. Hyperbolas

Definition. A hyperbola is the set of points in a plane whose distances from two fixed
points in the plane have a constant difference. The two fixed points are the foci of the

hyperbola.
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Hyperbolas have two branches. For points on the right-hand branch of the hyperbola
shown here PF, — PF, =2a. For points on the left-hand branch, PF, — PF| =2a. If

the foci are F| (—¢,0) and F, (c,0) and the constant difference is 2a, then a point
P(x, y)lies on the hyperbola if and only if

\/(x+c)2 + y2 —\/(x—c)2 + y2 =12a (3B.3.1)

To simplify the equation (3B.3.1), we move the second radical to the right-hand side,

square, isolate the remaining radical, and square again, obtaining
2 2

X y
Ly =1 (3B.3.2)
(12 Cl2—C2

So far, this looks just like the equation for an ellipse. But now a’ —c? is negative

because 2a, being the difference of two sides of triangle PFF),, is less than 2c, the
third side.

The algebraic steps taken to arrive at equation (3B.3.2) can be reversed to show
that every point P whose coordinates satisfy an equation of this form with o <a<c
also satisfies the equation (3B.3.1). Thus, a point lies on the hyperbola if and only if
its coordinates satisfy the equation (3B.3.2).

2

If we let b denote the positive square root of ¢ —a?,

b=+c?-a?, (3B.3.3)

2

then a® —c? =—b? and the equation (3B.3.2) takes the more compact form
52 yz
— 5= 1 (Standard equation) (3B.3.4)
a b

The line through the foci of a hyperbola is the hyperbola’s focal axis.

The point on the axis halfway between the foci is the hyperbola’s center.

The points where the focal axis crosses the hyperbola are the hyperbola’s
vertices.

If the distance between a curve and some fixed line may approach zero as the a
point of curve moves farther and farther from the origin then this line is called an

asymptote of the curve.

The hyperbola (3B.3.4) has two asymptotes, the lines
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y=t—x (3B.3.5)
Definition. The eccentricity of the hyperbola (3B.3.4) is the number
Va? +b?

e=f=N2 TO (3B.3.6)
a a

In both ellipse and hyperbola, the eccentricity is the ratio of the distance

) ) ) c 2c )
between the foci to the distance between the vertices (because — = 2—). In an ellipse,
a a

the foci are closer together than the vertices and the ratio is less than 1. In a
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

Hyperbolic paths arise in Einstein’s theory of relativity and form the basis for
the (unrelated) LORAN radio navigation system. (LORAN is short for “long range
navigation”.) Hyperbolas also form the basis for a new system the Burlington
Northern Railroad is developing for using synchronized electronic signals from
satellites to track freight trains.

Example.
Find an equation for the hyperbola with asymptotes y ==+ % x and foci (+10,0).

Solution.

The standard form equation for a hyperbola with foci (+ ¢,0)on the x-

2 2
axis is x—z—y—zzl, where c¢=+a’+b>. From the asymptote equation
a b
b b 4
y=t—x,welearnthat —=— ,or b=—a.
a a 3

Hence, c?=a*+b*=a? +Ea2 Iéazjaz :%cz :%.102 =36,

b =c¢? —a® =100 — 36 = 64.(The foci are (+10,0), so ¢ =10 and ¢ =100.

The equation we seek is
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Miscellaneous Problems

Exercise 1.
Let points M(a;b;c), N(a+b;c;b), P(-c;a;—b), K(—a:—b;c),
—a_y+ b _Z- b

o X _
straight lines /7 : xta_y—b_z+b

5 ly: )
b c a B 4
xX=—t+a
ly:qy=at+b °
z=-bt+c
and planes

T, :ax+abcy+(c—a+1)z+b:0,7t2 cex+ By +y—c=0,
75 :(a+b)x+(b—c+3)y+bcz—a:0,
be given.

L. Find equation of

the plane MNP;

the plane 7 through the point K perpendicular to MN;

the plane 7 through the point M parallel to plane XOZ;

the plane 7 through the point N perpendicular to Y-axis;

the plane 7z through the point P parallel to plane 75;

the plane 7z through the point K perpendicular to /5;

the plane 7z through the point M and /;;

the straight line ¢ through the point M parallel to PN;

the straight line ¢ through the point N perpendicular to 75, and find the angle

between this line ¢ and /5;

WX NNk =

10.the straight line ¢ through the point P parallel to /5,

11.the straight line ¢ through the point M parallel to z-axis;
12.the straight line ¢ through the points M and K.

II. Find
the intersection point of the straight line /; and the plane 75;

the angle between the plane MNP and 75;
the distance from the point K to the plane 75;
the angle between the straight lines MK and / 5;

M .

direction vector of the intersection line of the planes MNP and 7.
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I11. Find a, B,y such that

L0, 45 2. 0L 1, 3. 0yl
Exercise 2.
Given the triangle MNP where M(a;b), N(Cl + b;C), P(— C;a). Find

1. a slope of MN;

2. an equation of median MK;

3. an equation of altitude MH;

4. the angle KMH through the slopes of MK and MH.

Exercise 3.
Classify each of the following second-degree equations as representing a circle,
an ellipse, a parabola, or a hyperbola. Draw them.

1. ax2+ay2+x—y:3 2. 2bx2—by2—2x+3y=6
3. x2+4y2—3ax+by:6 4. y2+bx—cy:3
5. x2+ax—cy=3 6. yz—x2—2ax+3by=6

a — the first letter of your surname
b — the first letter of your name
¢ — the first letter of your patronymic

1 2 3 4 5 6 7 8 9
A B C D E F G H I
J K L M N O P Q R
S T U \Y \\ X Y Z
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