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PREFACE

This course is designed as a textbook of methodics for engineering
students on special sections of mathematical analysis, such as integral calculus and
ordinary differential equations.

The examples are presented demonstrate applications of mathematical analysis
to various problems of mechanics and physics.

The study of these examples is very important since the main interest of an
engineer lies in solving concrete applied problems.

In doing the exercises by themselves, students find that they are required to
devote considerable time to calculation.
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PART 1
INDEFINITE INTEGRAL
§ 1. Antiderivative. Indefinite Integral

We have solved the problem of finding the derivative of a given function. Now
we proceed to the inverse problem: given the derivative of a function, to find this
function. The solution of this problem is of great importance for mathematical
analysis and its applications.

Definition. An antiderivative (a primitive) of a given function f{x) in a given
interval is any function F(x) whose derivative is equal to the given function for any
point of this interval:

F'{x)= fl(x] (1.1.1)

For example

!

f(x) = sinx [ F(X) = -cosxt C, as (— cosx+ C| = sinux.
Definition. The operation of finding antiderivatives is called integration.

Theorem. Let Fl(x) ? Fz(x) are antiderivatives of a function f(x) in any interval
then F,(x) = F(x]+ C.
To prove it denoter(x) - E(x) as ¢ (x) . So we have

!

0 (x) = Flx)- F(x]0 ¢'(x)= (R(x)- Flx)) = Flx)- Flx):
Slx) - rlx)= 00 glx)= C.
Thus Fz(x) = Fl(x) t C. The theorem is proved.

Definition. A set of all antiderivatives of a function f (x) is called an indefinite

integral of this function and is denoted by the symbol J' flx)dx.

It is read: indefinite integral of a function f (x) with respect to x.
The function f{x) is called the integrand, the expression f(x) dx is the element of
integration, and the variable x is the variable of integration.



§ 2. The Basic Table of Integrals

a+l
(1) [« dv= =+ Cla# -1) (Z)Ix'ldx:J'%=ln‘x‘+C
dx
3) [=:2Vx+C
Of hys
) [a'dxs 1f1a + C. (5) [e'dx=e"+ C.
6) [sinxdx= - cosx+ C. 7) [ cosxdx = sinx+ C.
(6) (7)
d.
(8)] : )2c = -cotxt C. (9)I d)i = tanx+ C.
sin” x cos” x
dx _ dx
(IO)I _— = arcsinx + C. (1D P = arctanx + C.
dx dx I, [x-1
= Injx+ Vx>t 1|+ C. = —In~—|+ C.
(12)‘[ Vxttl ‘X i (13)I x*-1 2 nx+ 1

Each of these integration formulas is easily checked by differentiation.
1
(*) Note that if J f(x)dx: F(x)+ C then J' f(kx + b)dx = %F(kx + b) + C.

§ 3. Properties of Indefinite Integral

Using the definition of antiderivative and properties of derivatives we can
prove the next theorems.

Theorem 1.3.1. The derivative of an indefinite integral equals the
integrand:




Theorem 1.3.2. The differential of an indefinite integral equals the element of
integration:

d| flx)dx= f(x)dx.

Theorem 1.3.3. The integral of a differential of a function u is # plus an
arbitrary constant C:

Idu: ut C.

Example. Jd(cos x)= cosx+ C.

Theorem 1.3.4. A constant may be moved across the integral sign:
ICf(x)dx = C| flx)dx (c# o).
Example. J'Sexdx = SJ e‘dx= 5"+ C.

Theorem 1.3.5. The integral of a sum of a finite number of functions is equal
to the sum of the integrals of these functions:

(3 Aledae= 3 [ Al
Example.

Hx+ — smx&’x xdx+ sin xdx =

dx+
Jx N

2
%+ 2\/;- cosxt C.

§4. Integration by Parts

The general method, called integration by parts, depends upon the
formula for the differential of a product: d(uv) = udv+ vdu or udv = d(uv)- vdu.
When this is integrated, we have

I udv = uv - J’ vdu (1.4.1)

10



Formula (1.4.1) expresses one integral, Iud\/, in terms of a second integral

I vdu.

If, by proper choice of u and dv, the second integral is simpler than the first, we may
be able to evaluate it quite simply and thus arrive at an answer.

Case 1. If an integrand is a product of a polynomial by one of the trigonometric or
exponential functions we denote the polynomial as u and the other part of element of
integration as dv.

Case: 2. If an integrand is a product of a polynomial by one of an inverse
functions, namely arcsin x, arccosx, arctanx, arccotx, log, x, Inx we denote the

inverse function as u.

Example 1.4.1.

i dx[
zlnxU du= —
Ilnxdx: %M nx “ X %: xlnx- I_xdx = xlnx- x+ C.
X

ndv=dxl v=x [

Example 1.4.2.
Qu=1-3x0 du=-3dx

1- 3x)sin(2x + 1)dx = [
[{1- 3x)sin(2x + 1)ax vz sinf2x+ axd v - Loosare )

o |

__[1-3x)cos(2x+ 1) 3 cos{2x + 1) - (1- 3x)cos(2x+ 1) _
2 ) 2

3 .
- Zsm(2x+ 1) + C.
Sometimes to obtain the desired result it is necessary to use integration by parts
several times. If this is Case 1 it is possible to use the Tabular Integration:

Example 1.4.3.

(x2 + 3x- l)cos xdx =

(2x-% (sinx)
2 - cosx)
0 \‘(- sinx)
=(x2 + 3x- l)sinx- (2x+ 3)(- cosx)+ 2(- sinx)+ C =

= (xz + 3x- 3)sinx+ (2x+ 3)cosx+ C.

11



As you see here are derivatives of the polynomial in the first column and the
antiderivatives of the trigonometric function in the second. The first product is
taken with its own sign, the second is with opposite sign and so on.

§ 5. Method of substitution (Integration by change of variable)

When computing integrals we have resorted to the theorem on the invariance
of integration formulas. If we succeed in writing the element of integration in the
form

A0 (x))p ()b = flu)du

where u = ¢ (x) and if the integral

J'f(u)du: Flu)+ C

of the expression on the right-hand side is known, the original integral is equal to
[ £l (x))o (x)ax = Flg (x))+ C.

Remark: When you evaluate integrals by substitution do not forget to return to
the original variable!

Example 1.5.1.

04-3x = ul -9x’dx=dull [
Ixzmdyﬁu du i
0D x2dx=- =2 D
i 9 i
- -lJ'umdu: _iu4/3+ C=
9
- - é(4— 300 = - %%/(4— ) e

Up to now we have used the method of substitution by replacing the variable of
integration x by another variable u using the formula u = ¢ (x) . But it is also
possible to make a substitution not by expressing u in terms of x but, by taking x

as a function of u. That is by putting
x= ¢ (u)0 de=y'(u)du

12



(it is supposed that ¢ (u ) and ¥ '(u) are continuous). Then

and

[ Ax)ae= [l )y () (1.5.1)

If the integral on the right-hand side of (1.5.1) is found and expressed as F(u)+C,
the given integral can be found by returning to the variable x. To do it we are

need to express u in terms of x from the equation x = (u) .

Example 1.5.2.
Ox=sinull dx= cosudu

i
[ [
J'\/l- x*dx = D\/l- x* = \/1- sinu = cosuf=
il
i

%u = arcsin x

I cos” udu = lj (1+ cos2u)du =
2

lHu+ s1n2uH+ C:= lHarcsin)ﬁ s1n2arcs1an+ C:=
20 2 1 20 2 0

; arcsin x + xv/1- x2)+ C.

§ 6. Integrals Involving ax” + bx+ ¢

The general quadratic f (x) =ax’+bx+c, at 0 can be reduced to the form «
(uz t B) by completing the square, as follows:

2 2 2 12
ax’ + bx+ c = aHx2+2ix+b—E+ c-b—= aHx+iH +4ac b

b

2 4a’ 4a [0 2a[ 4a
b _ 12
and substituting u=x+ —, B-= dac- b , which gives us
2a 4a

f(x) = a(u2 t B).

Example 1.6.1.

(x+ l)dx

I\/2x2 -6xt 4 :

13



0 - 6x+ 42 2w - 3x+ 2) = 2|[x-3/2)- 1/4)%
-3/2=ull x=ut+3/20 dx=du 0
Ex+1: u+5/2 E

J s/ 1 w14, s du
N1 I vy RN R ey RN oS N vy
:L\/uz'l/4+ilnu+\/u2—l/4‘+C:
2 242
=L\/x2-3x+2+ilnx-§+\/x2-3x+2+C.
2 242 2
Mx+ N
Remark. It is possible to calculate integrals of a type J' 2x—dx ,
ax” t bx+ c
Mx+ N

> dx without substitution. To do it use the next algorithm :
vax“ + bxt c

. Equate the coefficients.
. Write the integral as the sum of two integrals, calculating the first of them by
formulas (2) or (3) (see § 2).
4. To calculate the second integral complete the square and use one of the
formulas (10)-(13) in § 2.

1. Write the derivative of quadratic form in the numerator.
2
3

Example 1.6.2.

Sx-1 _
J.3xz+12x+7
5 1205 \
_ (6x+12)D6-6-1dx:§ (3x2+12x+7)dx_11 g :
I 3x2+ 12+ 7 6J 3x%+ 12x+ 7 I3x2+12x+7

B2+ 1254 7= 3Hx v ax+ 1= 3Hx+ 2)° -4+ 1f- 3Hx+2
- 30 30 DH

= —ln‘3x2+ 12x + 7‘-—] d 5=
6 30 (v 22 - (V573

5 RN VR 2 EVETET s

T DT 53 e s 53|

14



§ 7. Integration of Rational Fractions

Definition. A ratio of two polynomials is called a rational function or rational
fraction.

Definition. If a degree of a numerator is less than a degree of a denominator
this fraction is called a proper fraction. 1f this is not so a fraction is called an
improper fraction.

. 3x7+5x-7 x'+1 . :
For example, the fractions — , are improper fractions, and
8x"+9x+ 15 x-14

_ .3
the fraction —, I-x is the proper fraction.
x"+ 12x-121

Every improper fraction is the sum of polynomial and a proper fraction.

34 9,2y _
2% 22x3 S;C 6 is improper. The division of the numerator by
X" - Sx+t

the denominator gives us:

2x° + 2x%+ 5x- 6| x*-3x+5
-2 - 6x*+10x) | 2x+8

The fraction

8x%-5x-6
- (8x2 - 24x+ 40)
19x- 46

Thus we have
2x°+ 2x*+ 5x- 6 19x- 46

- = 2xt 8t ———.

x"-3xt5 x -3xt5

A Mx+ N

Definition. The fractions of a kind ( 7 where p’- 4g< 0,

k 2
X'a) (x2+px+q)
are called the partial fractions.

It is known that any polynomial with real coefficients can be expressed as a product
of real linear and quadratic factors. Namely:

Qn(x) - (x- al)kl(x_ az)kz "'(X2 tpxt ‘h)ll cees

where k, t k,+ ...+ 20+ ...=n,
Suppose that there is a fraction
P (x)
= , m< ko, ta, t. ... taq
o e ) 0 AT T o then
P, (%) A, A4 171
(x-al)(x-az)...(x-ak) x-a, x-0, = x-0, (1.7.1)

15



To find the coefficients 4, 4,,...4, we can use so called “finger’s rule”:

- Pm(al) - P(Uk)
S TR I TR K PR I PR i
%:WK k | then
Pm(x) 4 ' Ay - 4
(x-a) (x-a)" (x-a)" 7 x-a (1.7.2)

Here only coefficient 4; can be calculating using the “finger’s rule”. To find the rest
coefficients we use the method of indefinite coefficients. To do this reduce the
fractions of the right hand side of (1.7.2) to the common denominator. Then equate
the coefficients of corresponding powers of x, and solve the resulting equations for
the undetermined coefficients.

P"’(x) —,m< 2k, p® - 4q< 0,
(x2 t pxt q)
then
Plx) . Mx+N,  M_x+N. _ . Mx+N,

(1.7.3)

(x2 + px+ q)k ) (x2 + px+ q)k (x2 t px+ q)k-l x4 pxt q

Here all of coefficients are calculated by the method of indefinite coefficients.

. -2xt 4
Example 1.7.1. Express the fraction (x2 R 1)(x -1

The given fraction is the proper irreducible fraction. Using the decompositions (1.7.2)
and (1.7.3) we have

)2 as a sum of partial fractions.

-2xt 4 Mx+ N 1 A
= - +
(eifx-17 " P41 (x-1 x-1
2wt 4= (Mrt N)x- )2 a2+ 1 Alx? 4 1)(x- 1)
= (M+ A)xP+ (- 2M+ N- A+ 1)x*+ (M- 2N+ A)x+ (N- 4+ 1),

0

To order for this to be an identity in x, it is necessary and sufficient that the
coefficient of each power of x be the same on the left side of the equation as it is on
the right side. Equating these coefficients leads to the following equations:

x3 0=M+ A4 (1)
X | -2:M-2N+4 ()
X 4=N-4+1 ()

16



(2)-(1)0 -2n=-20 N=1,

(3)0 4= N-30 4=-2,

()0 M=-40 M:=2.
Hence

(xz + 1)(x- 1)2 ) x?+1 (x- 1)2 x-1

-2x+ 4 _2xtl 1 2

Example 1.7.2. Evaluate
xt+xt-2

dx.
-[x4+x3-x-1 *

Solution. The integrand is a rational fraction, but it is not a proper fraction. Hence we
divide first:
xtxP-2 _(x4+x3-x-1)+(x-l)_l+ x-1
xtrxt-x-1 xtex’-x-1 ] xteat-x-1
The denominator factors as follows:
xttx’ - x- 1= x3(x+ 1)- (x+ 1): (x+ 1)(x3 - 1):

= (x+ 1)(x- 1)()62 txt 1).

Then
x-1 x-ll 1

x4+x3-x-1-(x+1)(x-1)(x2+x+1) (x+1)(x2+x+1)
_ 1 . Mx+ N :
x+1 x2+x+1
0 x?+ x+1+(x+1)(Mx+ N)= x- 10
O (1+ M)x>+(1+ M+ N)x+(1+ N)= x- 1.
Equating the coefficients of corresponding powers of X, we get
x21+ M=0
xO 1+ N=1

Solving this system of equation with respect to M and N we receive

M=-1,N=0.
Hence,
xttxP-2 1 X
d: 1+ + d: =
Jx4+x3—x-1x IH Hx [see § 6]

0 x+1 x*+x+1]

17



2 I

x+ln‘x+1‘+ lJ’—(x;erl) x-lJ' dx > =
20 x+ xt1 2 (x+ 0.5)24.(\/5/2)

xt ln‘x+ 1‘+ %ln(x2 + xt 1)- lDialrctanLO'S+ C:=:

2 3 V372

x+ ln‘x+ 1‘+ Invx*+ x+1- LaurctanzjC+ 1+ C.
3 V3

§ 8. Integration of Function Rational with respect to
Trigonometric Functions

There are two ways to evaluate an integral of a kind
IR(sin X, cos x)dx (1.8.1)

where the integrand is a function rational with respect to sin x and cos x.
1. Transformation an integrand using trigonometric formulas.
2. Trying to use the substitution.

Example 1.8.1.

D . 2 2 .2 2
Osin® x Ocos? x = (sin xcos x)” = Hsm L
Jsinszcosz xdx = U 0 2 [ 4

D_ 1- cosdx

i
=0
0-
i
R ]

J’(l-cos4x)dx=le- sin4xH+ X
80 4 g8 32

o0 | —

18



onsider some special trigonometric substitutions.

[ R[sinx,cosx)c
R(— sin x, cosx) = l

l = —Rl(sinx,cos;
Osubstitution : [
Hcosx =tl E
[(sin xdx = -dt,[ |,
0. , , L
sn”x=1-17"F

[prA=7t7 vrrr ,

|D|nn§r: 1/-/1+ 2

Example 1.8.2. Evaluate the integral
cos’ x

— dx
J 4+ sin® x

The integrand is the odd function with respect to cos x, so that we try the
substitution sin x = t:

3 Osinx = t0 cosxdx= dt,cos>x=1-1¢2,1[
cos’x [ 3
Im_ DCOS3 de _ C()S2 x(cosxdx) ) (1_ tz)dtD_
4+ sin” x 4+ sin’ ¢t 4+ ¢ 0
-2+ 2 -1 (12 )
- dt = di= - (A0, - .
It2+4 Il‘+4 .[ 2+ 4 IH t+22E&

5 t
= -t+ —arctan—+ C,
2 2

where ¢ = sin x.
Example 1.8. 3. Evaluate the integral
dx

I4+ 3cos’ x+ 5sin? x

The integrand is the even function with respect to sin x and cos x. So try the
substitution tan x = ¢:

19



dx _
J4+ 3cos® x+ 5sin’ x

[ 2 0
Otanx = t0 dx= dtz,coszx= ! 2,sin2x= ! ; i
i 1+ ¢ 1+ ¢ 1+ ¢ i
i 2 2 i
M 4+ 3cos’x+ 5sin®x= 4+ 32+ 5t2:9t +27D [
i 1+ 1+ 1+¢ i
i dx o di1+ 2 d L
[ 2 .2 2 2 - 2D
i 4+ 3cos” xt Ssin” x (1+ t )(9t + 7) (3t)2 + (ﬁ) i
= d . arctani+ C-= Larctan?)tanx + C
Ay s sy ¢
It has been discovered that the substitution
X
t= tana (1.8.2)

enables us to reduce the problem of integrating any rational function of sin x and
cos x to a problem involving a rational function of ¢. This in turn can be integrated
by the method of partial fractions. In fact:

%ﬂ tanfﬂ x= 2arctant [ dx = 2ah‘ %
0 Ir1 0
IR(sinx,cosx)dx:% 2 tan > Y 1- tan2 > . tzgz
Dsinx: x: 5,C08 X = )2C: ol
O 1+ tan* = I+t 1+ tan* = I+t O
i 2 2 i

2t 1-£0 2
= IR%H T A %“ t2 dt = IR](t)dt.

Thus the substitution (1.8.2) is a very powerful tool. This method is
cumbersome, however, and is used only when the simpler methods outlined
previously have failed. The substitution (1.8.2) is called the Euler’s substitution
(universal substitution). This method is very convenient for computing integrals of
the form

dx
I acosxt bsinx+ ¢

20



Example 1.8.4.

dx _
Jcosx+ sinx - 1

0 0

0 0

0 X dr . 2t 1- ¢ 0

= tan—0 dx= -,Sinx = ,C08 X = > 0

- 2 tx 1+ ¢ 1+ ¢ :

0 dx ) 2dt ) 24t 0

Jcosxt sinx- 1 e -2+ 2-1-8 F

L T 5

U i

R P LU :

i 2t- ¢ 0t 1-1¢0 :

tanx

1 1 t "
=IH—— = Inj¢| - Inj¢ - 1+ C= In|—] + C= In|—2—|+ C.

- - X

Ot ¢-10 t-1 1- tang

§ 9. Integration of Some Irrational functions

1. To evaluate integrals of the form

J'R(x.kxl/ax+ b,%Yax+ b,.... % ax+ b)dx (1.9.1)
we can try the substitution

axt b=1t",
where 7 is the least common multiple of the indices of radicals.

Example 1.9.1.

Ox=¢°0 dxz= 6°dt [

dx - 0 _ .3 2 D_ t° _ r _
Im- H\/;—tfx—t,hereg—6It3+t2dt—6jt+ldt—
= Vx g
:6jma’t:6I(t+1)(t2_t+1)_1dt:6IHZ‘2‘t+1'Lde:
t+1 t+1 i t+ 1]

3 2
- 6%%- %+ £~ Inle + 1\E+ C=20-3%+ 6t 6lnle+ 1+ C=

2Jx - 3x + 64x - 61n\§/§+ 1\+ C.
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2. Integrals involving \/az - x? ,\/az + x? ,\/x2 -a

trigonometric substitutions:

a) Va’- x* = [x: asint] = acost
b) Var+ x? [x atant] T —

CcoS?

c)\/x -a’ Hx—— = atant

CcoSt

Example 1.9. 2. Evaluate the integral

I_Md

(1.9.2)

(1.9.3)

(1.9.4)

Here we have the case (1.9.2) where a = 3. Hence

Hx = 3tant 0 dx =

e - 2,
X i cost
Et = arctanE

cosz‘dt 1

X
where f = arctang.

3dt [
cos’ t

I]:EII:II:H:II:II:II:I

21 - -
i 9I sin6t 9D 5sin’ t@ ¢

2

may be simplified by

1 i C,

45sin’ ¢t

Even when it is not clear at the start that a substitution will work, it 1s advisable
to try one that seems reasonable. Sometimes a chain of substitutions will reduce the
given integral to the table integrals.

Miscellaneous Problems

Evaluate the following integrals:

| dx ) cos’/x
o= I s
Y3tan2x - 5
,[ cos’ 2x dx 4'J‘ 21x- 0.5

22
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e* dx
5
J 5- 3e*"
377 43
X
7 dx
I
dx
9I e3-4x
dx
II'I cot(S- 4x)
dx
13.
Ix2 + 6x

29. [ (1- 5x)2* dx

A xt1
31.| = > dx

J x - 4x+ 3x

3x%- 28x+ 85

33’I (x + 5)(x2 - 10x + 25) !
35 dx

I 1- sin2x+ 3cos” x

dx

37"[ (2+ x)V1+ x

dx

ol T
—Inx+ 10x
2

2% -7

8.] = dx
10.[ e cos(1 + 3> Jdx
12.I cos” xdx
c'z'x
14 Vxsin?|5Vx - 3]
dx
16"[ 1-2x- x*
dx
18| (5x+1)*- 4
2% dx
20.J‘ D
(3x - Ddx
2‘I 3-2x- x*
(2x+ 1)dx
24'1’ x*+2x+2
(x+ 1)dx
J cos’ x

28.I (3x3 - x’ ) sin 3xdx

3, 2,
30.‘[1416 10x 4dx
Txt 5
4x* + 4x+ 3
2.
X tx t2x+t 2

dx
sinxt+ 4cosx+ 4

34, I
36.J' sin? 3x Osin? 5xdx

sin’ x

38.Im

dx
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Jx
39.'[4{/;+1

41.J' sin’ 2xdx

dx 40. J' tan’ xdx

cos 6xdx

2.
J sin? 3xcos? 3x

dx

43.IW 44.[V25- xPdx

x2dx xdx
45. | 25 46. I—l— =

47. J' sin g cos 2xdx.

PART 2
DEFINITE INTEGRAL
§ 1. Definite Integral. Existence Theorem

Let there be a bounded function f{x) on a closed interval [a,b]. We partition
the interval into » subintervals by choosing n- 1 points, X;,X,,...,X, |, between a
and b subject only to the condition that

a< x, <x,<...<x,_, <b.

To make the notation consistent, we denote a by X, and b by X, .
The set P = [xo 3 X s xn] is called a partition of [a, b].

The typical subinterval [x,.,,%,] is called the kth subinterval of P. Its length is

AXx, = x, - x;_; . Next we take in each subinterval an arbitrary point , denoting these

points by ¢,,¢,,...,¢ ,. Now we form the sum
szﬂmM% (2.1.1)
=1

This sum which depends on P and the choice of the numbers ¢, is called an integral
sum. We denote m]leA X by and call it a diameter of partition.

Definition. The limit of the integral sums (2.1.1) as A - 0 is called the definite

integral of the function f(x) with respect to x over the interval [a,b] and is denoted as
b

}%ZAMAmﬁwa (2.12)

a

This is read as the integral of f{x)dx from a to b.
f(x) is called an integrand and f(x)dx is called an element of integration,
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a is the lower limit, b is the upper limit.
The symbol J' is an integral sign. Leibniz chose it because it resembled S in the

German word for summation.
It is possible to prove
Theorem (the existence of definite integral).
If a function f{x) is continuous on an interval [a,b], then its definite integral
over [a,b] exists.

§ 2. The Newton — Leibniz theorem

Let f(x) be a continuous function in the closed interval [a,b] and F(x) is an
antiderivative of f(x) thatis F '(x) = f (x) . Then

[ Alxka = Plo) - Flo @2.1)

Obviously

n n

F(b)- Fla)- ZI(F(xk) S Flxa )=y

- Zn f(ék)A X
If 1 - 0 we have _
) b
im Y f(€ o, = im{lo)- la)) | flald= FlBl- Fla)< £l

The symbol 2 with the two indices a and b is the so-called sign of double

substitution. It indicates that the value of the function corresponding to the lower
index must be subtracted from the one corresponding to the upper index.

Example 2.2.1. A leaky 5-1b. bucket is lifted from the ground into the air by pulling
in 20 ft at a constant speed. The rope weighs 0.081b./ft. The bucket starts with 2 gal
of water (16 1b.) and leaks at a constant rate. It finishes draining just as reaches the
top. How much work was spent

a) lifting the water alone;

b) lifting the water and bucket together;

c) lifting the water, bucket, and rope?

When a body moves a distance d along a straight line as the result of being acted
on by a force that has a constant magnitude F in the direction of the motion, the
work W done by the force in moving the body is F by d

W=Fd (2.2.2)
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The work done by a continuous force F(x) directed along the x-axis from X = dto
x=bis
b
W= IF(x)dx (2.2.3)
a) The water alone. The force required to lift the water’s weight, which varies
steadily from 16 to 0 Ib over the 20-ft lift. When the bucket is x ft off the ground,

20 - 4
the water weighs F(x) = 16@ 0 a @ = 16- ?xlb The work done is

b 20 4x

W= IF(x)dx: IH16— 2 e = 320- 160 = 160 /2 ib.

, Al 50

b) The water and bucket together. According to Eq.(2.2.2), it takes 5% 20 =
100 ft.Ib to lift a 5-1b weight 20 ft. Therefore 160 + 100 = 260 ft.Ib of work were
spent lifting the water and bucket together.

c) The water, bucket, and rope. Now the total weight at level x is

F(x) = @16- 4_;@+ 5+ (0.08)(20- x) , where

4 . . .
16 - ?x - 1s variable weight of water,
5- is the constant weight of bucket,
0.08(20- x)- isa weight of rope paid out at elevation x.

The work lifting the rope is

20
Work on rope = Io.os(zo- xX)dx = 32-16 = 16 ft [Ib.

0
The total work for the water, bucket, and rope combined is 160+100+16=276 fLib.
Example 2.2.2.. A spring has a natural length of Im. A force of 24N stretches the
spring to a length of 1.8 m.
a)  Find the spring constant k;
b) How much work does it take to stretch the spring 2m beyond its natural
length?
c¢)  How far will a 45N force stretch the spring?
Hook’s law says that the amount of force F it takes to stretch or compress a spring
x length units from its natural (unstressed) length is proportional to x. In symbols,
F = kx.
The number k, measured in force units per unit length, is a constant characteristic of
the spring, called the spring constant. Hook’s law gives good results as long as the
force doesn’t distort the metal in the spring. We shall assume that the forces in this
section are too small to do that.
a)_The spring constant. We find the spring constant from the equation F' = kx. A
force of 24N stretches the spring 0.8m, so

24=k0.80 k= §—1= 30N /m.
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b) The work to stretch the spring 2m. We imagine the unstressed spring hanging
along the x — axis with its free end at x = (. Then the force required to stretch the
spring x m beyond its natural length is the force required to pull the free end of the
spring x units from the origin. Hook’s law with & = 30 tells us that this force 1s

F (x) = 30x.

The work required to apply this force from x= 0m to x= 2mis
2

2
W = I 30xdx = 15x° = 60N Om.
0
0
a) How far will a 45-N force stretch the spring? We substitute F' = 45 in the
equation F' = 30x to find
45 =30x, orx = 1.5m.
A 45- N force will stretch the spring 1.5m.

§ 3. Rules of Algebra for Definite Integrals

a

LS (x)dx= 0 (a definition)

a

a b
2. Order of integration: I f(x)dx = -J' S (x)dx (also a definition)
b a

b

b
3. Constant multiples: J kf (x)dx = kj f(x)dx (for any number k)

a a
b b

4. Sums and difference: I (f(x)ir g(x))dx = J'f(x)dxi I g(x)dx

a a a
b

5. Domination: f(x)2 g(x) onla,b| T J’f(x)dxz Ig(x)dx

a a

6. Additivity: If f(x) is integrable on the intervals joining a, b, and ¢, then
b c .

&

If(x)dx + Jf(x)dx = Jf(x)dx.

a b a

7. The mean value theorem for definite integrals. If f(x) is continuous on the
closed interval [a, b], then at some point ¢ in the interval [a, b]
1 b
= —— [ flx)dx 2.3.1
)= 5,1/ (23.1)
The number on the right-hand side of Eq.(2.3.1) is called the average value or mean
value of f(x) on [a, b]. Notice that the average value of f{x) on [a, b] is the integral

of ' divided by the length of the interval.
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8. The integral with variable upper limit:
If f(r) is an integrable function, its integral from any fixed number a to another
number x defines a function @ whose value at x is

D(x) = I f(t)dt.

The derivative of the integral with respect to its upper limit is equal to the
integrand, that is @’ (x) = f{x).

o. | flalav= 0 if 7l )= - 1),

-a

[ Slxlae= o sl 1= 1o

All these properties one can easily prove with the aid of the formula Newton —
Leibniz
b

[ f(x)dx = F(x)

a

For an example let us prove the property 3:
b

[ M ()dx = k(D) - K (a)- KF(b)- F(a)),

a

z , where F'(x) S f(x).

, that is
K[ f (x)dx = k(F(b)- F(a)),
b b
J kf (x)dx = kj f(x)dx.
Thus this property is proved.
§ 4 Methods of Evaluating Definite Integrals
1. Integration by parts.
b b
We have [udv = uvy - I vdu 2.4.1)
a a

Proof: The relation

})udv= (Iudv)’g,—%uvb ?vdu%

a
a

a
directly implies the formula we set out to prove.
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2. Change of Variable in the Definite Integral
(integration by substitution)

Theorem. Let f(x) be continuous function on a closed interval [a, b]. Assume
that x = ¢ (¢) satisfies the conditions

1) ¢ (l) and ¢'(¢) are continuous on a closed interval [a ,pB ];
2) as gt bwhent € 1< ;
3dla)=a, ¢(p)=b.

Then we have
[ ladax={ 1l (e)lg '(z)e (24.2)

a a

Proof. Let F(x) be an antiderivative of a function f{x), that is F '(X) = f (X)

Then using the Newton — Leibniz formula we get
b

[ flx)dx = F(x)[; = F(b)- F(a),

= F(b)- F(a).

Comparing the equalities, we arrive at the formula (2.4.2).
1/2

Examplt 2.4.1. Consider the integral J’ x*\1- x?dx.
0

We put x = sint and find the new limits of integration f, and ¢, from the

: | n
equations 0 = sinz and 5 = sinf. So ¢, can be taken equal to 0, and 7, equal to "

. n : : : :

As t varies from 0 to " the variable x = sin¢ runs throughout the given interval of
integration 0.2 Th

integration (0.5 g. Thus

Ox = sint 0 dx = costdt
n/6
= J'sinztcosztdt:

I
2

2 2 -
J'x 1- x“dx=
0 0

. 1o
t, = arcsin0 = 0;¢, = arcsin— = o

V1- x? = 4/1-sin’t = cost

1 s |
1 s s o
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D ) 2 1 .2 |:|
gSin” zcos” £ = —sin ZZZD 116 )

= 4 0= % J' 1- c0s4t ;Ht- SHIH
E' (1 cos4t) E 0 J 0o

itk T

§ 5. Geometrical Meaning of Definite Integral

In geometry we learned how to find areas of certain polygons: rectangles,
triangles, parallelograms, trapezoids. Indeed, the area of any polygon can be found
by cutting it into triangles.

The area of a circle is easily computed from the formula § = 7R?. But the idea
behind this simple formula isn’t so )

simple. In fact, it is the subtle concept of
a [imit, the area of the circle being 7] | U y=1(x)
defined as the limit of areas of inscribed | |

I

I

(or circumscribed) regular polygons as :

the number of sides increases without |

bound. A similar idea is involved in the () a X1
definition we now introduce for other

plane areas.

Let y= f (x) define a continuous function of x on the closed interval [a, b]

For simplicity, we shall also suppose that f{x) is positive for any x [ [a, b] .

We consider the problem of calculating the area bounded above by the graph of the
function y = f{x), on the sides by vertical lines through X = @ and x = b, and below
by the x-axis.

This area we’ll call area under a curve and denote it by S. To find it we
partition the interval [a,b] into n subintervals by choosing n+1 points,

XosX15X5,...,X,_1,X,, such that
a=x,<x <x,<...<x,,<x,=b.
Then we divide the area into » thin strips by lines perpendicular to the x-axis
through these points. Each strip is approximated by a rectangle. Let S;,S,,...,S, be

the areas of these rectangles. Thus we have S,= f (XO)A X,
SZ - f(xl)Ax2?"°’Sn = f('xn-l)Axn°
S= Z f(xk-l)Axk (2.5.1)
31

Comparing (2.5.1) with (2.1.1) and using the formula (2.1.2) we have
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b
S = J' £lx)dx

Using the properties of a definite integral and the

formula (2.5.2) we are able to prove that the area

of a region bounded above by the curve

Y= faoe(X)or ¥= f,(x), and below by a curve

V= fraw®or ¥ = f,(x)is calculated by the
formula

b

S = [(/.0- /() (2.53)

a

(2.5.2)
V= fa(X)
y=h) |
a b

3
Example 2.5.1. Find the area bounded by the curve ¥y = — and the line

x+y—4=0.

b

S = [[£,(0)- f, ()

a

Wherefa(x) = 4- )c,fb(x)E , Let us
X

find the limits of integration. To do
it solve the equation

3

fa(x):fb(x)ﬂ Z:4-x0 x-4x+ 3200 x 7 Lxy =3,
X

S:fH4- X- éHa’x: E4x- i- 31nx% ‘3:
n x[ 2 !

| ©

- 3In3- 4+ %- 3Inl= 4- 3In3.

a

. Plane Areas in Polar Coordinates

We know that a point can be located in a plane
by giving its abscissa and ordinate relative to a given

coordinate system P(x. y) :

Another useful way to locate a point in a plane is by
polar coordinates. First, we fix an origin O and an

31
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initial ray r from O. The point P has polar coordinates 72 0,0 where r is equal to
distance from O to P, and ¢ is directed angle from initial ray to OP.

1t is easily to prove, that
X = rcosf

y = rsing (2.6.1)

where (x, y) are Cartesian coordinates and
(r,¢ ) are polar coordinates of one and the same point.
It is possible to prove that the area of a plane region S
bounded by the rays ¢ = ¢, ¢ = ¢ ,, and the curve

r = r(¢ ) can be founded by the formula

I
i Jlr (6 ) (2.6.2)

Example 2.6.1. Find the area that is inside the circle » = a and outside the cardioid
r= all+ cosf ).

Solution. Using the formula (2.6.1) and the fact that the area is outside the cardioid
and inside the circle we have

1 92
S = EJ (r22(¢ )_ r12(¢ ))d¢ 9Where 7"1(¢ ) - a(l- COS¢ )7 r2(¢ ) -a.
We can find ¢, and ¢ , from the condition 7, (¢ ) = r2(¢ ) :
a- a(l- cos¢)D 1- cosgp =10 cosp =00 ¢, = -%,452:%
where the curves intersect. Hence
m m
2 1 2 2 2 25 2
S = J' E(a - a*(1- cosf ) )dq) = a I(l- (1- cos¢ ) )d¢ =
% 0
7 . .
= aZJH2cos¢ - l+ cos 2§ Hddl :aZHZSin¢ - l¢ ¥ sin 29 H 2= a2H2- H—H
)0 2 0 0 2 glo 707 47
§ 7. Length of a Plane curve Y B
Divide the arc 4B into n pieces and join the A p B
successive points of division by straight lines. A [\HA/ )i
Xk X
Ol a X1 Xk b
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representative line, such as P,_, P, , will have length

PP = \/(Axk)2 t (Ayk)z-
The length of the curve AB = L is approximately

L= Z \/Axk Ayk

When the number of division points is increased indefinitely while the lengths of the
individual segments tend to zero, we obtain

L= }ifréil\/(Axkz)+ (ay,)?, 2.7.1)

where 1 = maX(A x,,0 xz,...,Axn), if this limit exists. Suppose that the function

v=f (x) 1s continuous and possesses a continuous derivative at each point of the
curve from A(a,f(a)) to B(b,f(b)) . Then there is some point C, between F;_,

and Pk on the curve where the tangent to the curve is parallel to the chord P, B, .

1 A ! . .
That is, / (x,) = %or Ay, = f (xk)A X, . Hence (2.7.1) may also be written in the
k

form

n n

L= lifnZZI\/(Axk)z t (f,(xk)Axk)z . %{%;l 1+ (f’(xk))zAxk

or
b

L= [+ (£'(x))? dx (2.7.2)

a

Example 2.7. 1. Find the length of the curve y = x*'? from (0,0) to (4,8).

Solution.
b

I I 3 I
L:I 1+(y)2dx: Ea: 0,b=4,y' = Ex”zﬂ (y)2:

a

O

xD'
E_

E\/de 4%@ —xH 3%‘3:%(10@—1).

There is a particularly useful formula for calculating the length of a curve that
1s given parametrically:

Ox = x(t)

i

1y = 1]

Let x'(t ) and y'(t ) be continuous functions on the closed interval [a ,B ] and

x'(t) >0, x(a ) - a,x(ﬁ): b . As we know

a<ts P
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gy dy  yl\t)dt '\t
1)+ d_fc_ ic}'((t;dt ) i:gt))

Such that using the formula (2.7.2) we get
L= 1+ B2 sl [P L P

a a

B
L= I\/(x'(t))z +(y'(e))ar . (2.7.3)
If a curve
x= x{1)
{yz W) o<t p
z= Z(t)
is in the space its length we can find by the formula
B
L= [ (e)) + () + (2(e)) e (2.7.4)
a
Example 2.7. 2. Calculate the total length of the astroid (hypocycloid)
Ax = acos’ ¢ g
il 0<¢<2m. a
Sy = asin’t
Solution.
B
L= (VI P -a
P!

4R e .

Ox=acos’t0 x'=-3acos’tsint0 (x')* = 9a’ cos® tsin’ ¢ %
Oy = asin®¢0 y'=3asin’tcost0 (y')? = 9a®sin* cos® ¢ i
= %(x')2 + (')’ = 942 sin?  cos> t(cos2 t+sin’ t) = (3asinzcost)’ =%:
i 2 i
- Hgasin%H 0
g 02 i i

4 m/2 6 /9
= —ua [sin2tdt: - —a(cos2t) mie s -3a(cosﬂ - cosO) = 6ba.
2 ¢ 2 °

Example 2.7.3. Let a curve is given in the Polar coordinates:
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{x= rcos

. a<p<p
Yy = rsing
Prove that
g 2 2
L= ((F(8))+ (o )as (2.7.5)

Solution. As we know

L= [ 0o

a

Or=¢ 0 dt=df
nx=rcosg O X =rcosg -rsing 0 (x)=
%2 (') cos’ ¢ - 2rr' sing cosd + r*sin’ ¢

= rsing 0y rsing ¢ reosp 0 (y) -

e s

0= (#)>sin’ ¢ + 27 sing cosg + r* cos’ ¢

%(x’)2 t(y) = (r')z(cossz + sin” ¢ )+ r2(sin2¢ + cos” ) = (r)+ rZ%

SR

The formula (2.7.5) is proved.

Example 2.7.4.

Find the total length of a cardioid: ca

r:a(1+COS¢), 0<¢ <2m . w

Solution.
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;
L=J’

0
i

E' 2a (1+ oS ¢))

=2a | cos

The answer: L = 8a.

a’sin’ ¢

dr)? e 7 = a’[sin? ¢ + cos?§ + 1+ 2cos | -

HZaco ¢—H
20

(o) + (o )ap =

O’ = -asing 0 (r)°

o’ = a2(1+ 2cosf + cos2¢))

o s |

n
¢—d¢ : 4a[cos¢d¢ - 8asin¢H = 8a
2 2 210

0

§ 8. Miscellaneous Problems

I. In problems 1 to 18 compute the integrals.

1

1.[V1+ xdx
|
2

1/x

4. © —dx
ul X
I

7.[ xe " dx
0
n/4

10. J' cos* ¢ dp

0

o

13.[ > dx
2
dx
16.‘[x+x3

L dx
2./ —m—
L(m 5x)°
3
dx
5.]2 2x% + 3x-2

m

8. I x> sin xdx

9
11£J§ |
\/7

14.

x> dx
3x+ 2

17.

2
I1
1/2
‘([)

19. Compute the area of the figure bounded by the curves

36

V1- x?
6
X

1
12.JJ dx
2/2
-1n2
15. J\/I— e™ dx
0
m/2 dx

18. [ ————
-[) 2cosxt 3



X

=~ _and =
a)y 5 and y
20.

21.

22.
23.

24.

2
b)y=2-x" and y3 = x°.

1+ x*’
Find the area of the figure enclosed by the astroid

x=2cos’t, y=2sin’ ¢,

Compute the area of the figure bounded by the first and the second turns of the

spiral of Archimedes 7" = af and the segment of the polar axis.

. n 2m
Find the length of the curve y = Insinx from x = 3 to x=—-.

Find the arc length of the evolvent of the circle
x= 2\costt tsint),y = 2(sint- tcost),from t,=0tot,=1.
Find the length of the cardioid » = 4(1 - sin t) .
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PART 3
DIFFERANTIAL EQUATIONS

§ 1. Definitions

A differential equation is an equation that contains one or more derivatives of
a differentiable function, that is

F(x.y,y',y",...,y(”))= 0 (3.1.1)
The order of a differential equation is the order of the equation’s highest order
derivative.
We call a function y = ¢(X) a solution of a differential equation if V and its
derivatives satisfy the equation.
Example. Show that for any values of the arbitrary constants C, and C, the

function y = C,cosx+ C,sinx is a solution of the differential equation
2

Y
+y=0.
dx’
Solution.
2
We differentiate the function twice to find 2} :
X
d . d’ :
. -C;sinx+ C,cosx [l g}: -C,cosx- C,sinx.
dx dx
2
Then we substitute the expression for y and d { into the differential equation to see
X
whether the left-hand side reduces to zero. It does because
d’ : :
dxij tys= (- C,cosx- C, smx)+ (C1 cosxt C,sinx|= 0.

So this function is a solution of the differential equation.
It can be shown that the formula
y=C,cosxt C,sinx

gives all possible solutions of the equation
2

d’y
dx’
A formula that gives all the solutions of a differential equation is called the
general solution of the given equation.
To solve a differential equation means to find its general solution.
Notice that the considered equation has order two and its general solution has
two arbitrary constants. The general solution of the nth order differential equation can
be expected to contain # arbitrary constants.

+y=0.
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§2. FIRST ORDER DIFFERANTIAL EQUATIONS
I. Separable Equations

We shall say that a differential equation of the first order
dy _

—_— x,
7 flxy)
has variable separable if the function f(x, y) can be written in the form
ey = Alx)0LA) (3.2.1)
dx
On multiplying both parts of the equation (3.2.1) by m we get
2
dy
—— = filx)ax. 3.2.2
g (y ) l ( )
Integrating both parts of the equation (3.2.2) we obtain
dy
= [ filx)dxt € 2.
'[fz(y) '[ 1( ) ’ (3:2.3)

where C is an arbitrary constant.
The expression (3.2.3) represents the general integral of the equation (3.2.1).

Example 3.2.1. Radioactive substances are those elements that naturally break
down into other elements, releasing energy as they do. The rate at which such a
substance decays is proportional to the mass of the material present. Let m be the

amount present and the initial mass of the radioactive substance be m,. We shall

determine the relationship between the amount m of the remaining substance and
time ¢.

Solution.
According to the above law, we can write the relation
am - km (3.2.4)
dt ’ o

where k > 0 is a proportionality coefficient. It is taken with the minus sign since the
amount of the substance m decreases as ¢ grows, which indicates that the derivative is
nonpositive. Separating the variables in the equation thus obtained we write

dm _ kdt
m
On integrating we obtain
Inm=-kt+ InC
whence
m= Ce ™™
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The quantity m,does not enter into the differential equation; it only appears in the
initial condition which has the form

m |t:t0 = m,.

This condition implies that C = m,. Consequently, the particular solution satisfying

the condition of the problem is

m=m,e "
The value of the constant £ can be determined experimentally by measuring the
amount of the remaining substance at a time moment .

I1. Homogeneous First Order Equations

A first order differential equation is homogeneous if it can be put into the form

Y. A2E
o fDx - (3.2.5)
We can change this equation into a separable equation with the substitutions
d d
y=uxl R
dx dx
Then we have
du
ut x—= f (u) ,
dx
that is
du
x—= flu)- u.
A
It follows that
du  _ dx
fluj-u x
and after the integration we get
J' du___ ln‘x‘ +InC
Slu) - u
du
= In|Cx
or I f(u) -y ‘ ‘
Example 3.2. 2. Let us solve the homogeneous equation
dy _ xy-y’
dx  x*-2xy

Solution. The substitution y = ux leads to the equation
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ut x—-=
dx 1-2u
or, equivalently,
du_ 1w
dx  x 1-2u

Separating the variables we receive

gy =g Lo 2g,- &
u X u u X

On integrating we have

L 2ln‘u‘ = ln‘x‘- ln‘C‘D ln(e””uz) = lng
U X
and consequently,
Z/tzel/u - g

o
On returning to the variable y we arrive at the general integral of the given

differential equation:
2

L ev-c
X

III. Linear First Order Equations

A differential equation that can be written in the form
dy

—-+Plx)y= 0l) (3.2.6)
X

is called a linear first order equation.
Let us represent the unknown function in the form

v = ulx)Dv{x), (32.7)

and find its derivative Y Vv
dx

yEuviu' (3.2.8)
On substituting (3.2.7) and (3.2.8) into the equation (3.2.6) we get

u'v u(v+ Plx)v)= Olx).
Now we take v as a particular solution of the equation

Vv + Plx)v= 0.

On separating variables we obtain
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whence
In|v|= -J’P(x)dx,
that 1s
o o) Pl (3.2.9)

To determine the function u(x) we have the equation

vu'= Olx).

On solving this equation we arrive at the following formula

u = JQ(x) e/ "W gt (3.2.10)
We summarize the results (3.2.9) and (3.2.10) and get
y=uvll y-= ¢ I Flae (J’ Olx) e/ &gy s ). (3.2.11)

This formula expresses the general solution of the linear equation (3.2.6).

Example 3.2.3. Consider an electric circuit containing a resistance R, an
inductance L and an electric — current source with electromotive force E.

Solution. As 1s known from physics, if / is the electric current flow then

E= RI+ Lﬂ,
dt
This is a linear differential equation with respect to the unknown function 7 = / (t)

which can be written in the form

dl R E
—+ — ] = —
dt L L
We shall solve this equation with the initial condition
[ =
[t =0

Thus, we are concerned with the problem on switching on an electric current source.
Making use of the general formula (3.2.11) we have

et HIEeIdet+ CH.
L
On integrating we obtain
E -
1(z) = —HH Ce L H
R

Imposing the initial condition that / (0) = 0 determines the value of C to be -1 so

)= £ v

]
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We see from this that the current / (t) is always less than n but that it approaches n

as a steady — state value:

_R,
nmE%—eLH:EU—Q:E.
R R

{- ©

E
The current / = N is the current that will flow in the circuit if either L = 0 (no

dl
inductance) or E = 0 (steady current, / is constant).

§3. DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

Some Particular Types of Equations of the Second Order

(Reduction of Order)
I. The right — hand side of the equation does not contain y and '
y' = flx] (3.3.1)
Since " = (y')' we have
v'= [ Al c,.

On integrating once again we obtain
y= I(I f(x)dx)dx+ Cx+ C,
Example 3.3.1. Solve the differential equation )" = sin2x- e*'>.
Solution. Here we have f(x) = sin2x- "', hence

COS2Xx
2

On integrating once again we obtain the general solution of the given equation:

Sin2x _ 25¢"° + C\x+ C, .

y' = J‘(sin2x- em)dx+ c o y-=- - 57+ C,.

y=-
I1. The right — hand side of the equation does not contain y
v'= flxy) (3.32)
Let us put z = y', then »" = z', and the equation (3.3.2) becomes a first — order
equation with respect to z
Z' = flx,z).
If the solution ¢ (x, Cl) of this equation is found the sought — for solution of the
original equation is obtained by the integration of the equality V' = z,thatis

y=IMLth+C%
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Example 3.3.2. Find the general solution of the differential equation
xy' -y = x’e".
Solution. Reduce this equation to the form (3.3.2):

V' = X4 xe'.
X
Using the substitution
y! - =z D y” = ZI
we get the linear equation (see (3.2.6)):
.z Oz = uvl 0
z = —+t xe* S nl
X Hz ~uvt uvH
! ! uv X
uvtuy = —te (*)
X
d dv _d
1). Let uv' = > then =Yg &g =y
X dx x v X

2). Substitute V = X into the equation (*):
ux=xe"l du=e"dxl u=e"+C,.
As Z=uv wegetz=xe'+ C.x.But z= ) thus we have
y = xe't+ Cx.
Integrating this equation we get the general solution of the given differential
equation:
y=xe -e't %x2+ C,.

III. The right — hand side of the equation does not contain x

vz flny). (3.3.3)
The substitutions to use are
2
p_ﬂ dy:d_p:d_pﬂﬂzd_pﬂp

dx dx* dx dy dx du
Then the equation (3.3.3) takes the form
dp
Py (v, p).
If the solution p = dJ( y,Cl) of this equation is determined, the solution of the
equation (3.3.3) is found from an equation with variable separable
gy &

:¢(y,C1),thatisdy:dx

pe dx dx ¢(%C1)

and
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Example 3.3.3. Solve DE of the second order " cot y = ( y')z.

Solution. This equation does not contain x so we use substitution

Ay ,
e ply)s
y=p0 0
yucoty:(y!)zlj E ,,_dp ED _ppcoty:pZ.
yo=—-ps dy
g dv g
Separating the variables and integrating we get
. G
Cosy
Returning to the function y gives us
d C
Yo =g cosydy= Cdx.
dx cosy
Integrating the last equation we get the general integral of the given equation:
siny= Cx+t C,

or the general solution
y = arcsin|Cx + C, )

§4. Some Problems of Particle Dynamics
Let a material point be in a rectilinear motion under the action of a force

directed along the trajectory. By Newton’s second law we get the differential
equation for the law of motion

d*s dS
m—-= FHt,S,—H, (3.4.1)
dt I dt [
: _das . : s . :
where S is the path length, V' = o is the velocity, W = % 1s the acceleration.
1. Uniformly Acceleration Motion
2
Let the force F be constant. Denote the ratio — as a, then. 1 za
m

. ds ? : .
Integrating we have ——=attC, and S-= a, Cit+ C,. It is obvious that
dt 2

Ay .
= | o vy and C,= S WC S,. Thus we have derived the well-known formula
for the distance traveled in a uniformly accelerated motion

_ at’®
S = - Vit+ S,.
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2. Experiments show that every body moving in a medium undergoes the
resistance of medium. When the velocity of motion is high the force of resistance
becomes proportional to the square of the velocity

Fres.: _yV2 (y > O)

Let us consider a body falling on the earth and acted upon by gravitation and air drag.
In this case the differential equation of motion (3.4.1) takes the form

WL gy B850
dr’ 0dt 0’
where mg is the force of gravity.
. .. dS _ d’S _dv .
On making the substitutions E =V, —E we arrive at the first-order

equation
md_V:V_%E-VzH,
dt mpy

. y _ mg + b2 . . .
Putting — = a, —y and separating the variables we obtain
m

dv

e = adt.
On integrating we receive
ilanr—V =at+ C.
2b b-V
btV ,
Since V' | . = 0, we have C = 0. Then . = e’ and
eZabt _
V= b~ = btanh(abt).
e +1

This formula shows that the velocity is always less than b and tends to this value as
t - © _ Hence, the velocity does not increase indefinitely and tend to a definite limit
referred to as the terminal velocity of fall:

I/term:b: E'
\ ¥

§5. LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER
I. Definitions and General Properties

Definition. A linear differential equation of the second order is an equation of
the form

Y al(‘x)y, ¥ az(x)y - f(x) (3.5.1)
When the function f (x) is identically equal to zero, the equation (3.5.1) is

called a homogeneous linear equation; otherwise it is called a nonhomogeneous
equation.
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If the functions al(x), az(x) and f(x) are continuous in an interval (a,b) the
equation (3.5.1) possesses a unique solution satisfying arbitrary initial conditions

Y = Yo y" = Yo (3.5.2)

X=X

II. Homogeneous Linear Equations

We shall start with a homogeneous linear equation
Yt a(x)y + ay(x)y=0 (3.5.3)

Definition. A system of two particular solutions of the equation (3.5.3) y, (x)
and yz(x) is said to be a fundamental system of solutions of this equation in an
interval (a,b) if the determinant
Y 1(x) y 2(x)
yilx) yalx]
is not equal to zero at any point of the interval (a,b) :

The determinant W(X) 1s called the Wronski determinant or Wronskian.
Theorem. The general solution of the equation (3.5.3) has the form

y= Cy(x)+ C,p,(x) (3.5.4)
where C, and C, are arbitrary constants; yl(x) and yz(x) form a fundamental system

W(x) =

of solutions of this equation.

Proof. Differentiate the function (3.5.4) twice:
yECy+t Gyl = Gt Coyl

On substituting ¥, ¥" and »" into the left-hand side of the equation (3.5.3) we get

Coit G+ a(Cyi + Coyy)*+ ay(Coy + Coyy) =

- C1(J’Y+ ay; + a2y1)+ Cz(yg tay,t azyz)-
The expressions in the parentheses are the results of the substitution of the functions
y, and y, in the equation (3.5.3). Since these functions are the solutions of the
equation (3.5.3) both expressions are identically equal to zero and hence the function
v = C,y, + C,y, is the solution of the equation (3.5.3) for any C, and C,.

Now let us prove that for any initial conditions (3.5.2) there exist the constants
CIO and C g such that the solution y = Clo vt Cg v, satisfies these initial

conditions. To prove this we substitute the function (3.5.4) into the initial conditions
(3.5.2). This results in the following system of linear algebraic equations with respect
to €, and C,

DClJ’l(Xo) t Czyz(xo) = Yo
SCx) + Codh(xe) 2w
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The determinant of this system is

)’1(Xo) yz(xo)
Yilwo)  yalwo)
since yl(x) and yz(x) form a fundamental system of solutions of the equation

(3.5.3). So it is possible to find unique C; and C) that the solution y = C/y, + C,y,
satisfies the initial conditions (3.5.2).

W(x) = 70

§6. Nonhomogeneous Linear Equations

Consider a nonhomogeneous linear equation
VE )y + asbily= 1 (3.:6.1)
We shall say that the homogeneous equation
Y an)y' +ay(x)y=0
obtained from the equation (3.6.1) corresponds to this equation.
Theorem. The general solution of the nonhomogeneous equation (3.6.1) is a
sum of the general solution of the corresponding homogeneous equation and a
particular solution of the given equation.
Prove this theorem by your own.

I. Solution of Linear Homogeneous Equation with Constant Coefficients

We solve the linear differential equation with constant coefficients

y'tay+tay=0 (3.6.2)
Let us try to find a solution of (3.6.2) in the form
- _Ix
y=e",

where 1 is a real or complex number. We have
y! - AeAx, yn - AZeAx
and, consequently, there must be the identity
e”(A2 talh 4 az): 0.
Since ¢'* # (), it follows that
A+ ad+a,=0. (3.6.3)
The equation (3.6.3) is called the characteristic equation associated with (3.6.2).
There are three cases in connection with the roots A, and A, of the
characteristic equation (3.6.3).

1. The roots 1, and 1, are real and distinct: 1, # 1, . In this case either

root can be taken as the exponent 1 in the function ¢'* and thus we obtain two
solutions of the equation (3.6.2):

-_ Azx

A
yp 7 e and y, = e
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These solutions form a fundamental system since the Wronski determinant is not

equal to zero. In fact

o o

)\ le)\ x )\ 26)\ X

Therefore the general solution in this case is given by the formula
y= Ce'"™+ Ce'. (3.6.4)

2. The roots 1, and 1, are real and coincide: 4, = A, = 1 . In this case the

wx)= =M ()= )20

above procedure only yields one solution y = e’ Ttis easy to show that the function

Y, = xe'* can be taken as the second solution of the equation. Do it by your own.
Here it 1s also readily checked that the Wronskian does not vanish for any value of 1 :

Ax

e xe'*
)\e)\x e)\x + )\xe)\x

Hence the general solution of the equation (3.6.2) is
y= (Cl + sz) e (3.6.5)

w(x) = = ¢ 0.

Example 3.6.1. Solve the equation
y'+t4y'+4y=0.
Solution. The characteristic equation
A2+4)+4:=0
has one two-fold root 4, = 4, = -2and, consequently, the general solution has the
form
V= (C1 t sz)e'zx.
Example 3.6.2. Solve the equation
y'+5y+6y=0.
Solution. The characteristic equation
V450 +6=0
has two real and distinct roots 4, = -3 and A, = -2. Therefore the general solution
of the given equation is
y= Ce >+ Ce™,

3. The roots of the characteristic equation are conjugate complex
numbers: A, =0 +if, A, =a -iB (B #0). In this case the equation (3.6.4) applies
once again to give
y = 518("+iﬂ)x ¥ Gze(“"‘f”x - e“(éle"ﬂx + Gze"””‘) (3.6.6)
where C, and C, are complex constants.

By Euler’s formula

e = cosfx+ isinPx and e
Hence we may replace the equation ( 3.6.6) by
y= |G + C,)cospx+ilC, - C,]sin px]. (3.6.7)

Pz cosfx - isinfx.
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Finally, we introduce new arbitrary constants C, = C, + C, and C, = i(CN?1 - (N?z), to give
the solution of the equation (3.6.7) in a shorter form
y = e™(C cosfx+ C,sinfx). (3.6.8)
The constants C, and C, are real because C, and C, are complex conjugate.
Example 3.6.3. (Simple Harmonic Motion). Suppose we have a spring of

natural length L and spring constant &, with its upper end fastened to a rigid support.
We hang a mass m from the spring. The weight of the mass stretches the spring to a
length L+ § when allowed to come to rest in a new equilibrium position. By Hooke’s
law, the tension in the spring is &S. The force of gravity pulling down on the mass is
mg. Equilibrium requires

kS = mg. (1)
How will the mass behave if we pull it down an additional amount ¥, beyond the
equilibrium position and release it? To find out , let x, positive direction downward,
denote the displacement of the mass from equilibrium ¢ seconds after the motion has
started. Then the forces acting on the mass are

+ mg (weight due to gravity),

-k(S + x) (spring tension).

2
By Newton’s second law, the sum of these forces is md—x SO

>

d*x _

m——-=mg-kS-kx=0 (2)
dt

Since mg = kS from the equation (1), the equation (2) simplifies to

d’x

m thkx=0. 3
1 3)

In additional to satisfying this differential equation, the position of the mass
satisfies the 1nitial conditions

d.
X=X, andj);: 0,when =0, 4)

If we divide both sides of the equation (3) by m and write ¢ for /k/m , the

equation becomes
2
X, 52z 0 (5)
dt’
The roots of the characteristic equation 1>+ @ *= 0 are A = tiw , so the general
solution of the equation (5) is
x= C,cost + C,sintw (6)
applying the initial conditions in the equation (4) determines the constants to be
C,=xyand C, = 0.
The mass’s displacement from equilibrium ¢ seconds into the motion is
X = X, COSI) (7)
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This equation represents a simple harmonic motion of amplitude ¥, and period
2n , . L .
= o We normally combine the two terms in the general solution in the equation
(6) into a single term, using the trigonometric identity
Ccos(ta) ol ) = Ccosf costw + Csing sintw .
To apply the identity, we take
C,=Ccosp ,C, = Csing , (8)
where
C

C=.C+C}, tanf = Fz (9)

1
With these substitutions, the equation (6) becomes

X = Ccos(tw -0 ) . (10)
We treat C and ¢ as two new arbitrary constants.
The equation (10) represents a simple harmonic motion of amplitude C and

2m
period 7T = W The angle P is the phase angle of the motion.

§ 7. Nongomogeneous Linear Differential Equations
with Constant Coefficients

We consider a linear equation of the form

Y'tay'+ay= [l (3.7.1)

The general solution of this equation is the sum of the general solution of the
corresponding homogeneous equation and a particular solution of the equation
(3.7.1). It 1s already known how to find the general solution of the homogeneous
equation. Now it remains to determine a particular solution of the given equation. We
shall start with some special cases.

1. Let the right-hand side of the equation (3.7.1) be of the form
fla) = Pfx)e", (3.7.2)
where P (x) is a polynomial of the nth degree. Then the equation has a particular
solution

- m kx

yp - X Qn(‘x) e ,
where 2.(x) is a polynomial of the same degree as P, (x) ; 1f the number £ is not a root
of the characteristic equation, then m = 0, and if it is a root then m is equal to the

multiplicity of that root. We find the coefficients of the polynomial O, (x with the

aid of the method of undetermined coefficients.
Example 3.7.1. Find a particular solution of the equation

yn_ 6)/' + 9y: e3x.

51



Solution.
The characteristic equation

A2-6A+9=00 (A-3)°=0
has 4 =3 as a double root. The appropriate choice for ), in this case is Ax2e3*.
When we substitute
Yy © Axle™
and its derivatives in the given differential equation, we get
9Ax>e™ + 124xe™ + 24€% |- 6(34x> ™ + 2Axe™ |+ 9Ax>e™ =

ze™ [0 24> =0 24=10 A=

1
2
Our solution is )/, = 5 xZer,
2. Let the right-hand side of the equation (3.7.1) be of the form
f(x) = M cosbx+ Nsinbx,
then the equation (3.7.1) has a particular solution
Y, = (4cosbx + Bsinbx)x™,

where 4 and B are unknown coefficients; m = (0 if the numbers t [h are not
characteristic roots and m = 1 if the numbers 1 ib satisfy the characteristic equation.

Example 3.7.2. Find a particular solution of the differential equation
y'+ 4y +13y = 5sin2x.

Solution. The characteristic equation y’+41+13=0 has the roots
A> = -2% 3i_ Since the numbers t 2i are not roots of the characteristic equation

we look for a particular solution of the form
Y, = Acos2x+ Bsin2x.

Differentiating ), twice we obtain
y' = -2Asin2x+ 2Bcos2x,
y' = -4A4cos2x- 4Bsin2x.

The substitution in equation yields

- 4A4cos2x- 4Bsin2x- 84sin2x+ 8Bcos2x +
+ 13A4cos2x+ 13Bsin2x = 5sin2x '

Equating the coefficients in sin2x and cos2x on both sides of the equality we get
sin2x|- 84+ 9B=5

cos2xl 94+ 8B=0
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8 9 : .
whence 4= - 29 and B+ 59" Hence the particular solution is

8 9 .
= - —cos2xt —sin2x.
T 29

Example 3.7.3. A particle slides freely in a tube, which rotates in a vertical
plane about its midpoint with constant angular velocity @ . If x is the distance of the
particle from the midpoint of the tube at time ¢, and if the tube is horizontal with 7= 0
the motion of the particle along the tube is given by

d’x ) :
— - W x= -gsintw .
dt
: .. _ d. .
Solve this equation if X=X, ?);: Vo, when Z = (. The characteristic

equation is

V+0?=00 A, =w,A,=-0 and the general solution of the
corresponding homogeneous equation is

x,= Ce" + Ce".
Furthermore, the particular solution appears as

X, = Asintw + Beost |

where C,,C,, 4 and B are constants to be determined. Differentiating twice the last
expression we obtain

dx ,
d” = AW costw - Bw sintw,
t

d*x

dt
Substitution in the main differential equation gives
- 240 *sintw - 2Bw > costw = - gsintw,
which implies that:

- 24w =-g, or A= 2g
Thus,

Zp = -coz(Asint(o + Bcostw).

s .and B= 0.

x=Ce"+ Ce™+ %sintw :
20
dx

To find the values C, and C,, we use the initial conditions for = O’E =V, and

X= X,.
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And since
o Cw e -Cne"t £ cost,
dt 20
dx _ g
E\::o =Cw-Cot P Vs

and

x‘ﬁo =C,t+ G, = x,.
These are simultaneous equations with C, and C, unknown. Substitution of
C, = x, - €, in the expression for ¥, yields:

g g
V- 5t x0 w-V,+ S
0Ty , and _ o " o .
¢ = 20 €. 20

At last we can write the general solution of the equation in such a way
14
f 0 o8 H(em o]y 8

2

| ]
X = —xo(e”" te ”’) .
2 020 40 " [ 20

Sin @ |

or

V. :
X = x,coshtw + H—O- %Hsmhtw t 2g
0w W~ [ 0]

For the motion to be the simple harmonic type, we must have the relationship:

5 Sin tw .

2
Host.

‘w zx‘ >> ‘gsintw , Or

Example 3.5.4. Find a form of the general solution of a differential equation if
the roots of characteristic equation are 1, = =31 J5iand the right hand-side is

equal to 2¢** sin \B x and explain the answer.

The answer.

Y, = e " (C, cos~/5x + C, sin\/gx)+ xe'3x(Mcos\/§x+ Nsin\/gx).

54



Miscellaneous Problems

Solve the following differential equations.

1).\/21- 8x- 4x’dy = dx 2).Hx- ycosXHd)H xcodey =0
[ x[ X
3.y 22 a2 ae )y
' 2x-y . xt1 2
21 | Yy _ 12
5).ey(1+x)y-2x(1+ ey):O 6).y' - ==-—
X X
7).p* - 1+ (2xp+ 3y)y' = 0 8)2(y'+ 1) = [x- 1)ery?
9).y' - 'y = sin >
sSin x

Find the particular solution of the following equations

10).xIny0y' = x°y, y‘ =1 - € 11).(xy' - y) arctan 2. = X, y‘ =102
X
Solve the following second order equations
12).(1+ sinx)y" = y'cosx 13).xp" - y' = x’e”
14).2y"y+ (y')+ () =0 15).y"tanx = 2y
Solve the following homogeneous linear
equations
16).2y"+ y=0 17).y"+2y' =0 18).y"+6y'+9y=0
04y"+ 8y'+5y=0 0y"'-4y'-5y=0

2 00)= (o) = 1 5500)= (o) 2

Solve the following nonhomogeneous linear equations
21).y" - y= (- 2x7 + x+ 4]+ 2¢° 22).y" - 2y + 10y = (26x- 5)e*
23).y"-5y"+ 6y = 8sin2x+ 72cos2x  24).3"+ y' = 9x> + 92x+ 9

55



APPENDIXES.

Graphs of Some Functions.

Parabolas
a).y=ax,n=12,...

Domain of definition:

Dly)= (- w.ta)
Range of values
E(y)= |00

©). y= aXlx,n= 12,

Y a>0

\\
\\a<0
~

~
~~

D(y)=[0+w)
gotw),a> 0

E(y) ) %(— ) ,O],a <0

Hyperbolas

1. Power Functions

—_—
~

b). y= ax™',n=12,...

\ y
\\ a>0
\
\
\
\
\\ X
0\\\
\
\\ a<0
\
\
\
D(y)= (- o to)
E(y)=(-a,t0)

-~
~—
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e). y - xZ-l =12, f.y= —,
F g
/
/
/
a<0 // a>0 a>0
e - ///’ - : = .
-~ \\\\ ////0
// N\ / .
/ \ /
/ v
I \ |
V|
Dly)= (- .0/ (0,40
D 0]0 {0
201+ 2 one] b=l o
0(0,+0 ),a> 0
FE =
(y) D(' , ,O),a <0
2. Exponential Function 3. Logarithm Function
y=a*,a>0,a# 1 y=log, x,a>0,a% 1
\ y y
\
\ L e
AN a>1 \\
AN \ X
/1\\Q<a<1 O/\\
— X N 0<a<1
0 \\\\
D(y)= [~ 4o) Dly)= (049
E(y) = (0.+0) E(y)= (o tu)

4. Trigonometric Functions
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a). Sinusoid (sine curve, harmonic curve) y = sinx

| Dly)= (- o ,t0),
E(y)=[- 1+1]

o|=
o=

b). Cosine curve )V = COSX

y

.
4
\
Nl
.
-
S
|3
=

¢). Tangent curve Y = tanx

y

Dly)= @

. Ely)=

T S rn k= 02142,
2 2 g

—oo,+oo)

—

'
=
| =
S
o=

I
|
|
|
|
|
|
|
I T
|
|
|
|
|
|
I

d). Cotangent curve ) = COtx

y

D(y)= (kn,(k+1m)),k= 0,£122,...
E(y)= (o tu)

)
o=

| |
| |
| |
| |
| |
| |
| |
| | x
[-n . 0 [
| |
| |
| |
| |
| |
| |
| |

5. Inverse Trigonometric Functions
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= ain-!
a).y=sin  x

y

o=

D)= (- o), 2]

6. Hyperbolic Functions
a). V= sinhx (th)
b). y = coshx (chx)

y
y=chx

0

X

y=shx

- X

e'-e

a). sinhx =

D(sinhx) = (- 0,10 )

b). y = cos ' x

o=
=

). y = tanhx (thx)
d). y = cothx (cthx)

y
bx

y=thx 0

X - X

sinhx e'-e
¢). tanh x = = —
coshx e'te

D(tanh x) = (- o ,+o )

- X
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E(sinhx) = (- 0+ )

X

e te

- X

b). coshx =

D(coshx) = (- o+ 0 )
E(coshx) = [1,+oo )
7. Curves of the Second Order

E(tanhx) = (- 1,+ 1)

coshx e'+e”
d). cothx = =

sinhx e'-e"
D(cothx) = (— ® ,O)D (0,+oo )
E(cothx)= (- 0 ,-1)0 (1.+ o)

. 2 2 52 2
a). Ellipse: a_2+ Z_z =1 b).Hyperbola: a_z_ )b;—z =1
y y

b b

r ~ | ~_ |
| | n o x

-a a X | 0 |
Lo >~ 1 —
8. Witch of Agnesi: 9). Curve of Gauss:

_ kK e
y 1+ xZ y - €

Y
y 1
k
k> X
[0 1 Tt |0 L
V2 2
10. Loops
a). Folium of Descartes
x>+ 3’ - 3axy=0,o0r y
0 _ 3at
T o
Y

0 N /
0. . 3at’ K Al

Y= > 2+ >0
o1+t N

xq\\ \
21N
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at x

b) y> = x° [ c). azyzzx(a-xz),cﬁ 0
a-x
Yoo
| y
| X
I
-a la x 0 a a >0
0 |
I
I
I
I
|
11. Lemniscate of Bernoulli ¥
AN /
) \ /
2 2
or ¥r“ = a”cos2 a
g 770 ™\
/ \
/ AN
12. Parametric Equations of Curves
Ax = acos’ ¢
a). Cycloid: b). Astroid: g a>0
asin’t’
Ox = alt- sint
Jx= ali-sint) o
0y = a(l- cost)
y
L=
( ) 2a
\ / x
0 2N a

¢). Evolvent of Circle:

Ox = a(cost+ tsint) %a
),a> 0 L 3

0 :
0y = alsint - tcost
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d). g
EX: Rcos— DH2+ COoS — E AT
/ \
I / ¥ \
[ X
Dy Rsin— DHZ sin — H \ 0\‘,‘
i 30 Y /
N //
12. Curves in the Polar System of Coordinates
a). p - as1n3¢ b). p = acos’ ¢,
3 3n[0
a> O,¢D[0,3n] SYYEL Eoe
0 p
p
Cardioids
¢)p = a(1+ cos{ ),a> 0 d)p =a(1+ sin¢),a>0
mza |
0 p
a o
Limacons
a). p = 1- cos¢ b). p = 1- sing
y
a p
p
0
Spirals
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a). p = ap,a>0

a).p = asin2f,a> 0

p = acos3p,a> 0

Roses

b).p = acos2f,a> 0

y
7T T
/ \
/ m\
[ 4\x
\ 0 |7
\ ¢ /
\ /
\\_///
y
e \]'[\
/ T\
/
[ | X
\ 0o~ | P
\ //
\\‘/ -

e).p = asindp ,a> 0 f).p = acos4f ,a> 0
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