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1. Definitions

Until now we have studied functions of a single variable. Many phenomena in
the physical world can be described by such functions, but most quantities actually
depend on more than one variable. For example, the volume of a rectangular box
depends on its length, width, and height; the temperature at a point of a metal plate
depends on the coordinates of the point (and possibly on time as well). Any quantity
that depends on several other quantities can be thought as determining a function of
several variables.

A function of several variables consists of two parts: a domain (D()), which

1s a set of points in the plane or in space, and a rule, which assigns to each member of
the domain one and only one real number. This rule can be written in the form
u= f(P), where Pe D(u).

If D(u) is a part of the plane XOY then any point of this region has two
coordinates: P = P(x, y) and we have a function of two independent variables. As
a rule it is written in the form z = f(x, y).

If D(u) is a part of the space XYZ then any point of this region has three
coordinates: P = P(x,y,z) and we have a function of three independent variables.
Let us write it in the form u = f(x, y, z).

If D(u) is a part of an n-dimensional space then any point of this region has n
coordinates: P = P(x;,X,,..,x,) and we have a function of n independent
variables. Let us write it in the form u = f(x, x,,...., x,, ).

Independent variables are equivalent and they are called the arguments.

To find a domain of a function of two variables we can use the same rules as
for a function of one variable.
Example 1.1. Find the domain of the given function. z = f(x,y) if

a) Fy)=Ay - 52 b) £ (x. y) =

Xy
Function Domain
N z=+y— x> D(z): y>x?
1
b) z= Ty D(z):xy#0
Fig. 1.1



a) The domain of the function

flx,y)=+y- x? are all points of xy-plane

which are on the parabola y = x?and in
the interior region of this parabola.

P
|
D)

1 .
! z = — are all points of xy-plane except
_____ ._+ o e e g xy

[ X the
] points of x-axis and y-axis

b) The domain of the function

2. Ways of Representation Functions of Two Variables

A function of two variables, like a function of one variable, can be specified by
a table, by a formula (analytically) or by its graph.

A. A tabular representation of a function indicates the values of the function for
a number of pairs of values of the independent variables. For example, the table 2.1
shows dependence of area §;; on two independent variables

b;—awidth and a; — a length.

aj ar a,
b] S]] S 12 S In
b, S S 2 S 2n
bm Sm] S m2 S mn
Table 2.1

B. A function of two variables can be specified by formula. In the analytical
specification of a function we use a formula determining the values of the function

Xy

X%+ y?

depending on the values of the independent variables. For example, z =



C. The function of two variables can be represented by its graph too.

ﬂy

The graph of a function z= f(x,y) is

v S the collection of points(x,y, f(x,y)) and is
' N> / represented by a surface S . Each point of this
I

surface  M’has coordinates (x,y,z). The
domain of the function z= f(x,y) is the

I
I
! region D of xy — plane. When point
I
I

0 >
X M(x,y) runs through regionD, than point
I@ 0 M’(x, y, z) runs through the surface S, whose
equation is z = f(x, y).
z
Fig.2.1
Example 2.1. The graph of a function Z

Ax+ By +Cz+ D=0 is the plane passing through
the points (—2,0, Oj,
A

0.-2 ol [0.0-2] 0
B A . y

In Fig.2.2 is drawn the portion of this plane in
the first octant.

|
Qlo

o~flw

>

Fig.2.2
3. A Level Curves

Let f be a function of two independent variables x and y and denote the
dependent variable by z. The equation z= f(x,y) may be interpreted as defining a

surface S in xyz-space. If we cut the surface with planes z=~h;,z=h,, we get

contour lines on the surface. And if we project them onto the xy-plane, we obtain a
level curves f(x,y)=h,, f(x, y)= h,in the domain of z = f(x, y) (Fig. 3.1).



»
>

X

: flx,y)=h2
flx,y)=h

Fig. 3.1

Definition. The set of points in the xy-plane where function f(x,y) has a
constant value C is called a level line of this function f(x,y)=C.

Level curves are particularly useful in engineering applications. For instance

equation z = ()c—2)2 +(y+3)2 gave the celsius temperature at each point in a flat
circular plate, then the level curves would be isotherms of the temperature

distribution.
Example 3.1. Find the level lines of the function z = (x—2)* +(y +3)*.
Solution. The equation of the level lines of the given function is
(x=2)P+(y+3)=C

If C takes different values, for example, C =4, C =9, C =16,... we will have

a family of circles with origin at a point O(2;—3) with corresponding radiuses R =2,
R=3, R=4,..



Example3.2. Let f(x,y)=8—2x—4y. Sketch the graph of f and determine
the level curves.

Solution. If we let z = f(x, y), then the given equation becomes
z=8-2x—-4y
This is an equation of a plane with x intercept 4, y intercept 2, and z intercept 8.

The portion of the plane in the
first octant is sketched in Fig.3.2. For
any value of C, the level curve

f(x,y)=C is the straight line

in the xy plane with equation
2x+4y—-8+C.

The level curves are parallel lines.

Fig.3.2

4. Limits and Continuity

Definition. The limit of a function f(x,y) as (x,y)— (x,,y,) is a number A
if for any &£ > Othere exists a number & >0 such that for all points (x, y)# (xo, yo) in
domain of f(x, y), from ‘x—xo‘ <0 and ‘y — yo‘ <o follows ‘f(x, y)— A‘ <€.

Properties of Limits

Let lim f(x,y)=A lim g(x,y)=B be given, then the
(o, )=(x5.3,) (,y)=(x0.3)

following rules hold

lim [f(x,y)+g(xy)]=A+B
Sum rule (.3)=(x5.30)

lim [f(x,y)-glxy)]=A-B
Difference rule (x.3)-(%,5)

lim [f(xy) gly)=A-B
Product rule (x.3)=(x5.3,)
Constant multiple rule lim  kg(x, y)=kB, kisconstant

(x,y)=(x0, 5
- im S A plg

Quotient rule (ry)=(iore) g(x,y) B




Example 4.1. Find limits of the functions:
a) lim (x2 + yz),

(x.y)—(3.4)
b) lim ! ,
(x,y)=(0,0) x +y
. x? +y?
¢) lim .
Solution:

0 lim (x? +y2)=32+(-4)’ =9+16=25;

(x.y)=(3.4)

b) Lim ! —|:l:|:oo;

(r.y)=00)x+y |0

X%+ y? :{9}: . (x2+y2 w/x2+y2+1+1)
(

¢) lim =
(e 3)=000) /32 4 y2 411 LOJ (xy)-(00) X +yi+1-1
= lim xX*+y*+1+1=2.
(x,y)—=(0,0)

Definition. A function f(x, y) is said to be continuous at the point (xo, yo) if:
1) f(x,y) is defined at (x,, y,),

2) lim  f(x.y) exists,

(x.3)=(x0.3,)

3) dim - fxy)=flxy,).
(x,y)—) XY )
For a function f(x, y) fair all properties of the continuous functions similar to

functions of one variable. For example, the function z= 1S continuous

X" +Yy

everywhere, except the point(0,0). For the function z= the points of
X =Y

discontinuity are all points for which y=x ory=—x.



5. Partial Increments and Derivatives of the First Order

Definition. An open r-neighborhood of a given point M, (xo, yo) is the set of
all points lying inside the circle of radius r and center at the point M .

Let a function z= f(x,y) be

A
B defined in a neighborhood of a
M2 (Xo,yo e Ay) .
] point M ,(x,, y,) and
IAY Mo(x\yo) points M, (xo + Ax, y, ),
yo T M[%o +Ax,yu) M2 (XO ’ yO + Ay) belong tO this
neighborhood too.
AX X
<> o
O >

Fig. 4.1

Definition. A difference f(xq +Ax, yy)— f(xy, Vo) is called the partial
increment of the function z = f(x, y) with respect to x and is denoted by A 7.

Similarly, f(xq, vy +Ay)=f(xy,¥9)=A,z

. Az . .
It should be noted, that a ratio Excan be considered as a function of one

Z
variable with respect to Ax and a ratio A—y - with respect to Ay .
Y
Definition. The limit of a ratio of partial increment of the function z = f(x, y)
with respect to X to the incrementAx, as Axtends to zero, is called a partial
derivative of function z = f(x, y) with respect to x

Partial derivative with respect to x of the function z = f(x, y) can be denoted
a /7 /7
by one of the ways: a—i, s [r

. A y Z aZ ’ ’
By analogy, lim ——=—=12,=f.
Ay—0 Ay By
The partial derivatives z, and z'y are functions of two variables. But when we
were finding z. we assumed that the variable yis constant. It means that for finding

partial derivatives we can use formulas and theorems for function of the one variable.

10



Example 5.1. Find partial derivatives of the functions:

a)z=x3+y5—6, b)Z=x2y3,
C) Z=ln(x2y— y3x° +7).

Solution:

a) For finding 7. we regard yas a constant and differentiate with respect

tox:
z;z(x3+y5—6)x =3x2;
y=const
, 3 5 4
Zyz(x +y _6)y =5x".
X=const
b) z=x7y>.

’

2 =(y%)

y=conwt

’

2 =(y%),

x=const

c) z= ln(xzy - y3x5 +7).

¢ 2xy —5y3x*
’ 2 3.5 y y
zx=(ln(x y—y X +7))x 5 3 ;
y:const X y_y X +7

’

zy = (ln(xzy —y7x + 7)) y X" +3y°x

) 3.5 '
x=const X Y=Y x +7

11



6. Geometric Interpretation of Partial Derivatives

The plane y =y, cuts the surface z=f (x,y) in the curve z = f(x, yo). At
each x, the slope of this curve is f/(x, y,).

Similarly, the plane x = x cuts the surface in a curve whose slope is

fy,(any)-

tangent line has slope f, fent, Yinie

e, Po(xg, ¥, wp) has slope f,

oo

i

1

i

1

¥

|

|

I

J
10 w=f(z,y)

y=4 / =

y

(.['[], _[/“)

Fig. 6.1

The geometric interpretation of partial derivatives of the function
z= f(x,y) is the that:

fr (xo, yo) is equal to the slope at the point F, (xo, Yoo Zo) of the curve

z=f(x, yo) in which the plane y =y, cuts the surface z=f (x,y).
Thus, in Fig.6.1, if x, y and z are measured in the same units

07 ,
tana =— =fx(x0,y0).
X (xo»)’o)
Similarly,
0z ,
tanﬂ:a— :fy(xo’)’o)-
Y (x()’yo)

12



7. Level Surfaces. Quadric Surfaces

Definition. Let a function of three variables f(x, y,z) be given. For any
number C the set of points (x, y, z) for which f(x, y,z)=C is called a level surface
of f, and we identify a level surface with the corresponding equation f(x,y,z)=C.

Level surfaces of functions of three are analogous to level curves of functions
of two variables.

We observe that the graph of any function f of two variables is a level surface.
We need only let

g vy z)=2-f(xy)
and notice that g (x, y,z)=0 if and onlyif z = f (x, y)
Thus the level surface g (x, y,z)=0is the graph of £, or equivalently, the graph of the
equation z = f (x, y). This is why we call the graph of a function of two variables a
surface.

In sketching a level surface we will use the intersections of level surface with
planes of the form x =cor y =c, as well as those of the form z =c. In each case the

intersection of the level surface with the plane is called the trace of the level surface.

a) Elliptic Cylinder b) Hyperbolic Cylinder
2 2 2 2
x—2 y—2 = 1 x_ — y_ — 1
a b a’> b?

Y

a) The trace of the elliptic cylinder in any plane parallel to the xy plane is the

2 2
ellipse a_2 T b_2 =1 If a=b, the surface is a circular cylinder.
b) The trace of the hyperbolic cylinder in any plane parallel to the xy plane is the
hyperbol ﬁ - —2 =1
yperbola —5 =5 = 1.

13



Parabolic Cylinder x?=2 py

The trace of the parabolic cylinder in any
plane parallel to the xy plane is the parabola

x2=2py.

x* y2 z? /— b
d) Elliptic Double Cone 5 +° 5~ 5= 0
The trace of the cone in any plane parallel to the xy plane
is either an ellipse (a circle if a =b) or a point. The traces y
in the yz and xz planes consist of two straight lines through
the origin. X
If a =b, the surface is called a circular double cone. ]

c

2 22
e) Hyperbolic Paraboloid 2 _2 .=k
B2 4’ ¢
The traces in the yz and xz planes are parabolas. The
trace in the xy plane consists of two intersecting lines.
The trace in any other plane parallel to the xy plane is
a hyperbola. The surface has the appearance of a

saddle.

f) Elliptic Paraboloid g) Two-sheeted Hyperboloid
7,0z XLy
az p: ¢ a b
Z Z
a
y
X

14



The trace of the paraboloid in any plane parallel to the xy plane is either an ellipse (a
circle if a=>), or empty. The traces in the yz and xz planes are parabolas. If a=>b,
the surface is called a circular paraboloid.

g) Problem 1. Denote the traces of the two-sheeted hyperboloid.

h) One-sheeted Hyperboloid i) Ellipsoid
2 2 2 2 2 2
Xy X Y oz
e crteT

Z

Y
=

Problem 7.1. Denote the traces of the one-sheeted hyperboloid and the ellipsoid.

8.Tangent Plane and Normal Line

Let z= f(x,y) be a differentiable function at a point (xo, Yo ,). Consider the

sections of the surface S representing this
function by the planes x=xyand y=y,. Let

M,T, and M,T, be the tangent lines at the

point M(xq,vg,20) (see Fig.8.1) to the plane
My curves obtained in the sections. The plane T
passing through these lines which meet at the
o ‘ -=—  point M, is called the tangent plane to the

<

’ surface S at the point M. The point M is

Tz a2 called the point of tangency (the point of
contact) of the plane T and the surface S.

Ries 144

Fig.8.1

The straight line through M normal to the tangent plane is called the normal
line to the surface S at the point M.

15



Let us find equations of the tangent plane and the normal line.
The straight line M T, is in the plane y =y,parallel to the plane Oxz. Its slope

relative to the x-axes is equal to f. Therefore the equations of the line M T are

2=20=f{(x0.%0) (x=x0). y= 8.1
The equations of the straight line M (T are found similarly:
z2=20=f1(x0.50)- (y=yo) x=x, (8.2)
An equation of the plane T through M, (xo, yo,zo) can be written as
2= 29 = Alx—x)+ B(y - ) (8.3)

The straight lines M (T, and M T are in the plane T, so the coordinates of the points

of these lines satisfy the equation of the plane. Substituting the expressions of
z—2zpand y—y, from (8.1) into the equation (8.3) we obtain

Fix0,0)- (x = x)= Alx = x0)= A= f(x0, )
Furthermore, we similarly find that

B = f7(x0. %)
Thus, the equation of the tangent plane takes the form

z— 20 = filxg,y0) (x—xo)+ fy’(xo,yo)'(y—yo) (8.4)

It is clear that equations of the normal line are

X=Xy Y= Yo
1—20="— =— (8.5)
’ fx(xO’yO) fy(x()’yO)

9. Total increment and Total Differential of a Function of Two Variables

Let a function z= f(x,y) be continuous on some set D and have z;,z'y in
this set. Let us take arbitrary point M, (xo, Yo )e D, then

Az(M o) =25 (x0, yo )Ax + 2}, (xg ¥ JAY + ax + By, (9.1)

will be the total increment at this point, where @, 8 are infinitesimal values as
Ax —0 and Ay — 0.

Definition. A function f(x, y) is differentiable at (x,, v, ) if

’

fx, (xg5 yo),fy (xo, yo) exist and the equation (9.1) holds for f(x,y) at(x,, y,).

16



We call f(x,y) differentiable if it is differentiable in its domain.

Definition. The principal linear part with respect to Axand Ay, of a total
increment Az is called total differential of the function z

dz(M o) = 2 (xg, yo )Ax + 2, (xgyo )Ay.  (9.2)

Example. The factory manufactures right circular cylindrical storage tanks that
are 25m high with radius of 5m. How is sensitive tank’s volume to small variations in
height and radius?

Solution. A tank’s volume is
V=rx-r’-h.
So V' is a function of two variables r and h. Then the change in volume caused by
small changes drand dh in radius and height is approximately

dV =V (5:25)dr +V; (5:25)dh = (27 r h) (s..c\dr + \m r? dh =
((525)r-+V; (525Mh = Qi) sy + b2

=250z dr + 257 dh

The volume of cylinder is more sensitive to the small change in r than it is to
an equally small change in £.

In contrast, if the values of r and / are reserved to make r=25 and h=35,
then full differential in V' becomes

4V =V, (25,5)dr +V; (25 5)dh = (221 (5 dr + (22 (p5.5)lh = 2507dr + 625l

Now the volume is more sensitive to changes in 4 than to changes in r.

From this example we can make the conclusion:

Functions are most sensitive to small changes in the variables that
generate the largest partial derivatives.

10. Applying a Total Differential to Approximate Calculations

A total differential and a total increment of a function z = f(x, y) at a point
M (xq, yo) are:

dz(M )= 2/, (xg, yo JAx + Z; (x0y0 )AY

Az(M )= f(xg + Ax, yo + Ay)— f(xp, y0)-

Because dz(M,)=Az(M ) when Ax —0 andAy — 0, than

17



fxg +Ax, yo +Ay) = f(xg. v9)+ 25 (%9, yo JAx + 2}, (xg y9 )Ay.  (10.1)

The formula (10.1) allows us to find approximate value of the function of two
variables.

Example. Find approximate value of the function z = x? +2xy+y at the point
M (1.03;1.97).

Solution.

Let M,(1,2), than Ax=0,03 and Ay =-0,03. Find partial derivatives and
calculate their values at the point M (1,2).

M
%=2x+2y:>M=2-1+2-2=6,
0x X
M
%=2x+3y2:>M=2-1+3-22=14,
dy dy

Using the formula (10.1), we obtain

2(M)=13+6-0,003+14-(-0,03)=13+0,18 - 0,42=12,76.

11. Partial Derivatives of the Higher Order

Partial derivatives of the first order z}, and 2 of a function z = z(x, y), in

general, are functions of two variables. From them we can find derivatives of the
second order with respect to x and y

” ” ” ”
Txxr Lxys Lyys Lyx
We can differentiate a function as long as derivatives involved exist.
The derivatives z7, and 77, are called the mixed partial derivatives of the

second order and when they are continuous they are equal z;'y = z;x.

Example. Show, that 7z, =z for given function

z=)c4y3 —2)62)75 +8.

18



Solution.

T =12xzy3 —4y5
Z;y =12)63y2 —20xy4

zZ, =4x3y3 —4xy5 =

9

” 4 2.3
, 7o, =6x"y—40x"y
Zy=3x4y2—10x2y4:> iy 1207 20t
2y =12x7y~ —20xy

yXx

It is clear that z7, =z .

Note that we can continue calculation of partial derivative of the third order, et

cetera:
777
V24 Zxxx
Zxx = 777
Zxxy

’7
’7 nyx
ny = z ’77

xyy

’77
’7 Zyxx
Z yXx = 177

Lyxy

’
y Z///
’7 yyx
Zyy — { ’rr

Z vy

z=z(x,y):>< .

In similar way we can find partial derivatives of the higher order of functions
of three, four, ..., n variables.

12. Differentiating Composite Functions

Let us consider a function z = z(x, y), where x=x(¢) and y = y(t) are
functions of one independent variable. Then formula for finding the derivative of
composite function z = z(x, y) will be:

de_dzds zdy

= (12.1)
dt oxdt Ody dt

Example. Find the derivative of the function

zzﬁlny,where x=sin’¢ and y=5".

19



Solution: Using the formula (12.1)

dz _dzdx 9z dy
dt  oxdr Jdydt

we have

’ /7 ’ /7

%:(\/;lny)x(sinz t)t +(\/;1ny)y(5t)t =

-l y2sintcost+£5t In5.

2/x y

13. Directional Derivative and Gradient of a Function of Several
Variables

An important characteristic of a function u = f(x, y, z) is the rate of its change
in the given direction of a vector @ = (a_;a yid, ).

It is possible to prove that a directional derivative of the function
u=f(x,y,z) atapoint M(x,, yy,zo) can be calculated by the formula

aM(Mo)
da

=u;(M0)cosa'+u'y(MO)cos,B+u;(M0)cosyf (13.1)

Here

a

cos B = > , (13.2)
\/axz ta,’ +a,’

cosy = 4

Example 13.1. Find the directional derivative of the function z =5xy — x2 y2

at a point M, (3;2) in the direction of the vector M oM, , when the point M| has
coordinates (6;6).

20



Solution. Find the coordinates of the vector M M :

a=MyM, :(le _XMOU’M1 _)’MO ):(6—326—2):(324)

Find partial derivatives of the given function:

%=(5xy—x2y2),x =5y—2xy2;
0x '
%z(Sxy—xzyz)y =5x—2x2y
dy

Using the formulas (13.1) and (13.2) we have

az(a]‘;()) = (Sy - 2xy2]

4
=3 + 5x—2x2y]x: — =
" J9+16 | > J9+16

=—14-0.6+(-21)-0,8=-25.2.

The vector which coordinates are the values of partial derivatives of the first

order at a point M (x4, yo,2o) is called gradient vector of a function u = f(x, y, z)
at apOintMO('xo’yO’ZO)

gradz(M )=, (Mo ), (M fu’, (M)

(13.3)

Gradient vector points in the direction of the greatest rate of the change of the
function and whose magnitude is the greatest rate of change

gradz(M,) = \/L%jz + (%]KO)JZ + (%ﬁmf (13.4)

Example 13.2. Find the direction of the greatest rate of the change of the

function u=x"y’ and magnitude of the greatest rate of the change at the point
M, (1;2).

Solution. In this case the formula (13.4) has the form

() o)

As




aug;lo)z(xzy3)y’

Then grad z(M,)=(16;12)

and ‘grad z(MO)( =162 +12% =+/400=20.

x=1 =(3x2y21x
y=2 y

14. Extreme of a Functions of Two Variables

Definition 14.1. A function z= f(x, y) has minimum (maximum) at a point

Mo (x0.v0) if f(xg.v0)< £(x.3) (£(xg.v)> f(x.y)) for all points which belong
to sufficiently small neighborhood of a point M (x4, y, ).

Definition 14.2. The points at which a function z = f(x, y) has maximum or
minimum are called the points of extreme of the function.

Definition 14.3. The points at which partial derivatives of the first order do not
exist or equal to zero are called the critical points or points suspicious on extreme.

Definition 14.4. The points at which all partial derivatives of the first order
exist and are equal to zero are called the critical (stationary) points.

Example 14.1. Find critical points of the function
_ 2 2
z=x"—xy+y  +3x—-2y+1.

Solution: Find partial derivatives
7. =2x—y+3;
Ty, ==X+ 2y =2.
These derivatives exist for all x and y. It means that function have stationary points
if z; =0 and 2z}, =0.
Make up the system of the equations

4
{z;zo {2x—y+3=0 {2x—y=—3 T3
j— .

, = =
zy =0 —x+2y—-2=0 —x+2y=2 1
)’25

: 4 1). : : : :
Hence the point M (— ggj 1s the stationary point of the given function.
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Theorem 14.1. (the necessary conditions for extreme).

If a differentiable function z = f(x, y) attains an extremum at a point
M y(x,, o) its partial derivatives turn into zero at that point:

dz
g< =0,
[ax X=X,
z= f(x, y) has extremum at M (x,, y,) = T
[az
21 =o.
ay X=X,
Y=Y

In other words a point M ,(x,, y, ) is a critical point of the given function.

Proof.

Let the function z = f(x, y) have an extremum at the point M 0 (xo, Yo ). Lety
be fixed: y=y,. It means that the function z = f (x, yo) is the function of one

variable.It follows from the condition of the theorem, that this function has extremum
at the point x = x,. Hence, its derivative with respect to x should be equal to zero at

the point x = x,,. That is (%J =0. The theorem

X

=(0. Similarly we get (%J
ay X=X,

X=X,

1s proved.
As we know the equation of the tangent plane to the surface z = f(x, y) is
172 Zf;(xo’YO)'(x—XON‘ f):(x()’y())'(y_ YO)-

It is clear that it turns to z = z, for a stationary point M ,(x,, v, ).

Thus, geometric meaning of this theorem is:
If a differentiable function z = f(x, y) attains an exstremum at a point

M, (xo, Yo ), then the tangent plane to the surface at the corresponding point
should be parallel to the coordinate plane of the independent variables.

e o Let the function z = f(x, y) be continuous together with its partial
derivatives of the first and the second orders and let a point M y(x,, y,) be a
stationary point of this function. Denote
azz(MO)_A. azz(MO)_B. 0%z(M,)

2 oxdy 5 = C, and form
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0%z(M,) 9%z(M,)
ox oxdy A 2
AlM,)= = =AC-B
(Mo) 0°z(My) 9°z(M,) |B ‘
0xdy dy>

Theorem 14.2. (the sufficient conditions for extreme).

If A(M,)>0 the function z= f(x, y) has extreme at a point M ,(x,, y,)
which 1s maximum if A <0 and minimum if A > 0.

If AC — B? <0 there is no extreme of the given function at the point M, (x,, y,).

Note, that the point M ,(x,, v, ) is called a saddle point.

If AC—B?*=0 the properties of the second derivatives do not provide any answer

to the question of existence of an extreme and further investigation will be needed.

Example. Find the extrema of the function z = x? - 2xy + 3 y3 - 3y.

Solution.
The given function is continuous and differentiable everywhere in the xy-plane.
d
=
1). Using the conditions ax find the critical points of the given function.
2.
dy
0z 2 | j ’
—=|x"-2xy+—y -3 =2x—-2y=0
0x ( T . g x—y=0
a 1 ’ = 2
—Z=(x2—2xy+—y3—3yj =-2x+y*-3=0 —2x+y"=3=0
dy 3 y

The solution of this system gives two stationary points M(3,3) and M, (-1,—1).

2). To use the sufficient conditions for extreme evaluate the second derivatives

of the given function.

’

9’ 1 K
—Z=[(x2—2xy+§y3—3y) J =(2x—2y)x =2,

0x>

82z 2 ’

8);—2:(_2x+y —3)y =2y,

0%z ’
=(2x-2 =-2.

Py (2x-2y),

a) Consider the point M (3,3).
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2 2 2
ox> oxdy dy* y=3
A B |2 =2 _
AM,)= = =12-4=8>0, A=2>0 and the function
B C |-2 6

has minimum at the point M, (3,3).
b) Consider the point M, (—1,—1).

2 2 2
Hence A:M:Z B:M:—Z C:wzzy‘xz_l — -2, then
ox? 0xAy dy> y=-1
A B |2 =2 '
A (Mz) = = =—-4—-4=-8<0, so the function has not
B C -2 -2

extremum at the point M , (-1,-1).

15. The Conditional Extreme of Functions of Two Variables

Definition. An extreme of function z = f(x, y) under condition ¢(x, y)=0 is

called a conditional extreme of the function.
There are two methods of finding conditional extreme.

I. To find a conditional extreme by Lagrange method. To do it we need:
1). Write the Lagrange function

L(x,y,A)= f(x.y)+ Ag(x, y) ,

where A1is an arbitrary constant parameter.
2). Find critical points M, (xk , ¥ »A; ) of Lagrange’s function, using necessary

condition of existence of the extreme

oL o

— =0 — +A— =0
ox ox ox

LT W A
dy dy dy

a_L — O ¢(’x’y) = O
oA

3). Check sufficient conditions at every critical points of the function for
existence of an extreme :

a) if at a point M, (x,,y, , A, ) the determinant of the third order
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1s positive, then a point M, is a point of maximum and

Zmax Zf(Mk)zf(xk’yk):

b) if determinant A(M, ) is negative, a point M is a point of minimum

<min =f(Mk)=f(xka)’k)-
II. To find a conditional extreme by the substitution method. To do it we need:

a) solve equation ¢(x,y)=0 forx;

b) substitute this variable into the equation z = f(x, y);

¢) examine the function of one variable for extreme.

Example. Let us determine the greatest value of the function z = x? y on
condition that x and y are positive and satisfy the equation4x + 5y =60.

Solution.
I. Let us use the Lagrange method.
1) write the Lagrange function
L(x,y,A)=x*y+ A4x+5y-60);
2) find critical points

M =0 |5 {2x(60—4x) + 204 =
2 L s1 o= 0 4x2 + 204 =
120x —8x2 —4x2 =0
120x—12x% =0
10x—x2=0

x(10-x)=0=x=0, x=10
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x =0 does not make sense,

y=60—40=4 ﬂ=—2xy=_ﬂ=_M=_20
5 4 2 2
So, critical point is M (10;4;—20).
3) find A(M )
2 2 2
a—§=2y, 8_§,=0, 0 L=2x
X dy 0xdy
0°L(M,) o °LM,)_ 3°LM,) _
ox? ’ oy? ’ oxdy
W _, 9 _,
ox dy
0 4 5
AMy)=4 8 20/ =400+ 400-200=600>0
520 0

4) x=10 and y =4 maximized the utility function which have maximum value
=107 - 4 =400.

< max

I1. Let us use the substitution method.

1) Solve equation 4x+5y =60 for x

60 -4
,(60-4)
5

(60 —4x)

2) Substitute y = in z=x%y
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x? (60 — 4x)

3) examine z = for extreme

Domain of the function z: D(z)=R

o 2x(60 —4x)+x*(—4) 120x—8x* —4x>  120x—12x>
5 5 5

xl =O,

z’=0:>12x(10—x)=0:{
.XZ =10.

(60 — 4x) :{yl =12,
.X:2 :4,

then we have two critical points M (0;12) and M , (10;4).

N

v

0 10
., 120-24
z =OT‘x:10=—24<0,then
Zma =107 - 4 =400.

16. The Greatest and the Least Values of a Function of Two Variables

To find the greatest f.. p(x, y) and the least Foinp (2, y) values of the
function z= f(x, y) in the closed region D we need to find the extreme values of the

function at the points that lie inside of D, and on the boundary of the region. From
these values choose the greatest and the least values. This numbers will be the
greatest and the least values of the function z = f(x, y) in the closed region D .
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Example. Find the greatest and the least values of the function
z=x? y(4 o y) in the triangle bounded by the lines
x=0, y =0, x+y=6.

y 4

o

Fig. 16.1.

Solution.

Find the critical points inside the region
{Z; =2xy(4 —x - y)—xzy =xy(8—3x-2y)

Z'y =x*(4-x—y)—x*y=x*(4-x-2y) .

According to the necessary condition for the existence of the extreme of the
function of two variables have a system of equations

xy(8-3x-2y)=0
{x2(4—x—2y)=0

Inside of the region x#0 and y #0, then

3x+2y=8 x=2
= .
x+2y=4 y=1

At the critical point M (2,1) we have z(2,1)=4.

Now we examine the function on the boundary of the triangle. On the straight line
x+ y=06 variable y=6— x and function z takes the form

Z=x2(6—x)-(4—x+x—6)=2x2(x—6), xe[0,6].
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Let us find the least and the greatest volumes of this function of one variable
on the closed interval [0,6].
7 =6x>-24x; 7' =0, 6x(x—4)=0= x, =0, x, =4
Find the values of the function at the points x=0, x=4, x=6.
z(4)=-64, z(0)=0, z(6)=0.
On the straight line y =0 we have z=0.
On the straight line x =0 we have z=0.
At the point (6,0) z=0.
At the point (0,6) z=o.
So, the given function zhave the greatest value at the point M, (2,1) inside the
region and the least value at the point M , (4,2) on the boundary of the region.

ImaxD = 4
IminD = —64

17. Solution of Problems
2

Problem 1. Let the function z = 5y be given. Find.

2x

a) the total differential of the first order;
b) all partial derivatives of the second order.

Silution.
e a) The total differential of the first order can be calculated using the formula

dz=2%dx+ 9% ay.

0x dy
Calculate the partial derivatives of the first order:

4 ’

9z _(y* _y_2[1) __
dx | 52x ) x|y=const 52\ x 52x%°
9z (27 _ L)y
0y | 52x ) y|x=const  52x 26x

2
dz=——dx+—2dy.
52 %x 26x

e b) Calculate the partial derivatives of the second order:

azz:( y? ] =_y_2(x_2)’= yz(_zx—3)’= yzz;

ax2 | 5242 52 52 26
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02 2 1 ‘ 2
z_|_ __ (yz)z_ y __ Y
d xdy 522 y 2

’

9°z (y) 1 - 1
ay 26x y 26xy 26x

(%J U T

Note that:

axay ayax

Problem 2. Let the function u = e’>***’, the point A(-1;1;-1), and the vector
a= (2; 2«/52;52) be given. Find:
a) a gradient of the given function at the given point: ( grad f(A));

)

b) a derivative of the function into direction of the vector a at the point A: ( >
a

Solution.
¢ a) Gradient of the given function at a given point we’ll find using the

formula:

ngu(A)= au(A);au(A);aM(A) -
0x dy d x
1) B_u — (652xz+2y ), — 652xz+2y . 52Z —
ox x
. du(A) _ du(l;-1;1) = S 50 = 5067,
ox o0x y=1
z=—1
’ a_u=(652x2+y2 )’ _ o2y 2y=
dy y
N 0 M(A) _ 0 u(l;_l; 1) _ 2652xz+2y = 2654;
dy dy =
SRS
0z z
. du(A) _ du(l;-1;1) = 50 =500,
0z 07 y=1

z=-1

So
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grad u(A)= (— 52¢>*;2¢™ ;—52654) = grad u(A)=2¢>* (- 26;1;-26).

eb) Using the formula for finding a derivative of the function into direction of the

vector a at the point A we have:

du(A) 1 au(A)ax . 8u(A)a s Bu(A)aZ _

da \/a§+a§+af ox dy ' 9z °

a2 ;
a, =252 = Jal +a> +a? =27 +4.52+52% =/(2+52)" =54
a, =52

au(A) —_52¢%, a”(A) —2e% aM(A) _ _50,%

| ox dy 0z |

1 4 4 4 2¢™
= (- 52¢™ 24 2¢% 2452 = 52¢% - 52) =
54 27

(-26++52-52-13)=

_2¢7 (/32 -702)
27

54
The answer: grad u(A)= 2¢> (- 26;1;-26); BL;)(_A) = 257 (\/5_2 — 702)
a

Problem 3. Investigate the function z = x> + y> — 3xy for extremum.

Solution.
1. Find the critical points using the conditions ax :
= o,
dy
3 3
%:a(x +y 3xy):3x2 3y
ox ox '
5 3 ( L3 g ) . So we have the system:
g T V- 3y? —3x
dy dy
3x"=3y=0 x*—y=0 ()
=
3y =3x=0 |y*—x=0 (2)

D.A)= y=x> @)
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2).(3) = @) = x* —x=0= x[x? —1):0:{x1 ?’ @)

y1 =0

3.4 — 3 :{
yy =1

Thus there are two critical points: P,(0;0) and Pz( 1;1).
2. To answer the question if the point P,(x,,y,) is the point of extremum or

B
not we must consider A = = AC — B? where

azz(Po),
dy?

, and C =
0xdy

1) if A >0 then extremum exists, and for A > 0 it is minimum,for A < 0 it is
maximum,

2)if A <0 extremum doesn’t exist,

3) A=0 we can say nothing.
The second derivatives are

2 /
a—§=(3x2 —3y) x =6ux,
ox y=const
0 2Z 2 !
=3x" -3 =-3,
axay ( y) g x=const
0%z
—=06).
dy >
a) Consider the point P;(0;0):
2 2
A:ig,o):6xx=0:0’ C:a Z((Q),O):6yx:0_0,
a.x y=0 ay y=
2
p=9200)_ 4 _
0xdy y=0
A B |0 -3 : .
So A= B C = 3 =-9 <0 = extremum doesn’t exist at the point P;(0;0).
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. . 9°z(1,1)
b) Consider the point P, (1,1):A= = 6x|,-; =6,
ox y=1
2 2
c=2 Z(;’1)=6y =6, B=? L) _ g =3
ay y=1 axay y=1
A B 6 -3 ) o
Thus we have A = c = 3 =27 >0 =extremum exists. As A=6>0 itis
minimum.
Zoin (1,1)= (x3 +y? =3xy) o =1+1-3=-1.
y=1

The answer: Z g (P2 )=—1.

Problem 4. Find the domain of the function:

1
a) u= : > b)u=1g(x2—y2+2x+4y)
x“+2y° -4
Solution.
1
°a) u = 5 5 :>D(u):x2+2y2—4¢0.
x“+2y° -4
First find the boundary whose equation is x2 42 y2 -4 =0.
2 2 2 2
x? +2y2 —4=0= x’ +2y2 =4:>x—+y—=1:>x_2+ Y . =1
2 (V2)
Ay The boundary of the domain is the ellipse with
NX the center in the original and semi axes a = 2,
A%y . .
4 % b =~/2 . Hence the domain of the given
A P function is the xy-plane except the points of the
£ 0 2% ellipse.
X 7
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*b) ”Zlg(x2 —y? +2X+4y):>D(u):x2 —y2 +2x+4y>0.

The boundary of the domain of the given function is the curve
x? - y2 +2x+4y=0. Completing the squares gives us

_9)? 2
xz—y2+2x+4y=():>(x+1)2_(y_2)2=_3:>(y 2 (41’

3 (3)

. vk 1 The boundary of the domain is the
W 4 -~ 1 hyperbola with the center at the point A(-1,2).
Ty ereemid] Hence the domain of the given function is the
D) outer part of the plane Oxy with respect to
| hyperbola. The hyperbola does not belong to
AX |12 the domain.
N
- =
g S U i}
& N
Problem 5. The function lzey /% is given. Does this function satisfy the
X
82
equation 7, y 2209
X a y2
Solution.
dz Ix)’ Y
D —=l?") =——¢e""";
) a X ( )x _x2
2)%=( y/x)/=l€y/x 82Z=(l€y/x) /=L€y/x,
0 y y X ) y2 X , X2

2
: - : z 07z
Thus the function %ey /¥ satisfies the equation — + y 32 =0.
X X y
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Problem 6. Using the total differential of the function of two variables

calculate approximately %/3.012 — 2002 knowing that /n2 = 0.69.

Solution.
Let us consider the function 7= f(x, y) =x?-2".
Assume

xyp =3,x =3.01= Ax=0.01,
vo =0, y;, =0.02= Ay =0.02,

2o = f(3,0.02) =332 - 20 =2,

then the desired value is Z; = f (3; 0.02) :%/ 3.012 = 2002
Using the formula (10.1) we have

71 =29 +dz,
4 0z
where dz = — cAx + — -Ay.
0x X=X, ay X=X,
Y=Y Y=Yy
As
0 e 2 ‘ 4
a—Z‘ =(3 x2—2y )x =3 = .X > =3_4z()333,
1 =0 36?2 f s
y=0
0z (3 > ) ’ —2"1n2 ‘ —0.69
9< —R/x2 =2V = ~ =-0.058
Y=x Y |x=3 ) ’
9 =Y, y=0 3'3V(x2_2y) x=3
y=0
then

Y3.012 =292 [z, =~ 7, +d z]=2+0.333- 0.01 - 0.058 - 0.02 = 2.004.

Answer: 33.012 —2%92 <=2 004.
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Problem 7. Find equations of the tangent plane and normal of the surface
z=x+ Xy + y2 at the point M(l, 2,7).

Solution.
1) To find the equation of the tangent plane use the equation (8.5)

Z— 2 =f§(xo’yo)'(x—xo)"'fy,(xo’)’o)'(y—)’0)’

where x, =1, 9 =2,29 =7;

Flrpn)=l ror )|, =l =4
y=2 -

f;(xoay0)=(x2+xy+y2)y o —(x+2yX;i12=5
y=2 B

So the equation of the tangent plane is
z2=T+4x-4)+5(y-5)= z=4x+5y—34.

2) To find the equations of the normal line use the equation (8.4)

X=X Y=Y z=7 x—-1 y-=2
Z_Z(): , == ; = = .
fx(x()’yO) fy(XOByO) 1 4 5

=7 x-1_y-2
4 5

Answer: z=4x+5y—34,
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18. REVISION EXERSISES

The values of the parameters a, b, ¢ in the conditions of variants are:

a — the first letter of your surname
b — the first letter of your name
¢ — the first letter of your patronymic

1 2 3 4 5 6 7 8 9
A B C D E F G H I
J K L M N O P Q R
S T U A% A\ X Y Z
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Variant 1.
52

b+1)y
a) differential of the first order);
b) partial derivatives of the second order.

1. Let the function z = be given. Find:

2. Let the function u = x> + (c + 2)xy3 + 27, the point A(1;2;—1) and the vector
a= (2; 2Va+1a+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A))

af(A)]-

b) derivative of the function into direction of the vector a at the point A ( o
a

3. Investigate the function z = X+ 3xy2 —15x — 12y for extremum.

4. Find the domain of the function :
Dz=A9y% - x2y?;
1

b) z=

x4y
5. The function z = Y s is given. Does this function satisfy the equation
2 yz)
1oz 19dz_ z_,,

6. Using the total differential of the function of two variables calculate

approximately (1 .02)4'05

2 2
7. Find equations of the tangent plane and normal of the surface z= " + Y at the

point M (2,3,2).
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Variant 2.

1. Let the function z = In—>" be given. Find:

b+2)y

a) differential of the first order

b) partial derivatives of the second order.

2. Let the function u=(c+1)xIn y + 2, A(l;1;2)the point  A(1;2;—1) and the vector
a= (2; 2Ne+1c+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A)),

o L. o - : Jf (A
b) derivative of the function into direction of the vector a at the point A ( fa (_ )j
a
3. Investigate the function z = x> + y> — 9uxy for extremum.

4. Find the domain of the function:

a)z =arcsin%;
X
1
b) z= > 5
I+x"+y

5. The function z=x" is given. Does this function satisfy the equation

A —(1+ Knx)-%=0‘7
Y 0xdy Y 0x '

6. Using the total differential of the function of two variables calculate approximately

J8.04% +6.032 .

7. Find equations of the tangent plane and normal of the surface z=+/9 — x? - y2
at the point M (1,2,2).

40



Variant 3.

(@+2)" be given. Find:

1. Let the function z=e¢
a) differential of the first order;

b) partial derivatives of the second order.

(b + 2)y3
X

a=(2;24b +1;b +1) be given. Find:

2. Let the function u = + b xz, the point  A(1;0;—1) and the vector

a) the gradient of the given function at a given point ( grad f(A));

)

b) derivative of the function into direction of the vector a at the point A ( =
a

3. Investigate the function z = x* + y* — 8x — 2 for extremum.

4. Find the domain of the function:

a)zzﬁn(xy—l);
b) z= ! .
x+y

2

5. The function z = )3;— + arcsin xy 1s given. Does this function satisfy the equation

X
0 0
2,985y 25432202

xaxyay

6. Using the total differential of the function of two variables calculate approximately

sin 32° - cos 59°.

7. Find equations of the tangent plane and normal of the surface z = \/ 26— x> — y2
at the point M (3,4,1).
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Variant 4.
1. Let the function z =sin (a x? y)be given. Find:

a) differential of the first order;

b) partial derivatives of the second order.

2. Let the function u = 012y , the point A(—1;1;—1) and the vector

a= (2; 2Na+1;a+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A));

)

b) derivative of the function into direction of the vector a at the point A ( =
a

3. Investigate the function z =3x — x? - xy — y2 + 6 y for extremum.

4. Find the domain of the function:

X
a) z= arccos —-;
y

1
XYy

b) z=

5. The function z = Kn(xz + y2 +2x + 1) 1s given. Does this function satisfy the

. 9%z 9%z
equation —2+—2=0.
ox~ dy

6. Using the total differential of the function of two variables calculate approximately
(4.05)*%.

2

7. Find equations of the tangent plane and normal of the surface z=x" — y2 at the

point M(5, 4, 9).
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Variant 5.
2

1. Let the function z = Z—be given. Find:
X

a) differential of the first order;

b) partial derivatives of the second order.

2. Let the function u = y(”l)x + xcosz, the point A(O;—2; %) and the vector

a=(2;2vb+1;b+1) be given. Find

a) the gradient of the given function at a given point ( grad f(A));

o . . - : Jf (A
b) derivative of the function into direction of the vector a at the point A ( J; (_ )j
a

3. Investigate the function z =2x> +2y> —36xy + 430 for extremum.

4. Find the domain of the function:

a) Z=‘{/9—3x2 —yz;
1

b).z = .

x? —y2 -1

5. The function z=e" is given. Does this function satisfy the equation

6. Using the total differential of the function of two variables calculate approximately
z=n(0.9 +0.99? ), knowing that ¢n2 = 0.69.

7. Find equations of the tangent plane and normal of the surface z= x> +y? atthe
point M (1,2,5).
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Variant 6.

1. Let the function z = cos— be given. Find:
ay

a) differential of the first order;

b)partial derivatives of the second order.

) ) . 1
2. Let the function u = z arcsin x + bxy, the point A(E :b; Oj and the vector

a= (2; 2Va+1,a+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A));

o . . - : A
b) derivative of the function into direction of the vector a at the point A (8]; (_ )j
a

3. Investigate the function z =2xy —4x — 2y for extremum.

4. Find the domain of the function:

a) z= Kg(xz — yz);

1
b) z= 5 5 .
x“+y“+9y

5. The function z = s given. Does this function satisfy the equation
y
2
0°z dz _ 09
dxdy Ody

x .

6. Using the total differential of the function of two variables calculate approximately
2,992 47,00

7. Find equations of the tangent plane and normal of the surface z=xy at the point
M(3,4,12).
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Variant 7.

1. Let the function z = cos— be given. Find:
ay

a) differential of the first order;

b)partial derivatives of the second order.

) ) . 1
2. Let the function u = z arcsin x + bxy, the point A(E :b; Oj and the vector

a= (2; 2Va+1,a+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A));

o o o - : Jaf (A
b) derivative of the function into direction of the vector a at the point A ( J; (_ )j
a
3. Investigate the function z = x% +2y?% + xy — x + 3y for extremum.

4. Find the domain of the function:

1

a) z= ;
Jx? +4y—1

1
b) z= 5 5 .
X"+ y 4+ 2x

5. The function z = Kn(x +e™” ) is given. Does this function satisfy the equation
dz 9%z 9z Bzz_
0x dxdy 0y 9 x?2

0?

6. Using the total differential of the function of two variables calculate approximately
V2.032 +5. %92

7. Find equations of the tangent plane and normal of the surface z =/ x? -1+ y 2
at the point M (1,2,2).
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Variant 8.
1. Let the function z=ax>In y be given. Find:

a) differential of the first order;

b)partial derivatives of the second order.

2. Let the function u =tg (x2 + by)+ l the point A( 0;% ;2) and the vector
Z

a=(2;24b+1;b +1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A));

o . o - . Jf (A
b) derivative of the function into direction of the vector a at the point A ( J; (_ )j
a

3. Investigate the function z = X+ xy2 + 6xy for extremum.

4. Find the domain of the function:

a) z= ! ;

€0g2(4— x? + yz),

1

b) z=— .

x° =2y
5. The function z = Y s is given. Does this function satisfy the equation

- »?)

10z 1 9z _ z_,

6. Using the total differential of the function of two variables calculate approximately
n(0.01* +1.1%)

7. Find equations of the tangent plane and normal of the surface z= 3x? — xy+2 y2
at the point M (—1,3,24).
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Variant 9.

1. Let the function u = ¢* yx2 +% be given. Find:
X

a) differential of the first order;

b)partial derivatives of the second order.

2. Let the function u = z> — axy3 , the point A(— 1;-b; 1) and the vector
a= (2; 2Ne+1c+ 1) be given. Find:

a) the gradient of the given function at a given point ( grad f(A));

()

b) derivative of the function into direction of the vector a at the point A ( =
a

3. Investigate the function z = X+ 8y3 + 6xy —1 for extremum.

4. Find the domain of the function:

1
6\/)62 —4x+ y2 +2y

b

a) z=sin(x +2y)

1

b) z= :
y? —4x

5. The function z =z =xe’’* is given. Does this function satisfy the equation
0’z 9%z
-4

=07?
dy? d x>

6. Using the total differential of the function of two variables calculate approximately
33.012 =292 knowing that n2 ~ 0.69.

7. Find equations of the tangent plane and normal of the surface z= X+ xy + y2
at the point M (1,2,7).
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