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§ 1.1 Arithmetic Operations and Properties

A. Addition:

atb=c

a plus b equals c;

b added to a is c;

the sum of @ and b is c;

a, b are called the summands,

c 1s called the sum.

?? Find the sum of a and b.
Add b to a.
How much is a plus b?

B. Subtraction: a— b =c

a minus b equals (is) ¢;

the difference of @ and b is c;
a 1s called a minuend,

b is called a subtrahend;

c is called a difference.

?? Find the difference between a and b.

Subtract b from a.
How much is a minus b?

C. Multiplication: a x b =,
a b=c;
a multiplied by b equals c;
a by b is c;
the product of @ and b is c;
a, b are called factors, c 1s called a
product.

?? Find the product of a and b.
Multiply a by b.
How much is a multiplied by b?

addition — caoorcerue
to add — npubasnsamo
summand — craeaemoe
sum — cymma

how much — cxonvko

subtraction — gviyumanue
minuend — yMeHvuiaemoe
subtrahend - svivumaemoe

difference — pasnocmo

to subtract — guivumamo
once — 00UH pas
twice — 08aXH#CObl
three times — MPUNCObI

4x5=4-5=20 - five times four
(four times five ) is twenty

multiplication — YMHOJICeHuUe
multiply (by) — YMHOdHCamy
factor — MHOJICUmens
product — npousgeoenue



D. Division: a:b=a/b="=c  division

a divided by b is c; to divide (by)
a quotient of @ and b is c; quotient

a 1s called a dividend; dividend

b is called a divisor; divisor

c is called a quotient. remainder

to be undefined
??  Find a quotient of a and b.
Divide a by b.
How much is a divided by b?
Remember: Division by 0 is undefined!

example —npumep increase
decrease — ymenvwamo evaluate

Exercise 1.1.1.

— OenieHue

— oenums

— yacmuoe (om oejieHus)
— denumoe

— dequmeinb

— ocmamox

— He onpeoeieHo

— yeeaudueaniob
— BblHUCTIANDb

a) The product a-25 is given. Let a is increased at 20. What can you tell about the

new product?

b) The difference a — b is given. a) Let a is decreased at 710. What can you tell about the
new difference? b) Let b is decreased at 710. What can you tell about the new difference?

¢) The sum a + b is given. Let a is decreased at 10. What can you tell about the new

sum?

d) The quotient a : b is given. What can you tell about the new quotient if a) a is

decreased in 5 times? b) b is increased in 10 times?

e) Evaluate each of the following:

1) 684:9;  2)504:8; 3) 1000 -210-4; 4)480:6 + 18.

E. Properties

1. Commutative Property
Let a and b be any numbers. Then
a)a+b=b+a;
b)a-b=b>b"-a.

2. Associative Property
Let a, b and ¢ be any numbers. Then
a)(a+b)+c=a+(b+c)
b) a(bc) = (ab)c.



3. Distributive Property
Let a, b and c be any numbers. Then
abxc)=ab xac

4. Identity Property
a) There is a unique number, namely 0, such that for any number a,
at+l0=a=0+a.
b) There is a unique whole number, namely 1, such that for every number a,
a*l=a=1-a.

5. Property of Zero
a) Ifa#0,then0:a=20; -
b) 0-a=0=a -0.

6. Whole-Number Exponent
Let m is the whole number where m # 0. Then for any a

a™ = qlal...0a
\_ﬂ/——J

m
For example 5*=5-5=125, 22=2:2-2=8.

F. Some Important Problems

known — U3BECMHbIU
unknown — neuszsecmmuoiii
to (find) — ona mozo, ymobwl (Havimu)

I).x+a=b"l x=>b-a. To find unknown summand subtract the known
summand from the sum.

2.x—a=blU x=b+a To find unknown minuend add the subtrahend to
the difference.

3).a-x=b x=a->b.To find unknown subtrahend subtract the difference
from the minuend.

4.x-a=blU x=b>b:a To find unknown factor divide the product by the
known factor.

5.x:a=b U x=a-b. To find unknown dividend multiply the divisor by
the quotient.



6).a:x=b U x=a:b. To find known divisor divide the dividend by the
divisor.

Exercise 1.1.2. Explain the finding of x if
1)2-x=120 2)x-7=49 3)5+x=12 4)x+31=45
5)42 -x =139 6)x—17=34 T)x:5=125 8) 899: x =31

§ 1.2. Counting Numbers

counting numbers — ramypanvrbvle uucia prime — npocmoe 4ucio
composite — cocmaegHoe Yucio multiple — denumoe
is divisible by — oenumces Ha divisibility — derumocmo
long division — OelleHue 8 CIolOUK
prime factorization — pa3nodcenue Ha npocmvle MHONCUMENU
Greatest Common Factor — HauboONbLWULL 0OWULL Oeaumendb
Least Common Multiple — HauMeHbuee 0Ouee Kpamuoe

Definition 1.2.1. Numbers 1, 2, 3, 4,... are called the Counting Numbers.

Definition 1.2.2. A counting number with exactly two different factors is called
a prime number, or a prime. A counting number with more than two factors is
called a composite number, or a composite.

For example, 2, 3, 5, 7, 11 are primes, since they have only themselves and 1
as factors. 4, 6, 8, 9, 10 are composites, since they each have more than two factors.

1 is neither prime nor composite, since 1 is its only factor.

Theorem 1.2.1. Fundamental Theorem of Arithmetic. Each composite number
can be expressed as the product of primes in exactly one way (except for the order of

the factors).

Definition 1.2.3. a divides b if and only if a is a factor of b.
In this case

a is a divisor of b if a is a factor of b;
b is a multiple of a if b is divisible by a.
Theorem 1.2.2. Tests for Divisibility by 2, 3 and 5.
A number is divisible by 2 if and only if its ones digit is 0, 2, 4, 6, or 8.

A number is divisible by 3 if and only if the sum of its digits is divisible by 3.



A number is divisible by 5 if and only if its ones digit is 0 or 5.
The prime factor exponential form of a number.
72 =2-2-2-33=23-32
The form 23 - 3% is the prime factor exponential for of the number 72.

? Try to give the definition of the prime factor exponential for any number.

Problem Set 1.2.1
1. Find all primes less than 100.

2. Find the prime factorization for each of the following numbers.

a) 36 b) 54 c) 102 d) 1000
3. Determine which of the following is true.
a) 3 is a divisor of 21. b) 6 is a factor of 3.
c) 4 is a factor of 16. d) 5 is divisible by 0
e) 11 is divisible by 11 f) 48 is a multiple of 16.

Definition 1.2.3. Greatest Common Factor (GCF)
The greatest common factor of two (or more) nonzero whole numbers is the largest
whole number that is a factor of both (all) of the numbers. The GCF of a and b is
written GCF(a, b).

Example 1.2.2. Find the GCF(24,36).

Solution.
Step 1:

Express the numbers 24 and 36 in their prime factor exponential form:
24| 2 36(2 24=23%-3, 36=2%-32
12 2 182

6| 2 913

313 313

1 1
Step 2:

The GSF will be the number 2” 13" where m is the smaller of the exponents
of the 2s(twos) and 7 is the smaller of the exponents of the 3s (threes).



Thus GSF(24,36) =22 -3 =12.

Definition 1.2.4. Least Common Multiple (LCM)

The least common multiple of two (or more) nonzero whole numbers is the
smallest nonzero whole number that is the multiple of each (all) of the numbers. The
LCM of a and b 1s written LCM(a, b).

Example 1.2.3. Find LCM (24, 36).

Solution. Use the Prime Factorization Method.
1) Express the numbers 24 and 36 in their prime factor exponential form: 24 =23 - 3,
36 =2%-32
2) The LSM will be the number 2" 3* , where r is the larger of the exponents of the
twos and s is the larger of the exponents of the threes. So LSM(24,36) = 23 - 32 =
89 ="172.

Problem Set 1.2.2

1. Use the prime factorization method to find the GCFs.

a) GCF (8,18) b) GCF (36,42)
c) GCF (24,66) d) GCF (12,60,90)
2. Use the prime factorization method to find the LCMs.
a) LCM (6,8) b) LCM (4,10)
c) LCM (7,9) d) LCM (8,12,18)

§ 1.3. Common Fractions

fractiona — 0pobb

numerator — yucaumeins

denominator — 3HAMeHamenb

mixed number — CMeUarHHoe YUCo

proper fraction — npasuibHas Opoodwv

improper fraction — HenpasuibHas 0poows

the least common denominator — HauMeHbWULl 00Ul 3HAMEHAmelb

A. Definitions
Definition 1.3.1. If a and b are whole numbers, where b # 0, then the

fraction % , or a/ b, represents a of b equivalent parts.

a 1s called the numerator,
b is called the denominator.



Definition 1.3.2. If a numerator is less than a denominator the fraction is called
proper, if a numerator is greater than or equal to a denominator the fraction is called
improper.

For example the fractions 2/3, 17/21 are proper fractions, the fractions 3/2,
21/17, 15/15 are improper fractions.

. 3 .17
Definition 1.3.3. The numbers of the kind 45, IE and so on are called the

mixed numbers.

Note. Any mixed number can be changed to improper fraction, and an

improper fraction can be changed to mixed number. For example,
3_405+3_ 23 .
a) 4§= s 5 to changed a mixed number to improper fraction
multiple the whole part of this number by denominator and add to the numerator.
This is the numerator of the improper fraction. The denominator is the same.

15 3 . c g
b) - 32: to change an improper fraction to a mixed number divide its

numerator by the denominator with remainder. The quotient is the whole part and the
remainder is the numerator of the proper part.

Problem Set 1.3.1.

1. Change the following mixed numbers to improper fractions.

5 7 2 1
= Z 5% 9_
)3 b) 2 ) 5% d) 9=

2. Change the following improper fractions to mixed numbers.

a) 241/9 b) 132 ©)56/8  d)147/12

Definition 1.3.4. Fraction Equality

Let a/b and ¢/d be any fractions. Then a/b = ¢/d if and only if ad = bc.
In words, two fractions are equal if and only if their cross-products, that is,
products ad and bc obtained by cross-multiplication, are equal.

3 12
For example, PR 328 =7-12 = §4.

Theoreml.3.1. Let % be any fraction and » a nonzero whole number. Then

a_an_na (1.3.1)

This theorem can be used in two ways:

(1) to replace the fraction @ / b with an / bn. For example we can use (1.3.1) to
compare fractions, to add or subtract fractions.

(2) to replace the fraction ab / bn with a /b. We use it to simplify a fraction.

10



Definition 1.3.5. Less Than for Fractions

Let % and % be any fractions. Then %< %if and only ifa < ¢

Note: Although the definition 1s stated for “less than”, a corresponding
statement holds for “greater than”. Similar statements hold for “less than or equal
to” and “greater than or equal to”. To compare fractions with unlike denominators
can be compared by getting a common denominator.

Problem Set 1.3.2.

Prove the theorem Cross-Multiplication of Fraction Inequality.
Let a /b and ¢/ d be any fractions. Then a/b < ¢/d if and only if ad < bc.

B. Addition and Subtraction of Fractions and Mixed Numbers

Definition 1.3.6 Addition of Fractions with Common Denominators
a c . a c¢_atc
2 and 3 be any fractions. Then Z+ P
To add fractions with unlike denominators, find equivalent fractions with the
least common denominators. Then the sum will be represented by the sum of the
numerators over the common denominator.
Note: The least common denominator of fractions is equal to their least

common multiple.

Let

Example 1.3.1. Find following sums and simplify.

3 .5
a)3/7+2/1 6)59+3/7 ) 17/15+512 d)2,+3
Solution
3,2.3+2_5
a) JtyT g
5.3_507+30 _ 62
D) 5" o 63

c) The first way of solution:

4 5
/_ﬁ+5/_ 68+25 93 31 _ 11

15 12 60 60 20 20°

. 17 2
The second way of solution: as ITh IE we have

4 5
17+i_1{+/5_ 8+25 33 _ 11

15 12 15 12 60 60 20°

11



5

3 9+10 _ 19
2=+32= (24 3)+
d) 27+ 3% (2+3)

= 5—= 61
12 12 12

So to add mixed numbers it is not necessary to change them to improper fractions.

Definition 1.3.7. Subtraction of Fractions with Common Denominators
Let a/b and ¢/b be any fractions with a > ¢. Then
a c_a-c
b b b
If fractions have different denominators, subtraction is done by
first finding the least common denominators, then subtracting as before.

Example 1.3.2. Find the difference of numbers

a) 2% and 1% b) 3%z and 1%

Solution.

a) 21— IE: 15— 13: 5__3: %: l,’
4 4 4 4 4 4 2

b) 31— 12: 31- 1&: 22- IE: lﬂ
8 3 24 24 24 24 24

Explain the solution of these examples in words!

Problem Set 1.3.3.

1. Perform the following subtractions.

a) 8/15 — 4/15 b) 3/7-2/9 0) 4/5 %
d) 13/18 — 8/27 e)21/51 —7/39  £) 11/100 — 99/1000

2. Find the sum and difference (first minus second) for the following

pairs of mixed numbers. Answers should be written as mixed numbers.

2 1 5 2 1 11
2— 1—: 7— 5—: 22— 15—
a) 3 and g b) S and 3 C) p and o

3. Are the following statements correctly or not? Why?
a) 3/7<5/7 b) %2> 1/3 c) 12> 15/16

12



C. Multiplication and Division of Fractions

Definition 1.3.8 Multiplication of Fractions

Let % and 2 be any fractions. Then

ale

<
d bld

a
b

Example 1.3.3. Compute the following products and express the answers in
simplest form.

2 5 3 28 1 )

2 2l 21w 2 m=

3355 D3NS c) 23, d) 23075,
Solution

1 7
b g%:@\:z:lg,
4°15 X@S 5 5
1 \5

0 0.4 1
2 M= 2D4+—D4 8—=9—
) A TR

To multiply a mixed number by a whole number you can do it separately with the
whole and fraction parts. The answer is the mixed number.

RAREIERID - i

11
To multiply two ore more mixed numbers you must change them to improper
fractions. The product is a fraction (proper or improper).

Theorem 1.3.2. Division of Fractions

Let =~ and 2 be any fractions with ¢ # 0. Then

b
a.c_agd
b'd b c
Example 1.3.4. Find the following quotients.
73 12 4 5
—:4; -1 —— 1— 1—.
2) 15 85 ) 13 13° 9 6°

13



73 705 35 11
b 357 %m 24
3

2
d) 1212: ﬂ:ﬂ: ﬁ%: @:li
21 6 21 6 _2HI11 77 77
7

Problem Set 1.3.4.

1. Explain the solution of the example 1.3.4 in words.
2. Solve the following equations involving fractions.

2 3 x_ 5 3 16
a) —x= —; b) —= —; c)2—x=1—.
) 5 7 ) 6 12 ) 7 35
§ 1.4. Decimals, Ratio, Proportion, and Percent
decimal — decamuyHas Opoodwv
terminating decimal — xoneunas decamuunas opo6s
repeating decimal — nepuoouyeckas Opoow

Definition 1.4.1. If a denominator of a fraction is 10, 100, ... then this fraction
is called a decimal.
For example

123
———=0.0123, read “zero point, zero, one, two, three”.
10000

875 . .

1000 = 1.875, read or “one point, eight, seven, five”.

Theorem 1.4.1. Let % be a fraction in simplest form. Then % has a

terminating decimal representation if and only if b contains only 2s and (or) 5s in its
prime factorization.

14



3 3 3050202 60 6

Thus 55° 35505 ™ o) d502)d502) - 1000 100

= 0.06 — zero point, zero, six.

Theorem 1.4.2. Let % be a fraction in simplest form. Then % has a repeating

decimal representation that does not terminate if and only if b has a prime factor
other than 2 or 5.

Thus , division of 34 by 99 gives us

34 0343434...= 034
99

a
Definition 1.4.3. A ratio is the ordered pair of numbers, written a:b = 5’ with

b# 0.

Definition 1.4.4. Let % and % be any two ratios. Then % = 2 if and only if

ad = bc.
Definition 1.4.5. A proportion is a statement that two given ratios are equal.

5
Exercise 1.4.1. Find X from the proportion P = %
5015 _ 505 _ 25
Solution. x= ——= ——= —=12.5,
6 2 2

Definition 1.4.6. One hundredth of a number is 1 percent (1% ) of this number.
Exercise 1.4.2.
a) Find the number that is 15% of 30 ;

b) find the number 10% of that is 24.

Solution.
a) 30 ~ 100%
x ~ 15%.
30 _ 100 300159
So we have the proportion —= —0 x= ———=—-=45
x 15 100 2
b) 10% ~ 24
100% ~ x

. .10 _ 24 100 024
Find x from the proportion 100 = —0 x=
X

= 240.

15



II. ALGEBRA

§ 2.1. Fundamental Concepts

1.1. L’et A and B be sets. Then

' 4=0 the empty set

* A0 B 1is aunion of 4 and B

* An B is an intersection of 4 and B

* AU B Aisasubset of B

* x[0 4 xbelongs to A4, x is an element of the set 4

+ U to follow

* < ifand only if

* [ any, for any

* [J to exist

* : such that, for example, [a,b]= [x cas xg b} means “a closed interval is a
set of x such that a< x< b”.

2.1.2. The Real Number System

Integers (whole numbers): Z = [...,- 3,-2,- 1,0,1,2,3....}

Rational numbers _[ all terminating or repeating decimals] :0= @%@, where
ml Z,nt 0

Irrational numbers: {all nonterminating, nonrrepeating decimals}

Real numbers R: {all rational and irrational numbers}

* Let a and b be real numbers, then:
a equals b denoted by a =bifa—b = 0.
a is greater than b (denoted by a > b) if a — b 1s positive.
a is less than b (denoted by a < b) if a — b is negative.

2.1.3. Intervals, Absolute Value, and Distance
The interval notations:

(a,b)={x:a< x< b} represents all real numbers between @ and b, not

including a and not including b. This is an open interval.
[a,b] ={x:a< x< b} represents all real numbers between a and b, including a

and including b. This is a closed interval.

16



(a,b] = {x:a< x< B} represents all real numbers between @ and b, not
including a and including b.

la,b) = {x:a< x< b} represents all real numbers between a and b, including a
and not including b.

(- »,b) = {x:x< b} represents all real numbers less than .

(- o ,b] = {x:x< B} represents all real numbers less than or equal to b.

(@, ) ={x:x> a} represents all real numbers greater than a.
la,0) ={x:x2 a} represents all real numbers greater than or equal to a.
(-o,0)= R represents all real numbers.

* The absolute value of the real number @ is defined by

Daifa20

a7 0 i aco

Absolute Value Theorems

For all real numbers a and b,

1. Nonnegative: lal20
2. Product: lab|=]al|lb]

. al |al .
3. Quotient: Z = ‘—,1fb £ 0
4. Triangle inequality:  |at b|<|al+|b|
5. Difference: ‘a-b‘=‘b-a‘

* The distance between points a and b on a real number line is denoted d (a, b)
and d(a,b)= |a- b

2.1.4. Exponents

* If b is any real number and 7 is any natural number, then
b" = pUbUDL..Ub
\_ﬁ/_—J

n factors of b
In the expression b”, b is the base, n is the exponent, and 5" is the nth power of b

* Let a2 0 be a real number and n be a positive integer, then

17



az=bo b"=q If a<0,then %/4 is areal number if and only if # is odd. If a<0
and n is even, then %/q 1s not a real number.

The number a in /g is called the radicand and » is called the index.
The symbol 2[a is read the nth root of a and is called the radical.
Notation. 1. 2/q = Ja isread a square root of a, 3/a is read the cube root of g;

2‘%7:@61, if n= 2k + 1(nisodd),

%‘ al,if n= 2k (niseven). @11
For example,
a) 416 = 2 as 2% = 16; b)3/- 27 = -3as(-3)° = -27
c) +/- 91snotareal numberasa=-—9<0,n=21s even
d) (1- x)> = 1- x, as n= 5 is odd
0l- x,x< 1,
e) 4\/(1- x)4 = ‘1- x‘= 0
nx- Lx> 1.
* For any nonzero real number b,
b’ =1.
(2.1.2)
*If b# 0and nt? 0,
b™" = €L and 1 =b". (2.1.3)
b" b™"

v If n is a positive integer and b ia a real number such that p!/” is a real
number, then

1/p = b/ (2.1.4)

Properties of Exponents

Up™ 0p" = p™ "
0

0p™ )

Db_n: ™" if bt 0 (2.1.5)
nb

D m n mn

D(b ) =b

18



1]
Q
=
3
1

. a"b"
DHE Hn a" (2.1.6)
oobo  b"

Properties of Radicals

If m and n are natural numbers greater than or equal to 2, and a and b are
nonnegative real numbers, then

Product: 2/q0%b = Yab (2.1.7)
Ya a

uotient: =n— (b% 0 2.1.8

Q 7 \E (b# 0) (2.1.8)

Index : b = Wb = b (2.1.9)

0
Hkm/bkn - mlbn
Example?2.1.1. Simplify radicals

a) /64 b) \12y7,y2 0 ¢) A/x%y
8
d) 32 13/4 e)#;; f) §x*y”,x2 0,20

Solution

a) 264=32° = [use(2.1.9),k = 3]= Y27 = ¥4

b) 127 =3022 5y = [use (2.1.7), (1.1) and (2.1.9)]=+/3 W22 0,/ 0.y =
=30y 0y =2y 3y

C) 3w/\/xgy =6\/x6 Ox%y = x§x%y
d) Y2034~ [use 2.1.7)]=38= 323 = 2

19



0 §x2y° = 22 0§y = Yx0yy® = yofy Rx
EXERCISE SET 2.1.1.

In Exercises 1 to 16, evaluate each expression.

L-4° 2. (-4 3.- 47 4. (- 47
5. - 4° 6. (- 4)° 7. 472 8. 41/2
56 474
9. 274 m ! 10,3712 310 1. = 2.~
5 4
- 5_1 (2 DS)z _ 36 2 4
13. (- 27)"° 14— 157 — 1 16 H H
( ) 52 (2_1 D5)3 _ 4_14

17. (2x23°) 032 y) 18. (2 )0l3° xy) 19. 3y2]
20. M 21. 3pq H 2. %ﬁﬁz
( 3a2b) -2p gy Sy
B 6abc”? 213 0
23. (3_x y) (3)0/ ) 24, (_ 3) b 5 _3 25. jxxTxH
26, 204° - 3\/24x2y 2xy

it 28.
9h> 33x2y% 8 3/2xy

§ 2.2. Polynomials
' A monomial is a product of a constant and the variables having only

nonnegative integer exponents. The constant is called the coefficient of the
monomial. The degree of the monomial is the sum of the exponents of the variables.

For example, - 5xy? is a monomial with coefficient - 5 and degree 3.

' The general form of a polynomial of degree » in the variable x is
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Pn(x) = anxn * an—lxn-1 toe.e 4 Clzxz + al)C+ agp (2.2.1)

where a, # 0 and n is nonnegative integer. The coefficient @, is the leading
coefficient, and @(is the constant term.
' To add (subtract) polynomials, we combine like terms.
Example 2.2.1
(3)62 + 7x - 5)- (4x2 - 2x+ 1)2 (3)62 - 4x2)+ (7x- (- 2x))+ (- 5- 1)=
=-x2+9x-6
' To multiply polynomials, we multiply every monomial of the first
polynomial by every monomial of the second one and combine like terms.
Example 2.2.2.
(3x- 4)0(2x? + 5x+ 1) = 3x02x% - 402x° + 3x05x - 405x + 3x01- 401=
= 6x” - 8x? + 15x” - 200+ 3x- 4= 633 + 7x2 - 17x- 4.
In the following, a vertical format has been used to find the product of
(xz + 6x - 7) and (Sx - 2). Note that like terms are arranged in the same vertical

column.
x>+ 6x- 7
Sx- 2
- 2x* - 12x+ 14

5x + 30x? - 35x
5x° + 28x% - 47x + 14

' Special Product Formulas

x*-y’= (x- y) D(x+ y) (2.2.2)

x = (xir y) D(x2 Fxy+ y2) (2.2.3)

(xir y)2 = x2 % 2xpt y? (2.2.4)

(xi y)3 = x4 3x2y+ 3)cy2 t y3 = (2.2.5)
= x4 y3 * 3xy(xi y)

Note that it is possible to add and to multiply irrational (radical) expressions

as polynomials.

Example 2.2.3. Find the indicated product. Express each term in simplest form.
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a) (V7 + 4V7 - 1) b) (V2 + a] [V2x - d

¢) (332 + 4 d (x-1+32)
Solution

) (V7+4iV7-1)  =VTCVT+ T - T 40 1) 74347 - 4=3- 37,
b)[V2x + a) [V2x - a)=[use 2.2.2] = [V2x] - a?=2x- a?;

©) [32x + 4)*=[use (2.2.3) ] = (332x)* + 203425 14+ 42=9M2x + 24+/2x + 16+
= 18x+ 24y/2x + 16;

d) (3\/x- 1+ %)3=[use (2.2.5)] = (x- 1)+ 33/2(x-1)* + 33/2%(x- 1) + 2= x- 1+
+33/2(x- 1) + 33/4(x- 1).

Example 2.2 4.

Using the Special Product Formulas rationalize the Denominator

2 ba+\/z 1
V505 Yl OTars

Solution
Omultiply the numerator and thel

2 1. 2lv3- 45

a) = dinominator by congugate of = - =
BF CominaorsJ3- ) g 0PI

23 - 5]
V- 5]

[use(2.2.2)]=( ~= use(2.1.9)] = (f SI) -[3- V5)=5- 43

a+ b _ (a+ \/5)(a+ \/5) (a+ \/3)2

b =
a-b (a-\/g)(cH\/Z) a-b
1 Dmultlply the numerator and the dinominator byD 3\/_ bia+ b2
c)
Yat+ b @ Va? - b¥a+ b?| and use(2.2.3) D a+ b’
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' The Division Algorithm for Polynomials

If P(x) and D(x) # 0 are polynomials, then there exist unique polynomials
Q(x) and R(x) such that P(x) = D(x) DQ(x) + R(x) , Where either R(x) = 0 orthe
degree of R(X) is less than the degree of D(x) . To find the polynomials Q(x) and

R(x) we can use the long division of the polynomial P(x) by D(x).

2x* + 2x%+ 5x- 6

Example 2.2.5. Perform the indicated division. 5
x°-3x+5

Solution

2x7 4+ 2x*+ 5x- 6] x°-3x+5
- (2%’ - 6x*+10x) | 2x+ 8

8x%-5x-6
- (8x7 - 24x + 40]
19x - 46
Thus we have
2x>+ 2x%+ 5x- 6 19x - 46
> = 2xt 84—
x -3xt5 x -3xt5

§ 2.3. Functions and Graphs

* Let two sets D = {x] and E = { y] be given. A function ffrom a set D to a
set E is a correspondence of these sets such that for any xU D there is exactly one

element YU E . A function is denoted by ¥y = f (x).

* The set D is called the domain of f,(for any x0 D f (X) exists) and the set

E is called the range of 1.

' A meaning of x0 D such that f (x) = 0 is called a root or a zero of this
function. It is x-intersect point. Roots of a function divide its domain onto intervals

where a function has one and the same sign (is positive (negative)).

' A function f(x) is said to have a relative, or local, maximum at x = a if

fla)2 fla+e)

for all positive and negative values of € close to zero. For a local minimum at x = b

flb)< flb+e)

for all values of € close to zero

* A set of the points in the coordinate plane with the coordinates (X, S (X)) 18

called a graph of a function y= f ().
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* If xjand X,are elements of any interval / that is a subset of domain of a
function f(x), then
1) f is increasing on / if flx;)< flx,) whenever x; < X
2) f is decreasing on /[ if f(xl) > f(xz) whenever X; < Xp;
3) f is constant if f(x;)= f(x,) forall x; and x,.

* The function f (x) is called an even function if for any xU D, -x0 D and
7= x)= f(x).if f(- x)= - f(x) then the function f(x) is called an odd function.

' Let P be a constant. If f(x+ P)= f(x) for all x in the domain of f/(x),
then the function f (x) is called a periodic function. The smallest positive value of P
for which f (x t P ) = f (x) is called a period of the given function.

' A function f (g(x)) is called a composite function. Let us denote it by
symbol (/o g|(x).

CIf S (x) is one-to-one function with domain D and range £ and g(x) 1S a
function with domain £ and range D, then g(x) is the inverse function of f (X) if
and only if

(f o g){x)=x forall x0 D(g)

and
(gOf)(X)foorall x[ D(f)

The inverse function of a function f (x) 1s denoted

oo s
7
7
J) /
7

— yd * The graphs of the given function f (X) and its
_ 0/ * inverse f ! (x) are symmetric one to other with
/ i ine V= X.
Y / f()lc) respect to the line

Example 2.3.1.
|
Verify that g(x) = 5% 4 is the inverse for f{x)= 2x+ 8.

Solution.

We need to show that (£ o g)(x)= x and (g f)(x) = x.
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) (f o))z slelel)= s - adz 2w ale 8= x

(2x+8)- 4= x.

N | —

2) (go f)lx)= glf(x))= g(2x+8)=

' To find the inverse function of the given one we must

1) solve the equation of the given function for x;
2) interchange x and y;

3) verify that D(f) - E(f") and E(f)= D"
Example 2.3.2.
Find the inverse of f{x)= 2x- 6.

Solution.
1) Solve the equation of the given function for x :

1
f(x)= 2x- 6+ y=2x-60 2x=y+ 60 x= §y+3
: 1 a1
2) Interchange Xand V- y = 5x+ 3. So we have f 1=5x+ 3.

3) It is obviously that (fof'l)(x)=(f_1 of)(x): x, and D(f)= E(f_l),
i)z Ely).

} 1
Answer: ! = §x+ 3.

2.3.1. Linear Function

' A linear function is a function that can be represented by an equation of the

form
y=ax+tbh (2.3.1)

a is a slope (a = tana ),
b 1s a y-intercept point.

¢ A graph of a linear function is a
b straight line.
PRE)
X E - (- © .0 )
0 _ﬁ\
a
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X= - —1saroot.
a

2.3.2. Quadratic Function

' A quadratic function is a function that can be represented by an equation of the

form
y= ax? + bx+ ¢ (2.3.2)
y where a@,b, ¢ are real numbers and a # 0.
The graph of a quadratic function is parabola.
If b and c are both zero, then (2.3.2) simplifies

d to y= ax?

/// \\\ The graph of this function is a parabola that

/ \ a<0
\
/ \

a>0

l.opensupifa> 0, D(y)= (- w;u), E(y)=[0;0)

2. opens down if a< 0, D(y)=(-o;m), E(y)=(-=:0],

* Note that the graph of a function y = ax®", n N looks like the graph

of y= ax?.

Every quadratic function given by (2.3.2) can be written in the standard form

y=a(x-x0)2+y0, at 0

The graph of this function is a parabola with vertex (xo > yo) :

Example 2.3.1. Use the technique of completing the square to find the standard
form of the quadratic function y = 2x% - 12x+ 19. Sketch the graph. Define D(y)

and E(y)
Solution.
4 ) Ofactor 2 from the [J
y=2x"-12x+19= . =
Hvarlable terms H
= 2(x2 - 6x) +19= [complete the square] =
1h—— X
0 3 26




= 2lx? - 203x+ 3% - 9]+ 19= [regroup| -

= 2x? - 6x+32)- 184192 2(x- 3)7 + 1.

Exercise 2.3.2.

Prove that the vertex of the graph of y = ax? + bx+ cisa point

cl- i;4ac- b2 '
2a 4q

2.3.3. Cube Parabola

Graph of a function y = ax’ is called a cube parabola.

Y
\
\\ a>0 D(y): —oo,+oo)
\ -
\ Ely)=(-o,0)
\
NG x
0~ . :
\ * The graph of the function y = ax*"*',n0 N is
\ a<0 the same as the one given above.
\
\
\

2.3.4. Other Power Functions

D. y=aXx,nl N

2). yza*Jx,n0N

a>0

y
a>0 — a<0 Y
\\\\
N
X \
0 N oM
~ N
\\a\<0
~
~~
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D(y)=[0.4w] Dly)= (- w.te)
:D[0,+00),a>0 E(y):(-oo,+oo)

E(y)=1
(- ©.0La<0
3). Hyperbolas
a a
a)'y_ 2n_1 ’nl:l N b)o y_ 2]’1 ,n|:| N
X X
y
| y
/
/
//
ajex/ a>0 a>0
- X
0 /’/’ \\\\ 0 /’/’
//// \\\\ /// a<0
/ \ |/
// \\ Il
I V!

2.3.5. Exponential Function

The exponential function y with base a is defined by
y=a’
where a is a positive constant other than 1 and x is any real number.

\ y
\ 1.D[y)= (-0 o), E(y)= (040
\\ a1 2. y-intercept point is (0;1)
\\\ 3. y has a graph asymptotic to the x-axis
/ S 4. y %s one-to-one ﬁmction_ ' ‘
~__ , 5. yisanincreasing functionifa> 1 andyisa
0 decreasing function if a < 1.
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n

* We can verify that as » increases without bound, Hl + lH approaches an
0 nl

irrational number that is denoted by e (e = 2.71828183) .
* For all real numbers x, the function defined by
y=e
is called the natural exponential function.

2.3.6. Logarithms, Logarithmic Properties,
Logarithmic Functions and Their Graphs

Every exponential function is a one-to-one function and therefore has an
inverse function. We can determine the inverse of a function represented by an
equation by interchanging the variables and then solving for the dependent variable.
If we attempt to use this procedure for , we get

y=a* [ |interchange the variables|] x= a”

Sometimes it is possible to find this equation with respect to y, for example

=270 y=3.
In fact, 23 = 8. But to find y if 2 = 7 we must develop a new procedure. We use the
notation in the following definition.

* If x> 0 and a is a positive constant (a # 1) , then

y=log, x ifand only if ¢” = x (3.6.1)
in the equation » = log, x, y is referred to as the logarithm, a is the base, and x is

the argument. The notation 10g, x is read “the logarithm of x to the base a ”. The
definition of a logarithm indicates that a logarithm is an exponent. Now it is
possible to solve the equation 27 = 7:

27=70 y=log,7.
Example 3.6.1.
Evaluate each logarithm.
1
a) log, 32= x b) logs125= x ¢) log, ) =X

Solution
a) log, 32= x ifand only if 2% = 320 2*=2%0 x= 5. Thus log,32= 5.
b) logs 125= x = 5%=1250 5% =50 x= 3. Thus logs125= 3.
1 o1
d) log, —=-2as7 %= —.
) 1087457 T2 as 49

Properties of Logarithms
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In the following properties, b, M, and N are positive real numbers (b ? 1) ,
and p is any real number.

log, b=1 (3.6.2)

logb 1= 0 (363)

log,\b?|= p

logb (p ) % » An inverse property (3.6.4)
b b7 = plfor p> O)
log, MN = log, M + log, N * Product property (3.6.5)
M :

log, v = log, M —log, N + Quotient property (3.6.6)

10gb(MP) = plog, M » Power property (3.6.7)

log, M =log, NU M =N ¢ One-to-one property (3.6.8)
0Logarithm of each side

M=NIO logy M =log, N [ (3.6.9)
[ property

Change-of-Base Formula

If 4,X, and b are positive real numbers with a# 1 and b # 1, then

1
08q ¥ (3.6.10)

log, x =

* Logarithms with a base of 10 are called common logarithm. It is customary
to write log;o x as logx or lgx.

* Logarithms with a base of e are called natural logarithm. It is customary to
write log, x as Inx.

Example 3.6.2. Rewrite Logarithmic Expressions

1. Use the properties of logarithms to express the following logarithms in terms
of logarithms of x, y, and z.
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2
X
a) log, xy° b) log, Syf

Solution
a)log, xy2=[use product property(3.6.5)]: log, x+ log, y2 =
= [use power property(3.6.7)] = log, x+ 2log, »

1/5

ng = |use quotient formula (3.6.6)] = log, xp> - log, z'/° =

b) log,, b
z

=log, x+ 2log, y - élogbz

2. Use the properties of logarithms to rewrite the following logarithms as a
single logarithm.

a) 2log, x + %loga(x+ 4) b) 4logb(x+ 2) - 3logb(x- 5)
Solution

1
a) 2log, x + Eloga(x+ 4)=10ga x*+ log,, (x+ 4)1/2=10ga x*+log, /x+ 4=

= log, x?xt 4

x+2)?
b) 4log,(x+ 2)- 3log,(x- 5)= log,(x+ 2)* - log,(x - 5)°= log, (( 5;3
x-
Logarithmic Functions and Their Graphs
* The logarithmic functions with base a is defined by
y=log, x (3.6.11)

where b is positive constant b # 1, and x is any positive real number.
The logarithmic function y = log, x is the inverse of the exponential function

y = a”. That is why the graph of y = log, x is symmetric to the graph of y= a*

with respect to the line V = X-

Y
\ You can be sure that it is correct. To do it compare the graph
\ a>1 of the function y = a” (see page 28) and the graph of the

\\ i function y = log, x.
0/ It is obvious that

\
N 0<a<i D(y): (0’+°°)
o) [- e o)
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2.3.7. Trigonometric Functions of an Acute Angle

Let @ be an acute angle of a right triangle. The values of four trigonometric
functions of @ are

_ length of opposite side _ y

sin@ =
length of hypotenuse r
B
length of adjacentside  x
7 cosa = = =
y length of hypotenuse r
a
_ length of opposite side _ y
0 A tana = _ 3 - —
X length of adjacentside x
_ length of adjacentside _ x
length of opposite side y

Using these definitions we get the table of trigonometric functions of special
angles

a
300= T [ 4501 600 = .
6 4 3
sing 1 I 2 NG
2 J2 2 2
cosa \/g 1 _\/5 l
2 |2 2 2
tana 1 _\/5
B3 1 NE)
cota 1 3
V3 1 N
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2.3.8. Trigonometric Functions of any Angle and their Graphs
In general case if P (X; y) be given, then

. X
y sin@ = X, cos = —,

N\ Let the radius of circle be equal to 1, then the
N vertical diameter is called the sines-line, the
horizontal diameter — the cosines-line, the upper
tangent — line of cotangent, the right tangent — line
of tangent. In this case circle is called the trigonometric circle, and

|
|
|

Q N 0, where = OP= /x> + y? .

sing = y= OA,
cosd = x= OB,
tana = O,C,
cota = O,D,

Using this circle it is possible to draw the graphs of trigonometric functions.
a) Sine curve ) = sinx

[ Dly)=[-a.tn),

\
o=
o=

b) Cosine curve Y = COSX

’ Dly)z (-0 tn),

/ bl

=
\N
\
R

S

o=
/:I




c) Tangent curve » = tanx

'
E)

;
[SE]
S

o=

d) Cotangent curve ) = cotx

y

|
|
|
|
|
|
|
|
|-
|
|
|
|
|
|
|

\
NE

S
o=

2.3.9. Inverse Trigonometric Functions

- -1 o e
a). y = SIn X - antisine of x

SE

y

- -1 . .
b). y = cos " x - anticosine of x

y
n

=

)
o|=
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Dly)= - .40),Ely)= 2- 7.0

rr
272

Dly)= [- 1], £(y)= [on]

d). y = cot’' x - anticotangent of x

* To find the domain of composite function we can use the next table

glx) | W] |loggflx) | tanf(x) cot £x)

sin”! f(x),
cos™ f/x]

D(y){ glx)# 0| (x)20 | flx)>0
a>0,a#1

flx)# ”E+ mn
nl Z nl z

f(x)#ﬂn ‘f(x)‘sl

2.3.10. The Fundamental Trigonometric Identities

sin® x + cos® x= 1

sin x
tanx =
COS X
1+ tan? x = 5
Cos” x

COS X

cotx = —
Sin x

1+ cot? x =

sin? x




2.3.11. Sum and Difference Identities

cos(@ t B )= cosa cosp Fsing sin
sin(a £ B )= sing cosp + cosa sinf
tana t tanf

1 ¥ tana tan p

2.3.12. Cofunction Identities

tan(a + B )=

sin(900 - x): COS X 005(900 - x) = sin x

tan(900 - x) = cotx cot(900 - x) = tan x

2.3.13.Double- and Half-Angle Identities

. oA . X 1- cosx

sin 2x = 2SIn X COS x sm—=1, ,|]———
2

2 .2 X _ I+ cosx

cos2x=cos” x- sin“ x cosz— t T

—+

_ 2tanx X 1- cosx
tan 2x = — tan—=t | ———
1- tan” x 2 1+ cosx

2.3.14. Product-to-Sum Identities

(cos(a t ﬂ)+ cos(a - ,B))

cos@l cosf = %
sing sinf = - l(cos(a t ﬁ)‘ COS(" B /3))

2
(sin(a + §)- sinfa - §))
(sin(a + )+ sin(a - )

cos@l sinf =

sing cosf =

N[ — N —

2.3.15. Sum-to-Product Identities

+ -
COSX* COSy= 2cos P eos T2
2 2
+ -
cosx-cosy=-2sinx Y gin T2
2 2
+ -
sinx+ sin y = ZSinxzyCOszy
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- ¥
sinx - sin y = 2sinx2ycosx2y

asinx+ bcosx = ksin(x+ a ),

where k=~a®+b*, sin@ = ———  cosa =

a2+ b2’ la2 + p2°
III. COMPLEX NUMBERS

§ 3.1. The Fundamental Operations

The square of a real number is never negative. Thus, for example, the
elementary quadratic equation x2 = - 1 has no solution among the real numbers. New
types of numbers, called complex numbers, have been introduced to provide solutions
to such equations.

Definition. By a complex number we mean an ordered pair of real numbers
which we denote by (X, y) .
The first member, x, is called the real part of the complex number; the second
member, y, is called the imaginary part. We write
z= [x,y)
The equality relation and the arithmetical operations are defined according to
the following rules:

1. equality (X1,y1) = (x2,y2) takes place if and only if X; = X5, y; = V;;
2. (X )t (x0,00) = (3 £ X0, 8 )
3. (xlayl) [(xzayz) (xlxz N2, X1 Yy t J/1x2)-

If the fundamental operations are thus defined, we easily see that the
fundamental laws of algebra are all satisfied.

1. The commutative and associative laws of addition hold:
Z1t zy = zy t Zys

Zl+(22+Z3)=(21+22)+Z3:21+22+23-

2. The same laws of multiplication hold:

ZIZZ - ZZZI;

21(2223) - (2122)23 = 22,25,

3. The distributive law holds:
(Zl ¥ 22)23 = z1Z3 t zp23.
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§ 3.2. Geometrical Representation of Complex Numbers

Just as real numbers are represented geometrically by points on a line, so
complex numbers are represented by points in a plane. The complex number
z= (x, y) can be thought of as the point with coordinates (x, y). When this is done,
the definition of addition amounts to addition by the parallelogram law.

The idea of expressing complex numbers geometrically as points on a plane
was formulated by Gauss in his dissertation in 1799 and, independently, by Argand in
1806. Gauss later coined the somewhat unfortunate phrase “complex number”.

§ 3.3. The Imaginary Unit

It is convenient to think of the complex number (x.y) as a two-dimensional
vector with components x and y. Adding two complex numbers is the same as adding
two vectors component by component. The complex number 1 = (1,0) plays the same
role as a unit vector in the horizontal direction. The analog of a unit vector in the
vertical direction will now be introduced.

Definition. The complex number (0,1) is defined by i and is called the
imaginary unit.

Theorem. Every complex number z = (X, y) can be represented in the form
z= x*t yi which is called standard or rectangular form of complex numbers.

Proof.

z= (x.y) = (x.O) + (O,y) = x(l,O) + y(O,l) = x+t i

Let us now prove that i2 = -1.In fact,

i2=(0,1)(0,1) = (- 1,0) = - 1.

Example 3.3.1.
Find the product of z; = 2+ 3i and z, = 5- 4i.

Solution.
2125 = (24 3i)(5- 4i)=10- 8i + 15i- 12i% = 22+ 7i.

0L,if n = 4k

g Divifn= 4k+1
T - Lifn= 4k+ 2
- i,if n= 4k+3

Exercise 3.3.1. Prove that

§ 3.4. Absolute Value of a Complex Number and Conjugate Complex Number
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Definition. If z = (X, y) , we define the modulus, or absolute value, of z to be
the non-negative real number |z ‘ given by

) EERETE

Geometrically, ‘Z‘ represents the length of the

Yr——1 segment joining the origin to the point z = (X, y) :

B Definition. The number X = Viis said to be conjugate to z
v E——1Z=x) and is denoted by 7

Let us calculate zz.

2

zz= (x+ yi)Ox- yi)= x> - (i) = x>+ y? = E
§ 3.5. Definition of Division

The division is an operation inverse to the multiplication.
The number z is called the quotient of zjand z,if z; = zUz,. If z, # 0 then on

multiplying both parts of the relation z; = 20z, by Z we get

— — z ZiZ
lezzz(zlzz)andzz—lz —
22 InZy
Example 3.5.1 Find the quotient of z; = 2+ 3i and z, = 1+ 4i.

Solution.
2, _2+3i_(2+30)0(1- 4i) _14-5i 145,

z, 1+4i (1+4)01-4) 1+16 17 17

§ 3.6. The Trigonometric Form of a Complex Number

y If the point z = (x,3) = x+ yi is represented by
polar coordinates P and ¢ 'we can write
0 X = p cosf and y= psing then
¢ y . 7 = p(cos¢ + ising ) This form is called the
0 X trigonometric form of a complex number .

The x-axis along which x 1s reckoned is called real axis
and the y-axis along which y is reckoned is the
imaginary axis.

The two numbers P and ¢ uniquely determine z. Conversely, the positive
number P is uniquely determined by z. In fact, p = |7
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p = x2 + yz (3.6.1)
However, z determines the angle # only up to multiples of 27 . There are infinitely
many values of # which satisfy the equations x = ‘Z‘ cosp , y= ‘Z‘ sing .

The unique real number ¢ which satisfies the condition = T < # < T js called

the principal argument of z and is denoted by aIgZ -
g = argz
y

X
N S22 G.6.2)

Let z; and z,; be two complex numbers written in trigonometric form. The

cosf = , sing =

product of Z; and z, can be found by using several trigonometric identities.
If 2 = py(cosd | + ising , ), and 2, = p(cosg , + ising ,), then
ZyZ, = plpz(cos¢ ( Ocosg , + icosg | sing , + ising | cosf , + i sing  sink 2) =
= p 1P ((cosg jcop , - sing  sing , )+ ilsing cosp , + cosfsing,))
= p1polcoslp + 4 ,)+ isin(p, +¢,))0
p1p(cos(g + g o)+ isin(p,+9,) (3.6.3)

The modulus for the product of two complex numbers in trigonometric form
is the product of moduli of the two complex numbers, and the argument of the
product is the sum of the arguments of these numbers.

Similarly,
2 P coslp - ¢)+ isinfp - ) (3.64)
Z; P

The modulus for the quotient of two complex numbers in trigonometric
form is the quotient of moduli of the two complex numbers, and the argument of the
quotient is the difference of the arguments of these numbers.

Example 3.6.1.
Find the product of z; = -1+ i~/3 and Zy = =341,
Solution.

1) Using (3.6.1) and (3.6.2) write z; and z; in trigonometric form:

Zy = 2Hcosz—”+ sinz—”H; Zy = 2Hcos5i+ sins—nH
0 3 31 0 6 6 [
2) Use (3.6.3)

2125 = 4Hcos9—n+ isin9—”H= 4Hcos3l+ isin3l =4(0- i) = -4i.
b7 6 60 0 2 20
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§ 3.7. Integral Powers and Roots of Complex Numbers

Letz=p (COS¢ t ising ) Then 2 can be written as
zUz= p(cosd + ising ) p(cosg + ising )Zp 2(cos2 + isin2f ).
This formula can be extended for raising a complex number to the nth power:
z" = p"(cosnp + isinng ) (3.7.1)
The formula
(cosg + ising )" = p"(cosng + isinng )
is called De Moivre’s formula.
Definition. A number w is called the nth root of z if " = z and is denoted by

w=Xz.
Let w= I’(COSG + isinﬁ) and z°= p(cos¢ + isin¢)_ Then as w" = z we
have
r"(cosnB + isinng )=p(cosp + ising ).
Two complex numbers written in trigonometric form are equal if and only if their
moduli are equal and their arguments are equal up to multiples of 2 . Thus

o
J De:¢+2kn.

n

Drn:p
0
nn = ¢ + 2km

If z= p(cosp + ising) isa complex number, then there are n distinct nth roots of z
given by the formula

t 2km .9+ 2km
wy = W@COS¢ » t z'sm¢ » @ (3.7.2)

for k= 0,1,2,...,n- 1.
Example 3.7.1. Find the three cube roots of 27.
Solution. Write 27 on trigonometric form:
27= 27(cos0+ isin0).
Then, using formula (3.7.2), the cube roots of 27 are

+ +
wy = W@cos 0 32k” + isin 0 32k” @ for k= 0,1,2.

Substitute for k£ to find the cube roots of 27 :

wy = 3(cosO+ isinO):3
2n H: —§+ ﬁl

H .
w, = 30Jcos— + isin—
0 3 30 2 2
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333,
2 2

For k£ =3 cosines and sines of the angles start repeating, thus there are only three cube
roots of 27.

W, = 3Hcos4—”+ isin4—”H: -
0 3 31

§ 3.8. Complex Exponentials

Let us write a complex number in trigonometric form
z= pfacos¢ + ising |
Using Euler’s formula
e = cosp + sing (3.8.1)
we obtain z= p e in the so-called exponential form.

Representing complex numbers in exponential form is particularly useful in
connection with multiplication and division since we have

if i iip +9
z1zy= pre 1pre 2= P]Pzel ! 2J
and
-L- p1€l¢1 ZP261¢2 = p—lel(¢1_¢2J
Zy P

If z= pew then
. (pei¢ )” - p et

This is De Moivre’s formula in exponential form.
On replacing # for ~ ¢ we get such formula

e’ = cosp - ising (3.8.2)

On adding and subtracting formulas (3.8.1) and (3.8.2) we have
if - if i _ -if
e’ te . e e
cosp = — sinf = ——
4 2 ¢ 2i
The product of a complex number z = p e by the factor ¢ is
Zeia =pei(¢ ta)

The geometrical interpretation of this fact is that the multiplication by ¢ makes the
vector representing the complex number z rotate about the origin through the angle 4

. . n e in .
. In particular, putting @ = Py we see that the multiplication by 02 =i results in the
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rotation of the representing vector of the number z through 90° in counterclockwise
direction.

Example 3.8.1.
Calculate the product (1 - i3 )3 1+ i)2 .

Solution.

Expressing complex numbers in the exponential form, we get

b, 300 5,50 :
(1- i\/§)3(1+ i)?=72e 3 ¢ Dﬁe4 s 23e ™ 122 = 8- 1)02i = - 16i.
0 00 I

IY. LIMITS

§ 4.1. Limits of Function Values

Sometimes we want the outputs of a function ¥ = f (x) to lie near a particular

target value »¢. This need come about in different ways. A gas station attendant,
asked for $ 5.00 worth of gas, will try to pump the gas to the nearest cent. A
mechanic griding a 3.385 — inch cylinder bore will not let the bore exceed this value
by more than 0.002 in. A pharmacist making ointments will measure the ingredients
to the nearest milligram. So the question becomes: How accurate do our machines
and instruments have to be to keep the outputs within useful bounds? When we
express this question with mathematical symbols, we ask: How closely must we

control x to keep ¥y = f (x) within an acceptable interval about some particular target
value ¥ ? The following example shows how to answer this question.

Example 4.1.1.
Controlling a Linear Function. How close to Xy = 4 must we hold x to be
sure that ¥ = 2x* 1 lies within 2 units of yo = 7?

Solution.
We are asked: For what values of x is [y = 7|< 29 To find the answer, we first

express ‘ y- 7‘ in terms of x:
- 7= [(2x- 1) - 7]= |2x- 8§

The question then becomes: What values of x satisfy the inequality [2x - 8/< 29 To
find out, we solve the inequality
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2x-§< 2= -2<2x-8<2= 6<2x<10= 3<x<5.
To keep y within 2 units of Yo = 7, we must keep x within 1 unit of xy = 4.
Suppose we are watching the values of a function f (x) as x approaches X

(without taking on the value X itself). What do

we have to know about the values of f to say

y that they have a particular number L as their
L+¢ limit? ~ What observable pattern in their
J(x)lies in here  behavior would guarantee their eventual

L approach to L? We need to require that for
every interval about L, no matter how small, we
can find an interval of numbers about X, whose
f— values all lie within that interval about L. In
other words, given any positive radius € about
L , there should exist some positive radius 0

about X, such that for all x within 0 units of

X, (except x, itself) the values ¥ = f(x)lie within £ units of L.
If f (x) satisfies these requirements, we will say that

Xo X

0| x~8 | xgb

for all x+x, in here

lim f(x)= L

X- X,

Here, at last, is a mathematical way to say “the closer X t0 X, the closer ¥ = f (x)
must get L.”

The limit of f(x) as x approaches x, is the number L if the following criterion
holds:

Definition. Given any radius ¢ > 0 about L there exists a radius 0 > 0 about
X such that for all x, 0< \x- xo\ <0 implies \f(x) - L‘ <E§.

These are the letters that Cauchy and Weierstrass used in their pioneering work on
continuity in the nineteenth century. In their arguments, § meant “difference”
(French for difference) and € meant “erreur” (French for error).

To return to the notions of error and difference, we might think of machining
something like a generator shaft to a close tolerance. We try for diameter L, but since

nothing is perfect we must be satisfied to get the diameter (x) somewhere between
L-¢ and L+ ¢ .The d is measure of how accurate our control setting for x must to
guarantee this degree of accuracy in the diameter of the shatft.

§ 4.2. Algebra of Limits

The following rules hold if 1M /1x) L1 gng lim glx)= L,
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1. Sum Rule: lim (f(x)+ glx))= L, + L,

2. Difference Rule: xlingo(f(x) ) g(x)) =Ly - L,
3. Product Rule: xl}n; (f(x) Dg(x)) = L UL,

4. Constant Multiple Rule: hm (kf (x ) ) = kL, for any number &

. L
5. Quotient Rule: lim Ef(x) E= L_l if L, # 0

X- X,

Let us prove the first rule.
To show that hm(f(x) f g(x)) =Lt LZ, we must show that for any € > 0

there exists a d > Osuch that for all x

0<‘x-x0‘<5D ‘f(x)+ g(x)-(L1+L2)‘<£ (4.2.1)
Suppose, then, that € is a positive number. The number % 1s positive too, and
because | hm / ( ) L, we know that there is ad ; > 0 such that for all x,

0< |x- xp[< 8,0 \f(x)-Ll\<£5 4.2.2)
Because | 11m g\x ( ) L, , there is also a 0 , > 0 such that for all x,
0<|x- xo|< 8,0 |g(x)- Ly|< % (4.2.3)

Let § be smaller of 01 and 0 ,. The implications in (4.2.2) and (4.2.3) then both hold
for all x such that

0< |x- xq|< 8
and we get
Flx)+ glx) = (L + Ly )= [(Alx) - Ly) + (glx) - Lyl

< ‘f(xl)_ L1\+\f(x2)- L2‘< %’f %= £ .

According to the £ - 0 definition of limit, then,
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xl}n;(f(x) +glx))= L+ Ly,
§ 4.3. One-sided Limits

0

Sometimes the values of a function [ (X) tend to different limits as x approaches a
number X, from different sides. When this happens, we call the limit of f (X) as x
approaches Xy from the right the right-hand limit of f at X,, and the limit, as x
approaches Xy from the left the left-hand limit of f'at x.

The notation for the right-hand limit is lim f (x) or symbolically [ (xo * 0).

x- x,+0

The notation for the lift-hand limit is 1™/ (x ) or symbolically f (Xo - 0).

x- x,-0
We sometimes call xl}nzo f (x ) the two-sided limit of / at xy. How to distinguish it

from the one-sided right-hand and left-hand limits of S at xy?
If the two one-sided limits of / exist at Xoand are equal, their common value
is the two-sided limit of /* at X;. Conversely, if the two-sided limit of S at x( exists,

the two one-sided limits exist and have the same value as the two-sided limit. In
symbols

lim flx)=L- qui)rcriof(x) =L g qui)rcn_of(x) =L
: OLif x> 0 . . :
Example 4.3.1. Let the functiony = sgn x = %_ Lif < 0 be given. Find limit of this
function as x tends to 0.
Solution.
y In this case f(0+ 0)= 1, and
y=sgnx
' X fl0-0)= -1,
0 and these one-sided limits are not equal.
So
liné sgn x does not exist.

§ 4.4. Infinitesimal Functions

Definition. F function @ (x) is called an infinitesimal as x - X if
lima (x)= 0

X- X,

This means that, given any £ > 0 (however small), there is d > 0 such that for all x,
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0< |x- xo|< 8 implies | /(x) < €.

1
Definition. The reciprocal of infinitesimal, that is f (x) = m is an infinitely large

function.
In this case we write

lim f(x)= o

X- X,

This means that given any positive number M (however large) there is a number
0 > 0 such that for all x,

0< ‘x- x0‘< 0 implies ‘f(x)‘ > M.
Now let us prove the theorem to be important for applications.

Theorem. 1f a function has a limit it is representable as a sum of a constant,
equal to that limit and, an infinitesimal.

Proof.

Let lm f (x) =4 Then, given an arbitrarily number ¢ > 0, we have

X+ X,
‘ f (x) - A‘ <¢ forall x# x,lying sufficiently close to x,, which, in accordance with
the definition, implies that /(x) - 4 is an infinitesimal. Consequently

flx)- 4= a(x),ie flx)= 4+ a(x),
where @ (x) is an infinitesimal as X - X.

It is possible to draw from limit rules for functions the corresponding
propositions for infinitesimal functions.

1. A sum of any finite number of infinitesimals is an infinitesimal.
2. The product of a bounded function and an infinitesimal is an infinitesimal.

3. A product of any finite number of infinitesimals is an infinitesimal.

sin x

§ 4.5. Sandwich Theorem, and lim
x- 10 X

The sandwich theorem.
Suppose that

glx) < flx) < hlx)
for all x# x(in some interval about X and that
lim g(x)= lim A{x)= L

X- X, X- X,
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Then xlfnxl f(x) =L

We do not include a proof of this theorem.
Example 4.5.1.
Show that if x is measured in radians then
Solution.
Our plan is to show that the right-hand and left-hand limits are both 1.
Take a circle of unit radius and suppose the

y central angle x is expressed in radians. To show that
pIT the right-hand limit is 1, we begin with values of x
.- n
that are positive and less than by We compare the
X X areas of A OAP, sector OAP, and A OAT, and note
0 B A that

Area A OAP < Area sector OAP < Area A OAT. These areas being respectively equal

sinx 1 1
> , —X,—tanx,

We have

to

sin x < x< tanx.
On dividing all the terms of these inequalities by sin x we obtain

1« % 1

sinx COSXx

that is

sin x
cosx< ——< 1,
X

Because cos x approaches 1 as x approaches 0, the Sandwich Theorem tells us that

. sinx
lim =1,
X- * O X
_ sinx . :
Since 1s an even function, then
X
. sinx
lim =1,
X- - O X
Together these equations imply that
. sinx
lim = 1.
x- 0 X
Example 4.5.2.
. tanx
Prove that lim = 1.
x- 0 X

Solution.

48



. tanx . sinx 1 .osinx _.. 1
Iim = lim [ = lim [ lim = 101=1.
x-0 Xx x-0 X cosx x-0 Xx x- 0COSXx

§ 4.6. Comparison of Infinitesimals

Let @ (x) and P (x) be infinitesimals ax X - Xy. To compare the infinitesimals
a (x) and P (X) means to determine the limit of their ratio
tim 1)
wx, B ()
provided that it exists.

In what follows we consider different cases occurring when infinitisemals are
compared.
a(x)

1. Let lim W =0, then @ (x) is called an infinitesimal of higher order,

X- X,

than B (x) . In this case we write @ (x)=0(B (x)) for x - x, (read “@ (x) is small o of

2
ﬂ(x) for x - Xxy”). Here are examples: x2 = o(x) for x - 0 since lin%)x—:
x-0 X
lim x = 0.
X- 0
- a(x)
2. Let xlfrl; 8] = A, where A% 0,4% 1, then a(x) and B(x) are called

infinitesimals of the same order. In this case we write @ (x) =0( i (X)) for x - Xx.
For example. x* - 4= O(x2 - S5x+ 6) X - 2 since

2 - -
TR Sl S e [ELE FSTRE . S S
2y 5c4 6 2l 2(x-3) ax-37 -
. (x) _ -
4. Let xhn; W =1, then @ (x) and B (x) are said to be equivalent infinitesimals.

For equivalent infinitesimals @ (x) and B (x) we write @ (X) ~ B (X) for x - Xxg.
Important examples of equivalent infinitesimals are sin x and x, tan x and x,
sin”! xand x, tan ' xand x for x - 0.

. 1-cos2x
Example 4.6.1. Calculate 1111(1) —
X X
Solution.
lim L 002% o 26in° X iny~x then 2 ~ 2]=
-0 x2 0 I sin” x ~ x

49



‘ =
[}

=2 lim

x—vo_x

[\S]

§ 4.7. Limit of a Sequence

Let us consider a function of an integral argument. Usually such an argument is
denoted by the letter n and the values of the function by some other letter supplied
with the subscript indicating the value of the integral argument. For instance, if
y=f (n) is a function of the integral argument n we write y, = f (n) Given such a
function, we say that the values

= ) ya= f2), = A,
assumed by the function form a sequence. It may occur that, as n increases, the values
y, = f(n) become arbitrarily close to a number L. Then we say that the number L is

the limit of the function f (n) of the integral argument n or that the sequence
Y1sV2-Vyse. has the limit L, as n - © and write

lim f{n)= L o lim y, = L

The definition of the limit of a sequence can be regarded as a special case of the
definition of the limit of a function, as its argument becomes positively infinite and
assumes only integral values. Hence, if L is the limit of a sequence Yi,V2s--» Vyse-e,
then, given an arbitrary positive number € , there is an integer N such that the
inequality |y, = L|< ¢ holds for all n > N.

11 1
Example 4.7.1. The limit of the sequence 1, 503 exists and is equal to 0.
n

To prove this, we must show that for any ¢ > 0, there exists an integer N such that for
all n,

Lo

n

n>NU

<E (4.7.1)
1
This implication will hold for all n for which —< & or, equivalently, n > . Pick an
n

1
integer N greater than ;- Then any n greater than N will automatically be greater

1
than . and the implication in (4.7.1) will hold.

50



§ 4.8. Test for the Existence of the Limit of a Sequence. The Limit of the

n

Sequence qa,, = H1+ lH as - o
0 n(

Not every sequence has a limit. It often happens that it is necessary to find out
whether a given sequence possesses a limit. The theorem below provides a simple
existence criterion for the limit of a sequence.

Theorem. Any monotone and bounded sequence has a limit.

We shall apply this theorem to prove the existence of a limit which plays an
extremely important role in mathematical analysis. This result is expressed by the

following theorem.
n

1 ..
Theorem. The sequence a,, = Hl + —H possesses a limit as 77 - ©.
i

Proof. By Newton’s Binomial Formula, we have

H1+1H 14 nDI n(n-l)Dl , n(n-l)(n-2)D1 -
0 nQ I n 2! n? 3! n’

+n(n_ 1)1(;_ n I)D =1+ 1+4 —Hl- 1H+ lHl- IHHI- —H

! n 30 nl nl
Lh- - 20 Hl- n-1p
nll nl nl

Replacing n by n+1 we obtain an analogous expression for @,;;. Next, comparing

these expressions we conclude that 4,41 > @,, and @, is increasing sequence.

Let us show that it is bounded. To do it, we replace the proper fractions in the
parentheses by units and thus receive

_ n
“n<1+1+%+l+ +l<2+l+i+i+ +L:2+M:

n! 2 922 93 on 1-1/2

=2+1- < 3.

2 n-1
Thus, the increasing sequence is bounded above, and hence, according to the above
Theorem, it has a finite limit. This limit is denoted by e.

So, we have
imfi+ 1 - e 4.8.1)
n-of]  nf

The number e is irrational and its approximate value is
e~ 2.718281828459045.

It can be also shown, that
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