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1. SET  THEORY 
 

1.1. Sets and Elements. Subsets. 
 

 Definition. A set is defined as a collection of objects which can be treated as an 
entity. 
 This definition implies that the objects have some classifying attributes, and all 
the objects in the set have the same attributes. 
 Note also, that object does not necessarily mean material object. We may well 
talk about the set of transistors in a given circuit, and about the set of all operation 
frequencies of this circuit. 
  One usually uses capital letters, A, B, X, Y, …, to denote set, and lowercase 
letters, a, b, x, y,…, to denote elements of sets. 
 Membership in a set is denoted as follows: 

Aa  denotes that a belongs to a set A. 
Here  is the symbol meaning,  “is an element of “. We use to mean “ is not an 
element of “. 
 There are essentially two ways to specify a particular set.  
 One way, if possible, is to list its elements separated by commas and contained 
in braces  ... . 
 A second way is to state those properties which characterized the elements in 
the set.  

Examples illustrating these two ways are: 
 9,7,5,3,1A  that is A consists of the numbers 9,7,5,3,1 . 
 0 iteger,even an  is  xxxB  – set, which reads: B is the set of x  such that x  

is an even integer and x is greater then 0. 
 Note that the vertical line  is read as “such that” and the comma is read as 
“and”. 
 
 Example 1.1.1 
1) The set of TV – channels at  a given location. 
2) The set of all solutions of the equation 1sin x . 

Suppose every element in a set A is also an element of a set B, that is, suppose  
Aa  implies Ba . Then a set A is called a subset of  a set B. This relation is 

written BA  or AB  . 
 
 Definition. Two sets are equal if they both have the same elements. That is: 

BA   if and only if  BA  and AB  . 
 If A is not a subset of B , that is, if at least one element of A does not belong to 
B, we  write BA . 
 

Example 1.2. Consider the sets 
 9,8,7,4,3,1A ,  5,4,3,2,1B ,  3,1C . 
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Then AC   and BC   since 1 and 3, the elements of  C, are also elements of  
A and B. But AB   since some of the elements of B, e.g., 2 and 5 do not belong to A. 
Similarly, BA . 

Some sets will occur very often in the text, and so we use special symbols for 
them. Some such symbols are: 

 ,...3,2,1 N : the set of natural numbers or positive integers; 
  ,...3,2,1,0,1,2..., Z : the set of all integers; 
Q : the set of rational numbers; 
R : the set of real numbers; 
C : the set of complex numbers. 
All sets under investigation in any application of set theory are assumed to 

belong to some fixed large set called the universal set which we denote by U unless 
otherwise stated or implied. 

Given a universal set U and a property P, there may not be any element of U 
which have property P. For example, the following set has no elements: 

 
 3 integer, positive a is 2  xxxS . 

 
Definition. A set with no elements is called the empty set or null set and is 

denoted by Ø. 
A Venn diagram is a pictorial representation of sets in which sets are 

represented by enclosed areas in the plane.  
The universal set U is represented by the interior of a rectangle, and the other 

sets are represented by disks lying within the rectangle. 
 
Definition. The set of elements of a set U which do not belong to A is called the 

compliment of the set  A, and is denoted by A  
 

 
 
 
 
 
 
 
    
   
 
 Definition. The union of two sets A  and B, denoted by  BA , is the set of all 
elements which belong to A or to B . That is 
 
   BxAxxBA  or  . 
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Figure 1.1.2 is a Venn diagram in which BA  is the shaded region. 
 
 
 
 
 
 
 
 
       
 

 
 
Definition. The intersection of two sets A and B, denoted by BA  is the set 

of elements which belong to both A and B . That is 
   BxAxxBA   and  
Figure 1.1.3 is a Venn diagram in which BA  is the shaded region. 
 
 
 
 
 
 
 
 
 
      
  

 
 
Definition. The sets A and B are said to be disjoint or nonintersecting if they 

have no elements in common. 
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Definition The difference of two sets A and B, denoted by BA \ , is the set of 

elements which belong to   A but which do not belong to B . That is 
 BA \  BxAxx   ,  
Figure 1.1.5 is a Venn diagram in which BA \  is the shaded region. 

 
 
 
 
 
 
 
 
 

 
 
 
 
Definition  The symmetric difference of two sets A and B, denoted by BA , 

consists of those elements which belong to   A or B but not to both. That is 
   BABABA  \  or    ABBABA \\   

Figure 1.1.6 is a Venn diagram in which BA  is the shaded region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Example 1,1,3. Let  8,5,4,3,1A ,  9,6,5,4,2B , then 
  9,8,6,5,4,3,2,1 BA ; 
  5,4 BA ; 
  8,3,1\ BA ; 
  9,8,6,3,2,1 BA . 
 Sets under the operations of union, intersection, and complement satisfy 
various laws (identities) which are listed in Table 1.1.1 
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 Table 1.1.1 Laws of the algebra of sets 
 
1 AAA                                 AAA   Idempotent laws 

 
2    CBACBA              

   CBACBA   
 

Associative laws 

3 ABBA                         ABBA   
 

Commutative laws 

4      CABACBA   
     CABACBA   

 
Distributive laws 

5 A Ø A                             A Ø = Ø 
AUA                              UUA   

 

Identity laws 

6 AA   
 

Involution law 

7 UAA                               AA  Ø 
U  Ø                                    Ø = U  

Complement laws 

8 BABA                     BABA   De Morgan’s laws 
 

 
2. RELATIONS 

 
2.1. Product Sets 

 
Definition. A set is called an ordered set if to each element there correspons a 

number  Nnn   and elements are listed in the increasing manner. 
 
 Definition. Let two arbitrary sets A and B be given. The set of all ordered pairs 
 ba,  where Aa  and Bb  is called the product, or Cartesian product, of the 
sets A and B. A short designation of this product is BA , which is read “A cross B ”. 
 By definition 
     and , BbAabaBA  . 
 One frequently writes 2A  instead of  AA . 
 
 Example 2.1.1. R  denotes the set of real numbers and so 2R  = RR   is the set 
or ordered pairs of real numbers. We are familiar with the geometrical representation 
of 2R  as points in the plane. Each point P represents an ordered pair  ba,  of real 
numbers and vice versa; the vertical line through P meets the x – axis at a, and the 
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horizontal line through P meets the y – axis at b. 2R  is frequently called the 
Cartesian plane.  
 This idea of a product of sets can be extended to any finite number of sets. For 
any sets nAAA ,...,, 21  the set of all ordered n – tuples  naaa ,...,, 21  where 

nn AaAaAa  ,...,, 2211  is called the product of sets nAAA ,...,, 21  and is denoted 
by nAAA  ...21 . 
 
  2.2. Binary Relations 
 
 Definition. A binary relation between elements of the sets A and B is any 
subset R of the set BA  that is BAR  .  
 Suppose R is a relation from A to B. Then R is a set of ordered pairs where 
each first element comes from A end each second element comes from B. That is, for 
each Aa  and Bb , exactly one of the following is true: 

1)  ba, R ; we then say “ bRa   torelated   is   ”, written aRb ; 
2)  ba, R ; we then say “ bRa   torelated not   is   ”, written  

If R is a relation from a set A to itself, that is, if R is a subset of 2A  =  AA , then we 
say that R is a relation on A. 
 
 Definition. The domain of a relation R is the set of all first elements of the 
ordered pairs which belong to R, and the range is the set of second  elements. 
 
 Example 2.2.1. Given  3,2,1A  and  zyxB ,, , and let 

      yzyR ,3,,1,,1 . Then R is a relation from A to B since R  is a subset of BA . 
With respect to this relation, yR1 , zR1 , yR3 . The domain of R is  3,1  and the 
range is  zy, . 
 
 Example 2.2.2. Let us denote in the table the elements belonging to the set 

      0,,,,1,  mbaR  of the Cartesian product of the sets A and B by the points 
  BAR  : 

 
 
 
 
 
 
 
 
Then we have the binary relation between the sets A and B. 
 

aRb
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2.3. Pictorial Representatives of Relations 
 
 A. Relations on R 
 Let  S  be  a relation on the set R of  real  numbers. That  is,  S  is a subset of  
R 2 = RR. Frequently, S consists of all ordered pairs of real numbers which satisfy 
some given equation   0, yxE (such that 2522  yx ). 
 Since R 2 can be represented by the set of points in the plane, we can picture S  
emphasizing those points in the plane which belong to S. The pictorial representation 
of the relation in sometimes called the graph of the relation. For example, the graph 
of the relation 2522  yx is a circle having its center at the origin and radius 5. 
 
 B. Directed Graphs of Relations on Sets 
 There is an important way of picturing a relation R on a finite set. First we 
write down the elements of the set, and then we draw an arrow from each element x 
to each element y whenever x is related to y. This diagram is called the directed 
graph of the relation. 
 Let us find the directed graph of the following relation R on the set 

 4,3,2,1A : 
 

             3,4,1,44,3,2,3,4,2,2,2,2,1R   
  
 
 
There is an arrow from 2 to itself, since 2 is 
related to 2 under R . 
 
 
 
 

   C. Pictures of Relations on Finite Sets   
 
 Suppose A and B are finite sets. There are two ways of picturing a relation R 
from A to B. 

a) Form  a rectangular array (matrix) whose rows are labeled by the elements 
of A  and whose columns are labeled by the elements of B. Put 1 or 0 in each position 
of the array according as Aa  is or is not related to Bb . This array is called the 
matrix of the relation. 
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 For the relation        yzyR ,3,,1,,1  we have 
 
  
 
 
 
 
 
 
 
 
 
 
 Such matrix is called a Boolean matrix since its elements are only 0 or 1. 
 b) Let us write down the elements of A and the elements of B in two disjoint 
disks, and then draw an arrow from Aa  to Bb  whenever a is related to b. This 
picture  will be called the arrow diagram  of the relation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  D. Composition of Relations 
 
 Let A, B and C be sets, and R be a relation from  A to B and let S  be a relation 
from B to C.  That is, R is a subset of BA   BAR   and CBS  . Than R  and 
S give rise to a relation from  A to C denoted by RS  and derived by: 
  cRSa  if for some Bb  we have aRb  and bSc.  
That is,       ScbbaBbcaRS  , andR,for which  exists there, . 
The relation RS is called the combination of R and S. 
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 Let  4,3,2,1A ,  dcbaB ,,, ,  zyxC ,,  and let 
          dbadaR ,3,,3,,3,,2,,1  and         zdyczbxbS ,,,,,,, . 

Consider the arrow diagrams of R and S: 
 
 
 
 
 
 
 
 
 
 
 
 
      
 

Fig.1.2.4 
 
Observe that there is an arrow from 2 to d which is followed by an arrow from d to z. 
We can view two arrows as a “path” which “connects” the element A2  to the 
element Cz . Thus  zRS2  since Rd2  and dSz. Similarly there is a path from 3 to x 
and a path from 3 to z.  xRS3  and  zRS3 . 
Accordingly       zxzRS ,3,,3,,2 . 
 
 
   2.4. Inverse Relation 
 
  Definition. Let R be any relation from a set A to a set B. The inverse of R, 
denoted by 1R , is the relation from B to A which consists of those ordered pairs, 
when reversed, belong to R; that is, 
      RbaabR  ,,1 . 
For example, let  3,2,1A  and  zyxB ,, . Then the inverse of  

      yzyR ,3,,1,,1 is       3,,1,,1,1 yzyR  . 

Clearly, if R is any relation, then   RR 
 11 . Also, the domain and range of 1R  are 

equal, respectively, to the range and domain of R. Moreover, if R is a relation on A, 
then 1R  is also a relation on A. 
 
   2.5. Types of Relations 
 
 Definition. A binary relation R defined on an unempty set A is called reflexive 
if aRa for every Aa , that is, if   Raa ,  for every Aa . 
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 Example 2.5.1. Given the following five relations. 
1) Relation   (is less than or equal to) on the set Z of integers; 
2) Set inclusion   on a collection C of sets; 
3) Relation   (perpendicular) on the set L of lines in a plane; 
4) Relation  ( parallel) on the set L of lines in a plane; 
5) Relation of divisibility on the set N of positive integers. (Recall yx  if 

there exists z such that .yxz  ) 
Determine which of these relations are reflexive. 
 
 Definition. A binary relation R on a set A is called irreflexive if   Raa ,  for 
all Aa . 
 
 Definition. A binary relation R on a set A is called symmetric if whenever aRb 
then bRa,  that is whenever    Rba ,  then   Rab , . 
 
 Definition. A binary relation R on a set A is called antisymmetric if whenever 
aRb and bRa then  a = b, that is, if ba   and aRb then  
 
 Definition. A binary relation R on a set A is called transitve if whenever aRb 
and bRc then aRc, that is, if whenever     Rcbba ,,,  then   ., Rca   
 
 Definition. A binary relation R on a set A is called complete if whenever Aa  
and Bb  then  a = b, or   ., Rba  , or   ., Rab  . 
 
 Example 2.5.2.Consider the following five relations on the set  3,2,1A :  

        3,3,3,1,2,1,1,1R ,           3,3,2,2,1,2,2,1,1,1S
        3,2,2,2,2,1,1,1T , Ø – empty relation,  AA  universal relation. 

Determine whether or not each of the above relations on A is: 
1) reflexive;  2) symmetric; 3) transitive;  4) antysymmetric. 
 
    Solution 
1) R is not reflexive since A2  but   .2,2 R  T is not reflexive since   T3,3 and, 

similarly, Ø is not reflexive. S and AA  are reflexive. 
2) R is not symmetric since   R2,1  but   R1,2 , and similarly T is not symmetric. 

S, Ø, and AA  are symmetric. 
3) T  is not transitive since    2,1  and  3,2  belong to T, but  3,1  does not belong to 
    T. The other four relations are transitive. 
4) S is not antisymmetric since 21  and  2,1  and  1,2  both belong to S. Similarly,  
    AA  is not antisymmetric. The other three  relations are antisymmetric.  
     
 
 

bRa
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   2.6. Functional Relations 
 
 Definition. A section ax   of a set  R  is a set of elements By  for which 
  ., Rya  . This section is denoted by  aR .  
 
 Definition. Let  bac , , where BAc  . An element a is called a projection 
of  an element c on a set  A, and denoted by acA Pr . 
 Example 2.6.1. Let  54321 ,,,, aaaaaA  ,  4321 ,,, bbbbB   and the relation 

                  351543332332124121 ,,,,,,,,,,,,,,,,, bababababababababaR   be 
given. Find: 
1) sections  5,1 iax i ; 
2)  32 ,Pr baA  and RAPr . 

Solution. 
Using the definitions of a section and a projection, we have 

1)    421 , bbaR  ;    312 ,bbaR  ;    4323 ,, bbbaR  ;  4aR Ø; 
   315 , bbaR  . 

2)   232 ,Pr abaA  ; RAPr  5321 ,,, aaaa . 
 
 Definition. A relation BAR   is called a functional relation if for each 

Ax  a section R with respect to x contains not more than one element By  or 
none. Such relation is called a function from A into B and denoted by BAf :  
which is read: “ f  is a function from A into B ”. 
 
 Definition. If the function f  is defined on a set AD   then this set D is called 
the domain of definition of f, or more briefly the domain of f.  A subset BIm , 
where   Dxxf Im  is called the range or image of f. 
 

Definition. An element  afb  , where Da  is called an image of the 
element a, and element a is called a prototype of the element b. 

 
Definition. If AD  , then a function f is called everywhere defined. 
Frequently a function can be expressed by means of mathematical formula. For 

example, consider the function which sends each real number into its square. We can 
describe this function by writing 

  2xxf   or 2xy   
In the first notation, x is called a variable and the letter f denotes the function. In the 
second notation, x is called the independent variable and y is called the dependent 
variable since the value of y will depend on the value of x. 
 Every function BAf :  gives rise to a relation from A to B called the graph 
of  f and denoted by 
 Graph of f     afbAaba  ,, . 
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  2.7. One-to-one, onto, and Invertible Functions 
 

Definition. A function BAf :  is said to be one-to-one if different elements 
in the domain A have distinct images. 

 
Definition. A function BAf :  is said to be an onto function if each element 

of B is the image of some element of A. 
In other words, BAf : in onto if the image of f  is the entire range, i.e. if 

  BAf  . In such a case we say that f is a function from A onto B or that f maps A 
onto B. 

 
Definition. A function BAf :  is invertible if its inverse relation 1f is a 

function from B to A. 
In general, the inverse relation 1f  may not be function. 
In what follows we use the terms injective for one-to-one function, surjective 

for an onto function, and bijective for a one-to-one correspondence. 
 

 
 
 
 
 
 
 

Fig.2.7.1           Fig.2.7.2        Fig.2.7.3 
    Injective relation  Surjective relation        Bijective relation 

 
Example 2.6.1. Let R – the set of real numbers, R   the set of real positive 

numbers, and a function BAf : . 
1) If  BA R then the function 2: xxf  gives the map of A onto B which is not 

surjective. 
2) If  BA R then the function 34:  xxf gives the map of A onto B which is 

surjective. 
3) If A R, B = R    then the function xxf 3:  gives the map of A onto B which is 

injective. 
Consider functions BAf :  and CBg : ; that is, where the range of f is the 
domain of g. Then we may define a new function from A to C, called the 
composition of f and g and written fg  as follows: 
   fg  a   afg  
 That is,  we  find the image of a under  f  and then find the image of  af  
under g. 
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 Consider any function  BAf : . Then 
  fIf A   and ffI B  , 
where BA II  and   are the identity functions on A and B, respectively.  
The mapping defined by these formulas is called identical. Thus 

  









n

n
A aaa

aaa
I

...

...

21

21 . 

 Example 2.6.2. Let the mapping  f  be given by the table  
 

 
 
 
 
 
 
 
 
 

then the mapping BAf 1  is defined by the table 
 
 
 
 
 

 
 
 
 
 
The functions f  and 1f we write in the form 

 











21534
54321

f ,  









31254
543211f . 

 
Let us check the fulfillment of the conditions ffI A   and fIf A  . 
 

ffI A 


























21534
54321

21534
54321

54321
54321

 . 

 
In the similar way we get fIf A  . 
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   2.8. Ordered Sets 
 

 Definition. A binary relation R on a set A is called an order relation or partial 
order relation if it is antisymmetric and transitive. 
Definition. A binary relation R on a set A is called an nonstrict order relation if it is 
reflexive, antisymmetric and transitive. 
 

 Definition. A binary relation R on a set A is called a strict order relation if it is 
antireflexive, antisymmetric and transitive. 
 

 Definition. If an order relation is total then it is called a totally ordered or 
linearly ordered. 
 A nonstrict order relation is denoted by “  ”, and strict order relation by “< ”; 
and ba   is read “a precedes b”. ba   means ba   and ba  , and is read “a strictly 
precedes b” or “b strictly succeeds a ”. 
 

 Definition. Let A be a subset of  a partially ordered set S. An element M in S is 
called an upper bound of A if M succeeds every element of A, i.e. if for every x in A, 
we have Mx  . 
Analogously, an element m in S is called a lower bound of a subset A of S.if m 
precedes every element of A, i.e. if for every y in A, we have ym  . 
 

  
  2.9. Suplementary Problems 
 
2.9.1. Which of the following sets are equal? 

 ,034: 2  xxxA      ,3,:  xNxxC      ,2,1E       ,1,3G  
 ,023: 2  xxxB     ,5 odd, is ,:  xxNxxD    ,1,2,1F      .3,1,1H  

 

2.9.2. Let  ,9,8,...,2,1A   ,8,6,4,2B   ,9,7,5,3,1C   ,5,4,3D  .5,3E  
Which of above sets can equal a set X under each of the following conditions? 
(a)  X and B are disjont.    (c)  but  CXAX  . 
(b)  but  BXDX     (d)  but  AXCX  . 
 

2.9.3. Let  ,,,,, edcbaA    ,,,,, gfdbaB    ,,,,, hgecbC   
 .,,,, hgfedD   Find: 

(a) BA   (d)  DBA    (g)   CDA \  (j) BA  
(b) CB    (e)  DCB \   (h) DCB   (k) CA  
(c) DC \   (f)   BDA    (i)   DAC \\  (l)   BDA \  
 
2.9.4. Draw a Venn diagram of sets A, B, C where BA , sets B and C are disjoint, 

but A and C have elenments in common. 
 
2.9.5. Consider the set Q of rational numbers with the order  . Consider a subset D 
of Q defined by    xxD  Q and 158 3  x . Find the upper and lower bounds. 
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3. MATHEMATICAL  LOGIC 
 

3.1. Propositions and Compound Statements 
 
Definition. A proposition (or statement) is a declarative statement which is 

true or false, but not both.  
Consider, for example, the following six sentences: 

1) Ice floats in water.   2) China is in Europe. 
3)  422  .    4) 522  . 
5)  Where are you going?   6)  Do your homework.  
The first four are propositions, the last two are not. Also, 1) and 3) are true, but 2) 
and 4) are false. 
 With each proposition we associate a logical variable x which takes the value 1 
if a proposition is true, and 0 if it is false. 
 Many propositions are composite, that is, composed of subpropositions and 
various connectives. Such composite propositions are called compound 
propositions. A proposition is said to be primitive if it can not be broken down into 
simpler propositions, that is, if it is not composite. For example the following 
propositions are composite: “Roses are red and violets are blue.” “John is smart or he 
studies every night.” 
 Propositions are denoted by capital letters ,...,, ZYX  
 A compound proposition we get from primitive propositions with the help of 
logical operations. 
 
Name of operation Reading Notation 
Negation   Not 

 
           

Conjunction  and   
 

            

Disjunction  
 or 

           

Implication  
 if … then 

           

Equivalence  
 if and only if 

           

Scheffer’s prime  
 Anticonjunction 

            | 

Peirce’s arrow  
Antidisjunction 

             

Sum taken absolutely 2  
Antiequivalence  

            

 
 Definition. A negation of a proposition X is a proposition X  which is true 
when  X is false and is false when  X is true. 
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    X     X  
    0     1 
    1     0 

  
Definition. A conjunction of two propositions X and Y  is called a proposition 

YX   which is true only in the case if X and Y  are both true. 
     

X Y YX   
0 0 0 
0 1 0 
1 0 0 
1 1 1 

  
Definition. A disjunction of two propositions X and Y  is called a proposition 

YX   which is true if at least one of them is true. 
     

X Y YX   
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Definition. An implication of two propositions X and Y  is called a proposition 
YX   which is false if and  only if when  X  is true and Y  is false. 
 
 

X Y YX   
0 0 1 
0 1 1 
1 0 0 
1 1 1 

 
Definition. An equivalence of two propositions X and Y  is called a proposition 
YX   which is true if and  only if, when  X and Y  are both true or false. 

      
X Y YX   
0 0 1 
0 1 0 
1 0 0 
1 1 1 

  
 Definition.Scheffer’s prime YX |  by definition is YX | YX  . The truth 
table is of the form: 
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X Y YX |  
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 
 Definition. Peirce’s arrow YX   by definition is YX  YX  . 
 

X Y YX   
0 0 1 
0 1 0 
1 0 0 
1 1 0 

 
 Definition. A sum taken absolutely 2 YX   by definition is 

YX  YX  . 
 

X Y YX   
0 0 0 
0 1 1 
1 0 1 
1 1 0 

    
 

3.2. Basic Laws of Logical Operations 
 
1. Idempotency of disjunction and conjunction: 
 

,XXX      .XXX   
 

2. Commutativity of disjunction and conjunction:  
 

,XYYX      .XYYX   
 

3. Associativity of disjunction and conjunction: 
    ZYXZYX  ,  
    ZYXZYX  . 

 
4. Double negation XX  . 
 
5. De Morgan laws: 

YXYX  ,   YXYX  . 
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6. Distributivity of disjunction and conjunction operations with respect to each other: 
 

     ZXYXZYX  ;        ZXYXZYX  . 
 

7. Sewing: 
   YXYX  X ;      YXYX  X . 
 

8. Absorption: 
  XYXX  ;      XYXX  . 

 
9. Operations with logical constants 0 and 1: 

XX  0 ;    00 X ;   0 XX ; 
11X ;    XX 1 . 

 
10. Law of the excluded middle:  1 XX . 
 
11. Identity:     XX  . 
 
12. Negation of contradiction:  1 XX . 
 
13. Contraposition:      XYYX  . 
 
14. Chain rule:         ZXZYYX  . 
 
15. Antithesis:        YXYX  . 
 
16. Modus ponens, which means “proposing mode”:   YYXX  . 
 
 Example 3.2.1. Suppose that the proposition X is “it is raining” and the 
proposition Y is “cats and dogs get wet”, then the compound proposition “ it is 
raining; and if it is raining, then cats and dogs get wet” logically implies that cats and 
dogs are really wet. 
 
17. Modus tollense, which means “removing mode”: 
 
       XYYX  .  
As can be seen, it is a counterpart of modus ponence. For instance, in the previous 
example we just used for modus ponence, modus tollense would state: the 
compound proposition “ if it is raining; then cats and dogs get wet, and cats and dogs 
are not wet ” which logically implies that it is not raining. 
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3.3. Propositional Functions. Quantifiers 
 
 Let A be given set. A propositional function (or an open sentence or 
condition) defined on A is an expression  xp , which has the property that  ap  is 
true or false for each Aa . That is,  xp  becomes a statement (with a truth value) 
whenever any element Aa  is substituted for the variable x. The set A is called the 
domain of  xp ,  and the set pT  of all elements of A which  ap  is true is called the 
truth set of   xp . In other words, 
     trueis  , xpAxxTp   or    xpxTp  . 
Frequently, when A is some set of numbers, the condition  xp  has the form of an 
equation or inequality involving the variable x. 
 
 Example 3.3.1. Find the truth set for each propositional function  xp  defined 
on the set  N : 
1. Let  xp  be “ 72 x ”. Its truth set is  ...,8,7,6  consisting of all integers greater 

than 5. 
2. Let  xp  be “ 35 x ”. Its truth set is the empty set Ø. That is,  xp  is not true 

for any integer in N. 
3. Let  xp  be “ 15 x ”. Its truth set is N. That is,  xp  is true for every element 

in N. 
 
Let  xp  be a propositional function defined on a set A. Consider the expression 

      xpAx  or  xxp          (3.3.1) 
which reads “For every x in A,  xp  is a true statement” or, simply, “For all x,  xp ”. 
The symbol which reads ”for all” or ”for every” is called the universal quantifier. 
The statement    (3.3.1) is equivalent to the statement 

      AxpAxxTp  ,          (3.3.2) 
that is, that the truth set of  xp  is the entire set A. 
The expression  xp  by itself is an open sentence or condition and therefore has no 
truth value. However,  xxp , that is  xp  preceded by the quantifier  , does have a 
truth value which follows from the equivalence of  (3.3.1) and (3.3.2). Specifically: 
 If    AxpAxx  ,  then  xxp  is true, otherwise,  xxp  is false. 
 
 Example 3.3.2.  
1. The proposition  n N) 34 n  is true since   34nn  ...,3,2,1  N. 
2. The proposition  n N) 82 n  is false since   82nn  ...,9,8,7  N. 
3. The symbol can be used to define the intersection of an indexed collection 

 IiAi   of sets iA  as follows:  
   ii AxIixIiA  , . 
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 Let  xp  be a propositional function on a set A. Consider the expression 
      xpAx  or  xpx          (3.3.3) 
which reads “There exists an x in A such that  xp  is a true statement” or, simply,  
“For some x,  xp ”. The symbol  which reads “there exists” or “for some” or 
“for at least one” is called the existential quantifier. The statement (3.3.3) is 
equivalent to the statement 
      xpAxxTp , Ø         (3.3.4) 
i.e., that the truth set of  xp  is not empty. Accordingly,  xpx , that is  xp  
preceded by the quantifier , does have a truth value. Specifically: 

 If    xpAxx ,  Ø then  xxp  is true, otherwise,  xxp  is false. 
 
 Example 3.3.2.  
1. The proposition  n N) 74 n  is true since   34nn  2,1 Ø. 
2. The proposition  n N) 46 n  is false since   46nn  Ø. 
3. The symbol can be used to define the union of an indexed collection  IiAi   

of sets iA  as follows:  
   ii AxIixIiA  , . 

 
    4. BOOLEAN ALGEBRA 
   
  4.1. Boolean Functions 
 

Definintion. A function  nxxxf ,...,, 21  which takes one of two values 0 or 1 
of n variables each of those also assumes one of two values 0 or 1 is called a Boolean 
function. 

Two Boolean functions are said to be equal if for any tuple of values these two 
functions take equal values.  

We have four Boolean functions of one variable and sixteen functions of two 
variables. 

n22 is the number of  Boolean  functions of n variables. 
Let us consider truth tables of functions of one and two variables. 
 

 x   0   1   2   3  
0 0 0 1 1 
1 0 1 0 1 

    Table4.1.1 
 
Functions  x0  and  x3  are called constants respectively 0 and 1. 

 The function  x1  coincides with a variable x and is called identical, that is 
  xx 1 . 
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 The function  x2  takes the values opposite to those of x, and is called a 
negation of x denoted by x :  x2  = x . 
 The truth table of a function of two variables is of the form: 
 

1x  2x  0
 

1  2  3  4
 

5  6
 

7  8
 

9
 

10
 

11
 

12
 

13
 

14
 

15
 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 
Operatio
n 

 
0 

 
  

 
  

 
1x  

2

1

x

x
  

 
2x  

 
  

 
  

 
  ~



 

 
2x  

2

1

x

x
  

 
1x  

 
  

 
 

 
1 

    Table 4.1.2 
 
1. The functions  0  and 15  are constants. 
2. The functions  3 , 5 , 10  and 12  essentially depend on one variable: 

3 1x , 5 2x , 10 2x , 12 1x . 
3. The function 1 1x 2x  is called conjunction. 
4. The function 7 1x 2x  is called disjunction. 
5. The function 9 1x 2x , or 1x 2~ x is called equivalence. 
6. The function 6 1x 2x  is called the sum taken absolutely 2. 
7. The function 11 2x 1x  is called conversion. 
8. The function 13 1x 2x  is called implication. 
9. The function 14 21 xx  is called Scheffer’s prime. 
10. The function 8 21 xx  is called Peirce’s arrow. 
11.  The functions 2  and 4  are called exclusion’s functions. 
 

4.2. The Properties of Elementary Boolean Functions  
 
1. The functions: conjunction, disjunction, sum taken absolutely 2, Scheffer’s prime, 

Peirce’s arrow are commutative. 
2. The functions: conjunction, disjunction, sum taken absolutely 2 are associative, 

and distributive. 
3. De Morgan law: 21 xx  21 xx  , 21 xx  21 xx  . 

4. Double negation: xx  . 
5. A disjunction expressed in terms of conjunction and sum taken absolutely 2: 

122121 xxxxxx  . 
6. A disjunction expressed in terms of implication: 
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  22121 xxxxx  . 
7. A negation expressed in terms of Scheffer’s prime, Peirce’s arrow, sum taken 

absolutely 2, and equivalence: 
01  xxxxxxx . 

8. A conjunction expressed in terms of Scheffer’s prime: 
   212121 xxxxxx  . 

9. A disjunction expressed in terms of Peirce’s arrow: 
   212121 xxxxxx  . 

10. An absorption law:   1211 xxxx  . 
11. A sewing law: 1 xxxx . 
12. The following identities for conjunction, disjunction, and sum taken absolutely 2 
are valid:  

xxx  ;  xxx  ; 0 xx ; 
0 xx ;  1 xx ; 1 xx ; 

00 x ;  xx  0 ; xx  0 ; 
xx 1 ;  11x ; xx 1 . 

 
  Technical Realization of Functions of One   Variable 
 
 
 
 

00         13   
       Constant 0           Constant 1 
 
 
 
 
 
 x1        x2  
         Identical              Negation 
     Fig.4.3.1 
 
 
Technical Realization of Functions of Two Variables 
 
 
 
 
           217 xx         211 xx    
 Disjunction      Conjunction   
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2113 xx        212 xx   
          Implication 
 
 

2114 xx       218 xx   
Scheffer’s prime      Peirce’s arrow  
 
 

216 xx        219 xx   
Sum taken absolutely 2      Equivalence 

               Fig.4.3.2. 
 
 
4.4. Total Systems of Functions. Basis  
Definition. A system of functions of logic algebra  n ...,, 21 is called total 

system, if any function of logic algebra can be expressed in terms of the 
superposition of these functions. 
 In addition this system of functions is said to be a basis of the logic space. 
 
 Definition. A logic function  nxxxf ,...,, 21

  is called a duel function to a 
function  nxxxf ,...,, 21  if  nxxxf ,...,, 21

  nxxxf ,...,, 21 . 

For example, 212 xx   is duel to 218 xx  , as 21 xx  21 xx  . 
 
 Definition. A function f is called a self-duel function if 

 nxxxf ,...,, 21
  nxxxf ,...,, 21 . 

 For example the function  321 ,, xxxf = 312321 xxxxxx   is the self-

duel function as  312321 xxxxxx 312321 xxxxxx  . To check it 
consider the truth table. 
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 Definition. A function  nxxxf ,...,, 21  is called a monotonous function if for 
any tuples  nxxx  ,...,, 21  and  nxxx  ,...,, 21  such that nixx ii ,1,   the inequality 
  nxxxf ,...,, 21  nxxxf  ,...,, 21  takes place . 

 
Definition. A function  nxxxf ,...,, 21  is called a linear function if it can be 

reduced to a polynomial:  nxxxf ,...,, 21 nn xcxcxcc  ...22110 , where 
  .,1,1,0 nici    

For example the function   21217 , xxxx  is the linear function. 
 

 Post’s theorem. A system of functions is total if, and only if this system 
contains at least one function that does not preserve 1, does not preserve 0, not self-
dual, not monotonous and is not linear.  
 
 For example, Boolean algebra is constructed on the following system of 
functions  ,,  but Zhegalkin algebra on such basis  ,,1 . 
 
  4.5. Normal Forms of Boolean Functions 
 
 Definition. Elementary conjunction is a conjunction of any number of 
Boolean variables taken with negation or without it in which each variable occurs not 
more than one time. 
 An elementary conjunction containing none variable we assume the constant 1. 
 
 Example 4.5.1. Elementary conjunctions for a function of one variable might 
be zy, ; for a function of two variables – zxyx  , . 
 
 Definition. By a disjunctive normal form (DNF) we mean a formula 
represented in the form of a disjunction of elementary conjunctions. 
 
 Example 4.5.2. DNF : 321 xxx       32321 xxxxx  . 
 
 Definition. An elementary conjunction n

nxxx   ...21
21 is called a 

constituent of unit of a function  nxxxf ,...,, 21  if   1,...,, 21 nf  , that is an 
interpretation reducing the given elementary conjunction into unit, turns also a 
function  f  into 1. 
 
 Example 4.5.3. The elementary conjunction 21 xx   is the constituent of a 
function of two variables  21 , xxf  on the interpretation  0,1  since 

21 xx  = 0
2

1
1 xx   and 21 xx  = 1. 
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 The elementary conjunction 321 xxx   is the constituent of unit of a 
function of three variables  321 ,, xxxf  on the interpretation  1,1,1  since 

 321 xxx 1
3

1
2

1
1 xxx   and  321 xxx  1. 

 
Definition. A formula represented in the form of  disjunction of constituents of 

unit of the given function is called a perfect disjunction normal form (PDNF). 
 

 Definition. An elementary disjunction is a disjunction of any number of 
Boolean variables taken with negation or without it in which, each variable occurs 
not more than one time.  

Elementary disjunction, containing none variables we assume the constant 0. 
 
Definition. A formula represented in the form of a conjunction of elementary 

disjunctions is called a conjunction normal form (CNF). 
 
Example 4.5.4.      231321 xxxxxx  CNF. 
 
Definition. An elementary disjunction n

nxxx   ...21
21 is called a 

constituent of zero of a function  nxxxf ,...,, 21  if   0,...,, 21 nf  , that is an 
interpretation reducing given elementary disjunction into zero turns also a function f  
into zero. 

 
Example 4.5.5. The elementary disjunction yx   is a constituent of zero of a 

function  yxf , on the interpretation  1,0 , since yx  = 1001 yxyx  , 
therefore on interpretation    1,0, yx we have the equality yx  = 0. 

 
Definition. A formula represented in the form of conjunction of constituents of 

zero of the given function is called a perfect conjunction normal form (PCNF). 
 

4.6. Zhegalkin Algebra 
 
 Definition. The algebra  1,0,,, B  formed by the set  1,0B  together with 
operations ,  and constants 0, 1 is called Zhegalkin algebra. 
 The basic laws of this algebra are: 
1. Commutative laws: 1221 xxxx  ;   1221 xxxx  . 
2. Associative laws:        321321 xxxxxx  ; 

             321321 xxxxxx  . 
3. Distributive law:         3121321 xxxxxxx  . 
4. Idempotent law:      xxx  . 
5. Operations with constants: 00 x , xx 1 . 
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 Definition. Zhegalkin polynomial is a finite sum taken absolutely 2 mutually 
distinct elementary conjunctions over a set of variables  nxxx ,...,, 21 . 
 

Example 4.6.1. 1) Zhegalkin polynomial of constant is equal to this constant. 
 
      2)   .10 xaaxf   
      3)    ., 21122211021 xxaxaxaaxxf   
 
Theorem. Each Boolean function  nxxxf ,...,, 21  can be  represented in the 

form of Zhegalkin polynomial in a unique way up to order of summands. 
 
Definition Boolean function is called linear if its Zhegalkin polynomial does 

not contain conjunctions of variables, that is its Zhegalkin polynomial is of the form 
nn xaxaa  ...110 . 

 
 4.7. Minimization of Functions 
 
Definition. Implicant of a function f is a function g such that on all 

interpretations on which g is unit, f is also unit. 
 
Definition. A set S consisting of implicants of f  is called a covering of f  if 

each unit value of f  is covered by 1 at least by one implicant of a set S. 
 
Definition. Any elementary conjunction A entering elementary conjunction B 

and containing less variables than B is called a fundamental part of a conjunction B, 
and it is said that conjunction  A is covering a conjunction B. 

 
Definition. A simple implicant of a function f is such conjunction implicant, 

that none of its fundamental part is not implicant of the given function. 
A set if all simple implicants forms a covering of the given function. 
 
Definition. The disjunction of all simple implicants of a function is called a 

reduced DNF.  
 
Definition. The disjunctive core of Boolean function f is such set of its simple 

implicants which forms a covering of f, but after removal of any implicant it loses 
this property, that is, ceases to be total system of implicants. 

 
Definition. By a deadlock DNF we mean a DNF of the given Boolean function 

f consisting only of simple implicants. 
 
Definition. The minimal DNF  (MDNF)  of the given Boolean function f is 

called one of its deadlocks DNF to which there corresponds the least value of the 
minimization criterion of DNF. 
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To find a set of simple implicants of the given PDNF are used the following 
operations: 

1. The operation of incomplete disjunctive sewing: 
xAAxAxAAx  . 

2. The operation of disjunctive absorbtion 
AAxA  . 

In these cases  A is some elementary conjunction of variables, x is Boolean variable. 
 Performing these two operations successively we  get so called operation of 
total disjunctive sewing: 
  AxAAx  . 
 
 Example 4.7.1. Let us have a function f, given by PDNF 
    zyxzyxyzxxyzzyxf ,, . 
Performing total sewing operations we obtain 

  zyxzyxyzxxyzzyxf ,, =       zyxzyxzyxyzxyzxxyz  
     yxzxyz  . 

Working sewing operations in other way we get 
       yxyzzyxzyxyzxxyzzyxf ,, . 
In both cases we have two deadlock DNF. The second deadlock DNF is simpler than 
the first one since it contains lesser variables and operations. 
 

 4.8. Minimization of Functions by Quine-Mc Cluskey Method 
 
This method was suggested by Quine and improved by Mc Cluskey. 
Quien’s algorithm consists of following: 

1. Write out PDNF  of the given function. 
2. Perform all possible operations of incomplete disjunctive sewing. Resulting 

formula is a disjunction of all possible implicants of the given function. 
3. Perform all possible operations of disjunctive absorbtion. Resulting formula is the 

reduced DNF of the given function. 
4. Form an implicant table and find a disjunctive core. 
5. Simplify an implicant table by means of removal of rows corresponding to 

implicants of a disjunctive core and columns corresponding to such constituents of 
unit which are covered by core implicants. 

6. Find all deadlock DNF  of the given function. 
7. Find the minimal DNF. 
 

Example 4.7.2. Using Quien’s method find the minimal DNF of the following 
 function:   .,, zyxzyxyzxzyxxyzzyxf   
     Solution.   
 Perform all possible operations of disjunctive sewing and absorbtion: 

,yzyzxxyz   ,zyzyxzyx   ,zxzyxyzx   yxzyxzyx  . 
Now we get the following formula: 
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   yxzxzyyzzyxzyxyzxzyxxyzzyxf ,, . 
 This formula is the reduced DNF of the given function. Now let us form an 
implicant table. Its rows are given by simple implicants, and its columns are given by 
constituents of unit of the function. Each cell of the table is denoted by asterisk for 
which implicant of a row is a fundamental part of a constituent of a column. 
 
      Implicant table of the function  zyxf ,,  

 zyx
 

zyx
 

yzx  zyx
 

zyx
 

yz            
zy           

zx           

yx           
   Table 4.7.1. 
 
 Find a disjunctive core. It consists of each simple implicant which is unique in 
the covering by some constituent of unit. In the implicant table the columns contain 
one sign   corresponding to constituents of unit xyz and zyx  opposite to implicants 
yz  and zy . These simple implicants form the disjunctive core. 
 Let us form the simplified implicant table. To do this we delete in the implicant 
table rows corresponding to implicants of the disjunctive core, and columns 
corresponding to the constituents of unit which are covered by core’s implicants. In 
the given case the core’s implicants are covering all constituents of unit, exept one, 
therefore the simplified implicant table has the following form: 
 
      Simplified implicant table 

 zyx  

zx     

yx     
   Table 4.7.2. 
 
From this table we find that the deadlock DBF’s of the given function include the 
implicant zx or yx  except the disjunctive core. 
 Thus we get two deadlock DNF of the given function: 
 DNF 1:   zxzyyzzyxf ,, ; 
 DNF 2:   yxzyyzzyxf ,, . 
 In the capacity of the minimal DNF we choose DNF 1 which contains less 
signs of negation’s operations. 
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5. GRAPH  THEORY 
 
  5.1. Definitions. 
 

A graph G consists of two things: 
1) A finite nonempty set  nxxxX ,...,, 21 whose elements are called vertices of a 

graph. 
2) A definite set U of unordered pairs of distinct vertices called edges of G. 
We denote such a graph by  UXG , , when we want to emphasize the two parts of G. 
 
 Definition. A graph G is a finite set of points called vertices together with a 
finite set of edges, each of which joins a pair of vertices.  

An edge joining a vertex to itself is called a loop (Fig.5.1.3). 
Vertices are represented by dots, the edges – by straight or curved line 

segments.  
 
Example 5.1.1. Let a graph  UXG ,  be given, where  54321 ,,,, xxxxxX  , 
        54433221 ,,,,,,, xxxxxxxxU   

    
     Fig.5.1.1 

 A pair of vertices in a graph may be joined by more than one edge, In this case 
we say that we have a multiple edge. 
 
 Definition. A graph with multiple edges is called a multigraph (Fig.5.1.2). 
 
 Definition. A graph without multiple edges and loops is called a simple graph 
(Fig.5.1.3). 
 
 Definition. A graph with multiple edges and loops is called a pseudograph 
(Fig.5.1.5) 
 
      
 
 
 

 
Fig.5.1.2            Fig.5.1.3   
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                                Fig.5.1.4                    Fig.5.1.5 
 

Definition. Vertices x and y are said to be adjacent if there is an edge 
 yxu , .  

 
Definition. The edge  yxu ,  is said to be incident on each of its endpoints x 

and y.  
We denote a number of vertices of a graph by n, and number of edges – by m, 

that is ., mUnX   
Such numbers are called the basic number characteristics of a graph. 
 
Definition. The degree  of vertex x in a graph G, written deg  x  or  x  is a 

number of edges in G which are incident on x. 
 
Definition. A vertex of degree zero is called an isolated vertex. 
 
Definition. A vertex of degree unit is called an overhanged or terminal vertex.  
 

 Graph with isolated vertex x   Graph with terminal vertex x 

 
  Fig.5.1.6        Fig.5.1.7  
 

Definition. A vertex is said to be even or odd according as its degree is an even 
or an odd number.   
The following two statements are valid. 
 
 Theorem 5.1.1. The sum of the degrees of the vertices of a graph G is equal to 
twice the number of edges in G. 
 
 Theorem 5.1.2. The number of vertices which gave an odd degree is even. 
These theorems are given without proof. 
 

Definition. A graph which does not have edges is called an empty graph and 
denoted by Ø: U = Ø. All vertices of this graph are isolated. 

Definition. A graph G is said to be complete if every vertex in G is connected 
to every other vertex in G.  
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Examples of complete graphs are given in Fig.5.1.7 
 

 
 

 2K    3K     4K       5K  
Fig.5.1.7 

 
 For each vertex of a complete graph we have   .1 nx  
 
    5.2. Subgraphs 
 
 Consider a graph  .,UXG   

Definition. A graph  111 ,UXG  is called a subgraph of G if the vertices and 
edges of 1G are contained in the vertices and edges of G, that is UUXX  11  and . 

Subgraphs of the graph G: 
 
 
 
 
 
 
 
 
 
 

Graph G          Subgraph 1G         Subgraph 2G  
      Fig.5.2.1 
 
 Definition. A graph  111 ,UXG   is called an idgraph if 

UUXX  11  and . 
 
  5.3. Directed Graphs 
 
Definition. A directed graph or a digraph is a graph with directed edges.  
In this case a set U consists of ordered pairs of vertices. Elements of U are 

called arcs. 
 
Example 5.3.1. Let us consider the directed graphs  





 
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a)  111 ,UXG   where  ;, 211 xxX    121 , xxU  ; 
b)  222 ,UXG  where  ;,,,, 543212 xxxxxX          54433221 ,,,,,,, xxxxxxxxU  .  

         a) Directed graph 1G          b) Directed graph 2G    
Fig.5.3.1   
 

 For directed graphs we introduce semidegrees: positive semidegree  x  and 
negative semidegee  x . 

 x  is a number of arcs which go into a vertex x; 
 x  is a number of arcs which go out of a vertex x. 

 
5.4. The Ways of Representation of Graphs 
 

1. A finite graph can be given by listing its elements. 
 For example,  

 UXG , :  ,8,7,6,5,4,3,2,1X                  7,6,6,6,5,4,4,3,4,1,4,2,3,2,2,1U . 
2. Matrix representation of graph 

Let us consider a digraph  UXG , , where  ,,...,, 21 nxxxX   
 muuuU ,...,, 21 . 

This finite directed graph can be represented by an adjacency matrix. 
 
 Definition.  By an adjacency matrix of a digraph G we mean a square matrix 
   ijaGA   of order n, where 

  
 
 










 .,if ,0

;, if  ,1

Uxx
Uxx

a
ji

ji
ij  

 
 Definition. By an incidence matrix of a digraph G we mean a matrix 
   ijbGB   of  dimension mn  , where  

 











. arcan  with incidentalnot  is  vertex a if  ,0

; arcan  of begining  theis  vertex a if  ,1

; arcan  of end  theis  vertex a if  ,1

ji

ji

ji

ij

ux

ux

ux

b  
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 Example 5.4.1. Consider the digraph G in Fig.5.4.1.  
 
 
 
 
 
      

 
 

Fig.5.4.1 
 
The adjacency matrix of this graph has the form 
 

     GA

















011
101
110

3

2

1

321

x
x
x

xxx

  

The incidence matrix is of the form 
 

     GB























0
1
1

110
011
101

3

2

1

4321

x
x
x

uuuu

. 

 
 Сonsider now a finite nondirected graph  UXG , .  ,,...,, 21 nxxxX   

 muuuU ,...,, 21 .  
 Definition. By an adjacency matrix of this graph we mean a square matrix 
   ijaGA   of order n, where 

   
 
 










 .,if ,0

;, if  ,1

Uxx
Uxx

a
ji

ji
ij  

 
Definition. By an incidence matrix of a graph G  we mean a matrix 

   ijbGB   of  dimension mn  , where  








.  edgean  with incidentalnot   is  vertex a if  ,0

; edgean  with incidental is  vertex a if  ,1

ji

ji
ij ux

ux
b  
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 Example 5.4.2. Consider the graph G in Fig.5.4.2. 
     
 
 
 
 

 
 
 
 
 

      Fig. 5.4.2 

The adjacency matrix of this graph is of the form     GA

















001
001
110

3

2

1

321

x
x
x

xxx

 

The incidence matrix has the form  GB

















1
0
1

0
1
1

3

2

1

21

x
x
x

uu

. 

 
 It is possible to extend the definitions of  GA  and  GB  for multygraphs and 
pseudographs 
 
        Graph         Digraph 
                                        
                                         Adjacency matrix  GA  ija  








 timesadjacent   are ,if ,

adjacentnot  are ,if ,0

nxxn
xx

a
ji

ji
ij  












 timesif ,

  if ,0

nUxxn
Uxx

a
ji

ji
ij  

                                       
                                           Incedence matrix      GB  ijb    











 loop a  is if,

 with incedence  is if ,1

 with incedencenot  is if ,0

j

ji

ji

ij

u

ux

ux

b



 















loop a is  if,

 with incedencenot  is if 0,

 ofpoint  end is if ,1

 ofpoint  initial is if ,1

j

ji

ji

ji

ij

u

ux
ux

ux

b


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5.5. Isomorphic Graphs 
 
 Definition. Two graphs  111 ,UXG   and  222 ,UXG   are said to be equal or 
isomorphic if they have the same number of vertices, the same number of edges, and 
if the vertices (respectively, edges) of  1G may be put into one-to-one correspondence 
with the vertices (respectively, edges) of 2G in such a way that if edge u of 

1G corresponds to edge v of 2G  and the end points of u are ix and jx  then the end 
points of v are the vertices corresponding to ix and jx . 
 
 Example 5.5.1. The graphs represented in Fig.5.5.1 are isomorphic. 

 
 
 
 
 
 
     
 

Fig.5.5.1 
 

    5.6. Types of Graphs 
 
 Definition. A walk in a multigraph G is an alternating sequence of vertices and 
edges of the form 
   nnn xuxxuxux 122110 ...   
where each edge iu contains the vertices 1ix  and ix . The number n of edges is called 
the length of the walk. 
The walk is said to be closed if 0x nx . 
 
 Definition. A walk in which all edges are distinct is called a trail. A closed 
trail is called a cycle. A cycle of k length is called a k – cycle. 
 
 Definition. A walk in which all vertices are distinct is called a simple walk. 
 Definition. A cycle in which all vertices (except the end points) are distinct is 
called a simple cycle. 
Directed walks are defined by analogy. 
 
 Definition. A walk, which does not contain recurring arcs, is called a path. 
 
 Definition. A walk, which does not contain recurring vertices is called a simple 
path. 
 



 40 

 Definition. A closed path is called a contour, and a closed simple path is called 
a simple contour. 
 
 Definition. A graph without cycles is called an acyclic graph (digraph – 
noncounter) otherwise a graph is called a cyclic graph (digraph – contour). 
 Let us agree with the statement: that each vertex joining to itself by a walk of 
length 0 and this walk is a simple cycle. Such cycle is called a null cycle. 
 The following statements are true:  
1. Given a walk S. If this walk is not a closed walk then it contains a simple trail with 
the same ends. 
2.  Each closed walk C contains a simple cycle. 
 

5.7. Connectedness. Connected Components 
 

 Consider a nonoriented graph  UXG , . 
 
 Definition. A vertex a is said to be connected to a vertex b if there exists a walk 
which joins these verteces.  
 
 Definition. A graph  UXG ,  is said to be connected if there is a walk between 
any two of its vertices. 
 There exists such decomposition of a set of vertices of X  
    jip XXXXXX ,...1 21 Ø, if ji  . 

iX are mutually nonintersecting subsets and all vertices  of one set iX  are connected 
to each other, and vertices of distinct sets iX  are not connected. 

   jip UUUUUU ,...2 21 Ø, if ji  . 
 Then, according to (1) and (2) we have the direct decomposition 

  ,...3 21 pGGGG   
 where  111 ,UXG  ,  222 ,UXG  ,…,  ppp UXG ,  are nonintersecting 
connected subgraphs.  

These subgraphs are called connected components of a graph G. 
A number p is a number characteristic of a graph. Moreover 1p  for a 

connected graph and 2p  for a nonconnected graph. 
Theorem. Each nonoriented graph can be decomposed uniquely into a direct 

sum. 
 
Definition. A digraph is called strongly connected if for any pair of vertices a 

and b there exists a path from a to b.  
 
Definition. A semipath is the same as a path except the edge iv  may begin at 

1ix  or ix  and end at the other vertex. 
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Definition. A graph G is weakly connected or weak if there is a semipath 
between any pair of vertices in G. 

 
Example 5.7.1. The graph in Fig.5.7.1 has three connected components: 
 
 
 

   
 
 
 
        Fig.5.7.1 
 
 Example 5.7.2. Three connected components 1G , 2G , 3G  of the digraph G are 
given in Fig.5.7.2: 
 
 
 
 
 
 
 

 
 

  
 

       Fig.5.7.2 
 
   5.8. Distance and Diameter 
 
 Consider a connected graph G. The length of the shortest trail which joins two 
vertices x and y in a graph G is called a distance between these vertices and written  
 yxd , . 

 The following metrical axioms are valid: 
 
1.   0, yxd    yxyxd  0, . 
2.  yxd ,  xyd , . 
3.  yxd ,    zyd ,  zxd , . 
 

Definition. The diameter of G, written  
yx

Gd
,

max  yxd , , is the maximum  

distance between any two points x and y in G. 



 42 

 Let us define for every vertex x in a graph G a quantity  
y

x max  yxd , . 

The minimum of this quantity with respect to all vertices in a graph is called a radius 
of a graph. That is    

yxxx
xGd

,
maxminmin    yxd , . 

A vertex at which this minimum is attained is called a central vertex. 
 
  5.9.Traversable and Eulerian Graphs 
 
 The eighteenth century East Prussian town of nigsbergoK   included two islands 
and seven bridges as shown in Fig.5.9.1(a)  Question: Beginning anywhere and 
ending anywhere, can a person walk through town crossing all seven bridges but not 
crossing any bridge twice? The people of nigsbergoK   wrote to the celebrated Swiss 
mathematician L.Euler about this question. Euler proved in 1736 that such a walk is 
impossible. He replace the islands and the two sides of the river by points and the 
bridges by curves, obtaining Fig.5.9.1(b).  
 
 

 
     Fig.5.9.1 
 
 
Observe that Fig.5.9.1(b) is a multigraph. A multigraph is said to be 

traversable if it “can be drawn without any breaks in the curve and without repeating 
any edges”, that is: there is a path, which includes all vertices and uses each edge 
exactly once. Such a path must be a trail (since no edge is used twice) and will be 
called a traversable trail.. Clearly a traversable multigraph must be finite and 
connected. Figure 5.9.2(b) shows a traversable trial of the multigraph in Fig.5.9.2(a). 
To indicate the direction of the trail, the diagram misses touching vertices which are 
actually traversed. 
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    Fig.5.9.2 
 
 Now it is not difficult to see that the walk in nigsbergoK   is possible if and 

only if the multigraph in Fig.5.9.1(b) is traversable. 
  We now show how Euler proved that the multgraph in Fig.5.9.1 (b) is not 
traversable and hence that the walk in nigsbergoK   is impossible. 
 Recall first that a vertex is even or odd according as its degree is an even or an 
odd number. Suppose a multigraph is traversable and that a traversable trial does not 
begin or end an a vertex P. We claim that P is an even vertex. For whenever the 
travesable trail enters P by an edge, there must always be an edge not previously used 
by which the trail can leave P. Thus the edges in the trail incident with P must appear 
in pairs, and so P is an even vertex. Therefore if a vertex Q is odd, the traversable 
trail must begin or end at Q. Consequently, a multigraph with more than two odd 
vertices cannot be traversable. Observe that the corresponding to the 

ningsbergoK  bridge problem has four odd vertices. Thus one cannot walk through 
nigsbergoK   so that each bridge is crossed exactly once. 

 
 Definition. A graph is called an Eulerian graph if there exists a closed 
traversable trail, called an Eulerian trial. 
 
 Theorem 5.9.1. A finite connected graph is Eulerian if and only if each vertex 
has even degree. 
 
 

5.10. Hamiltonian Graphs 
 
 A Hamiltonian circuit in a graph G, named after the nineteenth – century Irish 
mathematician William Hamilton (1803 – 1865), is a closed path that visits every 
vertex in G exactly once. (Such a closed path must be a cycle.) If G does admit a 
Hamiltonian circuit, then G is called a Hamiltonian graph. 

Note that an Eulerian circuit traverses every edge exactly once, but may repeat 
vertices, while a Hamiltonian circuit visits each vertex exactly once but may repeat 
edges. Fig.5.10.1 gives an example of a graph which is Hamiltonian but not Eulerian, 
and vice versa. 
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     Fig.5.10.1 

  
 Although it is clear that only connected graphs can be Hamiltonian, there is no 
simple criterion to tell us whether or not a graph is Haviltonian as there is for 
Eulerian graphs. We do have the following sufficient condition which is due to 
G.A.Dirac. 
 
 Theorem5.10.1. Let G be a connected graph with n vertices. Then G is 
Hamiltonian if 3n  and  xn deg  for each vertex x in G. 
 
   5.11. Cyclomatic Graphs. Trees 
 

 Let us consider a graph  UXG , . 
Definition. A graph edge through which at least one cycle passes is called a 

cyclic edge. 
 
Definition. An edge which does not belong to any cycle is called an isthmus.  
 
Example 5.11.1. In Fig. 5.11.1 we have the graph with isthmuses 1u and 2u : 
 
 
 
 
 
 
 
 
 
    Fig. 5.11.1 
 
Definition. Let nX   is a number of vertices, mU   is a number of edges, 

p is a number of connected components of a graph. A quantity pnm  is called 
a cyclomatic number. 
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It is possible to prove that 0 . 
 
  5.12. Tree Graphs 
 
Definition. A graph T is called a tree if T is connected and T has no cycles. 
Examples of trees with six vertices are shown in Fig. 5.12.1. 
 
 
 
 
 
 
 
    Fig. 5.12.1. 
 
Example of a forest which is a tree is shown in Fig. 5.12.2. 
 
 
 
 
 
 
 
 
      
      
 

 
                  Fig. 5.12.2 

 
Definition. A forest is a graph with no cycles; hence connected components of 

a forest G are trees. Note, that a forest can be a tree. 
The following definitions of a tree are equivalent: 

a) a tree is a connected graph with no cycles; 
b) a tree is a connected graph in which each edge is an isthmus; 
c) a tree is a connected graph with a cyclomatic number equals zero. 
 

5.13. Spanning Trees 
 

 Definition. A subgraph T of a connected graph G is called a spanning tree of 
G if T is a tree and T includes all the vertices of G. 
 
 Fig.5.13.1 shows a connected graph G and spanning trees 1T , 2T  and 3T of G. 
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   5.14. Transport Networks 
 
 Definition. S transport network is a directed graph  UXG ,  in which 
1) there corresponds a non-negative number  uc  to every arc u called an arc 

capacity; 
2) To vertices s and t are separated. The graph G does not include arc which enters s 

and leaves t. 

These two vertices are called a source (s) and a sink (t). 

 
Example 5.14.1.  In Fig.5.14.1 the following transport network is given: 
 
 
 
 
 
     
 
 
 

     
           Fig.5.14.1 

 
s is a source, t is a sink a and b are intermediate vertices. 

We denote by 
xU  a set of all arcs which enter x and by 

xU  which leave x. 
 For vertices s and t we have 

sU 0
tU . 

 
 Definition. A function   which is defined on arc of a network, and takes 

nonnegative values is called a flux if the following conditions are satisfied 
 

(1)    Uuu  ,0 ; 
(2)  




xUu

u   ,0
 xUu

u  ;,, txsxUx   
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(3)      .ucu   
 

  A flux is a scheme of a transport organization  u  which means an amount of 
load passing through an arc in a unit time and does not exceed a capacity of an arc. 

The conditions (2) are called conditions of conservation. 
The total quantity of load, which leaves s, equals the total quantity which enters t.  
This total quantity is called a flux quantity and denoted by  , that is 
 
    




tUu

u =  
 sUu

u . 

   
 Let XA be a subset of network vertices which satisfies the condition 

AtAs  , . 
 We denote AXA \ , then AtAs  , . 
 Consider a set  AA,  of all network arcs, which start in the set A and end in the 
set A : 
   AA,   AyAxyx  ,:, . 
 
 Definition.A set of arcs  AA,  is called a cutset caused by a set of vertices of A. 
A capacity of cutset  AAC ,  is a sum of capacities of all arcs belonging to the cutset. 
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6. ELEMENTS OF NUMBER THEORY 
 
  6.1. Fundamental Concepts 
 
 If m is a natural number then for any integer number a there exists a pair of 
integer numbers q and r such that 
  .0, mrrqma    
A number q is called a quotient, and a number r is called a remainder. If a can be  
divided  by m without remainder then we denote am . 
 Definition. The least common multiple (LCM) of two (or more) nonzero whole 
numbers is the smallest nonzero whole number that is the multiple of each all of the 
numbers. LCM of a and b is written  ba, . 
 
 Example 6.1.1.  Find  36,24 . 
 Solution. 
Step1:  Express the numbers 24 and 36 in their prime factor exponential form: 
  3224 3  ,  22 3236  . 
Step 2: The LCM will be the number 23 32  . 
 
 Definition. The greatest common factor (GCF) of two (or more) nonzero whole 
numbers is the largest nonzero whole number that is a factor of both (all) of the 
numbers. GCF of a and b is written  ba, . 
 If   1,...,, 21 naaa  then numbers naaa ,...,, 21  are called mutually prime 
numbers. 
 
 Theorem. If ,rqba   then  ba, = rb, . 
 Proof. If bd and rd  then ad . If ad and bd  then rd . Therefore a set of 
divisors of b and r coincides with a set of divisors of a and b. Hence their greatest 
common factors are equal. 
 
   6.2. Euqludean Algorithm 
 
 Let a and b be positive integers, and ba  . We can find 
  ,11 rqba  ;0 11 mr   
  ,221 rqrb  ;0 12 rr   
  ,3321 rqrr  ;0 23 rr   
  …………………………….. 
  ,12 nnnn rqrr   ;0 1 nn rr  
  .1 nnn qrr   
As a result we have 
  ba,  =   1, rb    ..., 21 rr   nnn rrr  ,1 . 
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 Example 6.2.1. Find  .231,525  

   

0

2
21

42
42

1
42

42
63

3
63

189
231

2
231

462
525

 

Therefore   .21231,525   
 
  6.3. Congruences and Their Properties 
 
 Definition. Let m be a positive integer. We say that a is congruent to b 
modulo m, written  mba mod  if m divides the difference ba  . The integer m is 
called the modulus. 
 For example 

1.  4mod2387   since 4 divides 87 – 23 = 64, 
2.  6mod167   since 4 divides 67 – 1 = 66, 
3.  7mod572   since 7 divides 72 –  5  = 77, 
4.  9mod827   since 9 does not divide 27 – 8 = 19. 
Remark: Suppose m is positive, and a is any integer then there exist integers q 

and r with mr 0 such that rmqa  . Hence 
 ramq   or  ram   or  mra mod . 
Accordingly: 
1) Any integer a is congruent modulo m to a unique integer in the set 

 1,...,2,1,0 m . The uniqueness comes from the fact that m cannot divide the 
difference of two such integers. 

2) Any two integers a and b are congruent modulo m if and only if they have the 
same remainder when divided by m. 
Now we consider some properties of congruences. 
1. Suppose  mca mod  and  mdb mod . Then  mdcba mod  and  

 mdcba mod . 
 Let lmdckmba  , , then  mlkdbca   or 

 ;mod mdbca     mnbdklmblkdmdbca  . 
2. Both sides of a congruence and modulus it is possible to divide by some 

common divisor. 
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Let    ,,,;mod 111 dmmdbbdaamba  then .111 dkmdbda   Hence 
111 kmba  and  .mod 111 mba   

3. Both sides of a congruence we can divide by their common divisor if the latter 
and the modulus of the congruence are mutually prime. 

Let     ,1,,,;mod 11  dmdbbadaamba then   .11 kmdba   Since   ,1, dm  
then  11 bam   and  .mod 111 mba   

4. If  mba mod , then    .,, mbba   
Really, if  mba mod , then lmba   and    .,, mbba   
 
 Example 6.3.1. Observe that  6mod82   and  6mod415  . Then: 
1)  6mod41852   or  6mod4987  ; 
2)  6mod41852   or  6mod32810  . 
 

6.4 Residue Classes 
 

 Since congruence modulo m an equivalence relation, it partitions the set Z of 
integers into disjoint equivalence classes called the residue classes modulo m. A 
residue class consists of all those integers with the same remainder when divided by 
m. Therefore, there are m such residue classes and each residue class contains exactly 
one of the integers in the set of possible remainders, that is  1...,,2,1,0 m .  

Generally speaking, a set of m integers  maaa ...,,, 21 is said to be a 
complete system modulo m if each ia comes from a distinct residue class. Thus the 
integers from 0 to m – 1 form a complete residue system. The notation  mx  or 
simply  x  is used to denote the residue class (modulo m) containing an integer x, that 
is, those integers which are congruent to x. In other words, 
    ax Z  mxa mod . 
 Accordingly, the residue classes can be denoted by  0 ,  1 ,  2 ,…, 1m or 
by using any other choice of integers in a complete residue system. 
 
 Example 6.4.1.  The residue classes modulo m = 6 follow: 
 

   ,...18,12,6,0,6,12,18...,0  ,    ,...19,13,7,1,5,11,17...,1  , 
   ,...20,14,8,2,4,10,16...,2  ,    ,...21,15,9,3 ,3,9,15...,3  , 
   ,...22,16,10,4,2,8,14...,4  ,    ,...23,17,11,5,1,7,13...,5  . 
   

6.5. Euler Function 
 

Definition. A function of natural argument  n  which defines the number of 
integers between 1 and n (exclusive) which are relatively prime to n is called the 
Euler function . 
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Example 6.5.1.By definition we have  
 
  ,11    ,12    ,23    ,24    ,45    .26   If p is a prime number, 

then   .1 pp  We shall show that    ,11   ppp nn  where n is a natural 
number. 

Solution. Really, among np  natural numbers there is 1 n
n

p
p

p numbers 

which can be divided by p. Others, 1 nn pp coprime to np , that is 
   .111   ppppp nnnn  

It is possible to prove that Euler function is multiplicative, that is 
 nm     nm   as   .1, mn  If a natural number N is expanded into prime 

factors: km
k

mm pppN  ...21
21 , then we have 

       
.11...111111...1111

...

212
2

1
1

21

21

21


























































k

m
k

k

mm

m
k

mm

ppp
Np

pp
p

p
p

pppN

k

k
 

 
 
Example 6.5.2. Calculate  28 . 
 

Solution.  28 =   .12
7
11

2
1128722 






 





   

 
Theorem (Euler). If   1, ma  then    ma m mod1 . 

If pm  is a prime number, then   1 pp and we get, according to Euler’s 
theorem, Fermat’s little theorem 
    .mod11 pa p   
 
   6.6. Congruence Equations 
 
 A polynomial congruence equation or, limply, a congruence equation (in 
one unknown x) is an equation of the form 
   maxaxaxa n

n
n

n mod0... 01
1

1  
        (6.6.1) 

Such an equation is said to be of degree n if  ma mod0 . Suppose  mts mod . 
Then s is a solution of (6.6.1) if and only if t is a solution of (6.6.1). Thus the 
number of solutions of (6.6.1) is defined to be the number of incongruent solutions 
or, equivalently, the number of solutions in the set  1,...,2,1,0 m .  
 Of course, these solutions can always be found by testing, that is, by 
substituting each of the m numbers into (6.6.1) to see if it does indeed satisfy the 
equation. 
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 The complete set of solutions of (6.6.1) is a maximum set of incongruent 
solutions whereas the general solution of (6.6.1) is the set of all integral solutions of 
(6.6.1). The general solution of (6.6.1) can be found by adding all the multiples of the 
modulus m to any complete set of solutions. 
 
 Example 6.6.1. Consider the equations: 
 
1.  4mod012  xx ,   2.  6mod032 x ,  3.  8mod012 x . 
 
 Here we find the solutions by testing. 
 
1. There are no solutions since 0, 1, 2, and 3 do not satisfy the equation. 
2. There is only one solution among 0, 1,…,5 which is 3. Thus the general solution 

consists of the integers k63  where k Z. 
3. There are four solutions: 1, 3, 5 and 7. This shows that a congruence of degree n 

can have more then n solutions. 
Now we consider the following linear congruence equation 
   mbax mod             (6.6.2) 

 If a and m are relatively prime, then equation (6.6.2) has a unique solution. 
Moreover, if s  is a unique solution to  max mod1 , then the unique solution to 

 mbax mod  is bsx  . 
 
 Example 6.6.2. 
  

1. Consider the congruence equation  8mod53 x . 
Since 3 and 8 are coprime, the equation has the unique solution. Testing the  

integers 0, 1,…,7, we find that 
   8mod52173  . 
Thus 7x is the unique solution of the given equation. 

2. Consider the linear congruence equation  
 280mod3833 x           (6.6.3) 

Since   ,1280,33 GCF  the equation (6.6.3) has a unique solution. Testing may not 
be an efficient way to find this solution since the modulus 280m is relatively large. 
We apply the Euclidean algorithm to first find a solution to  
   280mod133 x .              (6.6.4) 
We find 170 x  and 20 y  to be a solution of  
  128033 00  yx . 
This means that 17s is a solution of the equation (6.6.4). Then 6463817 sb  is 
a solution of (6.6.3). Dividing 646 by 280m , we obtain the remainder 86x , 
which is the unique solution of (6.6.3) between 0 and 280. The general solution is 

k28086   with k Z. 
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   6.7. Chinese Remainder Theorem 
 
 An old Chinese riddle asks the following question: “Is there a positive integer x 
such that when x is divided by 3 it yields a remainder 2, when x is divided by 5 it 
yields a remainder 4, when x is divided by 7 it yields a remainder 6?” 
In other words, we seek a common solution of the following three congruence 
equations: 
  3mod2x ,  5mod4x ,  7mod6x .      (6.7.1) 
 

Theorem. Given the system  
 
 

 














,mod
..,....................

,mod
,mod

22

11

kk mrx

mrx
mrx

 where  kimi ,1  are 

pairwise relatively prime. Then the system has the unique solution 
modulo kmmmM ...21 . 
 Proof. Consider the integer kkk rsMrsMrsMx  ...2221110 , where 

ii mMM  and is is the unique solution of  .mod1 ii mxM   Let j be given. For 
ji  , we have ij Mm and hence  .mod0 jiii mrsM   

On the other hand,  ;mod1 jjj msM   and hence  jjjjj mrrsM mod . 
Accordingly,  jjj mrrx mod0...00...00  . 

In other words, 0x is a solution of each of the equations in (6.7.1). It remains to show 
that 0x is the unique solution of the system (6.7.1) modulo M. 
 Suppose 1x  is another solution of all the equations in (6.7.1). Then 

     kmxxmxxmxx mod...,,mod,mod 10210110  . Hence  ,10 xxmi   for each i. 
Since the im are relatively prime,  .10 xxM   That is  Mxx mod10  . Thus the 
theorem is proved. 
 Example 6.7.1.Solve the system of congruence equations  

 
 
 












.7mod1
,5mod3
,3mod2

x
x
x

 

 Solution. We find 351 M , 212 M , 153 M . On using the congruences 
 3mod135 1 s ,  5mod121 2 s ,  7mod115 3 s  we get ,21 s ,12 s 13 s . Then 

 105mod281152132252 x  or  105mod8x . 
 Answer:  105mod8x . 
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   7. GROUPS. RINGS. FIELDS 
 
  7.1. Operarions 
 
 Definition. Let S be an nonempty set. An operation on S is a function  from 

SS  into S. In such a case, instead of  ba, , we write ba   or sometimes ab. 
 An operation   from SS  into S is usually called a binary operation. 
 
 Definition. An operation    on a set S  is said to be associative if, for any 
elements a, b, c, in S, we have    cbacba  . 
 
 Definition. An operation    on a set S  is said to be commutative if, for any 
elements a, b in S, we have abba  . 
 
 Definition. An element e in S is called an identity element for  if, for any 
element a in S, we have aaeea  . 
 
 Definition. The inverse of an element a in S is an element b such that 

eabba  . The inverse of an element Sa  is usually denoted by 1a . 
 
  7.2. Groups 
 
 Let G be an nonempty set with binary operation. Then G is called a group if 
the following axioms hold: 
 
1. Associative Law: For any a, b, c, in G, we have    bcacab  . 
2. Identity element: There exists an element e in G such that aeaae   for every a 

in G. 
3. Inverses: For each a in G, there exists an element 1a  in G (the inverse of a) such 

that eaaaa   11 . 
 

   A group G is said to be abelian or (commutative) if ab = ba for every Gba , ,  
That is, if G satisfies the Commutative Law. 
 When G is abelian, the binary operation is denoted by + and G is said to be 
written additively. In such a case the identity element is denoted by 0 and is called 
the zero element; and the inverse is denoted by – a and  it is called the negative to a. 
 The number of elements in a group G denoted by G , is called the order of G. 
In particular, G is called a finite group if its order is finite. 
 
 Example 7.2.1.  
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a) The nonzero rational number  0\Q  form an abelian group under multiplication. 

The number 1 is the identity element and 
p
q  is the multiplicative inverse of the 

rational number 
q
p . 

b) Let S be the set of 22  matrices with rational entries under the operation of 
     matrix multiplication. Then S is not a group since inverse do not always exist.                    
     However, let G be the subset of 22  matrices with a nonzero determinant. Then  
     G is a group under matrix multiplication. The identity element is  











10
01

I  and  the inverse of A is 1A . 

 
 7.3. Subroups. Homomorphisms 
 

 Let H be a subset of a group G. Then H  is called a subgroup of G if H is itself 
a group under the operation of G. 
 A subset H of a group G is a subgroup of G if : 
1. The identity element He . 
2. H is closed under the operation of G, i.e. if Hba , then Hab . 
3. H is closed under inverse, that is, Ha , then Ha 1 . 

    Every group G has the subgroups  e  and G  itself. Any other subgroup of G is  
called a nontrivial subgroup. 
 
 Theorem (Lagrange). Let H be a subgroup of a finite group G. Then the order 
of H divides the order of G. 
 
 Example 7.3.1. Consider the group G of 22  matrices with rational entries 
and nonzero detearminants. Let H be the subset of G consisting of matrices whose 

upper-right entry is zero, that is, matrices of the form 







dc

a 0
. Then H is a subgroup 

of G since H  is closed under multiplication and inverses and HI  . 
 
 Definition. A mapping  f  from a group G into a group G is called a 
homomorphis if, for every Gba , ,      bfafabf  . 
In addition, if  f  is one-to-one and onto, then f  is called an isomorphism; and G and 
G  are said to be isomorphic, written GG  . 
If GGf :  is a homomorphism, then the kernel of f, written fKer  is the set of 
elements whose image is the identity eof G ; that is,  
     eafGafKer  . 
Recall that the image of f, written  Gf  or fIm , consists of the images of the 
elements under f; that is,   bafGaGbf  for which   exists thereIm . 
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 Example 7.3.2. a) Let G be the group of real numbers under addition, and let G  
be the group of positive real numbers under multiplication. The mapping GGf :  
defined by    aaf 2  is a homomorphism because      bfafbaf ba  22 .  
In fact,  f is also one-to-one and onto; hence G and G  are isomorphic. 
c) Let a be any element in a group G. The function f : Z G  Gdefined by  

  nanf   is a homomorphism since      nfmfaaanmf mmnm   . 
 
 

  7.4. Rings. Fields 
 
Let R be a non-empty set with two binary operations: an operation of addition 

and an operation of multiplication. Then R is called a ring if the following axioms are 
satisfied: 
1) For any ,,, Rcba   we have    cbacba  . 
2) There exists an element R0 , called the zero element, such that for every Ra , 

aaa  00 . 
3) For each Ra  there exists an element Ra , called the negative of a, such that 

    0 aaaa . 
4) For any ,, Rba   we  have abba  . 
5) For any ,,, Rcba   we have    cbacba  . 
6) For any ,,, Rcba   we have (i)   acabcba  , and (ii)   cabaacb  . 

    Observe that the axioms 1) through  4) may be summarized by saying that R is 
an abelian group under addition. 
 Subtraction is defined in R by  baba  . 
 A subset S of R is a subring of R if S itself is a ring under the operations in R. 
We note that S is a subring of R if : (i) S0 , and (ii) for any ,, Sba  we have 

Sba   and .Sba   
 
 Definition. R is called a commutative ring if ab = ba  for every Rba , . 
 
 Definition. R is called a ring with an identity element 1 if the element 1 has 
the property that aaa  11  for every Ra . In such a case, an element Ra  is 
called a unit if a has a multiplicative inverse, that is, an element 1a  in R such that 

111   aaaa . 
 
 Definition. R is called a ring with zero divisors if there exist nonzero elements 

Rba ,  such that  ab = 0. In such a case, a and b are called zero divisors. 
 
 Definition. A commutative ring R is an integral domain if R has no zero 
divisors, that is, ab = 0 implies a = 0 or b = 0. 
 



 57 

 Definition. A commutative ring R  with an identity element 1 (not equal to 0) is 
a field if every nonzero Ra  is a unit, that is, has a multiplicative inverse. 
 
 A field is necessarily an integral domain, for if ab = 0 and 0a , then b = 1.  
 We remark that a field may also be viewed as a commutative ring in which the 
nonzero elements form a group under multiplication. 
 
 Example 7.4.1. 
 
a) The set Z integers with the usual operations of addition and multiplication is the 

classical example of an integral domain (with an identity element). The units in Z 
are only 1 and  – 1, that is, no other element in Z has a multiplicative inverse. 

b) The rational numbers Q and real numbers R each forms a field with respect to the 
usual operations of addition and multiplication. 

c) Let R be any ring. Then the set  xR  of all polynomials over R is a ring with 
respect to the usual operations of addition and multiplication of polynomials. 
Moreover, if R is an integral domain then  xR  is also an integral domain. 

 
 Definition. A subset I of a ring R is called an ideal in R if the following three 
properties hold: 
 
1) I0 . 
 
2) For any Iba ,  we have Iba  . 
 
3) For any Rr  and Ia , we have Iarra , . 

    Now let R be a commutative ring with an identity element. For any Ra , the  
following set is an ideal: 
 
      aRRrraa  . 
 
 Example 7.4.2. Let R be any ring. Then  0  and R are ideals. In particular, if R 
is a field, then  0  and R  are the only ideals. 
 
   7.5. Polynomials over a Field 
 
 Let K be an integral domain or a field. Formally a polynomial f over K is an 
infinite sequence of elements from K in which all except a finite number of them are 
0; that is,  01 ,,...,,0..., aaaf n  or, equivalently,   01... axaxaxf n

n   where 
the symbol x is used as an undetermined. The entry  ka  is called the kth coefficient of  
f. If n is the largest integer for which 0na , then we say that the degree of f  is n, 
written   nf deg . We also call  na  the leading coefficient of f.  If 1na , we call f 
a monic polynomial. 
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 A scalar Ka is a root of a polynomial  xf  if   0af . 
 
 Theorem. Let  xf  and  xg  be polynomials over a field K with   0xg . 
Then there exist polynomials  xq  and  xr  such that  xf  =  xq  xg +  xr  where 
either   0xr  or    gr degdeg  , (without proof). 
 
 Corollary 1. Suppose  xf  is divided by   axxg  . Then  af  is the 
remainder. The proof follows from the previous theorem. That is, dividing  xf  by  
x – a we get 
   xf  =  xq  ax  +  xr  
where     1degdeg  axr . Hence    rxr   is a scalar. Substituting x = a in the 
equation for   xf  yields 
   af  =  aq  aa  + r = r. 
 Thus  af  is the remainder. 
 
 Corollary 2.The scalar Ka is a root of  xf  if and only if x – a is a factor of 
 xf . 

 
 Theorem. Suppose  xf  is a polynomial over a field K, and   nf deg . Then 
 xf  has at most n roots. 

 
 Proof. The proof is by induction on n. If n = 1, then  xf = ax+b and  xf  has 

the unique roor 
a
bx  . Suppose 1n . If  xf  has no roots, then the theorem is 

true. Suppose Ka is a root of   xf . Then  
   xf  =  ax   xg           (7.5.1) 
where   1deg  ng . We claim that any other root of  xf  must also be a root of 
 xg . 

 Suppose ab   is another root of  xf . Substituting bx   in equation (7.5.1) 
yields  bf0  =  ab   bg . 
 Since K has no zero divisors and 0 ab  we must have   0bg . By 
induction  xg  has at most 1n  roots. Thus  xf  has at most 1n  roots other than 
a. Thus  xf  has at most n roots. 
 The theorem has been proved. 

 Theorem.Suppose a rational number 
q
p  is a root of the polynomial 

    01
1

1 ... axaxaxaxf n
n

n
n  

  
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where all the coefficients 011 ,,..., aaaa nn  are integers. Then p divides the constant 

term 0a  and q divides the leading coefficient na . In particular, if 
q
pc   is an integer, 

then c divides the constant term 0a . (Without proof). 
 
 Example 7.5.1.  Suppose   4823  xxxxf . Assuming  xf  has a 
rational root, find all the roots of  xf .  
 

Solution. 
 
Since the leading coefficient is 1, the rational roots of  xf  must be integers 

from among  
4,2,1  .  

Note    01 f  and   01 f . Dividing by x – 2, we get  that x = 2 is a root and  
    232 2  xxxxf .  

 
Using the quadratic formula for 0232  xx , we obtain the following three 

roots:  





















2
173

,
2

173

,2

3

2

1

x

x

x
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FOR NOTES 


