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1. SET THEORY

1.1. Sets and Elements. Subsets.

Definition. A set is defined as a collection of objects which can be treated as an
entity.

This definition implies that the objects have some classifying attributes, and all
the objects in the set have the same attributes.

Note also, that object does not necessarily mean material object. We may well
talk about the set of transistors in a given circuit, and about the set of all operation
frequencies of this circuit.

One usually uses capital letters, 4, B, X, Y, ..., to denote set, and lowercase
letters, a, b, x, y, ..., to denote elements of sets.

Membership in a set is denoted as follows:

a € A denotes that a belongs to a set 4.
Here € is the symbol meaning, “is an element of “. We use ¢to mean “ is not an
element of “.

There are essentially two ways to specify a particular set.

One way, if possible, is to list its elements separated by commas and contained
in braces {...

A second way is to state those properties which characterized the elements in
the set.

Examples illustrating these two ways are:

A= {1, 3,5,7, 9} that is A4 consists of the numbers 1,3,5,7,9.

B = {x
is an even integer and x is greater then 0.
Note that the vertical line ‘ 1s read as “‘such that” and the comma is read as

Céand7’-

X 1s an even iteger, x > O} — set, which reads: B is the set of x such that x

Example 1.1.1
1) The set of TV — channels at a given location.
2) The set of all solutions of the equation sin x =1.
Suppose every element in a set 4 is also an element of a set B, that is, suppose
ae€ A implies ae B. Then a set 4 is called a subset of a set B. This relation is
written Ac B or Bo A.

Definition. Two sets are equal if they both have the same elements. That is:
A=B ifandonlyif Ac B and BC 4.

If 4 1s not a subset of B, that is, if at least one element of 4 does not belong to
B, we write Az B.

Example 1.2. Consider the sets
A4=1{,3,4,7,8,9}, B={,2,3,4,5}, C=1{1,3}.



Then C < 4 and C < B since 1 and 3, the elements of C, are also elements of
A and B. But B ¢ A since some of the elements of B, e.g., 2 and 5 do not belong to A.
Similarly, Az B.

Some sets will occur very often in the text, and so we use special symbols for
them. Some such symbols are:

{1, 2, 3,...} =N : the set of natural numbers or positive integers;

{...,—2,—1, 0,1,2, 3,...} =7 : the set of all integers;

0 : the set of rational numbers;

R : the set of real numbers;

C : the set of complex numbers.

All sets under investigation in any application of set theory are assumed to
belong to some fixed large set called the universal set which we denote by U unless
otherwise stated or implied.

Given a universal set U and a property P, there may not be any element of U
which have property P. For example, the following set has no elements:

S = M X 1s a positive integer, x? = 3}.

Definition. A set with no elements is called the empty set or null set and is
denoted by Q.

A Venn diagram is a pictorial representation of sets in which sets are
represented by enclosed areas in the plane.

The universal set U is represented by the interior of a rectangle, and the other
sets are represented by disks lying within the rectangle.

Definition. The set of elements of a set U which do not belong to 4 is called the
compliment of the set A4, and is denoted by A

ON

A

Fig 1.1.1

Definition. The union of two sets 4 and B, denoted by A4 U B, is the set of all
elements which belong to 4 or to B . That is

AUB:{x‘xerrxeB}.



Figure 1.1.2 is a Venn diagram in which 4 U B is the shaded region.
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Fig 1.1.2

Definition. The intersection of two sets 4 and B, denoted by 4 m B is the set
of elements which belong to both 4 and B . That is

AmB:{x‘xeAandxeB}
Figure 1.1.3 is a Venn diagram in which 4 n B is the shaded region.

U

(

AMB

Fig 1.1.3

Definition. The sets A and B are said to be disjoint or nonintersecting if they
have no elements in common.

U

Fig 1.1.4



Definition The difference of two sets 4 and B, denoted by A4\ B, is the set of
elements which belong to A4 but which do not belong to B . That is

A\B:{x‘xeA,xe_ﬁB}
Figure 1.1.5 is a Venn diagram in which 4\ B is the shaded region.

U

A/ B

Fig 1.1.5

Definition The symmetric difference of two sets 4 and B, denoted by 4 ® B,
consists of those elements which belong to A or B but not to both. That is

A®B=(AUB)\(ANB)or A®B=(4\B)U(B\ 4)

Figure 1.1.6 is a Venn diagram in which 4 @ B is the shaded region.

U
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Fig 1.1.6

Example 1,1,3. Let A=1{1,3,4,5,8}, B=1{2,4,5,6,9}, then

AUB=1,2,3,4,5,6,8,9};

AN B=1{4,5};

A\B=11,3,8};

A®B=1{1,2,3,6,8, 9}.

Sets under the operations of union, intersection, and complement satisfy
various laws (identities) which are listed in Table 1.1.1



Table 1.1.1 Laws of the algebra of sets

1| AuAd=4 ANnA=A4 Idempotent laws

2 (A U B)u C=4v (B U C) Associative laws
(ANB)NC=4n(BNC)

3/ AUB=BuUA ANB=BnN A Commutative laws

41 40(BNC)=(4UB)n(4LC)

An(BUC)=(4nB)u(4nC) Distributive laws

5140 =4 AND=0 Identity laws
ANU=4 AuU=U

6| 4 _4 Involution law

T 404 =U NA =0 Complement laws
U=0 o=U

8| A4UB =4 B ANB =4 UB De Morgan’s laws

2. RELATIONS
2.1. Product Sets

Definition. A set is called an ordered set if to each element there correspons a
number 7 (n € N) and elements are listed in the increasing manner.

Definition. Let two arbitrary sets 4 and B be given. The set of all ordered pairs
(a,b) where ac A and be B is called the product, or Cartesian product, of the

sets A and B. A short designation of this product is 4 x B, which is read “A4 cross B .
By definition
AxB:{(a,b] ac Aandbe B }

One frequently writes A? instead of Ax 4.

Example 2.1.1. R denotes the set of real numbers and so R* = R x R is the set
or ordered pairs of real numbers. We are familiar with the geometrical representation

of R? as points in the plane. Each point P represents an ordered pair (a,b) of real
numbers and vice versa; the vertical line through P meets the x — axis at a, and the




horizontal line through P meets the y — axis at b. R? is frequently called the
Cartesian plane.

This idea of a product of sets can be extended to any finite number of sets. For
any sets A;,A,,..,A, the set of all ordered n — tuples (a,,a,,...,a,) where

n >Y%n

a, € 4,,a, € 4,,...,a, € A, 1s called the product of sets 4,, 4,,..., 4, and is denoted
by A x Ay x...x 4,,.

2.2. Binary Relations

Definition. A binary relation between elements of the sets 4 and B is any
subset R of the set 4 x B thatis Rc Ax B.

Suppose R is a relation from A4 to B. Then R is a set of ordered pairs where
each first element comes from 4 end each second element comes from B. That is, for
each a € 4 and b € B, exactly one of the following is true:

1) (a,b) € R; we then say “a is R —related to b, written aRb;

2) (a,b) ¢ R; we then say “a isnot R —related to b”, written a,R@

If R 1s a relation from a set 4 to itself, that is, if R is a subset of A* = Ax 4 , then we
say that R is a relation on A4.

Definition. The domain of a relation R is the set of all first elements of the
ordered pairs which belong to R, and the range is the set of second elements.

Example 2.2.1. Given A= {1, 2,3} and B= {x, y,z}, and let
R = {(l,y), (l,z), (3,y)}. Then R i1s a relation from A to B since R is a subset of Ax B.
With respect to this relation, 1Ry, 1Rz, 3R y. The domain of R is {1,3} and the

range is {y,z}.

Example 2.2.2. Let us denote in the table the elements belonging to the set
R ={(a,1),(b,m),(A,0)} of the Cartesian product of the sets 4 and B by the points

(RC(AXB)):

A
R
] ‘Ta 1B |r’_\ /]
m l i
Table 1.2.1

Then we have the binary relation between the sets 4 and B.
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2.3. Pictorial Representatives of Relations

A. Relations on R
Let S be a relation on the set R of real numbers. That is, S is a subset of

R?= RxR. Frequently, S consists of all ordered pairs of real numbers which satisfy
some given equation E (x, y)= 0 (such that x? + y2 =25).

Since R?can be represented by the set of points in the plane, we can picture S
emphasizing those points in the plane which belong to S. The pictorial representation
of the relation in sometimes called the graph of the relation. For example, the graph

of the relation x? + y2 = 251s a circle having its center at the origin and radius 5.

B. Directed Graphs of Relations on Sets

There is an important way of picturing a relation R on a finite set. First we
write down the elements of the set, and then we draw an arrow from each element x
to each element y whenever x is related to y. This diagram is called the directed
graph of the relation.

Let us find the directed graph of the following relation R on the set
A=1{1,2,3,4}:

R={1,2),(2,2)(2,4).(3,2),(3,4)4,1),(4,3)}

There is an arrow from 2 to itself, since 2 is
related to 2 under R .

Fig. 1.2.1

C. Pictures of Relations on Finite Sets

Suppose 4 and B are finite sets. There are two ways of picturing a relation R
from A4 to B.

a) Form a rectangular array (matrix) whose rows are labeled by the elements
of A and whose columns are labeled by the elements of B. Put 1 or 0 in each position
of the array according as a € A4 is or is not related to b € B. This array is called the
matrix of the relation.

11



For the relation R ={(1,y),(1,z),(3,y)} we have

Fig. 1.2.2

Such matrix is called a Boolean matrix since its elements are only 0 or 1.

b) Let us write down the elements of 4 and the elements of B in two disjoint
disks, and then draw an arrow from a € A to b € B whenever a is related to b. This
picture will be called the arrow diagram of the relation.

Fig. 1.2.3

D. Composition of Relations

Let A, B and C be sets, and R be a relation from A4 to B and let S be a relation
from B to C. Thatis, R is a subset of AxB (Rc Ax B)and S c BxC.Than R and

S give rise to a relation from A4 to C denoted by RS and derived by:
a(RS )c if for some b € B we have aRb and bSc.

That is, RS = {(a, ¢)|there exists b € B for which(a,b)e R and (b,¢)e S}.
The relation RS is called the combination of R and S.

12



Let A= {1,2,3,4}, B= {a,b,c,d}, C= {x,y,z and let

j
R={1,a).(2,d),(3,a),(3,6),(3,d)} and S = {(b,x), (b, z),(c, ). (d, z)}.

Consider the arrow diagrams of R and S:

Fig.1.2.4

Observe that there is an arrow from 2 to d which is followed by an arrow from d to z.
We can view two arrows as a “path” which “connects” the element 2 € 4 to the
element z € C. Thus 2(RS)z since 2Rd and dSz. Similarly there is a path from 3 to x

and a path from 3 to z. 3(RS )x and 3(RS)z.
Accordingly RS = {(2,2), (3,x), (3,2)}.

2.4. Inverse Relation

Definition. Let R be any relation from a set 4 to a set B. The inverse of R,

denoted by R™', is the relation from B to 4 which consists of those ordered pairs,
when reversed, belong to R; that is,

R = {(b,a} (a,b)e R}.
For example, let A= {1,2,3} and B-= {x, y,z}. Then the inverse of

R={(1.y)(L2)G.y)is R ={(n.1)(z1).(».3)}.

-1
Clearly, if R is any relation, then (R _1) = R . Also, the domain and range of R are
equal, respectively, to the range and domain of R. Moreover, if R is a relation on 4,
then R is also a relation on A.

2.5. Types of Relations

Definition. A binary relation R defined on an unempty set 4 is called reflexive
if aRa for every a € A, that is, if (a,a)e R forevery ae 4.

13



Example 2.5.1. Given the following five relations.

1) Relation < (is less than or equal to) on the set Z of integers;

2) Set inclusion < on a collection C of sets;

3) Relation | (perpendicular) on the set L of lines in a plane;

4) Relation ‘ ‘ ( parallel) on the set L of lines in a plane;

5) Relation ‘ of divisibility on the set NV of positive integers. (Recall x‘ y if

there exists z such that xz = y.)
Determine which of these relations are reflexive.

Definition. A binary relation R on a set 4 is called irreflexive if (a,a)e R for
allae 4.

Definition. A binary relation R on a set 4 is called symmetric if whenever aRb
then hRa, that is whenever (a,b)e R then (b,a)e R.

Definition. A binary relation R on a set 4 is called antisymmetric if whenever
aRb and bRa then a = b, that 1s, if a # b and aRb then 9%1

Definition. A binary relation R on a set 4 is called transitve if whenever aRb
and bRc then aRc, that is, if whenever (a,b),(b,c)e R then (a,c)e R.

Definition. A binary relation R on a set 4 is called complete if whenever a € 4
and b e B then a = b, or (a,b)eR., or (b,a)eR..

Example 2.5.2.Consider the following five relations on the set 4 ={1,2,3}:
R={(1,1),(,2),(13).3.3)},5 = (1,1, (1,2),(2,1).(2,2), (3.3}
T={11)(1,2)(2,2).(23)}, @ — empty relation, Ax A4— universal relation.

Determine whether or not each of the above relations on A4 is:
1) reflexive; 2) symmetric; 3) transitive; 4) antysymmetric.

Solution
1) R is not reflexive since 2 € 4 but (2,2)& R. T is not reflexive since (3,3)¢ T and,

similarly, @ is not reflexive. S'and 4 x A4 are reflexive.

2) R is not symmetric since (I,2)€ R but (2,1)¢ R, and similarly 7 is not symmetric.
S, D, and 4 x A are symmetric.

3) T is not transitive since (1,2) and (2,3) belong to 7, but (I,3) does not belong to

T. The other four relations are transitive.
4) S is not antisymmetric since 1% 2 and (1,2) and (2,1) both belong to S. Similarly,

A x A is not antisymmetric. The other three relations are antisymmetric.

14



2.6. Functional Relations

Definition. A section x=a of a set R is a set of elements y € B for which
(a,y)e R.. This section is denoted by R(a).

Definition. Let ¢ = (a,b), where c € Ax B. An element a is called a projection
of an element c on a set 4, and denoted by Pr, c=a.
Example 2.6.1. Let A= {al,az,a3,a4,a5 }, B= {bl,bz,b3,b4} and the relation

R= {(al .y )» (al by )» (az .y )» (az b3 )» (a3 by )» (a3 by )» (a3 by )» (a5 .y )» (a5 by )} be
given. Find:

1) sections x =a; (i =15 );
2) Pr (a,,b;)and Pr, R.
Solution.
Using the definitions of a section and a projection, we have

1) R(a,)=1by.b, }; R(ay)=1{b;,bs }; R(ay)=1{by,b3,b,}; R(ay)=9;

R(as)={b;,b3}.
2) Pr(ay,by)=ay; Pr,R=1a,,a,,a5,as}.

Definition. A relation Rc Ax B 1is called a functional relation if for each
x € A a section R with respect to x contains not more than one element ye B or

none. Such relation is called a function from A into B and denoted by f:4—> B
which is read: “ f is a function from 4 into B ”.

Definition. If the function f* is defined on a set D < A4 then this set D is called
the domain of definition of f, or more briefly the domain of . A subset Imc B,

where Im = { f (x] X€E D} is called the range or image of /.

Definition. An element b= f(a), where aeD is called an image of the
element a, and element a is called a prototype of the element b.

Definition. If D = A, then a function f'is called everywhere defined.

Frequently a function can be expressed by means of mathematical formula. For
example, consider the function which sends each real number into its square. We can
describe this function by writing

f(x)=x% or y=x?
In the first notation, x is called a variable and the letter /' denotes the function. In the
second notation, x is called the independent variable and y is called the dependent
variable since the value of y will depend on the value of x.

Every function f: A4 — B gives rise to a relation from A4 to B called the graph

of fand denoted by
Graph of f= {(a,b] acA,b= f(a)}.

15



2.7. One-to-one, onto, and Invertible Functions

Definition. A function f: A4 — B is said to be one-to-one if different elements
in the domain 4 have distinct images.

Definition. A function f : A4 — B is said to be an onto function if each element

of B is the image of some element of 4.
In other words, f : A— Bin onto if the image of / is the entire range, i.e. if

f (A)z B. In such a case we say that f'is a function from 4 onto B or that f maps 4
onto B.

Definition. A function f:A4— B is invertible if its inverse relation f “lis a
function from B to A.
In general, the inverse relation f - may not be function.

In what follows we use the terms injective for one-to-one function, surjective
for an onto function, and bijective for a one-to-one correspondence.

Fig.2.7.1 Fig.2.7.2 Fig.2.7.3
Injective relation Surjective relation Bijective relation

Example 2.6.1. Let R — the set of real numbers, R — the set of real positive
numbers, and a function f: 4 — B.
1) If 4= B =R then the function f:x —> x? gives the map of 4 onto B which is not

surjective.
2) If A= B =R then the function f :x —4x—3gives the map of 4 onto B which is

surjective.

3) If A=R, B=R" then the function f :x — 3" gives the map of 4 onto B which is
injective.
Consider functions f: A — B and g:B — C; that is, where the range of f'is the

domain of g. Then we may define a new function from 4 to C, called the
composition of fand g and written g o f as follows:

(go f)a=g(f(a))
That is, we find the image of a under f and then find the image of f (a)
under g.

16



Consider any function f: A4 — B. Then
Joly=fand Ipof=1,
where [, and /; are the identity functions on 4 and B, respectively.
The mapping defined by these formulas is called identical. Thus
a a ...a
]A :|: 1“2 n :| ‘
ap a, ...d,
Example 2.6.2. Let the mapping f be given by the table
f.1 .2 3 4 5

o

._

L S S
»

<

then the mapping f 1 = Ax B is defined by the table

1y 02 3 4 5

¢

u.-p..wtu»-.___,

.

The functions f and f “!we write in the form

12345 4 112345
f: , f = .
43512 45213
Let us check the fulfillment of the conditions /o f=f and fol,=f.

; f_1234512345_12345_f
A7 112345043512 43512

In the similar way we get f o/, = f.

17



2.8. Ordered Sets

Definition. A binary relation R on a set 4 is called an order relation or partial
order relation if it is antisymmetric and transitive.
Definition. A binary relation R on a set 4 is called an nonstrict order relation if it is
reflexive, antisymmetric and transitive.

Definition. A binary relation R on a set A4 is called a strict order relation if it is
antireflexive, antisymmetric and transitive.

Definition. 1f an order relation is total then it is called a totally ordered or
linearly ordered.

A nonstrict order relation is denoted by “< ”, and strict order relation by “< ”;
and a <b is read “a precedes b”. a <b means a <b and a #b, and is read “a strictly
precedes b” or “b strictly succeeds a .

Definition. Let A be a subset of a partially ordered set S. An element M in S is
called an upper bound of 4 if M succeeds every element of A4, i.e. if for every x in 4,
we have x <M .

Analogously, an element m in S is called a lower bound of a subset 4 of S.if m
precedes every element of 4, i.e. if for every y in 4, we have m < y.

2.9. Suplementary Problems

2.9.1. Which of the following sets are equal?
A={x:ix> —4x+3=0} C={r:xeN,x<3} E={,2, G=0,1,
B={r:ix’-3x+2=0}, D={r:xeN,xisodd,x<5}, F={l2,1}, H={13}
2.9.2.Let A=1{1,2....,8,9}, B=1{2,4,6,8}, C=1{,3,5,7,9}, D={3,4,5}, E={3,5}.
Which of above sets can equal a set X under each of the following conditions?
(a) X and B are disjont. (c) XcAbutX z C .
() XcDbutX ¢ B (d XcCbutX z 4.
293. Let A= {a, b,c,d, e}, B= {a, b, d, f, g}, C= {b, c, eg, h},

D={d,e, f,g, h}. Find:

(@ ANB (d) An(BU D) @ (4uD)\C () A®B
(b) BN C (e) B\(CuD) (h) BACND (k) A®C
(¢) C\D ) (4uD)N B @ (C\A\D () (4®D)\B

2.9.4. Draw a Venn diagram of sets 4, B, C where A < B, sets B and C are disjoint,
but 4 and C have elenments in common.

2.9.5. Consider the set Q of rational numbers with the order <. Consider a subset D
of @ definedby D= {x‘ xe Qand 8< x> < 15}. Find the upper and lower bounds.
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3. MATHEMATICAL LOGIC
3.1. Propositions and Compound Statements
Definition. A proposition (or statement) is a declarative statement which is

true or false, but not both.
Consider, for example, the following six sentences:

1) Ice floats in water. 2) China is in Europe.
3) 2+2=4. 4)2+2=5.
5) Where are you going? 6) Do your homework.

The first four are propositions, the last two are not. Also, 1) and 3) are true, but 2)
and 4) are false.

With each proposition we associate a logical variable x which takes the value 1
if a proposition is true, and 0 if it is false.

Many propositions are composite, that is, composed of subpropositions and
various connectives. Such composite propositions are called compound
propositions. A proposition is said to be primitive if it can not be broken down into
simpler propositions, that is, if it is not composite. For example the following
propositions are composite: “Roses are red and violets are blue.” “John is smart or he
studies every night.”

Propositions are denoted by capital letters X, Y, Z,...

A compound proposition we get from primitive propositions with the help of
logical operations.

Name of operation Reading Notation
Negation Not o
Conjunction and A
Disjunction v
or
Implication -
if ... then
Equivalence ©
if and only if
Scheffer’s prime |
Anticonjunction
Peirce’s arrow J
Antidisjunction
Sum taken absolutely 2 @
Antiequivalence

Definition. A negation of a proposition X is a proposition X which is true
when X is false and is false when X'is true.
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X X
0 1
1 0

Definition. A conjunction of two propositions X and Y is called a proposition
X A'Y which is true only in the case if X'and Y are both true.

X Y XAY
0 0 0
0 1 0
1 0 0
1 1 1

Definition. A disjunction of two propositions X and Y is called a proposition
X v Y which is true if at least one of them is true.

X Y XvY
0 0 0
0 1 1
1 0 1
1 1 1

Definition. An implication of two propositions X and Y is called a proposition
X — Y which s false if and only if when X is true and Y is false.

X Y X->Y
0 0 1
0 1
1 0
1 1

|
0
|

Definition. An equivalence of two propositions X and Y is called a proposition
X <Y which is true if and only if, when X and Y are both true or false.

X Y XY
0 0 1
0 1 0
1 0 0
1 1 1

Definition.Scheffer’s prime X |Y by definition is X |Y = X A Y. The truth
table is of the form:
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XY

X Y
0 0
0 |
1 0
| |

|
|
1
0

Definition. Peirce’s arrow X Y by definitionis X { Y =X v Y.

X Y Xy
0 0 1
0 1 0
1 0 0
1 1 0

Definition. A sum taken absolutely 2 X ®Y by definition is
XP®Y=XoY.

X Y X®Y
0 0 0
0 |
1 0
| |

O | —

3.2. Basic Laws of Logical Operations
1. Idempotency of disjunction and conjunction:

XvXe X, XAXoX.

2. Commutativity of disjunction and conjunction:

XvYeoYvX, XAYoYAX.

3. Associativity of disjunction and conjunction:
Xv{vZ)e(Xvy)vz,
XA AZ)o(XAY)AZ.

4. Double negation X S X

5. De Morgan laws:
X VvY &oXAY, X ANY &XVvY.




6. Distributivity of disjunction and conjunction operations with respect to each other:

Xv(¥AZ)e (X VvY)A(X Vv Z); XA¥vZ)o(XAY)v(XAZ).
7. Sewing:
(XvY)/\(XvI_/)<—>X; (X/\Y)V(X/\?)(—)X.

8. Absorption:
Xv(XAY)o X; XA(XVvY)o X.

9. Operations with logical constants 0 and 1:

Xv0ie X; XA060; XAX ©0;
Xviel; XnAnleX.

10. Law of the excluded middle: XvX ol

11. Identity: X X.

12. Negation of contradiction: XAX ol.

13. Contraposition: (X >Y)o (I_/ - })

14. Chain rule: (X—)Y)/\(Y—)Z)(—)(X—)Z).

15. Antithesis: (X >Y)o (} < I_/)

16. Modus ponens, which means “proposing mode”: XA (X —>Y ) 7.

Example 3.2.1. Suppose that the proposition X is “it is raining” and the
proposition Y is “cats and dogs get wet”, then the compound proposition * it is
raining; and if it is raining, then cats and dogs get wet” logically implies that cats and
dogs are really wet.

17. Modus tollense, which means “removing mode”:

(X >7)A[r)>x .
As can be seen, it is a counterpart of modus ponence. For instance, in the previous
example we just used for modus ponence, modus tollense would state: the
compound proposition “ if it is raining; then cats and dogs get wet, and cats and dogs
are not wet ” which logically implies that it is not raining.
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3.3. Propositional Functions. Quantifiers

Let A be given set. A propositional function (or an open sentence or
condition) defined on A4 is an expression p(x), which has the property that p(a) is

true or false for each a € 4. That is, p(x) becomes a statement (with a truth value)
whenever any element a € 4 is substituted for the variable x. The set 4 is called the
domain of p(x), and the set T , of all elements of 4 which p(a) is true is called the

truth set of p(x). In other words,

T, = {x‘ xe 4, p(x) is true} or T, = {x‘ p(x) }
Frequently, when 4 is some set of numbers, the condition p(x) has the form of an
equation or inequality involving the variable x.

Example 3.3.1. Find the truth set for each propositional function p(x) defined

on the set V:
1. Let p(x) be “x+2 > 7. Its truth set is {6, 7, 8,...} consisting of all integers greater

than 5.
2. Let p(x) be “x +5<37. Its truth set is the empty set @. That is, p(x) is not true

for any integer in V.
3. Let p(x) be “x+5>17. Its truth set is N. That is, p(x) is true for every element

in NV.

Let p(x) be a propositional function defined on a set A. Consider the expression
(Vx € 4)p(x) or Vxp(x) (3.3.1)
which reads “For every x in 4, p(x) is a true statement” or, simply, “For all x, p(x)”.

The symbol V¥ which reads “for all” or for every” is called the universal quantifier.
The statement (3.3.1) is equivalent to the statement

T, = {x‘ X€e A,p(x)}z A (3.3.2)
that is, that the truth set of p(x) is the entire set 4.
The expression p(x) by itself is an open sentence or condition and therefore has no
truth value. However, pr(x), that is p(x) preceded by the quantifier V, does have a

truth value which follows from the equivalence of (3.3.1) and (3.3.2). Specifically:
If {x‘ x €A, p(x)}: A then Vxp(x) is true, otherwise, Vxp(x) is false.

Example 3.3.2.
1. The proposition (Vz € N)(n + 4 > 3) is true since {n‘ n+4> 3}: {1,2,3,..}= N.
2. The proposition (Vn e N)(n + 2 >8) is false since {n‘ n+2> 8}: {7,8,9,..}% N.

3. The symbol Vcan be used to define the intersection of an indexed collection
{Ai‘ iel } of sets A4, as follows:

m(Ai‘ieI):{x‘ Vie],xeAi}.
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Let p(x) be a propositional function on a set 4. Consider the expression

(3x € 4)p(x) or Ix p(x) (3.3.3)
which reads “There exists an x in 4 such that p(x) is a true statement” or, simply,

“For some x, p(x)”. The symbol 3 which reads “there exists” or “for some” or

“for at least one” is called the existential quantifier. The statement (3.3.3) is
equivalent to the statement

T, = {x‘ x € 4, p(x)};t %) (3.3.4)
i.e., that the truth set of p(x) is not empty. Accordingly, 3x p(x), that is p(x)
preceded by the quantifier 3, does have a truth value. Specifically:
If {x‘ xeA, p(x)}i @ then Jxp(x) is true, otherwise, Jxp(x) is false.

Example 3.3.2.
1. The proposition (3In € N)(n + 4 < 7) is true since {n‘ n+4> 3}: 1,2} 0.
. The proposition (3n eN)(n + 6 < 4) is false since {n‘ n+6< 4}: .

. The symbol Jcan be used to define the union of an indexed collection {Ai‘ iel }
of sets A4, as follows:
U(Ai‘iel):{x‘ EIieI,xeAi}.

4. BOOLEAN ALGEBRA

4.1. Boolean Functions

Definintion. A function f(x,,x,,...,x, ) which takes one of two values 0 or 1

of n variables each of those also assumes one of two values 0 or 1 is called a Boolean
function.

Two Boolean functions are said to be equal if for any tuple of values these two

functions take equal values.

We have four Boolean functions of one variable and sixteen functions of two

variables. 22n 1s the number of Boolean functions of n variables.

Let us consider truth tables of functions of one and two variables.

X | @ | P ®y | @3

0 0 1
1 0 1
Table4.1.1

Functions ¢ (x) and ¢ (x) are called constants respectively 0 and 1.
The function ¢, (x) coincides with a variable x and is called identical, that is

¢y (x)=x.
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The function ¢, (x) takes the values opposite to those of x, and is called a

negation of x denoted by X (02 (x) =x.
The truth table of a function of two variables is of the form:

X1 | Xp [ Wo | VI | V2 (W3 |Wa|VWs | We| V7 |Wg|lWo| Vi Vi1 Vi V13| Via| V15
O {0 |0 (O (O |O |O O |O |0 1 1 1 1 1 |1 1 1
0 |1 O |0 (0 |0 1 1 1 1 O (0 |0 |0 1 |1 1 1

1 |0 |0 |0 1 1 0 |0 1 1 0 (0 1 1 0 |0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |1 0 1
Operati Al MERRE

npera 1010 A | < | X NEE2 @ v | |~ X2 v | x1| ™ 1

Xy X2
Table 4.1.2

1. The functions w and y 5 are constants.

2. The functions w5, ws, w,, and y,, essentially depend on one variable:
W3=X, Ws=Xo Wg = X2, Yo =Xy

The function y, = x; A x, 1s called conjunction.

The function v, = x; v x, is called disjunction.

The function w4 = x; <> x,, or x;~ x,1s called equivalence.

The function w4 = x; ® x, is called the sum taken absolutely 2.

The function w,,=x, — x; is called conversion.

The function y ;= x; = x, is called implication.

A S N O

The function y, = x; ‘xz is called Scheffer’s prime.

10.The function wg = x, \ x,is called Peirce’s arrow.
11. The functions v, and y, are called exclusion’s functions.

4.2. The Properties of Elementary Boolean Functions

1. The functions: conjunction, disjunction, sum taken absolutely 2, Scheffer’s prime,
Peirce’s arrow are commutative.

2. The functions: conjunction, disjunction, sum taken absolutely 2 are associative,
and distributive.

3. De Morgan law: x; A x, =X V X5, X; vx2:ZAg.

4. Double negation: x = x.

5. A disjunction expressed in terms of conjunction and sum taken absolutely 2:
xl \/X2 =x1 /\X2 @X2 @xl.

6. A disjunction expressed in terms of implication:
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X, v xy =(x = x,)—>x,.
7. A negation expressed in terms of Scheffer’s prime, Peirce’s arrow, sum taken
absolutely 2, and equivalence:
x‘xzxingzx@lzxeo.
8. A conjunction expressed in terms of Scheffer’s prime:
X| A Xy =(x1‘ xz)‘ (xl‘ xz).
9. A disjunction expressed in terms of Peirce’s arrow:
x|V X, :(xl ixz)i(xl i«xz).
10. An absorption law: x; A (x; v x, )= Xx;.
11. A sewing law: xvx=x ®x=1.

12. The following identities for conjunction, disjunction, and sum taken absolutely 2
are valid:

XAX=Xx; xvx=x; x®x=0;
xAx=0; xvx=1l;, x®x =1;
xA0=0; xvO0=x; x®0=x;

xaAnl=x; xvl=I; x®l=x .

Technical Realization of Functions of One Variable

f——0 o——oF s —
Constant 0 Constant 1
& : ) ¢ L —%
P =x Py = X
Identical Negation
Fig.4.3.1

Technical Realization of Functions of Two Variables

X /
5 P e % 3
gk 1Fh Qf—--/ > 2
V7 =X VX Vi=X ANXp
Disjunction Conjunction

26



e F_H __T_ #E ' B
Ly gt al

Vi3 =X = X3 Wy =X <X
Implication
2 _...F_H_‘T_ € r‘\i‘h o~ I‘"“xx
s—] ot ¥ e
Vig = X1| X2 Vg =X ¥ x,
Scheffer’s prime Peirce’s arrow
F v IS B
I gt _ ¥
We =X D x, Wo =X <> Xy
Sum taken absolutely 2 Equivalence
Fig.4.3.2.

4.4. Total Systems of Functions. Basis
Definition. A system of functions of logic algebra {gol s Py @, }is called total

system, if any function of logic algebra can be expressed in terms of the
superposition of these functions.
In addition this system of functions is said to be a basis of the logic space.

Definition. A logic function f*(x,,x,,...,x, ) is called a duel function to a
function f(xl,xz,...,xn) if f*(xl,xz,...,xn):?()_cl,)_cz,...,)_cn )

For example, v, =x; Ax, isduelto g =x; v x,,as x; AX,=X1 AX>.

Definition. A  function f is called a self-duel function if

f*(xl,xz,...,xn):f(xl,X2,...,xn )

For example the function f(x;,X,,X;)=X; -X, + X3 - X, + X, - X3 is the self-

duel function as x; -x, +x3-Xx, +X; - X3 =x1-x2 +x3 -x2 +x1 -x3. To check 1t
consider the truth table.
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Definition. A function f(x;,x,,...,x, ) is called a monotonous function if for

any tuples (x[,x5,...,x") and (x]’x%,...,x") such that x!">x!,i=1n the inequality

r

£l xysn x> f(x], x5,..., x! ) takes place .

Definition. A function f(x;,x,,...,x, ) is called a linear function if it can be
reduced to a polynomial: f(x;,%,,....,x, )=co ®c;x; D cyx, ®...®c,x,, where
¢; =1{0,1Li=1n.

For example the function ¢, (x;,x, )=x; ® x,is the linear function.

Post’s theorem. A system of functions is total if, and only if this system
contains at least one function that does not preserve 1, does not preserve 0, not self-
dual, not monotonous and is not linear.

For example, Boolean algebra is constructed on the following system of
functions { , A, v} but Zhegalkin algebra on such basis {1, A, @}.

4.5. Normal Forms of Boolean Functions

Definition. Elementary conjunction is a conjunction of any number of
Boolean variables taken with negation or without it in which each variable occurs not
more than one time.

An elementary conjunction containing none variable we assume the constant 1.

Example 4.5.1. Elementary conjunctions for a function of one variable might
be y,z; for a function of two variables — x A y, x A z.

Definition. By a disjunctive normal form (DNF) we mean a formula
represented in the form of a disjunction of elementary conjunctions.

Example 4.5.2. DNF :(xl A X, /\x3) v(xl /\xz)v(x3 /\xz)v X3 .

1 2

Definition. An elementary conjunction x;' Ax32 A..Ax,"is called a

constituent of unit of a function f(x,,x,,....x,) if f(c,,0,,..,0,)=1, that is an

interpretation reducing the given elementary conjunction into unit, turns also a
function f into 1.

Example 4.5.3. The elementary conjunction x; A x, is the constituent of a
function of two variables f(x;,x,) on the interpretation (I,0) since

1
X| A Xy =X /\xg and x; A x,=1.
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The elementary conjunction x; A x, Ax; 1s the constituent of unit of a
function of three variables f(x;,Xx,,x;) on the interpretation (I,1,1) since

1 1 _
X; AXy AX3=X] AXy AXzand x; Axy, AXy = 1.

Definition. A formula represented in the form of disjunction of constituents of
unit of the given function is called a perfect disjunction normal form (PDNF).

Definition. An elementary disjunction is a disjunction of any number of
Boolean variables taken with negation or without it in which, each variable occurs
not more than one time.

Elementary disjunction, containing none variables we assume the constant 0.

Definition. A formula represented in the form of a conjunction of elementary
disjunctions is called a conjunction normal form (CNF).

Example 4.5.4. ()_cl VX,V x3)v (xl V)_C3)/\ x, — CNF.

Definition. An elementary disjunction x;' v x7* v..vx,"is called a
constituent of zero of a function f(x,,x,,..,x,) if f(o,,0,,....,0,)=0, that is an

interpretation reducing given elementary disjunction into zero turns also a function f
into zero.

Example 4.5.5. The elementary disjunction x v ; is a constituent of zero of a
1 )

function f(x,y)on the interpretation (O, 1 ), since x Vv ;=x vyl=xvyl,

therefore on interpretation (x, y)= (O, 1 )We have the equality x v ;= 0.

Definition. A formula represented in the form of conjunction of constituents of
zero of the given function is called a perfect conjunction normal form (PCNF).

4.6. Zhegalkin Algebra

Definition. The algebra (B, A, D, 0,1) formed by the set B = {0,1} together with
operations A, @ and constants 0, 1 is called Zhegalkin algebra.

The basic laws of this algebra are:
1. Commutative laws: x; @ x, = x, @ xy; X| AXy =Xy AXy.
2. Associative laws:  x; @ (x, ® x; )= (x; ® x, ) D x3;

xp Ay Axg)=(x; Axy ) A X,

3. Distributive law:  x; A (x, ® x3)=(x; A X, )® (x; A x3).
4. Idempotent law:  x A x=x.
5. Operations with constants: x A0=0, xAl=x.
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Definition. Zhegalkin polynomial is a finite sum taken absolutely 2 mutually
distinct elementary conjunctions over a set of variables {x,x,,...,x, }.

Example 4.6.1. 1) Zhegalkin polynomial of constant is equal to this constant.

2) f(x)=a, ® a,x.
3) f(x1,x5)=ag ® ayx; @ ayx, ® ap () A xy )

Theorem. Each Boolean function f(x;,Xx,,...,x,) can be represented in the

form of Zhegalkin polynomial in a unique way up to order of summands.

Definition Boolean function is called linear if its Zhegalkin polynomial does
not contain conjunctions of variables, that is its Zhegalkin polynomial is of the form
ao@ax;®..®a,x,.

4.7. Minimization of Functions

Definition. Implicant of a function f i1s a function g such that on all
interpretations on which g is unit, f'is also unit.

Definition. A set S consisting of implicants of f/ is called a covering of f if
each unit value of /" is covered by 1 at least by one implicant of a set S.

Definition. Any elementary conjunction 4 entering elementary conjunction B
and containing less variables than B is called a fundamental part of a conjunction B,
and it is said that conjunction 4 is covering a conjunction B.

Definition. A simple implicant of a function f is such conjunction implicant,
that none of its fundamental part is not implicant of the given function.
A set if all simple implicants forms a covering of the given function.

Definition. The disjunction of all simple implicants of a function is called a
reduced DNF.

Definition. The disjunctive core of Boolean function f'is such set of its simple
implicants which forms a covering of £, but after removal of any implicant it loses
this property, that is, ceases to be total system of implicants.

Definition. By a deadlock DNF we mean a DNF of the given Boolean function
f consisting only of simple implicants.

Definition. The minimal DNF (MDNF) of the given Boolean function f is
called one of its deadlocks DNF to which there corresponds the least value of the
minimization criterion of DNF.
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To find a set of simple implicants of the given PDNF are used the following
operations:
1. The operation of incomplete disjunctive sewing:

Axv Ax=Av Ax v Ax.
2. The operation of disjunctive absorbtion
Av Ax=A.
In these cases A is some elementary conjunction of variables, x is Boolean variable.
Performing these two operations successively we get so called operation of
total disjunctive sewing:

Axv Ax=A.

Example 4.7.1. Let us have a function f, given by PDNF

f(x,y,z):xyzvy_cyzv XYZVXYZ.
Performing total sewing operations we obtain

floyz)=rpz v ayzvxyevayz=lwz v az)y (e v xpz)y oz vayz)-
=yzVv )_cz \Y )_c; ;

f(x,y,z): Xyz v )_cyz)v ()_c;z v xyz): Vz v )_c;
In both cases we have two deadlock DNF. The second deadlock DNF' is simpler than
the first one since it contains lesser variables and operations.

Working sewing ogjerations in other way we get

4.8. Minimization of Functions by Quine-Mc Cluskey Method

This method was suggested by Quine and improved by Mc Cluskey.
Quien’s algorithm consists of following:

Write out PDNF' of the given function.

. Perform all possible operations of incomplete disjunctive sewing. Resulting

formula is a disjunction of all possible implicants of the given function.

3. Perform all possible operations of disjunctive absorbtion. Resulting formula is the
reduced DNF of the given function.

4. Form an implicant table and find a disjunctive core.

5. Simplify an implicant table by means of removal of rows corresponding to
implicants of a disjunctive core and columns corresponding to such constituents of
unit which are covered by core implicants.

6. Find all deadlock DNF' of the given function.

7. Find the minimal DNF.

N =

Example 4.7.2. Using Quien’s method find the minimal DNF of the following

function: f(x,y,z): XYz XYz XYzV XYz V )_c;g
Solution.
Perform all possible operations of disjunctive sewing and absorbtion:

Xyzv Xyz=yz, XyzIVXyz=yz, XVZIVXYZ=XZ, XVZIVXVZI=XY.
Now we get the following formula:
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fle,y,z)=xyzvXxyzvxyzvxyzvxyz=yzvyzvxzvxy.

This formula is the reduced DNF of the given function. Now let us form an
implicant table. Its rows are given by simple implicants, and its columns are given by
constituents of unit of the function. Each cell of the table is denoted by asterisk for
which implicant of a row is a fundamental part of a constituent of a column.

Implicant table of the function f (x, y,z)

YYZlxyz |xyz |xyz|xyz
Yz * *
vz * *
Xz * *
Xy * *
Table 4.7.1.

Find a disjunctive core. It consists of each simple implicant which is unique in
the covering by some constituent of unit. In the implicant table the columns contain

one sign * corresponding to constituents of unit xyz and x;z opposite to implicants

yz and yz. These simple implicants form the disjunctive core.

Let us form the simplified implicant table. To do this we delete in the implicant
table rows corresponding to implicants of the disjunctive core, and columns
corresponding to the constituents of unit which are covered by core’s implicants. In
the given case the core’s implicants are covering all constituents of unit, exept one,
therefore the simplified implicant table has the following form:

Simplified implicant table

Xyz

XZ
XYy
Table 4.7.2.

*

*

From this table we find that the deadlock DBF’s of the given function include the
implicant xz or )_c; except the disjunctive core.

Thus we get two deadlock DNF of the given function:

DNF 1: f(x,y,z):yzv;gvy_cz;

DNF 2: f(x,y,z):yzv;gv;c;.

In the capacity of the minimal DNF we choose DNF' 1 which contains less
signs of negation’s operations.
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5. GRAPH THEORY
5.1. Definitions.

A graph G consists of two things:
1) A finite nonempty set X ={x,,x,.,...,x, }whose elements are called vertices of a
graph.
2) A definite set U of unordered pairs of distinct vertices called edges of G.
We denote such a graph by G(X U ), when we want to emphasize the two parts of G.

Definition. A graph G is a finite set of points called vertices together with a
finite set of edges, each of which joins a pair of vertices.

An edge joining a vertex to itself is called a loop (Fig.5.1.3).

Vertices are represented by dots, the edges — by straight or curved line
segments.

Example 5.1.1. Let a graph G=(X,U) be given, where X = {xl,xz,x3,x4,x5},
U= {{x19x2 },{xz,x3 },{x3,x4 },{x4,x5 }}

Fig.5.1.1

A pair of vertices in a graph may be joined by more than one edge, In this case
we say that we have a multiple edge.

Definition. A graph with multiple edges is called a multigraph (Fig.5.1.2).

Definition. A graph without multiple edges and loops is called a simple graph
(Fig.5.1.3).

Definition. A graph with multiple edges and loops is called a pseudograph

(Fig.5.1.5)

—_ o
\ ( \,(/ d
\ S
e "l‘\'; . / ‘“‘—-__—/ s

Fig.5.1.2 Fig.5.1.3
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Definition. Vertices x and y are said to be adjacent if there is an edge
u=(x,y).

Definition. The edge u =(x,y) is said to be incident on each of its endpoints x
and y.

We denote a number of vertices of a graph by n, and number of edges — by m,
that is ‘X‘:n, ‘U‘:m.

Such numbers are called the basic number characteristics of a graph.

Definition. The degree of vertex x in a graph G, written deg(x) or 5(x) is a
number of edges in G which are incident on x.

Definition. A vertex of degree zero is called an isolated vertex.

Definition. A vertex of degree unit is called an overhanged or terminal vertex.

Graph with isolated vertex x Graph with terminal vertex x
" /_,/"' \\\ ¥
¥ ._; e
| - e
— &
Fig.5.1.6 Fig.5.1.7

Definition. A vertex is said to be even or odd according as its degree is an even
or an odd number.
The following two statements are valid.

Theorem 5.1.1. The sum of the degrees of the vertices of a graph G is equal to
twice the number of edges in G.

Theorem 5.1.2. The number of vertices which gave an odd degree is even.
These theorems are given without proof.

Definition. A graph which does not have edges is called an empty graph and
denoted by O: U = . All vertices of this graph are isolated.

Definition. A graph G is said to be complete if every vertex in G is connected
to every other vertex in G.
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Examples of complete graphs are given in Fig.5.1.7

Fig.5.1.7

For each vertex of a complete graph we have & (x) =n—1.
5.2. Subgraphs

Consider a graph G =(X,U).

Definition. A graph G, = (X LU 1)is called a subgraph of G if the vertices and
edges of Gjare contained in the vertices and edges of G, thatis X; € X andU, c U .

Subgraphs of the graph G-

O

of

Graph G Subgraph G; Subgraph G,
Fig.5.2.1

Definition. A graph G =(X 1,U1) is called an idgraph if
X,=XandU, cU.

5.3. Directed Graphs
Definition. A directed graph or a digraph is a graph with directed edges.
In this case a set U consists of ordered pairs of vertices. Elements of U are

called arcs.

Example 5.3.1. Let us consider the directed graphs
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a) G = (XlaUl)Where X, = {xlaxz} {(x29x1 }:
b) G, —(Xz»Uz)WhereXz —{xl,xz,x3,x4,x5} ={(xl,xz),(xz,x3),(x3,x4),(x4,x5)}.

1?\ X,
l"{— X N
h"
X X
a) Directed graph G b) Directed graph G,

Fig.5.3.1

For directed graphs we introduce semidegrees: positive semidegree o, (x) and
negative semidegee &_(x).
5. (x) is a number of arcs which go into a vertex x;
5_(x) is a number of arcs which go out of a vertex x.

5.4. The Ways of Representation of Graphs

1. A finite graph can be given by listing its elements.
For example,

G=(X,U): X={,2,3,4,5,6,7,8}, U=1{1,2),(2,3),(2,4),(1,4).(3,4),(4,5),(6,6).(6,7)}.
2. Matrix representation of graph

Let us consider a digraph G = (X,U), where X = {xl 3 X9 e X, },
U= {ul,uz,...,um}.
This finite directed graph can be represented by an adjacency matrix.

Definition. By an adjacency matrix of a digraph G we mean a square matrix
AG)= (aij) of order n, where

L if (x;,x; )e U
a; =

0,1f (xi,xj)gU.

Definition. By an incidence matrix of a digraph G we mean a matrix

B(G)= (b ]) of dimension n x m, where

1, if a vertex x; is the end of an arcu ;;
b; =4—1, if a vertex x; is the begining of an arcu;

0, if a vertex x; is not incidental with anarcu ;.
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Example 5.4.1. Consider the digraph G in Fig.5.4.1.

Fig.5.4.1

The adjacency matrix of this graph has the form

X| Xy X3

X1 0 1 1
AG)=
(@) x| 1 0 1

X, 1 =1 0 -1}
X3 O 1 -1 O

Consider now a finite nondirected graph G = (X,U). X = {x;,x,,...,X, },
U= {ul,uz,..., um}

Definition. By an adjacency matrix of this graph we mean a square matrix
AG)= (aij) of order n, where

L if (x;,x; )e U
;=

0,1f (xi,xj)gU.

Definition. By an incidence matrix of a graph G we mean a matrix
B(G)= (b,]) of dimension n x m, where

{1, if a vertex x; is incidental with an edge u ;;
b, =
ij

0, if a vertex x; is not incidental with an edge u ;.
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Example 5.4.2. Consider the graph G in Fig.5.4.2.

*2
"1
1
uz x3
Fig. 5.4.2
Xp X2 X3
. . . . X1 0 1 1
The adjacency matrix of this graph is of the form  A4(G)= Lo o
X2
x3\1 0 0
Uy U
o . x (1 1
The incidence matrix has the form  B(G)= .
X9 1 0
x\0 1

It is possible to extend the definitions of A(G) and B(G) for multygraphs and
pseudographs

Graph ‘ Digraph

Adjacency matrix A(G) = (aij )

0,1f X;,X ; are not adjacent 0,1f xx; eU
a; = a. =
Y |n,if x;x; €U ntimes

n,if x;,x ; are adjacent n times ;

Incedence matrix B(G) = (by)

0,1f x; is not incedence with u ; —Lif x; is initial point of u ;

b; =<1,if x; is incedence with 1,if x; is end point of u ;

ij
a,if u; is aloop 710, if x; is not incedence with u ;

a,if u; isaloop
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5.5. Isomorphic Graphs

Definition. Two graphs G, =(X,,U,) and G, =(X,,U,) are said to be equal or

isomorphic if they have the same number of vertices, the same number of edges, and
if the vertices (respectively, edges) of G, may be put into one-to-one correspondence

with the vertices (respectively, edges) of G,in such a way that if edge u of
G, corresponds to edge v of G, and the end points of u are x;and x; then the end

points of v are the vertices corresponding to x;and x ;.

Example 5.5.1. The graphs represented in Fig.5.5.1 are isomorphic.

2 L Xy

u1 u3
Uy

Xy X4

Fig.5.5.1

5.6. Types of Graphs

Definition. A walk in a multigraph G is an alternating sequence of vertices and
edges of the form
XU XjUyXy .. X, (U, X,
where each edge u; contains the vertices x;_; and x;. The number n of edges is called
the length of the walk.
The walk is said to be closed if x, = x,,.

Definition. A walk in which all edges are distinct is called a trail. A closed
trail is called a cycle. A cycle of k£ length is called a k — cycle.

Definition. A walk in which all vertices are distinct is called a simple walk.
Definition. A cycle in which all vertices (except the end points) are distinct is
called a simple cycle.
Directed walks are defined by analogy.

Definition. A walk, which does not contain recurring arcs, is called a path.

Definition. A walk, which does not contain recurring vertices is called a simple
path.
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Definition. A closed path is called a contour, and a closed simple path is called
a simple contour.

Definition. A graph without cycles is called an acyclic graph (digraph —
noncounter) otherwise a graph is called a cyclic graph (digraph — contour).

Let us agree with the statement: that each vertex joining to itself by a walk of
length 0 and this walk is a simple cycle. Such cycle is called a null cycle.

The following statements are true:
1. Given a walk S. If this walk is not a closed walk then it contains a simple trail with
the same ends.
2. Each closed walk C contains a simple cycle.

5.7. Connectedness. Connected Components

Consider a nonoriented graph G(X,U ).

Definition. A vertex a is said to be connected to a vertex b if there exists a walk
which joins these verteces.

Definition. A graph G(X U ) is said to be connected if there is a walk between

any two of its vertices.
There exists such decomposition of a set of vertices of X

(1) X=X,uX,U..UX,, X,nX,;=0,ifi].
X;are mutually nonintersecting subsets and all vertices of one set X; are connected
to each other, and vertices of distinct sets X; are not connected.

2) U=U,VU,U..UU,, U nU,;=0,ifi#].

Then, according to (1) and (2) we have the direct decomposition

3) G=G, UG, U..uUG,,
where G, =(X,,U,), G,=(X,.U,),..., G, = (Xp,Up) are nonintersecting
connected subgraphs.

These subgraphs are called connected components of a graph G.
A number p is a number characteristic of a graph. Moreover p=1 for a

connected graph and p >2 for a nonconnected graph.

Theorem. Each nonoriented graph can be decomposed uniquely into a direct
sum.

Definition. A digraph is called strongly connected if for any pair of vertices a
and b there exists a path from a to b.

Definition. A semipath is the same as a path except the edge v; may begin at
x;_; or x; and end at the other vertex.
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Definition. A graph G is weakly connected or weak if there is a semipath
between any pair of vertices in G.

Example 5.7.1. The graph in Fig.5.7.1 has three connected components:

AN

Fig.5.7.1

Example 5.7.2. Three connected components G;, G,, G5 of the digraph G are
given in Fig.5.7.2:

*2 x3 *2 X3
Xy X1 .
X
X f 3
gy
X 5 x5

G Gy G, G,

Fig.5.7.2
5.8. Distance and Diameter

Consider a connected graph G. The length of the shortest trail which joins two
vertices x and y in a graph G 1is called a distance between these vertices and written

d(x,y).
The following metrical axioms are valid:

1. d(x,y)>0 (d(x,y)=0= x=1y).
2. d(x,y)=d(y,x)
3. d(x,y)+d(y,z)=d(x,z)

Definition. The diameter of G, written d(G)=max d(x,y), is the maximum
X,y

distance between any two points x and y in G.
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Let us define for every vertex x in a graph G a quantity ;/(x): max d (x, y).
y

The minimum of this quantity with respect to all vertices in a graph is called a radius
of a graph. That is d(G)=min y(x)=min max d(x, y).
X

x %Y

A vertex at which this minimum is attained is called a central vertex.
5.9.Traversable and Eulerian Graphs

The eighteenth century East Prussian town of Konigsberg included two islands

and seven bridges as shown in Fig.5.9.1(a) Question: Beginning anywhere and
ending anywhere, can a person walk through town crossing all seven bridges but not
crossing any bridge twice? The people of Konigsberg wrote to the celebrated Swiss
mathematician L.Euler about this question. Euler proved in 1736 that such a walk is
impossible. He replace the islands and the two sides of the river by points and the
bridges by curves, obtaining Fig.5.9.1(b).

(a) Kdnigsberg in 1736 (6) Euler's graphical representation

Fig.5.9.1

Observe that Fig.5.9.1(b) is a multigraph. A multigraph is said to be
traversable if it “can be drawn without any breaks in the curve and without repeating
any edges”, that is: there is a path, which includes all vertices and uses each edge
exactly once. Such a path must be a trail (since no edge is used twice) and will be
called a traversable trail.. Clearly a traversable multigraph must be finite and
connected. Figure 5.9.2(b) shows a traversable trial of the multigraph in Fig.5.9.2(a).
To indicate the direction of the trail, the diagram misses touching vertices which are
actually traversed.
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(a) (b)

Fig.5.9.2

Now it is not difficult to see that the walk in Konigsberg is possible if and

only if the multigraph in Fig.5.9.1(D) is traversable.
We now show how Euler proved that the multgraph in Fig.5.9.1 (b) is not
traversable and hence that the walk in Konigsberg is impossible.

Recall first that a vertex is even or odd according as its degree is an even or an
odd number. Suppose a multigraph is traversable and that a traversable trial does not
begin or end an a vertex P. We claim that P is an even vertex. For whenever the
travesable trail enters P by an edge, there must always be an edge not previously used
by which the trail can leave P. Thus the edges in the trail incident with P must appear
in pairs, and so P is an even vertex. Therefore if a vertex Q is odd, the traversable
trail must begin or end at Q. Consequently, a multigraph with more than two odd
vertices cannot be traversable. Observe that the corresponding to the
Koningsberg bridge problem has four odd vertices. Thus one cannot walk through

Konigsberg so that each bridge is crossed exactly once.

Definition. A graph is called an Eulerian graph if there exists a closed
traversable trail, called an Eulerian trial.

Theorem 5.9.1. A finite connected graph is Eulerian if and only if each vertex
has even degree.

5.10. Hamiltonian Graphs

A Hamiltonian circuit in a graph G, named after the nineteenth — century Irish
mathematician William Hamilton (1803 — 1865), is a closed path that visits every
vertex in G exactly once. (Such a closed path must be a cycle.) If G does admit a
Hamiltonian circuit, then G is called a Hamiltonian graph.

Note that an Eulerian circuit traverses every edge exactly once, but may repeat
vertices, while a Hamiltonian circuit visits each vertex exactly once but may repeat
edges. Fig.5.10.1 gives an example of a graph which is Hamiltonian but not Eulerian,
and vice versa.
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(e} Hamiltonan and non-Eulerian (51 Evlerian and non=-Hamiltonian

Fig.5.10.1

Although it is clear that only connected graphs can be Hamiltonian, there is no
simple criterion to tell us whether or not a graph is Haviltonian as there is for
Eulerian graphs. We do have the following sufficient condition which is due to
G.A.Dirac.

Theorem5.10.1. Let G be a connected graph with n vertices. Then G is
Hamiltonian if #>3 and n < deg(x) for each vertex x in G.

5.11. Cyclomatic Graphs. Trees

Let us consider a graph G =(X,U).
Definition. A graph edge through which at least one cycle passes is called a
cyclic edge.

Definition. An edge which does not belong to any cycle is called an isthmus.

Example 5.11.1. In Fig. 5.11.1 we have the graph with isthmuses u;and u,:

Fig. 5.11.1

Definition. Let ‘X ‘ =n 1S a number of vertices, |U ‘ =m 1s a number of edges,
p 1s a number of connected components of a graph. A quantity A =m —n+ pis called

a cyclomatic number.
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It is possible to prove that A >0.
5.12. Tree Graphs

Definition. A graph T is called a tree if T is connected and 7 has no cycles.
Examples of trees with six vertices are shown in Fig. 5.12.1.

>—<¢—1
Fig. 5.12.1.

Example of a forest which is a tree is shown in Fig. 5.12.2.

Fig. 5.12.2

Definition. A forest is a graph with no cycles; hence connected components of
a forest G are trees. Note, that a forest can be a tree.
The following definitions of a tree are equivalent:
a) atree is a connected graph with no cycles;
b) a tree is a connected graph in which each edge is an isthmus;
c) atree is a connected graph with a cyclomatic number equals zero.

5.13. Spanning Trees

Definition. A subgraph T of a connected graph G is called a spanning tree of
G if T'is a tree and T includes all the vertices of G.

Fig.5.13.1 shows a connected graph G and spanning trees 77,7, and 73 0f G.
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5.14. Transport Networks

Definition. S transport network is a directed graph G = (X U ) in which
1) there corresponds a non-negative number c(u) to every arc u called an arc

capacity;
2) To vertices s and ¢ are separated. The graph G does not include arc which enters s
and leaves ¢.

These two vertices are called a source (s) and a sink (t).

Example 5.14.1. In Fig.5.14.1 the following transport network is given:

Fig.5.14.1

s 1S a source, f is a sink a and b are intermediate vertices.

We denote by U, a set of all arcs which enter x and by U which leave x.

For vertices s and t we have U =U, =0.

Definition. A function ¢ which is defined on arc of a network, and takes
nonnegative values is called a flux if the following conditions are satisfied

(1) ¢(u)=0, uelU;
() Zqo(u)— Zqo(u)zo, xeU,x#s,x#t,

+ —_
uel; uel,
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3) lu)<clu)

A flux is a scheme of a transport organization ¢(x) which means an amount of

load passing through an arc in a unit time and does not exceed a capacity of an arc.
The conditions (2) are called conditions of conservation.

The total quantity of load, which leaves s, equals the total quantity which enters ¢.

This total quantity is called a flux quantity and denoted by @, that is

©= Y op)= o).

uEU;r uely

Let A< Xbe a subset of network vertices which satisfies the condition
seAte A.

We denote Z:X\A,then seA,teZ .
Consider a set (A,Z) of all network arcs, which start in the set 4 and end in the
set Z:

(A,Z): {(x,y):x €A,y EZ}

Definition. A set of arcs (A,Z) is called a cutset caused by a set of vertices of 4.
A capacity of cutset C (A,Z) is a sum of capacities of all arcs belonging to the cutset.
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6. ELEMENTS OF NUMBER THEORY
6.1. Fundamental Concepts

If m is a natural number then for any integer number a there exists a pair of
integer numbers ¢g and 7 such that
a=m-q+r, 0<r<m.
A number ¢ is called a quotient, and a number r is called a remainder. If a can be
divided by m without remainder then we denote m‘ a.

Definition. The least common multiple (LCM) of two (or more) nonzero whole
numbers is the smallest nonzero whole number that is the multiple of each all of the
numbers. LCM of @ and b is written [a,b].

Example 6.1.1. Find [24,36].

Solution.
Stepl: Express the numbers 24 and 36 in their prime factor exponential form:

24=2°-3, 36=2.3".
Step 2: The LCM will be the number 23 .32,

Definition. The greatest common factor (GCF) of two (or more) nonzero whole
numbers is the largest nonzero whole number that is a factor of both (all) of the
numbers. GCF of @ and b is written (a,b).

If (aj,ay,....,a,)=1 then numbersa,,a,,...,a, are called mutually prime

n
numbers.

Theorem. If a=b-q + r, then (a,b)=(b,r).
Proof. 1f d‘band d‘r then d‘a. If d‘aand d‘b then d|r. Therefore a set of

divisors of b and r coincides with a set of divisors of @ and . Hence their greatest
common factors are equal.

6.2. Euqludean Algorithm

Let a and b be positive integers, and a >b. We can find
a=b-q,+rn, 0<r <my;
b=7’1-q2+l’2, O<7’2<I’1;
V1=7'2-Q3+I”3, O<7'3<I’2;

Vw2 =V1°4q, T,

Tn1 =1 "4y
As a result we have
(@,b) = (b,71) = (1,r) = .= (ryom,) = 15
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Example 6.2.1. Find (525,231).
525|231
462 2

23163

189] 3
63|42

421
42021

4|2

0
Therefore (525,23 1) =21.

6.3. Congruences and Their Properties

Definition. Let m be a positive integer. We say that a is congruent to b
modulo m, written a =b(modm) if m divides the difference a —b. The integer m is
called the modulus.

For example
1. 87=23(mod4) since 4 divides 87 — 23 = 64,

2. 67=1(mod 6) since 4 divides 67 — 1 = 66,

3. 72=-5(mod7) since 7 divides 72 —(~5) = 77,

4. 27 =8(mod 9) since 9 does not divide 27 — 8 = 19.

Remark: Suppose m is positive, and a is any integer then there exist integers ¢
and r with 0 <r <msuch that a =mgq + r. Hence

mg=a—r or m‘(a —7) or a=r(modm).
Accordingly:
1) Any integer a is congruent modulo m to a unique integer in the set

{0,1,2,...,m - 1}. The uniqueness comes from the fact that m cannot divide the

difference of two such integers.
2) Any two integers a and b are congruent modulo m if and only if they have the
same remainder when divided by m.
Now we consider some properties of congruences.
1. Suppose a=c(modm) and b=d(modm). Then a +b=c +d(modm) and
a-b=c-d(modm).
Leta=b+km, c=d+Im,then a+c=b+d+(k+[)m or
a+c=b+dmodm), a-c=b-d+m(kd + bl +kim)=bd +mn.
2. Both sides of a congruence and modulus it is possible to divide by some
common divisor.
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Let a=b(modm);a=a,d,b=b,d, m=md, then a,d =b,d + km,d. Hence
a; =b, +km;and a, = b, (mod m, ).
3. Both sides of a congruence we can divide by their common divisor if the latter
and the modulus of the congruence are mutually prime.

Let a =b(modm); a = ayd,ba=hbd,(m,d)=1, then (a, — b, )d = km. Since (m,d)=1,
then m‘(al —b,) and a, =b, (mod m, ).
4. If a=b(modm), then (a,b)=(b,m).

Really, if @ =b(modm), then a=b +Im and (a,b)=(b,m).

Example 6.3.1. Observe that 2 =8(mod 6) and 5=41(mod6). Then:
1) 2+5=8+41(mod6) or 7=8+49(mod 6);
2) 2-5=8-41(mod6) or 10 =328(mod6).

6.4 Residue Classes

Since congruence modulo m an equivalence relation, it partitions the set Z of
integers into disjoint equivalence classes called the residue classes modulo m. A
residue class consists of all those integers with the same remainder when divided by
m. Therefore, there are m such residue classes and each residue class contains exactly
one of the integers in the set of possible remainders, that is {0,1,2,...,m - 1}.

Generally speaking, a set of m integers {al,az,...,am }is said to be a
complete system modulo m if each a,comes from a distinct residue class. Thus the
integers from 0 to m — 1 form a complete residue system. The notation [x]m or
simply [ x | is used to denote the residue class (modulo 7) containing an integer x, that
is, those integers which are congruent to x. In other words,
[x]=1a EZ‘ a = x(modm)}.

Accordingly, the residue classes can be denoted by [0], [1], [2]....,[m —1]or
by using any other choice of integers in a complete residue system.

Example 6.4.1. The residue classes modulo m = 6 follow:

[0]=1..-18,-12,-6,0,6,12,18...},  [1]={...-17,-11,-5,1,7,13,19,...},
[2]={.,-16,-10,-4,2,8,14,20,..}, [3]=1{..~15,-9,-3,3,9,15,21,...},
[4]=1.,-14,-8,-2,4,10,16,22,..}, [5]={..—13,-7,-1,5,11,17,23,...}.

6.5. Euler Function

Definition. A function of natural argument qo(n) which defines the number of

integers between 1 and n (exclusive) which are relatively prime to » is called the
Euler function .
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Example 6.5.1.By definition we have

§0(1)= 1, §0(2)= 1, §0(3)= 2, (p(4)= 2, (p(S) 4, g0(6) 2. If p is a prime number,
then (p(p)z p —1. We shall show that (o(p”) "= (
number.

1), where 7 is a natural

n

Solution. Really, among p" natural numbers there is P p" “Tnumbers

p
which can be d1V1ded by p. Others, p" — p” coprlme to p”, that is
olp")=p" - p"" = p" " (p 1)
It is possible to prove that Euler function is multiplicative, that is
@(m-n)=q@(m) p(n)as (n,m)=1. If a natural number N is expanded into prime

factors: N = p/"' - p3? -...- p;'*, then we have
oN)=0lp" ) p52 ). ol i )=

EHTRER S EAY (R PO ARRAYAEN
P P2 Pr P P> P

Example 6.5.2. Calculate ¢(28).
. 2 1 1
Solution. <p(28)=(p(2 : 7): 28(1 - 5)(1 - ;j =12.

Theorem (Euler). If (a,m)=1 then a®m) = 1(modm).
If m = pis a prime number, then (p(p)z p —land we get, according to Euler’s
theorem, Fermat’s little theorem

a?' =1(mod p).
6.6. Congruence Equations

A polynomial congruence equation or, limply, a congruence equation (in
one unknown x) is an equation of the form
a,x"+a, x""' +.+ax+a,=0modm) (6.6.1)
Such an equation is said to be of degree n if @ # 0(modm). Suppose s = ¢(modm).
Then s is a solution of (6.6.1) if and only if ¢ i1s a solution of (6.6.1). Thus the

number of solutions of (6.6.1) is defined to be the number of incongruent solutions
or, equivalently, the number of solutions in the set {0,1,2,...,m — 1}.

Of course, these solutions can always be found by testing, that is, by

substituting each of the m numbers into (6.6.1) to see if it does indeed satisfy the
equation.
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The complete set of solutions of (6.6.1) is a maximum set of incongruent
solutions whereas the general solution of (6.6.1) is the set of all integral solutions of
(6.6.1). The general solution of (6.6.1) can be found by adding all the multiples of the
modulus m to any complete set of solutions.

Example 6.6.1. Consider the equations:
1. x> + x +1=0(mod4), 2. x* +3=0(mod6), 3. x> —1=0(mod8).

Here we find the solutions by testing.

.

. There are no solutions since 0, 1, 2, and 3 do not satisfy the equation.
2. There is only one solution among 0, 1,...,5 which is 3. Thus the general solution
consists of the integers 3 + 6k where k €Z.
3. There are four solutions: 1, 3, 5 and 7. This shows that a congruence of degree n
can have more then n solutions.
Now we consider the following linear congruence equation
ax = b(mod m) (6.6.2)
If @ and m are relatively prime, then equation (6.6.2) has a unique solution.
Moreover, if s is a unique solution to ax =1(modm), then the unique solution to

ax =b(modm) is x =bs .
Example 6.6.2.

1. Consider the congruence equation 3x = 5(mod8).
Since 3 and 8 are coprime, the equation has the unique solution. Testing the
integers 0, 1,...,7, we find that
3.7=21=5(mod8).
Thus x =71s the unique solution of the given equation.
2. Consider the linear congruence equation
33x = 38(mod 280) (6.6.3)
Since GCF (33,280)= 1, the equation (6.6.3) has a unique solution. Testing may not
be an efficient way to find this solution since the modulus m =280 1s relatively large.
We apply the Euclidean algorithm to first find a solution to
33x = 1(mod 280). (6.6.4)
We find x, =17 and y, =2 to be a solution of
33x, +280y, =1.
This means that s =171s a solution of the equation (6.6.4). Then sb=17-38 =646 is
a solution of (6.6.3). Dividing 646 by m =280, we obtain the remainder x =286,
which is the unique solution of (6.6.3) between 0 and 280. The general solution is
86 + 280k with k €Z.
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6.7. Chinese Remainder Theorem

An old Chinese riddle asks the following question: “Is there a positive integer x
such that when x is divided by 3 it yields a remainder 2, when x is divided by 5 it
yields a remainder 4, when x is divided by 7 it yields a remainder 6?”

In other words, we seek a common solution of the following three congruence
equations:

x = 2(mod3), x = 4(mod5), x=6(mod7). (6.7.1)

Theorem. Given the system
x = ri(modm,),

x = r,(mod m, ), where m, (i = 1,k) are

X = Vk(mOdmk),

pairwise relatively prime. Then the system has the unique solution
modulo M =mm,...m, .

Proof. Consider the integer x,=Ms;1; + M,s,r, +...+ M, s,r,, where
M, =M ‘mi and s,is the unique solution of M x=1(modm;) Let j be given. For
i# j,we have mj‘Ml- and hence M;s;7; = O(modmj)

On the other hand, M ;s ; = l(modmjl and hence M ;s ;r; =r; (modmj).

Accordingly, xg=0+...+0+7r,+0+...4+0= rj(modmj).
In other words, x,is a solution of each of the equations in (6.7.1). It remains to show
that x,1is the unique solution of the system (6.7.1) modulo M.

Suppose x; 1s another solution of all the equations in (6.7.1). Then
xo =x,(modm, ), x, =x,(modm, ), ..., x, =x;(mod m, ). Hence mi‘(xo —x;), for each i.
Since the m;are relatively prime, M ‘(xo —x,). That is x, =x,(mod M ). Thus the

theorem is proved.
Example 6.7.1.Solve the system of congruence equations

x = 2(mod 3),
x = 3(mod5),
x =1(mod 7).

Solution. We find M, =35,M, =21, M;=15. On using the congruences
355, =1(mod3), 21s, = 1(mod5), 15s; =1(mod7) we get s, =2,5, =1, 53 =1. Then
x=2-25-2+3-21+15=281(mod105) or x =8(mod105).

Answer: x =8(mod105).
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7. GROUPS. RINGS. FIELDS
7.1. Operarions

Definition. Let S be an nonempty set. An operation on § is a function * from
S x S'into S. In such a case, instead of * (a,b), we write a *b or sometimes ab.
An operation * from S x Sinto S is usually called a binary operation.

Definition. An operation * on a set S is said to be associative if, for any
elements a, b, ¢, in S, we have (a*b)*c=a*(b*c).

Definition. An operation * on a set S 1is said to be commutative if, for any
elements a, bin S, we have a*b=b=*a.

Definition. An element e in S is called an identity element for *if, for any
element ¢ in S, we have a*e=e*a=a.

Definition. The inverse of an element a in S is an element b such that

a*b=>b+*a=e. The inverse of an element a € § is usually denoted by al.

7.2. Groups

Let G be an nonempty set with binary operation. Then G is called a group if
the following axioms hold:

1. Associative Law: For any a, b, ¢, in G, we have (ab)c = a(bc).

2. Identity element: There exists an element e in G such that ae =ea =a for every a
in G.

3. Inverses: For each a in G, there exists an element ' in G (the inverse of a) such

that aa ' =a la=e.

A group G is said to be abelian or (commutative) if ab = ba for every a,be G,
That is, if G satisfies the Commutative Law.

When G is abelian, the binary operation is denoted by + and G is said to be
written additively. In such a case the identity element is denoted by 0 and is called
the zero element; and the inverse is denoted by — a and it is called the negative to a.

The number of elements in a group G denoted by ‘ G |, 1s called the order of G.

In particular, G is called a finite group if its order is finite.

Example 7.2.1.
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a) The nonzero rational number O\ {O } form an abelian group under multiplication.

The number 1 is the identity element and 9 i the multiplicative inverse of the
p

rational number P )

q
b) Let S be the set of 2 x 2 matrices with rational entries under the operation of
matrix multiplication. Then S is not a group since inverse do not always exist.
However, let G be the subset of 2 x 2 matrices with a nonzero determinant. Then
G is a group under matrix multiplication. The identity element is

1 0
1 :(O J and the inverse of 4is A7".

7.3. Subroups. Homomorphisms

Let H be a subset of a group G. Then H is called a subgroup of G if H s itself
a group under the operation of G.

A subset H of a group G is a subgroup of G if :
1. The identity element e€ H .
2. His closed under the operation of G, 1.e. if a,b € H then abe H .

3. H s closed under inverse, that is, a € H , then aleH.
Every group G has the subgroups {e} and G itself. Any other subgroup of G is
called a nontrivial subgroup.

Theorem (Lagrange). Let H be a subgroup of a finite group G. Then the order
of H divides the order of G.

Example 7.3.1. Consider the group G of 2x2 matrices with rational entries
and nonzero detearminants. Let H be the subset of G consisting of matrices whose

0
j. Then H is a subgroup
c d

upper-right entry is zero, that is, matrices of the form (

of G since H is closed under multiplication and inverses and / € H .

Definition. A mapping f from a group G into a group G'is called a
homomorphis if, for every a,b€ G, f(ab)= f(a)f(b).
In addition, if f is one-to-one and onto, then f is called an isomorphism; and G and
G' are said to be isomorphic, written G=G'.
If f:G— G’ is a homomorphism, then the kernel of £, written Ker f is the set of

elements whose image is the identity e¢’of G'; that is,

Ker f = {a e fla)= e'}.
Recall that the image of f, written f (G) or Im /', consists of the images of the
elements under f; that is, Im f = {b € G" there exists a € G for which f(a)= b}.
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Example 7.3.2. a) Let G be the group of real numbers under addition, and let G’
be the group of positive real numbers under multiplication. The mapping f:G —> G’

defined by f(a)=2“ is a homomorphism because f(a+b)=2%-2° = f(a)f(b).
In fact, fis also one-to-one and onto; hence G and G’ are isomorphic.
¢) Let a be any element in a group G. The function f: Z— G G’ defined by

f(n)=a" is a homomorphism since f(m+n)=a""" =a" -a™ = f(m)- f(n).

7.4. Rings. Fields

Let R be a non-empty set with two binary operations: an operation of addition
and an operation of multiplication. Then R is called a ring if the following axioms are
satisfied:

1) Forany a,b,c € R, we have (a+b)+c=a+(b+c).

2) There exists an element 0 € R, called the zero element, such that for every a € R,
a+0=0+a=a.

3) For each a € R there exists an element —a € R, called the negative of a, such that
a+(—a)=(—a)+a=0.

4) Forany a,be R, we have a+b=b+a.

5) Forany a,b,ce R, we have (a-b)-c=a-(b-c).

6) For any a,b,c € R, we have (i)a - (b + c)= ab + ac, and (ii) (b + c)a =ba+ca.

Observe that the axioms 1) through 4) may be summarized by saying that R is

an abelian group under addition.

Subtraction is defined in Rby a —b=a + (- b).

A subset S of R is a subring of R if S itself is a ring under the operations in R.
We note that S is a subring of R if : (i) O S, and (ii) for any a,b € S, we have
a—-beS anda-bes.

Definition. R is called a commutative ring if ab = ba for every a,be R.

Definition. R is called a ring with an identity element 1 if the element 1 has
the property that a-1=1-a =a for every a € R. In such a case, an element a € R is
called a unit if ¢ has a multiplicative inverse, that is, an element a ! in R such that

-1 -1
a a=a-a =1.

Definition. R is called a ring with zero divisors if there exist nonzero elements
a,b € R such that ab = 0. In such a case, a and b are called zero divisors.

Definition. A commutative ring R is an integral domain if R has no zero
divisors, that is, ab = 0 implies a = 0 or b = 0.
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Definition. A commutative ring R with an identity element 1 (not equal to 0) is
a field if every nonzero a € R is a unit, that is, has a multiplicative inverse.

A field is necessarily an integral domain, for if ab =0 and a # 0, then b = 1.
We remark that a field may also be viewed as a commutative ring in which the
nonzero elements form a group under multiplication.

Example 7.4.1.

a) The set Z integers with the usual operations of addition and multiplication is the
classical example of an integral domain (with an identity element). The units in Z
are only 1 and — 1, that is, no other element in Z has a multiplicative inverse.

b) The rational numbers @ and real numbers R each forms a field with respect to the
usual operations of addition and multiplication.

c) Let R be any ring. Then the set R[x] of all polynomials over R is a ring with

respect to the usual operations of addition and multiplication of polynomials.
Moreover, if R is an integral domain then R[x] is also an integral domain.

Definition. A subset I of a ring R is called an ideal in R if the following three
properties hold:

1) 0e!.

2) Forany a,bel wehave a—bel.

3) Forany r € R and a €1, we have ra,ar el .

Now let R be a commutative ring with an identity element. For any a € R, the
following set is an ideal:

(a):{ra‘reR}:aR.

Example 7.4.2. Let R be any ring. Then {O } and R are ideals. In particular, if R
is a field, then {0} and R are the only ideals.

7.5. Polynomials over a Field

Let K be an integral domain or a field. Formally a polynomial f over K is an
infinite sequence of elements from K in which all except a finite number of them are

0; that is, [ = (...,O,an,...,al ,ao) or, equivalently, f(x):anx” +...+a;x +a, where
the symbol x is used as an undetermined. The entry a, is called the kth coefficient of
/. If n 1s the largest integer for which a, # 0, then we say that the degree of /' is n,
written deg(f)=n. We also call a, the leading coefficient of . If a, =1, we call f
a monic polynomial.
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A scalar a € K is a root of a polynomial f(x)if f(a)=0.

Theorem. Let f(x) and g(x) be polynomials over a field K with g(x)=0.
Then there exist polynomials ¢(x) and 7(x) such that f(x) = g(x) g(x)+7(x) where
either (x)=0 or deg(r)< deg(g), (without proof).

Corollary 1. Suppose f (x) is divided by g(x)z x—a. Then f (a) is the
remainder. The proof follows from the previous theorem. That is, dividing f (x) by
x —a we get
f(x) = q(x) (x = a)+r(x)
where deg(r)<deg(x —a)=1. Hence r(x)=r is a scalar. Substituting x = a in the
equation for f (x) yields

fla) = gla)(a—a)tr=r.
Thus f(a) is the remainder.

Corollary 2.The scalar a € K is a root of f (x) if and only if x — a is a factor of

f(x).

Theorem. Suppose f (x) is a polynomial over a field K, and deg( f )= n. Then
£ (x) has at most n roots.

Proof. The proof is by induction on n. If n = 1, then f(x)=ax+b and f(x) has

the unique roor x =——. Suppose n>1. If f (x) has no roots, then the theorem is
a
true. Suppose a € K is a root of f(x). Then
f(x)=(x-a)glx) (7.5.1)

where deg(g)=7n—1. We claim that any other root of f(x) must also be a root of
g(x).

Suppose b #a is another root of f (x) Substituting x =b in equation (7.5.1)
yields 0= £(b) = (b—a) g(b).

Since K has no zero divisors and h—a#0 we must have g(b)=0. By
induction g(x) has at most n —1 roots. Thus f(x) has at most 7 —1 roots other than
a. Thus f(x) has at most n roots.

The theorem has been proved.

Theorem.Suppose a rational number s is a root of the polynomial

f(x)=a,x" +a, x" " +.. +a;x+a,
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where all the coefficients a,,a,_;,...a;,a,are integers. Then p divides the constant

term a, and g divides the leading coefficient a,,. In particular, if ¢ = P s an integer,
q

then ¢ divides the constant term a,. (Without proof).

Example 7.5.1. Suppose f(x):x3 +x2 —8x+4. Assuming f(x) has a
rational root, find all the roots of f(x).

Solution.

Since the leading coefficient is 1, the rational roots of f(x) must be integers

from among
+1,+2,+4.

Note f(l);t 0 and f(— 1)7& 0. Dividing by x — 2, we get that x = 2 is a root and
fx)=(x—2)x? +3x—2).

Using the quadratic formula for x* + 3x — 2 =0, we obtain the following three
roots:

X1:2,
-3-417
Xp=—"T—7,
2
-3 +4/17
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FOR NOTES
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