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DIFFERENTIAL CALCULUS
1. Derivative and its Geometrical and Physical Meaning

Definition. The limit of a quotient of an increment of a function y = f(x) to an

increment of a variable as the latter tends to zero is called a derivative of that
function and denoted by f'(x, ):

ANy flx, M) flx,) 4
Al}gloE:Al)lglo ( ) Aj ( O) =/ (XO) (1'1)
The derivative of a function y=f (x) admits of a simple geometrical

interpretation.
Definition. A tangent line to a curve at a point P, is the limiting position of a

chord P, P as P moves along the curve to coincide with a point £,

Fig 1.1

We have Ax= ‘ P,0

; Ay:‘PQ‘ and

o) = im Y i 1720
et Ay v )

Conclusion. A derivative f '(xo) is equal to a slope of a tangent line to a
graph of a function y = f(x) at a point with abscissa x,.

Now we suppose to have a body moving along a coordinate line and we know
that its position at time ¢ iss = f (z‘) As the body moves along a coordinate line, it
has a velocity at each particular instant and we want to find out what that velocity is.
To do it we reason like this:



In the interval from any time ¢ to the slightly later time ¢ + Az, the body moves from
position s = f (z‘) to position s + As and
s+As= f(t+At) (1.2)

The body’s net change in position, or displacement, for this short time interval
is

As = f(t+ At)— () (1.3)
The body’s average velocity for the time interval is As divided by Az, that is
Va‘}:g:f(t_'_At)_f(t) (14)
At At

To find the body’s velocity at the exact instant ¢, we take the limit of the average
velocity over the interval from ¢ to ¢ + At as the interval gets shorter and shorter and
At strinks to zero. Here is where the derivative comes in. So we have

. A : t+At)- fl¢

v= lim A5 LU 80 10) (1.5)
Ax—0 At Ar—>0 At

Thus, the physical meaning of a derivative is the instantaneous velocity.

There is a simple relationship between an existence of a derivative and

continuity, which is stated in the following theorem.

Theorem. If a function f(x) has a derivative an a point x,, then f(x) is
continuous at x,.

Proof. To show that f(x) is continuous at x,, it suffices to show that
lim f(x)= f(x,), or equivalently Alir_r:OAy:O, where Ay = f(x)- f(x,) and

x—)xo
Ax=x—Xxg.
Notice that f '(xo) exists by hypothesis. Hence by the limit rules we have

A A
lim Ay = lim =% Ax = lim —> - lim Ax=f"(x,)-0=0.
Ax—0 Ax—0 Ax Ax—0 Ax  Ax—0

The converse of this theorem is false. A function f(x) continuous at a point
xomay have no derivative at that point. For example, if f (x):‘ x‘ then f(x) is
continuous at 0, however, f (x) does not have a derivative at 0, as we prove now.

Let f (x):‘ x ‘ . Show that f'(0) does not exist. We find that

fi L0270 I 3
x—0+0 x—0 x—0+0 X x—0+0 X

and
tim LE=O) g I =y
x—0-0 x—0 x—=0-0 x x—=0-0 Xx



Since the two one-sided limits are different, we conclude that lin%) L({(O) does
x—> X —

not exist, which is equivalent to f'(0) not existing.
Since ‘ x‘ does not have a derivative at 0, it follows that the graph of ‘ x‘ does

not have a tangent line at (0,0). Notice that the graph of f (x) = ‘ X ‘ is bent or pointed
at (0,0).

Fig. 1.2

2. The Chain Rule

Theorem .Let f'(u,) andu'(x,), whereu, =u(x,), exist. Then a composite
function y = f(u(x)) has a derivative at x,and its value is f"(u,)-u'(x, ).

Proof.
: Ay A Ay
_ AN A = — = A

Pug)= Jim 2 = B ) ofaw) = 2 < iug )+ ofaw)=

= Ay = f"(uy)- Au+ o(Au)- Au, (2.1)
where o(Au) is an infinitesimal as Au — 0 that is Alim0 o(Au)=0.

u—
Dividing (2. 1) by Ax and passing to the limit as Ax — 0 we get
lim ﬂ:f’(uo) tim 2% 4 tim o(Au)- lim Au
Ax—0 Ax Av—0 Ax  Ax—0 Ax—0 Ax

and
y'(xo )= f'(uo ) “'(xo)

since a function u(x) is continuous at a point x, and lim o(Au)= lim o(Au)=0.
Ax—0 Au—0

Once we know what the functions are, as we usually do in any particular example, we
can get by with writing the Chain Rule in a shorter way:



b _dy du (22)
dx du dx ‘

3. Differentiation of Inverse Functions

Let y=f (x) and x = go(y) be a pair of mutually inverse functions. We shall
show that if the derivative of one of these functions is known it is easy to determine

. . , . A
the derivative of the other. For definiteness, let the derivative f'(x)= hmoEy be
Ax—

known. We shall suppose that it does not turn into zero. In order to find the derivative

go'(y)we shall compute the limit lim ﬂ Since Ax > 0 when Ay — 0 (because the

Ay—0 Ay
inverse function is also continuous) the identity —=——1implies
Ay Ay
Ax
Ax 1 1
lim —=—thatis ¢'(y)= :
Ay—0 Ay I Ay ¢ (y) f'(x)
im —
Ax—0 Ax
: . 1
Similarly, if ¢'(y)#0 , then f'(x)=——.
¢'(»)
These can be written in the form
1 1
Vy=—,,0rx, =—r (3.1)
XY, Vi

4. The Table of Derivatives of Elementary Functions

1) (C)' =0 8) (arccosx), =— !
1-x?
n , n-1 ! 1
2) (X ):n.x 9) (arctanx) =—
x°+1
3) (sin x)' =COS X 10) (arccotx)' =— 21
x°+1
4) (cosx)' =-—sinx 11) (log, x)' = ,a>0,a#1,x>0
xlna
’ 1 ' 1
5) (tanx) = 12) (lnx) ==

CoS™ x X



6) (cotx) =- 13) (a) =a*Ina

7) (arcsin x)f _ ! 14) (ex )l =e"

\/l—x2

e Let us prove that (C )l =0. At every value of x, we find that
lim &Y~ g SO0 CoC g
Ax—0 Ax  Ax—0 Ax Ax—0  Ax Ax—0

e Now we find a derivative of the function y = arcsin x. The derivatives of inverse
trigonometric functions are obtained from the formulas (3.1). If y =arcsin x, then

_ , 1 1
x=siny and y, = =

!

Xy, COSy

To express the derivative as a function of the independent variable x we substitute
into this formula the expression of cos yin terms of x, that is
cosyz\/l—sinzyzx/l—x2 :
Here we take the arithmetic root since the values of the function y =arcsinx lie in

: T . : e o
the interval (— P Ej and the cosine of y is positive in this interval. The substitution

gives
' 1

(arcsin x) = .
V1-x?

e [ et us consider the logarithmic function y=Inx. If an increment of an

argument is Ax, then the increment of the function is

Ayzln(x+Ax)—lnx:1nx+Ax:ln(l+gj.
X X

and

J"=(lnx)' = lim &z lim ln(1+&jm.
Ax—0 Ax  Ax—0 X

As a logarithmic function is continuous the symbols of the logarithm and of the limit
can be interchanged. So we have



1

(lnx)' =In lim (1+&jm —Ine'’* =l.
Ax—0 X X

e To find the derivative of a power or exponential function we use, so called,
logarithmic differentiation. Let a power function y=x" be given. Taking the
logarithms we have

Iny=Inx"=nlnx.

Since (Iny) =(nInx) . The function Iny is a composite function, let us use the chain
1 . . -

rule: —- ' =" Solve this equation for y': y'=ﬁ-y = %" =™ Thus
¥ x x x

(x”) =n-x"1
5. The Sum and Difference Rule

Let y be a function represented as the sum of given functions u and v of the
same independent variable x: y =u + v. We have to prove that

y=u"+v' (5.1)
It is clear that
(u N v)' ~ tim A(u + v) _ lim u(x + Ax)+ v(x + Ax) - (u(x) + v(x)) _
Ax—>0  Ax Ax—0 Ax
= i A mul) e M A) V) A A
Ax—>0 Ax Ax—0 Ax Ax—>0 Ax  Ax—0 Ax
=u'+'
By analogy we obtain
(u —v)' =u' -V (5.2)

Example 5.1 Find the derivative of the function y =3 —tanx + x°.

Solution.
s ;Y [use the formulas (5.1), (5.2) and
y:(3 —tanx+x)= o =
13), 5), 2) of the table of derivatives
=3"3- 12 +3x7.
cos” x

Example 5.1 Find the derivative of the function y = In(cos(2x)).
Solution.

10



Here is a composite function y=Inu, where u =cosv and v=2x. Use the

formula (2.2.) & = @ : @:
dx du dx
Q: ! .(_sinx):—smxztanx,as
dx cosx COS X
D (i) =L oL B (cosx) =—sinx
du u cosx dx

Answer: y' = tan x.

6. The Product Rule

The product rule is understood to hold only at values of x where u and v have
derivatives. At such a value of x, the derivative of the product uv is u times the
derivative of v plus v times the derivative of u. That is

(w-v) =u'v+u' (6.1)
To prove this we have

(w-v) = tim AV
Ax—0  Ax Ax—0 Ax

(u + Au)(v + AV)— uv

. uv+vAu +ulv + AuAv —uv . Au . Av
= lim =y Ilim —+u llm —+
Ax—0 Ax Ax—0 Ax Ax—0 Ax

: u .. Ay
Au llm—zu,hm—:v,
+ lim Av lim — = | &0 Ax Ax—0 Ax =u'v+u)
Ax—0 Ax—0 Ax lim Av =0
Ax—0

In this working we take into account that if Ax — Othen Avas the increment of a
continuous function also tends to zero.

If one of the factors is a constant, for instance v=C we get
y'=(Cu) =C'u+Cu'=Cu’.

Example 6.1. Find the derivative of the function y = (x2 +1)x° + 3)

Solution. From the product rule with u = x? +1,v=x>+3 we find

y':2x(x3 +3)+ 3x2(x3 +3):2x4 +6x+3x" +3x? =5x* +3x% +6x.

11



Example 6.2. Find the derivative of the function y =2sin x - ln(x5 + 1)

- 1
Solution Here u=2sinx=u'=2cosx and v=ln(x5 +1):> V= — 5t
x” +1
4 .
So y':2(:osx-ln(x5 +1)+ 2sin x - Sxt =2 COSx-ln(x5 +1)+—5xssmx )
x"+1 x> +1

The second, shorter way of solution: y = Z(Sinx : ln(x5 + 1» 2 as the constant
factor can be taken out the sign of derivative,

. 5 5X4
u:slnx:u':cosx,v=ln(x +1):>v'= 5 ,
x” +1
4 .
y'—2(cosx-ln(x5 +1)+MJ.
5
x> +1

7. The Quotient Rule

Let y be a function equal to the quotient of two functions u and v: y=—. We

v
should prove that
, uv—uw'
yE=— (7.1)
v
The increment of the given function
Ay:”+A” _ U _uv+vAu—uv —ulv _ vAu —ulv
V+AY oy (v+ Av)y (v+Avy
Au Av
A V— —uU—
In this case — = YAU—uAv __Ax Ax Passing to the limit as Ax >0 we

Ax _(V+AV)\/A}C B (V+Av)v
obtain

. Au . Av
vIiim ——u lim — , ,
Ay m0Ax A0 Ax UV —UY

- - 2
Ar—0 Ax (v + lim Avjv v

Ax—0
The formula (7.1) is proved.

1 o .
Let y =—, where v =1(x). The derivative of the numerator is zero and formula
%

(7.1) becomes

y === (7.2)

12



Example 7.1. Find the derivative of the function y = _smx
l1-2cosx

Solution We apply the quotient rule (7.1) with ¥ =sinx and v=1-2cosx.

. cosx - (1 —2cosx)—sin x - (2sin x)

(1 —2cos x)2
Simplifying the result
2
COS X — 2(003 X +sin? xj
)= __Cosx-— 2
(1-2cos x)2 (1-2cos x)2
-2
Answer: y' = 05X >
(1 —2cos x)

Using the chain rule, the table of derivatives of elementary functions and rules
of differentiation we can consider the following methods of differentiation.

A. Implicit Differentiation is a special case of the chain rule. If y is
differentiable function of x, given by an equation ¥ (x, y) =f (x), then

dF(xay) ' ' ' ' ' f,
T=f(x):>Fy "y =f =y :Fy"

Logorithmic differentiation. The expression (f (x))g(x) is differentiated by
first simplifying using logarithms and then using implicit differentiation. Application
(x)

of this procedure to the expression (f(x))*"" leads to the following formula:

(D) = X ) 1)+ ()W In g)- ()

Example 7.2. Find y' if
y2 +sin y =4x. (7.3)
Solution. In this case, the relation between y and x is not explicit but implicit.

Use the following procedure, known as implicit differentiation:
1. Differentiate both sides of the (7.3) with respect to x.

(y2 +Siny)x :(4X)l =2y’ +cosy-y =4,
2. Solve for y":
4

2yy' +cosy -y =4=y'(2y+cosy)=4=>y'=— —
2y +cosy

Example 7.3. Find y' if

y= (xsmx) (7.4)
Solution. Take logarithms of both sides of (7.4):

13



y:(xsmx):lnyzsinx-lnx
Differentiate the equation (8.3) and find y':

!

' : ' sin x
(Iny) =(sinx-Inx) =2 —cosx-Inx+
x
y' xcosx-lnx+sinx , Y :
== =y’ =2 (xcosx-Inx +sin x).
v x x

Using relation (7.5) we get

4
(xsmx ) = x*"(x cos x - In x + sin x)

Finally write out the table of derivatives of composite functions

Table 7.1

(uiv)lzu'iv' I (\/;)’: ! u'

1 (Cu) =Cu’ o
(zj = uv—zuv (a“) =a"u'lna
V /
C i ; , 11 (eu) :euu/
V /
(7) R (uv) =u"V'Inu+vu’ '
(fogau), = Z (arcsinu)’ S =
Y ulna -y
' I/l, , .
(bnu) == (arccosu) =———
u 2
YI l—u
(arctanu)’ =
+u
(smu), =cosu - u’ (arccotu)' _
' i ' 1+u?
(cosu) =—sinu -u
Y (tanu)’ = u; (Sinhu), =coshu -u'
, o ,u YII* (Coshu) =sinhu-u'
t =— ' !
14 cosh”u

(7.5)



where C,e,a,o,n — are constants, u = u(x), V= v(x) — are functions.
The functions of the seventh group are called the hyperbolic functions:
X —X
: . : e’ —e
y =sinh x - hyperbolic sine, where sinh x = T;

y = cosh x —hyperbolic cosine, where cosh x = e—;

sinhx e*—e*

coshx ¢* 4+¢~
8. Differential and its Geometrical Meaning

y = tanh x — hyperbolic tangent, tanh x =

X .

Definition. The function y = f (x) 1s said to be differentiable at a point x,, if

an increment at this point represented in the form
Ay = AAx + o(Ax) (8.1)
A linear summand AAx is called a differential of a function and is denoted by dy,
that 1s
dy = AAx.
Theorem. A functiony = f(x) is differentiable at a point x, if and only if there
f'(x,) exists at this point. When satisfying this condition 4= f"(x, ).
Proof. If f(x) is differentiable at x, <> Ay = AAx + o(Ax) <

<:>£=A+M<:> im 2 = A+ lim %A)C)@Azf'(xo).

Ax—0 Ax Ax—0
The theorem has been proved.
For the function y = x we have
d
dy =x'Ax=Ax,but y=x so dx=Ax and dy = f'(x)dx or d—yzf'(x).
X

Operation of finding a derivative is termed a differentiation.
The representation of a derivative as the ratio of differentials is important.
Let us explain a geometrical meaning of a differential of a function y = f (x)

4 Yo XAAx A

Fig.8.1.

15



We have dy = f'(x,)Ax = f"(xo Jx —x,) and Vtan ~ £'(eg)= 1 Xox = xg )
Equating the right hand sides of these relations we get
dy:ytan — Yo :QR'
So a differential is equal to an increment of the ordinate of a tangent line.

9. Applying Differential to Approximate Calculations

The application of the differential to approximate calculations is based on the
replacement of the increment Ay = f(x, + Ax)— f(x,) of a given function y = f(x)

by the expression dy = f"(x Jdx .
Thus, for small values of dx we write
Ay = f'(x)dx = dy 9.1)
Geometrically, this is equivalent to replacing the graph of the function y = f (x) by its
tangent line at the point (x,, f(x, ). In a sufficiently small neighborhood of the point
x, this replacement leads to small errors.
1

2yx

Now we consider the function y = \/; . Its differential is dy = dx and

hence

1/x+a’xz\/;+2ii/x;.

In particular, for x =1 we obtain

A1+ dx zl+@.
2

In the general case, for x=a® (a>0)we have

1/a2+dxza+;l—x.

a
For instance, the application of these results yields

J121=/1+0.21 z1+%=1.105.

The exact value of the root equals 1.1, hence the relative error is about 0.5%.
10. Differentiating Functions Represented Parametrically

Let y as a function of x be represented parametrically by the equations
{x = x(t)

y=y(t)

: .. d
Find a derivative _y‘
dx

(10.1)

16



Fig.10.1
_ dy
— — e dr dx— dy— . dy dt
Wehave r =xlt)i + y(t)j] and —=—1i +— . Since —=tan@ = —— and
()i +3(1)j and —-==i +—" ekl
dt
dy
dy  dr
—_— = 10.2
Foas (102)
dt

Example 10.1. Find an equation of a tangent line and a normal line to a curve at
a point corresponding to the value of parameter ¢, =1, if

{x ~tn(1+4?), t € (— o0,+00).

y =t —arctant,
Solution. First we find coordinates of a point M (x,,y,) which is a point of
contact and through which a normal line passes. If to =1 then

xo =In(1+1)=1n2, y, =1—arctan1=1—%:>M0(ln2, 1—%).

Now by the formula (10.2) we find %:
X

2t
1+12°
/ 1
2)ﬂ=(t—arctant) =1- > = ! =
dt 1+ 1+¢
2 2 2
2 AL+
N ot ( z) t

dx  1+¢2 :1+z‘2 " (1+t2)-2t:5'

1) %zln(l+z‘2)' =

2

t

1 ) ) .
=3 = —. This value 1s the value of the derivative at

t=1

If ¢+ =1 then y;(l):%
X

t=1
the point x.

17



The equation of the tangent line can be written in the form

p 1
y—yo=y<xo>-<x—xo>:y—(l—§j=5<x—1nz>,or

1 T
= x+|1-Z—m2]|.
a ( 4 j

For the equation of the normal we have k, , =—k,, as normal line is orthogonal

tan.

with tangent line. Equation of normal is y =-2x + (1 — % —In 2) :

11. Second and Higher Order Derivatives

o , dy . o :
The derivative y'= d_y is the first derivative of y with respect to x. The first
X

derivative may also be a differentiable function of x. If so, its derivative
,_dy' _dy(dy)_d’y
Y T ax (Ej e
is called the second derivative of y with respect to x.
If y'"" is differentiable, its derivative

dx  dx’
is the third derivative of y with respect to x.
The names continue as you imagine they would, with

y(n) _ dy(n—l) _ dny
dx dx"
denoting the nth derivative of y with respect to x.

7y dy” d3y
y''==—=

Example 11.1.Find the first four derivatives of the function y = x> —3x? + 2.
Solution.

First derivative: y' = (x3 ~3x% + 2) =3x% —6x.
Second derivative: y'' = (3x2 — 6x) =6x—06.
Third derivative: """ = (6x — 6), =6.

Fourth derivative: y(4) = (6)' =0.
The given function has derivatives of all orders, the fifth and later derivatives
all being zero.

18



12. Basic Theorems of Differential Calculus

Fermat’s theorem. Let a function f(x) be continuous in some interval and
have the greatest (the least) value at an interior point & of this interval and if f (x)
has a derivative at this point, then f '(5) =0.
Proof. For definiteness, let the function f(x) assume its greatest value at the
point &. This means that f(x)< f(&) for all values of x near &.
Since & is an interior point of f’s domain, the limit lirr:g Lﬁf@)
X—> X —
f'(£) is two-sided. This means that the right-hand and left-hand limits both exist at
x =¢, and both equal f '(5). When we examine these limits separately, we find that
lim S f(¢) <0 (12.1)
x—>E+0 x—&
because, immediately to the right of &, f(x)< f(£) and x — & > 0. Similarly,
lim Sx)=f(¢) > () (12.2)
x—&-0 X — g
because, immediately to the left of &, f(x) < f(ﬁ) and x - & <0.
Inequality (12.1) says that f '(5) cannot be greater than zero, whereas (12.2)
says that f'(£) cannot be less than zero. So, f'(£)=0.

AU

defining

i
/-T\
] >
0 S X
Fig. 12.1
The geometrical meaning of Fermat’s theorem is clearly seen in Fig./2.1: the tangent

line to the graph of a function at its interior highest (or lowest) point is parallel to the
axis of absissas.

Rolle’s theorem. Suppose that y = f(x) is continuous in the closed interval
[a,b] and differentiable at every point of the open interval (a,b). If f(a)= f(b),
then there is at least one interior point & of (a, ) such that f'(&)=0.

Proof. If a function y = f(x) is continuous in the closed interval [a, b], then

this function attains its greatest and least values in this interval. If at least one of these
points is an interior point, then by Fermat’s theorem a derivative at this point equals
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zero. If these points are end-points then by virtue of the condition f(a)= f(b) this
function is constant in this interval [a, 5] and f'(x)=0 everywhere. The theorem has

been proved.
3

Example 12.1. The polynomial function y:%—?ax graphed in Fig.12.2 is

continuous at every point of [-3,3] and differentiable at every point of (—3,3).
Since f(~3)= f(3), Rolle’s theorem says that f'(x) must be zero at least once in

3
the open interval between a =-3 and b =3. In fact, f'(x) = (y = % — 3xj =x? -3

is zero twice in this interval, once at x = —+/3 and again at x = V3.
LY
i/3,213)

(V3,-2V3)

Fig. 12.2
Lagrange’s theorem (The mean value theorem). If the function y= f (x) 1s

continuous at every point of the closed interval [a,b] and differentiable at every
point of the open interval (a, b), then there exists at least one interior point & € (a, b)
such that

(o f(b)=fla)
f(x):T

Proof. Define a new function F(x) as follows

(12.3)

This function is continuous in [a,b] and has a derivative in (a,b). Choose A to
satisfy the third condition of Rolle’s theorem, that is F(a)=F(b). We have

fla)=2a=f(b)-Ab= A= M. By Rolle’s theorem, there exists a point
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fe(a,b) such  that F'(f)ZO- But F'(X):f'(x)—i, and therefore
FE)-2=0= f(e)=a= rie)=)=1)

—a

, which is what we had to prove.

It follows from Lagrange’s theorem that
S(b)=fla)=f"(E\b-a). a<&<b (12.4)
The relation (12.4) is known as the formula of finite increments.

Physical Interpretation

When the renowned physicist Andre’” Ampére (1775— 1836) first stated this
theorem around 200 years ago, the terms “average” and “mean” were synonymous.
If f (t) denotes the position of an object on the x-axis at time ¢, then the average (or

b)—
mean) velocity during the interval [a, b] is w. Thus by the Mean Value
—a
Theorem the mean velocity during an interval [a, b] is equal to the velocity f '(5) at
some instant & in (a, b).

Example 12.2. If a car accelerating from zero takes 8 sec. to go 352 ft., its
average velocity for the 8-second interval is 352/8 = 44 fi/sec. At some point during
the acceleration, Lagrange’s theorem says, the speedometer must read exactly 30 mph
(44 ft/sec).

Caushy’s Theorem. Suppose, that functions f (x) and g(x) satisfy the

following conditions
1) f(x) and g(x) are continuous at every point of the closed interval [a, b];

2) f(x) and g(x) are differentiable at every point of the open interval (a,b),
and also g'(x)#=0.
Then there at least one interior point & € (a, b) exists such that
f,(é):f(b)—f(a) (12.5)
g'¢) gb)-sgla)

Proof. Let us take an auxiliary function similar to the one used in the proof of
Lagrange’s theorem

F(x)= f(x)- 2g(x) (12.6)
This function is continuous in [a, b] and differentiable in (@, b). Choose A to satisfy
the third condition of Rolle’s theorem, that is F(a)=F(h). We have

fla)-Agla)= f(b)- 1g(b)= A= M . By Rolle’s theorem, there a point
glb)-g(a)
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£e(a,b) exists such that F'(£)=0. But F'(x)=f'(x)—Ag'(x), and therefore

£'(€)- 2g'(x)=0 whence f:(é) = f(b)- f(a) . The theorem has been proved.
g'€) ¢b)-gla)

Remark 1. Note, that , when g(x)=x Cauchy’s theorem reduces to
Lagrange’s theorem.

Remark 2.Note that Cauchy’s theorem cannot be proved by a simple term-by-
term division of the relations expressing Lagragne’s theorem for the functions fand g
since the values & of the argument do not necessarily coincide in these relations.

Exercises 12.1.
a) For the functions and intervals in Exercises 1 — 4, find the value & satisfying

the equation f '(é) = M in the conclusion of Lagrange’s theorem.

p—

. fx)=x*+2x-1, 0<x<I;

2. f(x)=x*3, 0<x<1;

3. f(x)=x+l, lS)c£2;
x 2

4. flx)=+x—-1, 1<x<3.

b) Show that at some instant during a 2-h automobile trip the car’s speedometer
reading will equal the average speed for the trip.

c) With the aid of Lagrange’s formula prove the inequalities 170 ¢ P
a

for the condition 0 <b <a.

d) Two functions f(x)=4x> —land g(x)=4x—1 are given in the interval
[ 2, 2]. Check the validity of Caushy’s theorem for these functions.

13. L’Hopital’s Rule

In the late 1600s, John Bernoulli discovered a rule for calculating limits of
fractions whose numerators and denominators both approach zero. Today the rule is
known as L’Hopital’s rule, after de L’Hopital (1661 — 1704 ). L’Hopital’s rule gives
fast results and often applies when other methods fail. If functions f(x) and g(x) are

continuous at x=x,, but f(x,)=g(x,)=0, the limit lim f(x)

Jim g(x) can not be
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o o 0 :
evaluated by substituting x=x,. The substitution produces a,meamngless

expression known as an indeterminate form.

L’Hopital’s Rule. Let functions f(x) and g(x) be continuous functions in
some neighborhood of a point x=Xx, and have derivatives in the deleted
neighborhood of this point, and g'(x)# 0. Assume also that f(x,)=g(x,)=0. Then
the limit of their ratio as x — xjequals the limit of the derivatives provided the latter
limit exists, that is

) )
lim ——~< = lim =——~< 13.1
xi}l’ilo g(x) xi}l’ilo g'(x) ( )
Proof. We have
1)y L)) _fimyCon's_ 119

lim —==1li =
xin):o g(x) xin)go g(x)-g(x,) |[theorem

-~ fx)
— =] .
o ') o g(x)

2
Example 13.1. Find the limit lim >~ ©

2 x% _6x+8

2 2 '
Solution, 1imxz—5x+6=m= lim 5 5“6), im0 oL
=2 x° —6x+8 0 x—)Z(x2_6x+8) x=>22x—-6 2

In some cases one must apply L’Hopital’s rule several times before arriving

at a limit which can be conveniently evaluated.

Example 13.2. Find the limit lim >0
x—0 X
Solution.
hmm:[g}: i 0. hmm:[QL fim 4= C08%)
x—0 x3 0 x—0 (x3 ) x—0 3x2 0 0 (3x2 )

1
>0 6x | 0| |limit 6

. sinx [O} {use the first remarcable}
=]lim ===

However, caution should always be exercised in any application of the rule,
lest it be used blindly in a situation where it is not valid.
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Example 13.3. lim SBY S fim S8 Here, the denominator on the left-hand

x—>r X X—TT
side fails to approach zero as x approaches 7, and thus the use of L’Hopital’s rule
would lead to erroneous results.

It can be proved that L’Hopital’s rule applies to the indeterminate form — as
o0

well as 9 If f (x) and g(x) both approach infinity as x approaches x,, then

lim Sx) _ [ﬁ} —tim L (x)
X—=>X() g(x) o0 X=X g'(x)
provided the limit on the right exists. In the notation x — x, x, may be either finite
or infinite.

Example 13.4. Find limits

: tan x . ox-2x2
a) lim ——— b) lim —
x_>%_01+tanx x>0 3x° + 5
Solution.
: tan x 00 : sec? x 1
a) lm ———=|—|= lm =1, where secx = ;
T gl+tanx |oo] 7 o sec” x coS x
2 2
. x-2x? — 0 .o 1-4x . - 2
b) lim = = lim =lim —=—.
x>0 3x2 45 00 x—0  6x x>0 6 3

We can sometimes handle the forms 0-c0 and o —o by using algebra to get

0 0 . . .
— or — instead. Here again, we do not mean to suggest that there is a number 0 - oo
o0

0
or oo —oo any more than we mean to suggest that there is a number o or —. These
o0

forms are not numbers but descriptions of limits.

14. Evaluation of Some Indeterminate Forms

The case [ 0o |. Let it be necessary to find the limit lim f(x)- g(x) on

x—)xo

condition that lim f(x)=0 and lim g(x)=oo.

x—)xo x—)xo
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We have lim f(x)- g(x)=[ 0eco]= lim M [9}, or

X=X X—>Xg L - 0
glx

lim f(x)- g(x)=[ 0.0 ] = lim g(IX) = [E}
/()

So it is possible to use L’Hopital’s rule in both cases.

Example 14.1.Find limit lim x-(e"* -1).

X—>+00
1/x
-1 |0
lim x-(e"* —1)=[w-0]= lim & —| 2=
x—>+oox ( ) [ ] X—>+00 l |:O:|
X
Solution. T
j 2 1/
= lim —* lim ¢"/* =1.
X—>+00 X—>400
2
X
The case [0 —oo ]. Let lim f(x)=co and lim g(x)=co. We find the limit
x—)xo x—)xo

lim (/(x) - g(x))= [0 - o0].

X=X
Let f(x) and g(x) be fractions, then reducing the expression f(x)— g(x) to the

. . . . 0 0
common denominator we arrive at indeterminate forms of the type o or | —|.
o0

o 1 1
Example 14.2. Find the limit hm( — — —j.
—>0\smx Xx

Solution.
If x > +0, then sinx —» +0 and

1 1

— —— > -0,
sinx x
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Similarly, if x — —0, then sinx — -0 and

1
—— —— —>—00+ 00,
smx X

Neither form reveals what happens in the limit. To find out, we combine the original
fractions,
1 Il x-sinx

sinx Xx  xsinx
and apply L’Hopital’s rule to the single fraction on the right:

lim(l _lj:hmx—smx:[g}:hm I ~cosx =[still%}=

x—>0\sinx x x—0 Xxsin Xx 0 x—0SIN X + X COS X

) sin x 0
= lim —=—=0.
x=>02cosx—xsinx 2

Example 14.3. Find the limit lim (sz 1-x? 4 1): [0 — 0]

X—>0

Solution. In this case let us transform the expression \/ x2+1- \/ x?+1in
such a way:

\/xz +1—\/x2 _1:\/x2 +1—\/x2 -1 :(\/x2 +1—\/x2 —1).(\/x2 +1+\/x2 —1)_
1

1 \/x2+1+\/x2—1
R b | 2
\/x2+1+\/x2—1 \/x2+1+\/x2—1
So lim(\/x2+1—\/x2+1)=[oo—oo]:lim 2 = 0.
X—® 0 32 41+ x? —1

The case [ 0°].
Let lim f(x)=0 and g(x)=0. Find the limit lim (#(x))**) =[0°]. On

x_>x0 x_>)C0
taking the logarithm of both sides of the equality y = (f(x))® () we obtain
Iny = g(x)In f(x), (f(x))>0.

lim Iny= lim g(x)mn(f(x))=[0-o]= lim

X=X X=X X=X L o
g(x)
, f'(x)
= i U)o f(X)) i S0 ()
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and 1im (£(x))5® = exp| imM
o tim (1) p[ i Ve j

Example 14.3. Find lim x*"~.

x—>+0
Solution. Let us denote
A= lim x*"" = |_00J, y=x""""Iny=Inx""" =sinx-Inx
x—+0

and lim Iny=1In 4.

x—+0
Hence

In4 = lim Iny= lim sinx-lnx=[0-o]= lim —0.% =[f}=

x—+0 x—+0 x—>+0 1 o0
sin x
1
— .2 . .
) . SIn" x . Smx .. SsSmnx
= lim —* — = — lim = — lim . lim =-1-0=0.
x—>+0 COSX x—=>4+0 xCOS X x—=>+0 x x—>+0 COS X —
sin” x
Thus mA=0= A=¢" =1,but A= lim x*™* =1.
x—>+0
Answer: lim x*™* =1.

x—>+0

The case [17].
Let lim f(x)=1and g(x)=oco. Find the limit lim (f(x)}**) =[1”]. On

XX X=X
taking the logarithm of both sides of the equality
y= (/) we get Iny = g(x)in /(x), (/(x)>0.

Working in the same way as in the previous case we arrive at the following result

- 60 _ eypl - 1im £ 02" ()
xllrlgclo(f(x)) B exp( x1i>n;610 f(x)g '(X) ‘
Example 14.4. . Find lim (4 — x)l/(x_3).

x—3

Solution. Taking the logarithm of both sides of the equality
y= (4 — x)l/(x_3) and passing to the limit as x — 3 we have

M:H

0

lim In y = lim
x—3 x—=3 X -—

Hence limyze_l.

x—3
1/(x-3 -
(¥=3) _ -1

Answer: lim(4 — x)
x—3
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Exercises 14.1. Find the limits.

3 [—

1 fim— 2. lim &2

x—>14x3—x—3 x—o 3x — 8
3. lim 2x -1 4. lim xsin x

T xon/2 COS X .x—>01—COSX
1—

3. lim x(—cosx) 6. lim 3( —x? +x)

x>0 x—sinx xX—>0

In(1

7. tim %) 8. lim ™ (o > 0)

X X x>0 x&
9. lim 3|7 — 2arctan/x N x 10. lim| — —cot” x

X0 ( \/_)\/7 x—>0(x2 j

1
2 Inx
11. lim (arcsin x)*" 12. lim ()H' X+ XJ nx
x—>+0 X—>+00
Iy tan?
13. lim (3 -~ —j ¢
x—a a

o VIx+1
14. L’ Hospital rule does not seem to help with lim ad

x>0 /x4 1

. Find this limit

some other way.

15. Asymptotes of Curves

Definition. A straight line £ is called an asymptote of a curve K if the distance
PQ between the moving point of the curve and the line ¢ tends to zero as the distance
from this point to the origin increases indefinitly.

Fig 15.1
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Let a cure y=f (x) have a vertical asymptote. The equation of such an
asymptote is of the form x=x, and hence, according to the definition of an
asymptote, there must be f(x)—> +oo for x — x, # 0. Conversely, if x is a point of
infinite discontinuity of y = f (x) the straight line x = x, is a vertical asymptote.

8

0 %,

Fig.15.2
So, we have the following definition of a vertical asymptote:
Definition. A line x=x, 1s a vertical asymptote of the graph if ether

lim f(x)=40 or lim f(x)=+o.
x—>+0 x—>—0

Let a curve K having an equation y = f (x) has an oblique asymptote ¢/ with an
equation of the form y =kx + b. By the definition of an asymptote, the distance PQ
tends to zero as x — oo, It is more convenient to take the line segment PR instead of
the distance PQ.

We have

PO —0(x = +0)= PR=PT — RT -0 (x — )

(see Fig 15.1)= PR =y, — V45 — 0 (x > 0)= f(x)- (kx + )= 0 (x > *0) =
= f(x)—kx=b +alx), where a(x) is an infinitesimal as x — o0, On dividing both
sides of this relation by x and passing to the limit as x — oo we get

TG . (k+é+Mj)

x—too X x—>to0 X X
and
k= lim Lx) (15.1)
x—too X
After k has been determined the number b is defined by the limit
k= lim (f(x) - kx) (15.2)
X—>T00

29



Conversely, if the limits (15.1) and (15.2) exist and numbers k and b can be found,
then the graph of the function f (x) has an oblique asymptote.
1—x°

>

Example 15.1. Find the asymptotes of the curve y =
X

Solution. The function is discontinuous at x =0, and this point is the point of
infinite discontinuity. So, the vertical asymptote of this curve is defined by the
equation x = 0.

To determine the oblique asymptotes we calculate the limits

3
k= lim @: lim I-x" 1

2 x:_l

2
X—>+00 X X—>+00 X

X—>+00 x—>+0o| X—>+0 x

3
b= lim (f(x)-kx)= lim [1_; +xj= lim —=—0.

Hence, the oblique asymptote is defined by the equation y =—x.
If x - —oo we obtain the same asymptote.

3
: I-x
Now we sketch a graph of the function y = 3
X
9
fo—
X
Fig. 15.3
: sin x
Example 15.1. Find the asymptotes of the curve y =x + :
X
Solution. The function is discontinuous at x =0, and this point is the point of
. o : . sinx . sinx . .
removed discontinuity since lim = lim =1. So there is no vertical
x—=>+0 X x—>-0 X

asymptote.
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To find the oblique asymptotes we compute the limits

k= tim L9 gim (1+Sin2xj=1,

X—>+00 X X—>+00 X

—>+00 X
Hence, the oblique asymptote is defined by the equation y = x.

If x — —oo we obtain the same asymptote.
Combining these results we have the sketch as shown in Fig.15.4.

b= lim (f(x)- k)= lim (x+ Sinx—szo.
X—>+00 X

4y ’
/S_
,._5’}‘
e ..
Fig.15.4.

16. Increasing and Decreasing Functions

Definition. A function f (x) defined throughout an interval / is said to increase
on / if, for any two points x; and x, in/,
xy>xp = fxy)> flx).
Similarly, f(x) is said to decrease on / if, for any two points x; and x, in /
x3>xp = flxy)< f(x).
Theorem. Suppose that f (x) is continuous at each point of the closed interval
[a, b], and differentiable at each point of its interior (a,b).If f'(x)>0 at each point
of (a,b), then f(x) increases throughout [a,b]. If f'(x)<0 at each point of (a, b),
then f(x) decreases throughout [a, b]. In other case, f(x) is one-to-one on [a, b].
Proof. Let x; and x, be any two points in [a,b] with x; <x,. Apply
Lagrange’s theorem to f(x) on [x;,x, |:
Sle2) = f(x)= 11 (E)Nxy —xp) (16.1)
for some & between x; and x,. The sign of the right-hand side of the equation (16.1)
is the same as the sign of /(&) because x, — x; is positive. Therefore f(x,)> f(x;)
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if f'(x) is positive on (a,b) (f(x) is increasing) and f(x,)< f(x;) if f'(x) is
negative on (a,b) (f (x) i1s decreasing). In either case, x; #x, implies that

fxy)# f(xy), s0 f(x) is one-to-one.

Corollary 1. When we solve equations numerically, we want to know
beforehand how many solutions to look for in a given interval. With the help of
Lagrange’s theorem we can find out.

Suppose, that
1. f(x) is continuous on [a, b] and differentiable on (a, b);

2. f(a) and f(b) have opposite signs;
3. f'(x)>0 orf'(x)<0 throughout (a,b).
Then f(x) has exactly one zero between a and b.
It cannot have more than one because f (x) is one-to-one, by Lagrange’s theorem..

Example 16.1. The function f(x)= x> +3x+1 is continuous and differentiable
on [-1,1], f(-1)=-3 and f(1)=5 have opposite signs, and f'(x)= 3x% +3 s

always positive. The equation x> +3x+1=0 has exactly one solution in the interval

[-1,1].
1Y

Fig.16.1

In this case we also know that the zero in [—1,1] is /’s only zero because f(x) is
one-to-one throughout its entire domain.

Example 16.2. Let f(x)= x2e”. Determine the intervals on which f (x) is
increasing and those on which it is decreasing.
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Solution. We begin by taking the derivative of f (x):

f’(x):(x2ex) =2xe” +x?e" =x(2+x)e”.

Now we determine the sign of f'(x). To do it we divide the interval (~ o0,+00) by the
zeros of the given function into the intervals (—o0,—2), (= 2,0)and (0,4+0). Define the
sings of f '(x) on each of them.

/ , :
F[.’)f)_;_ + -+W,73-{'— mrf e solher ool

.F(«r)/v'l?“\ 0~ ¥

Fig.16.2
It follows from Fig.16.2 that f(x) is increasing on (—o0,—2) and (0,+c0), and

decreasing on (— 2, O).The graph in Fig.16.3 confirms these assertions.

Y

=Y

Fig.16.3
Example 16.3. The acting force of an electric current upon a small magnet an
axis of which is perpendicular to the plane of a disk and passes through its center is
given by the formula

F(x)z al ,

3
(a2 +x2)

where a is the center of the disk; x is the distance from the center to the magnet. Find
the values of x at which the force F(x) is rising.

Solution. The domain of the function F(x)is [0,+ o). Show that F'> 0 for all
X e [O, +00).

First we find the derivative F'(x):
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!

(a2 +x2)3/2 —;(a2 +x2)l/2 2x?

' _ X _ _
F (X) \/m (a2 +x2)3
_ (a2 +x2)1/2(a2 +x? —3x2): a’ - 2x?
(a2 +x2)3 (a2 +x2)5/2 |
Solving the inequality
2 5.2
(; +x22);5/2 >0 a’ —2x? >O<:>(x—%j(x—%j>0

We get F'(x) > 0 in the interval (O, LJ. Hence the function F(x) is increasing in

a
the interval | 0, — |.
( V2j

V2

17. Extremum of Functions
Definition. A point x is called a point of maximum (minimum) of a function

f(x)if f(x,) is the greatest (least) value of the function f(x) in a neighborhood of

the point x.

Points of maximum and minimum are called points of extremum of the

function.

Theorem. (Necessary condition for extremum)
If a function f(x) has an extremum an am interior point x,of an interval,

where it is defined, and if f’(x) is defined at x,, then f’(x,)=0.
Proof. If the function attains an extremum at the point x,, its value at this point

(Fig.17.1)

is the greatest (least) in a neighborhood of the
point x,. By Fermat’s theorem f'(x,)=0 since

X, 1s an interior point of f’s domain.

Geometrically, this means that the tangent to the
graph of a function is parallel to x — axis at its
“tops” and “‘cavities”. A function can also have
extrema at some of the points, where it is
nondifferentiable. There are two things to watch
out, however. A curve may have a horizontal

tangent without having a maximum or minimum
(Fig.17.1)
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The curve y=x> has a horizontal tangent at the origin without having maxima or
minima there.

Also, a curve may have an extremum without having a horizontal tangent (Fig.17.2)

(Fig.17.2)

(a) The graph of y =1 —‘ x‘ has a corner at x =0, where the function’s derivative is

undefined. The right-hand and left-hand derivatives exist there but they have
different values.

— 2
(b) The graph of y:)cz/3 has a cusp at x=0. The derivative y'=(x2/3) =§x /3

approaches + oo asx — +0 and approaches —o asx — —0. The curve does not
have a horizontal tangent at the origin, but the tangent is vertical.

Definition. The graph of a continuous function f (x) is said to have a cusp at a
point x=x,,if f'(x)— +oo as xapproaches x,from one side and f'(x)— —oo as
x approaches x, from the other side.

The tangent to a graph at a cusp is vertical. Taking this into account we give the
following definition.

Definition. A point x,, at which f'(x)=0 or does not exist is called a critical
point.

Now we can conclude, that a function f(x) can assume an extremum only at
critical points.

Theorem. (Sufficient condition for extremum). Let f(x) be a continuous function
in some neighborhood of a point x,, and differentiable in a deleted neighborhood of
this point. Then:
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1. If the derivative f '(x) 1s positive for x <x, and negative forx > x,the point
X, 1s a point of maximum.

2. If the derivative f '(x) 1s negative for x < x, and positive forx > x,the point
X, 1s a point of minimum.

3. If the derivative f '(x)does not change sign as x passes through the point x,,
there is no extremum at this point.

Proof. Let f'(x) is positive for x < x,. This means that on the left of the point
x, the function increases. If f'(x)<0 for x > x,, then on the right of the point x, the
function decreases. According to the definition of a point of maximum the point x,, is
the point of maximum.

By analogy we can prove the second case.

As far as the third case we assume for definiteness that f”(x)> 0 both for x < x,
and x > x,. Then the function increases both on the left and on the right of the point
xo and therefore an extremum at this point does not exist.

Example 17.1. Examine the function y = (x - 1)2 (x+ 1)3 for the points at which it
reaches its maximum and minimum.

Solution. The domain of this function is the interval (—oo,+0). To obtain the
critical points we find f '(x) and set it equal to zero, and solve for x.

£ == 1P+ 17 ) =200~ D)+ 1 #3012 (x +1) =

= (x =D x+ 172+ 1)+ 3(x = 1))=(x 1) x +1)*(5x = 1)=0.

: 1
'}J‘} Solving, we get x;=-1,x, = 3 x3 =1, the
B

critical points.

Fig.17.3
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We know, that a function increases where f'(x)>0 and decreases where
f'(x)<0 , and that maximum and minimum occurs at the points, where f'(x)
changes its sign. Therefore, let us look at f'(x) in the following intervals:

!/
r@h = = 4

T~ o 17E

Fig.17.4

This sign pattern for f '(x) tells that the curve rises as it comes in from the left
toward x = l, falls from x =% to x=1, and rises again to the right of x=1I.
Therefore, when x =1 the function has a minimum value f(1)=0 (the ordinate of

the point C).

1 . : 1 .
When x = 3 the function has a maximum value f (gj =1.11 (the ordinate of the
point B).
When x = —1 the function has neither a maximum nor a minimum.

Example 17.2.Two lamps of intensities a and b, respectively, are d feet apart. If
the intensity of illumination at any point due to a given point source is directly
proportional to the intensity of the source and inversely proportional to the square of
the distance from the source, find the darkest point on the line joining the two
sources.

A p B
.— £
|
T (7/'./’{’——»»—
| |
S S
Fig.17.5

Solution. Considering the lamps, for simplicity, to be point-sources, let 4 be a
source of intensity a, B be a source of intensity b, P be a point on 4B, x be a distance
from 4 to P and (d — x)be the distance from B to P with d, the distance between the
two sources. This arrangement can be seen in the accompanying diagram (Fig.17.5).
Then from the definition of intensity of illumination, at point P, the intensity of
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illumination due to A4 is k—czl, and that due to B is (—bz If 7 is total illumination
X d—x

of P due to both sources,

[=ka kb (17.1)

x? (d - x)2

It is clear that at a point very close to either source the value of [ is great and
decreases as the point recedes. Thus, if P is near either source, one or the other of the
denominators is small, and the corresponding fraction is large. Since / decreases as P
moves away from either source, it must reach a minimum somewhere between them.
Hence, we expect a minimum, and we solve for its location. To obtain this minimum

dl : . -
value we must find pat equate it to zero and solve for x. Differentiating, we find
X

dl —2a 2b
—=k + ,
dx [ ¥ (d- x)3j

Clearing fractions,
bx> =a(d - x)3.
Taking the cube roots of both sides,
b x=3a(d - x)
Multiplying out and transposing,
«(a +¥5)=d¥a
Therefore,

dila dila di/b

XxX=————,and d —x=d - = .
Ya +3/b Ya+3b Ya+3b

We can now find the ratio of the distances . Doing this we have

d—x
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x _dia 4 Ya
d-x Ya+3b Ya+3¥p Vb

for the minimum, is —.

X
d—x 3b

18. The Second Derivative Test for Extremum

Therefore, the ration of the distances

Theorem. If a function f(x) satisfies the conditions f'(x,)=0 and
£"(x0)>0(f"(xy)<0) then x, is a point of minimum (maximum) of the function
S ().

Proof. The existence of the second derivative at the point x, implies the
existence of the first derivative f'(x) in the neighborhood of the point x, and, of
course, the continuity of f(x) in this neighborhood. The condition
£"(x0)>0(f"(xy)<0 ) means that f'(x) increases (decreases) at the point x, and,
since  f'(x,)=0, we have f'(x)<0(f'(x)>0) to the left of x, and
f'(x)>0(f"(x)<0) to the right of x,. The assertion of the theorem now follows
from the foregoing test for extremum in terms of the first derivative.

Example 18.1. The iron core, which fills the interior part of a cylindrical coil of
a transformer of alternating current with radius R, has a crosslike section in the form
of a square with small squares cut out of the corners. Find the angle ¢ in such a way

that the area of a section should be maximal.

Fig.18.1

Solution. The area S of the section will be found as a difference of the area of
the square with the side MN and the area of four small squares with the side PQ:

S=|MN|" -4/ PO|*.
Let the point O be a center of symmetry of the square. Then ‘MN ‘ = 2‘ NO ‘ :

From the right triangle we obtain
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‘ON‘Z‘OP‘COS(p,then‘ON‘ZRCOS(,D, and ‘MN‘ZZRCOS(,D,
‘MN‘ZZRCOS(p ‘NP‘:Rsin(p,

PQ‘:RCOS(p—Rsin(p, whence

S=|2Rcos¢ ‘2 — 4/ Rcosg — Rsing ‘2.
On simplifying this relation we have
S = S((p): 2R2(25in 2¢p +cos2¢p — 1).
Examine the function for an extremum.
S'= (2R2(25in 2¢ +cos2¢p — 1)) =2R*(4cos2¢p —2sin 2p) (18.1)
Equating the derivative to zero we obtain the following equation
2cos2¢p =sin2¢, or tan 2¢ = 2.
Solving this equation we get such critical point

Q= %arctan2 ~31°43'.

Now we find the second derivative

S"= (ZR2 (4cos2¢ —2sin 2(0)), = —8R* (cos2¢ + 2sin 2¢) (18.2)

Substituting in (18.2) the value ¢ ~31°43" we have

$"(31°43')= -8R *(c0s 63°26' + 25in 63°26')< 0

This means, that the critical point ¢ =31°43" is a point of maximum. The
value of the function S ((p) at this point is

Smax = 2.472R%.

19. The Greatest and the Least Values of a Function

In order to find the greatest and the least values of a function in the closed
interval [a,b], we calculate values of this function at critical points and at the end-

points of the interval [a,b]. These values should be compared with each other. For
the greatest (the least) value of the function in the interval [a,b] is either one of its

maximum (minimum) values or an end-point value.

Example 19.1. A source of an electromotive force with internal resistance r is
thrown on the load with resistance R. Find the greatest value of the power P.(R) of

the load if the resistance R varies in the interval [0,2r].
Solution. It 1s known, that a power P, (R ) is given by the expression
2
P r (R ) = L :
(R + r)z
The problem is reduced to finding the greatest value of this function in the interval
[0,27]. We have
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, 2 ' 2
p(R)=|—EL | -2
(R + r) (R + r)3
It 1s clear, that Pr,(R);t 0 for Re(0,27) and Pr,(R)z o if R=-r, but
—rel0,27].
The values of the function P.(R) at the end-points of the interval [0,2r] are:
2 2
P(0)="; P(2r)=5-.
r Or

7

7

2
Therefore the greatest value of the power is P, (R)=P.(0)= L
r
Thus the function P, (R) attains the greatest value at the point R =0, and this
. g’
value is equal to —.
r

20. Convexity and Concavity of a Curve. Points of Inflection

Definition. An arc of a curve is said to be convex, (concave) if it lies entirely
below (above) the tangent line, drawn through each point of the arc.

gl 5
y=
§,
g
J
,(\,
(._]0
— e
4, L
i
K
R
Ny
Fig.20.1

The curve y =x" is convex on (—0,0) and concave on ( 0,+o0).

Theorem. If a second derivative f''(x) is positive (negative) in some interval,
then a graph of the function y = f (x) is concave (convex) in this interval.

Proof. Suppose, that f"'(x)> 0 in some interval.
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Fig.20.2
Prove, that the graph of this function is concave, thatis y_,. — V., >0.

We have
Yeur. = Yian, = S (6) = £l )= £ (xo Nx = x0 ) = £ (& Nox = x0) = f (30 Nox = xg )=
= (&)= £ "(xo Nox = x0) = £ (M NE = x Nx = x0)-

There are two cases of situation of the points x,& and x,,:

a)
Q.;TC, E T X (& —xx—x,)>0;
b)
x g ?u T (E-xp)x—x0)>0.
Taking into account that f"'(7)>0, we come to

the conclusion, that y_,. —y., >0 inboth cases a) and b).
This means, that the graph of the function f(x) is concave.

The theorem has been proved.

Definition. A point of a curve, separating its convex arc from its concave arc,
is called a point of inflection.

In Fig.20.1 the point x =0 is a point of inflection of the function y =x>.

Example 20.1. Let f(x)=3x* —4x>. Find the intervals, on which the graph of
f (x) is concave and those, on which it is convex. Then sketch the graph of f (x)

Solution. Differentiating, we have
£/(0)=(x* —4x?) =120 —126% = £7(x) =362 - 24x.
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The sign of f"'(x) is constant between the zeros of f"'(x).

Find zeroes of f"'(x):
f(x)=0=36x* -24x=0= 2
3

Now we determine the sign of f"(x) from Fig.20.3:

sign of f"'(x)

sign of f(t) R e =
7/ . , et
fix) A G NS &

2

Fig.20.3
Using the sign of f ”(x) along with the previous theorem, we deduce, that the graph
: 2 . 2 :
of f(x) is concave on (—,0) and on (§,+ ooj and 1s convex on (0, gj From this

information we conclude, that the graph of f (x) is as shown in Fig.20.4

*1

/_E

O/ N\ % !
i
l
Fig.20.4
Example 20.2. Consider the function f(x)= — % forx>0 , where a and

1+ be *a
k are positive numbers and b > 1. Find the inflection point of the graph of f (x) and

: : . a
show, that its y-coordinate is 5

Solution. Taking derivatives, we find that
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FRNERES e S DU

T+be™) (14 petar | (1-+ betar f

and

!/

e —kax

"(x)=| a’bk =
! (X) ’ (1+be‘k‘”‘)2

— ake ™ (1 + he ke )2 4 e kax (1 + he ke Xabke_k“x)

(1 + be ke )4
ake (— 1+ be ko )

3
(1 + be k> )
It follows, that f ”(x) changes from positive to negative at the number x such that

—a’bk

—a’bk

be * =1, or equivalently, b = e**. Let x, be this value. Then

b=e" =Inb = kax,,
So that
_Inb

_E.

X0

Consequently there is an inflection point at (x,, /(x)). Substituting x, for x in
the equation for f(x), we obtain

f(xo):f(lnbj: a ___ a

1+ be_ka(k“j b Z _

RN

Therefore the y-coordinate of the

: . ... a
inflection point is 5

The graph of f(x) is shown in Fig.20.5.

Fig.20.5

The function f(x) in this example was introduced in 1838 by the Belgian

mathematician P.F.Verhulst in order to model population growth of paramecia. The
graph of f (x) is known as the logistic curve. Notice, that since f '(x)>0 and
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f ”(x) >0 for 0<x<x,, it follows, that if x represents time, the population grows at
an ever-increasing rate for 0<x<x,. By contrast, if x> x,, then f'(x)>0 and
f ”(x)< 0. So that the population continues to grow, but at an ever-decreasing rate.
Thus, x, represents the time, when the population is growing the fastest.

One could also model an epidemic of, say, influenza, in a city with a logistic
curve, where the carrying capacity denotes the number of people in the city, who are
susceptible. Health officials would be very much interested in the point at which the
rate of inflection begins decreasing. That point corresponds to the inflection point of
the logistic curve.

21. Test

1. What is the first derivative of the following function?

y=e " In2x
(] (]
(A) y'=e | —+In2x B) y'=e | ——In2x
X X
' —X 1 4 -X e_x
C)y'=e | —+In2x D) y'=— "In2x+
In2x 2x
2. Evaluate the following limit.
. 3x? +2x-5
lim 7 >
>lx™ +3x7 -4
2 4
(A)0 (B) 5 (©) 3 (D) oo

v ‘
(1 (y')z )3/2‘

1 )
y = f(x)=— at the point ( 1, 1)?
X

(A) -2 (B) -

find the curvature k of the curve

3. Using the formula & =‘

1

2

1

©)0 (D) Nl

4. What are the minimum and maximum values, respectively, of the function
f(x)=x> +3x? =9x + 5 on the interval[- 6,25]?
(A)—49; 32 (B) 0; 32 (C)7;35 (D) 11; 49

d,

5. If x and y are related by the equation xe” =3 and x >0, what is y
x
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(A) —(y+lnx)—1 (B) —(xyz— 1)
X y
(®) _(L;I) (D) 3
X Yy

6. The value of constant ¢ such that the function f(x)=cx? +4x+13 has a
maximum at x =1 1s

(A)=5 (B)-4 ©)-3 (D)-2
.. Inx”
7. Evaluate the following limit lim
X—>©  x
(A)-2 (B)-1 ©)0 (D)3

8. What is the minimum of the function f(x)=-3x> + 5x%?

(4) (0,0) () (1.-1) (© (0-1) (D) (-1-1)
9. The asymptote of the function y = x + 24 |
xX°+
A)y=—x B) y=—x+1 (©) x=1 (D) x=-1
10. The function f(x)=3x" +4x’ is convex on the interval
(A)(—§,oj (B) (—}o) (© (-1,0) (D) (0,+0)

22. Miscellaneous problems

1. Find the domain of a function.

1
1.1. y:alr(:sin(x2 —1) 1.2. y=tan—
X
1 -1
1.3. y= 14, y=—2
\/x3—5x2+6x 3x3—8
1I. Find the limits.
2 3
21, lim ¥ "2 2.2, lim(x—?’xﬂj 2.3. lim——
x22 x4 —3 x—0 x—1 x—>11—x
3 2 2
— 1
2.4, lim >3 25, lim »_ 13X F2X 26. lim*__2**1
x—> 3x—\/§ x=>-2 x“ —x—6 x—1 x3—x
3 4
2.7 lim| 1 — > 2.8. lim — > ¥ 29, lim -~ %
o\ 1-x  ]-y? x> xt _4x% -3 x>0 x —3x+1
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Vx? +1++/x

2.10. lim

4
2ol xd —4x? —x

7+ x =3

2.13. lim

x—1

arctan(

2.16.1im
x—>15 Sln(

2.19. lim(l ”j

X—>0

os X

2.22. lim 2

x—0

2.25. lim(L -—

x>\ x—1

2.28. lim x*"*
x—0

III. Find the increment Ay if

— 43 _
3.1.{_)/—)(: s Xg = 4,

Ax=0.1;

IV. Find the ratio A

32
41 y=2x"—x"+1,
xo=1LAx=0.1;

V. Find f'(x) using the definition of derivative if
52. f(x)=Inx

5.1. f(x)=

2

xX° —x
2.11.lim
x—1 \/; -1
3
214, lim VLA~
x—0 X
2.17. lim( _1 !
x—>0\sinx tanx
1+x )
2.20. lim( j
x>0\ X + 2
2.23. [im X rctanx
x—0 X

2.26. lim(cot X — l)

2.29. lim xm“(e 1)

x—0

x—0

. T
y:SIle,xO :E,

Ax =0.1;

1
y=—X :29
X

Ax =0.4;

VI. Find )’ at a point x = x,, if

6.1.

.3 X
y = cos? 2x-sin

47
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2.12.lim
x—5 x—5

2.15.

2.18.

2.21.

2.24.

2.27.

2.30.

Vx—1-2

. 2arcsin x
lim ——
x—0 tan3x

R cos’ x
lim—
x—0 xsin2x

-1
lim —
x—0 sin x

lim In(sin 2x)
x>0 In(sin x)

1 tan x
lim(—j
x>0\ x

. X 1/x
limle” + x
x—0

3.3. {y‘e %o =0,

Ax =

0.2;



VII. Find derivatives of the functions

7.1. y =arcsin2” +1g(7 - 2x) 7.2.y =(sin x)& 7.3. y =arctan

S x

4.N1-x? - arccot1 - x? 5. y =tanh?® 2Vx 6. y=(log, x)*
1

7. y =45 —x° —cosh!® 2
—Xx

5 5 2 X
9. y=cot(—x—x j+3/— 10.y=exp(tan j
NE] x° x? +7x

VIII.Find the differentials of the functions

8. y=sinh2(5—x4)- 1-7x°

1.y=1ntan£ 2.y =arccos e’ 3. y:cosz(?a—éj
7 x
2" .
4. yzlg(e—zj 5. y=coth—2 6. y=smh5 7x°
x x

IX. Find the derivatives of y with respect to x
i y=arccot2’ 2{x=t—1
| x = arctan 3/ |y =log(t-1)
= sin /¢ =2cos’ ¢
3. {x v 4, {x

y=cos\/; y=3sin3z‘

X. Find the second derivatives of the giving functions at the point x, if

= cot
. y =arcsin~/2x 5 y=e” sinx 3 7 *
‘ X0 =0 ‘ X0 =0 ‘ X0 :%

XI. Solve the problems

1. A law of motion gives s = 0.25t* — 41 +16¢% as a function of 7.
a) At what time its velocity equals 0?
b) Find the acceleration at the moment ¢ = 2s.

2. A body which mass is 2 kg performs rectilinear motion according to the formula

s=t2 =2t + 1, where s is measured in centimeters and t in seconds. Find the
mv>
kinetic energy | E = - of the body in 3s. after the start.

3. The angle 6 through which a wheel turns with time t is given by the function
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0 =¢* +3¢—5. Find the angular velocity for £ = 5s.

4. Find the force of current for 7 = 3s. if the quantity of electricity is given by function

1
Q=§t3 —5¢2 — 21,

5. Find the slope of the tangent line of the parabola y = x?
a) at the origin of coordinates, b)at the point (3;9)
b) at the points of intersection of the parabola with the straight line y =3x — 2.

6. Find the equations of tangent and normal to the curve y = x> at the point whose
abscissa is equal to 2.

: : 1
7. Determine the angle of intersection of the hyperbola y = — and the parabola
X

y=x7.
X. Investigation of a function
1. Determine asymptotes of a function y = f(x), if

D) fx)=——— b) f()=""2
x“+2 x—2
2 2

) fx) == d) flx)=Y*2

2. Find intervals of monotonicity and extremums of the following functions

) f(x)=—— b) f(x)=x7¢"
x“+2
2

¢) f(x)= xx +_22 ¢) f(x)=xhnx

3. Find the intervals on which the graph of the function is concave and those on
which it is convex. Then sketch the graph of the function.

a) f(x)=x* - 4x b) f(x)=x+
X
¢) f(x)=3x" +5x° d) f(x)=xVx* -4

4.Find all inflection points of the graph of the function
a) f(x)=x*-2x° b) f(x)=x>+3
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23. Revision Exersises

Variant 1.
1. Find limits:
3 g2
a) lim x> —(a+2x+a+1 : b) lim arcsin bx :
x>l X -1 x—0 2x tan(b + 1 )x
2 4x
N — . -1
¢) lim Ire -1 5 d) lim (ax j ;
=0 (¢ + 2)x2 43 =0\ gx +3
3 Jle+1)
e lim (b+2)x +7x+4 f) lim c+1)x

=% 81 (3h+ 1> =% Dyt er

sin X, x<0

2. Investigate if the given function y = x - (a + l)x, 0 < x <1is continuous.

2x+a, x>1

Denote the types of discontinuity points. Graph this function.

. )
3. Find a derivative _y:

X
+1 +1 x=arctann(a +1)t+a
a) y:(\/;_\E)b ; b)y:arcsinc T c){ ( )

X y=arccot(a+1)t-a '

_ 2
4. Calculate y'(xo) if {y =loge. (b T2k )

: . arccos(c + 1) X X
5. Find dy if y= : +In ctg—.
sin x c+1

6. Find the derivative of the second order of the function y = e(“ +lk *COS X.

7. Find the domain of the function y = lg(x2 ~(b+ 1)2 )

: . +1
8. Find the asymptotes of the function y =x + <.

X
9. Find intervals of concavity (convexity) and inflection points of the function

y=x —3(a+1)x2 +ax—1.

2
: . x° —ax
10. Investigate the function y =

and graph it.
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Variant 2.

1. Find limits:

x> +4bx* — (8 +16b) . tan(c + 1)x — sin 2cx .

a) lim ; b) lim ;
x—2 x3 — b3 x—0 5X3
2 2 3 5 6
.a—~vNa —x . 3x° =bx” +ax
¢) lim > 3 d) lim —
x¥>0 X %0 4 4 px” + 5x
: {/x6+ax4+7 : x+c )Y
e) lim ; f) lim .
%0 g2y —5x42 WP x—c
2x, x<0
2. Investigate if the given function y =<+x +a, 0 < x < a i1s continuous. Denote
1, xX>a

the types of discontinuity points. Graph this function.

3. Find a derivative Q:
dx
~ (b+1)x - e+l =

a) y—cotm b) y =arccos -~ +1g a+1

x =cos(a + 1)t +tsin(a + 1)z
c .

y=sin(a +1)t —tcos(a +1)t

X

4. Calculate y'(x, ), if y=5(b+1) arctan

XO =0
5. Find dy if y=tan((c+1)x+l)—3(c+l)x.

6. Find the derivative of the second order of the function y = arcsin(a + 3)\/; .

7. Find the domain of the function y = \/ x2—(b+ 2)2 .

2
X

X — 2(c + 1) .
9. Find intervals of concavity (convexity) and inflection points of the function
y=x*- 6(a + l)x2 +2ax.

8. Find the asymptotes of the function y =

2
. . +x-1 .
10. Investigate the function y = xz—x and graph it.
x°=2x+1
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1. Find limits:
x> —3cx+6c+8

a) lim
x—>=2 x> +8
. Ax—=+b+1

¢) lim

x—b+1 x2 _ (b 4 1)2

Variant 3

b) lim 1- cos(a + l)x
01— cos2(a +1)x
. 1/(b+1)x8 —5x% +3x
d) lim > >
=% (x+3)7 +(2x +1)

¢) lim (a+2)x° +4 f lim (x+c+1jzcx
=% 4x? 4 ax +3 O x—c

0, x<0
2. Investigate if the given function y = x2+e, 0 < x <1 is continuous. Denote
1
E— x>1
x—1

the types of discontinuity points. Graph this function.

.. d
3. Find a derivative &
dx

(a + 3)x

2

¢ y =log; tan((b +1)x + 5)
x“+a+l

a) y =arccos
C+1) t Slnf

{x =l ogy
b)

y=el

y=(a+1)" =4x

4. Calculate y'(x, ), if

1

5. Find dy if y =cot(h +1)x — .
arccotx

6. Find the derivative of the second order of the function y = ln(x2 +(c+1)x+ 1).

1
7. Find the domain of the function y = —— .
Nx—a-3
2
: +5
8. Find the asymptotes of the function y = al bx .
x —

9. Find intervals of concavity (convexity) and inflection points of the function

2
3

y=x - +2x —c.

c+1
2

10. Investigate the function y = x — 4 and graph it.
X
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Variant 4.

1. Find limits:

3
: -2 1+2 :
a) lim X ax +1+2a b) lim bx
-1 x2 _yx_2 x—0 arctan 7x
3
: 2ra) . Axtc+Veix? +3
¢) lim d) lim
-0 | x—00 Tx+9
¢) lim 10x5 +bx° +7x* =5 f) lim o
=0 pd 4 6x 41 =034 x -1
2
r o , x<0
a+l
2. Investigate if the given function y =<+/x +1, 0<x<a+1 is continuous.
1
-, x>a+1
X

Denote the types of discontinuity points. Graph this function.

. )
3. Find a derivative _y:

dx
=Inl* +
a) y= arctg(x3 — ax? )+ tg5x b) g ( c) ¢)y = arcsin 2 R
y = 2t 1 —X
=% +a
4. Calculate y'(x, ), if 4 2x
xO :1
5.Find dy if y = coslog;(bx +2)
6. Find the derivative of the second order of the function y =e¢ “ sin x.

7. Find the domain of the function y = arcsin(x —a).

: : b+1
8. Find the asymptotes of the function y = x+ —.

Jx
9. Find intervals of concavity (convexity) and inflection points of the function
2
X
y= X ———+5x—c.
c+1

(=)’

2
X

10. Investigate the function y = and graph it.
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Variant 5
1. Find limits:

3 2 2
a) lim 2x7 +ax” —b b) lim ar(.:tan 6x
x>l =1 =0 4xsin(c + 2)x
. Ax*+a-+a : x+2b+4 (b+2)x
¢) lim d) lim | ——
x—0 3)(?2 x—00 x+2b
. axd +x* =2 : %/c3x6 —5xt +2x
e) lim 3 f) lim 3 3
x>0 4x — bx ¥—00 (x+2) +(2x+3)
cos(x—l), X< +1
2. Investigate if the given function y =1a, T +1<x <8 is continuous.
a(x -8), x>8

Denote the types of discontinuity points. Graph this function.

3. Find a derivative Q:
dx
2 )
a)y:10g7(bx+i/;) b) y = x° +cex 0 x=sin’(bt)
arctan ax y=cos(bt)

= ¢ - arccos >
4. Calculate y'(x), if r= c.
5. Find dy if y = —btanx.

1+ x*

6. Find the derivative of the second order of the function y =2 + cot(ax).

7. Find the domain of the function y = ln(b2 — xz) .

8. Find the asymptotes of the function y =x — ‘.

X

9. Find intervals of concavity (convexity) and inflection points of the function

2.2 4
_6ax—x

Y 9

2 _p2

10. Investigate the function y = and graph it.

X
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Variant 6.

1. Find limits:

x> —3ax+9a-27 /1—cosbx

a) lim 3 b) lim
x—3 x“+3x—-18 x—0 X
2 2.2 2
o lim (430 =3r+1 & lim V16+ 522 ++/4x7 +13

2 =% 1804+ 9x2 ++/x2 +1

{x-1)a+1)

>0 x_54ax

e) lim (1+ (b +2)x)"'* f) lim
x>0 x—1 x—1
0, x<0
2. Investigate if the given function Y = X, 0<x<b is continuous. Denote the
1
-, x>b
Lx

types of discontinuity points. Graph this function.

3. Find a derivative _y:
dx
. 3
= SIn t

a) y=1n(2+\/2—x“) b)y=cotbx-arctan£ c) 7 . :

c x=cos at

’ . x+b+1 c+2
4. Calculate y (xo) if y=1Ig +x77,xy=0.
2c+2
5. Find dy if y =arccos(a/x).
: . . tan(b — x)

6. Find the derivative of the second order of the function V = 26—_x )

6. Find the domain of the function y = Va? = x2.

: : b
8. Find the asymptotes of the function y =—-2x ——.
X

9. Find intervals of concavity (convexity) and inflection points of the function
3
c
y=x?+—.
X

: : 1 :
10. Investigate the function y =cx + — and graph it.
cx
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Variant 7.

1. Find limits:

4 2
a) lim X 2ax —2a -1 b) lim Ox X b
-1 2 _5x_6 x—00 (3b+1)x
[ .2 2 2 _
¢) lim x“ +c c d) lim x“+ax—-5
x—0 x2 + 4 _ 2 x—0 30bx+ 1000
i
¢) lim tan(c - l)x f) lim (ax - 4) 3
x—0 27 x x—00 ax

2. Investigate if the given function is continuous. Denote the types of discontinuity
sin 2x, x<0

points. Graph this function. y = x2—b, 0<x<2 .

log, x, x>2
. .. d
3. Find a derivative _y:
dx
X , x=at—->b
a) y =arctan’ =+ ¢“®""; b) y =./log, (cx +3); ) :
2 y=t°
X T

4. Calculate y,(XO) if y:m, Xg = 4+ 4 .

: . 2
5. Find dy if y = arccos are

6. Find the derivative of the second order of the function y = In(b + 2x)-sin x.

c+1
@a—x.

x> —5x

7. Find the domain of the function y =

8. Find the asymptotes of the function y =

x+b
9. Find intervals of concavity (convexity) and inflection points of the function
2 ¢ ’
y=x"—-—.
X
. . —2xt +x+4 .
10. Investigate the function y = (x ;2 and graph it.
x—2
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Variant 8

1. Find limits:

2) lim x> +5ax —10a -8 b) lim 5\/x2+b +%/x2+x
x-2 xt—16 x>% Ry +b+4bx
3x-1
. 2x+c+1 . x(a+1)— (a+1)x
| d) 1
©) xglgo( 2x—a ] )xlg(l) 2\/;+x
. X
2 4 SIn "~ —
e) lim (bx +2)Z+4x +3 f) lim 2
x—00 (6x+1)4 =0 g2 6x

2. Investigate if the given function is continuous. Denote the types of discontinuity
points. Graph this function.

1
R x<0

X

y=4x—a-2, 0<x<a+2.
In(x-a-1), x>a+2

. .. d
3. Find a derivative —y:

dx
5% — xotl x=2+e"!
a) y=arccot b)) y=——— C
2 n?
4. Calculate y'(x, ) if y=cot——, x5 ="—.
(0) \/E 0 b

1

5. Find dy if y =sinx“*' —arccos” x.

6. Find the derivative of the second order of the function y = cos bx - Ig(cx — 3).

7. Find the domain of the function y = arccos(a — x).
b+4

=

9. Find intervals of concavity (convexity) and inflection points of the function

8. Find the asymptotes of the function y =x —

1
y=cx? - —.
X
. . x—1 .
11. Investigate the function y = — and graph it.
x°=2x+2
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Variant 9

1. Find limits:

2x° +ax—a—-2 . cos(b +1)x —sin(b —1)x .

1. 9 b 1. 9
R ) T T b+ 3)cos(2hb + 2
4b+4
19) liI%Ja+x—\/a—x; d) lin(l)(l+btanx)b00tx;
x—= X x—
e lim (x+1)6+(x+2)6. f) lim 2x2—ax+b.

% x6 11000 >0 100

2. Investigate if the given function is continuous. Denote the types of discontinuity

c, x<0
points. Graph this function. y=42sinx, O0<x<7T/6.
a, xX>7mT/6
: .. dy
3. Find a derivative —:
dx
b=x x=sinat
a)yz—2 b) y= +Vx? —bx+c c){
arcctgx e* +a y =arccos bt

4. Calculate y'(xo ), if y=In(x +c¢)-tgax, x,=0.

5. Find dy if y = arcsin” cx.

6. Find the derivative of the second order of the function y =alog, (x ++/x )

7. Find the domain of the function y =log . (a +2).

2

8. Find the asymptotes of the function y = .
xX+2b

9. Find intervals of concavity (convexity) and inflection points of the function
1

y=c’x? +—.
X

10. Investigate the function y = x — b/x and graph it.
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The values of the parameters a, b, c:

a — the first letter of your surname
b — the first letter of your name
¢ — the first letter of your patronymic

1 2 3 4 5 6 7 8 9
A B C D E F G H I
J K L M N O P Q R
S T U \" \W% X Y Z
24. Model of Solution of Assignment on Theme Differential Calculus
Task 1. Calculate limits without using of I’Hopital’s rule:
3 2
: —4 : : -
2) lim ¥ : x+3 :[9} b) lim ar cot7x ¢) lim I+3x7 -1
PN | 0 x—0 14x x>0 5x2 4 53
([ Ax—1\"" _ A14+3x% -1 _ h0x? +3
d) lim e lm—— f) Iim ——
x—0\ 4x +3 =0 5x2 4 x3 x>0 Tx+9
Solution.
x> —4x+3 B

a). To calculate lim

o] ... )
4 [—} divide the numerator and the denominator of
x—1 X —_

the given fraction by (x —1).
As x° —lz(x—l)-(x2 +x+l), then (x3 —1):(x—1)=x2 +x+1;

x> —4x+3  x-—1
x? —4x+3
2
—x7 —=x
—-3x+3
—(-=3x+3)
0
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x*—4x+3 X +x-3 1+1-3 1

Thus, im—————— =lim = =—_.
PN | =l y2 px41 14141 3
. arctan7x |0 arctan 7x~7x | . Tx .7 1
b). im ——=|— | = _ =lim — = lim — =—.
x—0 14x 0 ifx—0 x—>014x x-014 2

3 multiply the numerator and the denominator by
V1+3x® -1 [0

¢). lim——=|—|=
) O} (\/1 +3x% + lj — conjugate of the numerator

2
x>0 §5x? 4 53

3 (\/1 +3x° —11\/1 +3x° +1)

=lim = lim

x_)0(5+x)(\/1+3x2 +1) x>0 x2(5+x)( 432 +1)
lim 3x° i 3 33 o,
x_)0x2(5+x)(m+l) x_)0(5+x)(\/1+3x2 +1) 5.2 10 >~
6x+2
a). lim(4x_1j :[100]
x—>0\ 4x +3
To use the second remarkable limit transform the fraction :x _; .
X+
4x—1:(4x+3)—3—1:(4x+3)—4:(4x+3)+ -4 _,, -4
4x +3 4x+3 4x+3 4x+3  4x+3  4x+3

So we have

6x+2 6x+2 —4-6
lim(4x_1j =[1°0}=1im(1+ —4 j =e 4 :e—ﬁzi.
x>0\ 4x + 3 s—»o\  4x+3 e®

o 12x0 +5x+43 |:oo:| [12x3+5x+3~12x3 ]
llm = —

x>0 843y

8+ 31x> ~31x2,if x >

12x° . 12 12
= lim —

x—>oo31x3 x—>oo3l_3l

- Y10x2 +3 [OO}:{IOxz +3~10x2 }

00 Tx+9~7x, if x > ©
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2/4
T T
x>0 Tx  x—00 7,2
e’, x<0,
Task 2. Investigate if the given function f(x) =<x+3, 0<x<3,is
1
, Xx>3.
x-3

continuous. Denote the types of discontinuity points if they are. Sketch this function.
Solution.

Domain of the given function is:
D(y)=(=0,0)U[0,3] U (3,+0). Thus the function can have discontinuity only

at the points x =0 and x=3.
As we know,
1. a function f(x) is continuous at a point x, if

a) the function is defined at the point x = x,, and has finite value : f (xo )< 0, ,
b) the right-hand limit and left-hand limit of f(x) exist and are finite:

lim f(x)=f(xy —0)<oo, lim . f(x)=f(xy +0)<o0,

X—>X,
¢) f(xo =0)= flxg +0)= f(xo).
2. A point x,, is the point of discontinuity of the first kind if conditions a),b)

take place but not condition c).
3. If a point x,, is not the discontinuity of the first kind it is the point of

discontinuity of the second kind.

Let us consider the point x=0.
a) f(0)=(x+3)|_,=0+3= f(0)=3 <,
b) lim flx)= lim ¢ = e’ =1<oo, lim flx)= limo(x +3)=3<o,

c) 1#3.

The point x =0 — is the point of discontinuity of the first kind.
Now let us consider the point x =3:
a) f(3)=(x+3)| _,=3+3=6<,

= 00.

b) lim_ f(x)= lim (x+3)=6<00, lim f(x)= lim :

x—3-0 x—340 x—=3+0 x — 3
The point x =3 — is the point of discontinuity of the second kind.

61



Sketch of the given function:

YJL

_

-

d
Task 3. Find a derivative —y:

dx
3 .
52 52 X X =c0852¢ + tsin 52¢
a) y=cot -~ b) y =arccos— + 1g| — +1 ¢ _
52x+2 x 52 y =sin 52t — t cos 52¢
Solution.
’ T/l, T
.| use the formulas : (cotu) =— —
52x sin” u
a) | cot = ' =
S2x+2 u) uv—uy'
L\V v? 4
~ 1 (52x) (52x+2)-52x(52x+2)
—_— . 2 —_—
sin2 %% (52x+2)
52x+42
_ 1 52(52x+2)-52x52 1 104
2 - ’ 2=
sin? 2% (52x+2) sin? 22 (52x+2)
S52x+2 S52x+2
_ 1 524(52x+2-52x) _ 104
o 52 2T .2 52
sin? =~ (52x+2) (52x +2) sin? 2=~
S52x+2 S52x+2
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!

use the formulas : (u +v) =u'+/,

’

3 ’
X ' ! 4
b) (arccosg+1g —+1 = (arccosu) ___u ’(gj :_CV =
X 52 ll_uz Vv V2

(lgu)' o (u”)! =n-u""u'

i uln10’ i
_ 1 (_2j+ 1 2% _ 52 3
2704\ x2) (3 52 xx? 2704 (x*+52)n10°
l-— —+1|In10
X
X =cos 52t + ¢ sin 52¢
y =sin 52¢ — tcos 52t
L : . d '
The function is given in the parametric form. Use the formula: d_y =y—f. As
x X,

X! =-52sin52¢+¢'sin52¢ +£(sin52¢) = —52sin52¢+sin52¢+52¢cos52¢ =

= —51sin52¢+52¢tcos52¢,
¥y, =52c0s52t—cos52¢+52¢sin52¢=51cos52¢+52tsin52¢,

then
Q_ 51cos52¢t+52¢sin52¢

dx 52tcos52t—51sin52¢

d). Prove that the derivative of the function y = (u)v can be calculated by the
formula:
((u)v) =v-u"u+u¥ v - Inu. (1)

Solution.
1). Take the logarithm of the both parts of the equality y = (u )v:

Iny= ln((u)v): Iny=vinu.
2). After differentiation of the last equality, knowing that y, u and v are the functions
of x, we have:

Y viu+vi = y':y(v'lnu +vu—j:> lyz(u)vJ: y':uv(v'lnu +vu—j:>
y u u u
y':uv(v'lnu +vu—j:>y':uvv'lnu +vu '

u

4
or ((u)v) =v-u"u+u¥ v - Inu.

So the formula (1) has been proved.
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Task 4. Calculate y'(x, ), if y= 26Oarctan5%, x, =0.

Solution.

!/

2 1 5.522
1) y'=(260arctan5i2j =¢- =

(sz 52 522 4 x?2
I+ —
52

5.522

| 5527
502 4 x2 =0 552

=5.

2) ¥'(0)=

Task 5. Find dy, if y =tan(52x +1)— 37"

Solution.
Use the formula: dy = y'dx.

' 52
"= (tan(52x +1)- 3% ) = —~3%Yn3.52 =
Y ( (525:+1) ) cos” (52x +1) "
1
—~dv=52- — 3203 |dx.
4 (C052(52x+1) " j g

Task 6. Find y",if y = arcsin 54+/x.

' 1 1 27
1)y'=(arcsin54\/;) = 54 = =
1-(sazf  2x NI-2916x-Vx
27
= =
\x —2916x>
2) y”=(y')'=[ el J - brle—2016x2)""2) -
Vx —2916x>
27 —27(1-5832x)

=~ 2l |(x—2916x2 )77 ) (1- 2916 - 2x) = .
2 (e-2st6e™ ) 2y(x - 2016x%)

Task 7. Find the domain of the function y = 1n(532 —x* )

Solution.
As a logarithm exists for positive volume of its argument (compare with the

corresponding table) we have:
D(y):53% —=x* >0= (53— x)53+ x)>0= x e (- 53;53). Thus
D(y)=(~53;53).

64



54
Task 8. Find equations of asymptotes of the function y =x — —.

X
Solution.

1) D(y)=(~;0)u (0;+0). The straight line x =0 is the vertical asymptote. In fact,

2
lim f(x)= lim (x—ﬁj = lim
x—>-0

b

x——0 X x——0 X
. 4) . x> -54
lim f(x): hm(x—s—j: lim ~ : =—00,
x—>+0 x—>+0 X x—>+0 X

2) As we know, an equation of nonvertical asymptote is: y = kx + b, where

2
_ )
k= lim @ = lim * >4 = [S} =[use L’Hopital’s rule]= lim X 1,
x—>300 x x—>to  y o0 x—0 2 X
x? —54 x? 54— x* . (54
b= lim (f(x)-kx)= lim —x|= lim = lim | —|=0
x—*00 X—>+00 X x—+00 X x—>100\ x

. So the equation of inclined asymptote is y = x.

The answer: the equations of the asymptotes are : x =0and y = x.

Task 9. Find intervals of concavity (convexity) and inflection points of the
6-52%x%* —x*

function y = 5

Solution.
It is known that if y" >0, then the function is concave, if y" <0, then the
function is convex. To find the intervals, where y" >0, or y"<0 we denote

domain of the given function and the points in which y” is equal to zero or does not
exist.

D(y)=(mooteo)

o (6-52%x% —x* 12522 x — 4x°
y: 9 =

, then

!

y”:(12-5229x—4x3j 25(12.522 —12)(?2):%(522 —xz).

Obviously, y"exists for any value of an argument. Let us find its roots:

y'=0= g(sz2 —x?)= (52— x)52+x)=0=> x,, =452

£ o= oA &

=

fr) it nft.
fr) N 2 o A T
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So, inflection points are: x, =-52, x, =52,
the function is convex at x € (—00;—52) U (52 :0), as here " <0, and
the function is concave at x e (—52;52), as here y” > 0.

Task 10. Carry out complete investigation of the given function and graph it:
3 —x
y=x'e .

Solution.

1. a) The given function is defined everywhere. So, D(y)= (- 00,+). There

are not vertical asymptotes.
Let us find inclined asymptotes, using the equation: y = kx + b, where

k= lim Lx),bl = limoo(f(x)—kx).

x—>+00 x x—*
o x3e* x2 use L'Hospotal O 2x )
ky = lim = lm —= = lm —= lim —=0;
x—>+00 x—+00 o rule twice x40 ¥ x—>+400 o
b, = lim (f(x)— kx)= lim ——0 X |=
x—00 x—00
—X
. x’e .
ky, = lim L: lim == lim x?e ™ =oo. In this case an
x—>-00 x x——00 X x——00

asymptote does not exists.
So the inclined asymptote is the right-hand part of the straight line y =0.

b) The given function is neither even nor odd:

f=x)=(xye" =—x’e" = {f(;()x)

¢) This function is not a periodic function.

¢) Roots of the function: f(x)=0=> x’e¢ ™ =0= x=0. The intervals of the
f(x)>0 if x>0,

constant sign  are: )
f(x)<0if x<0

YT ®) :
o 0 X

66



2. To define the intervals of monotonicity and the points of extremum find the

e . . .. [f'(x)=0
critical points, using the corresponding definition: | © ( )
X)=o0

f'(x)= (x3e_x) =3x%e™ —x’e ™ =x?e (3 -x).

The first derivative exists everywhere.

1x=0

f'(x)=0 if { .
¥ =

Here are two critical points x =0 and x=3

R ERNE

yTwhenxe(-03), y whenxe(3,+0)
It s clear, that the given function has one point of exstremum:
Vi 3)=27 -7 =1.34

'+ + max -
f

2. To find the intervals of convexity and concavity and the inflection points
we must consider the second derivative of the function.

f(x)= (e_x (?ax2 —x’ )), =
—e_x(?axz —x3)+ e_x(6x—3x2):e_x(x3 — 6x2 +6x)=
X =3—\/§,

=e_xx(x2 —6x+6)= f(x)=0=|x, =0,

X3 =3+ V3.
= e_xx(x — (3 — \/g))(x — (3 + \/g))

7 e _
F&) _ _ wﬂ;’_ L wnft

S
T o

) ™0~ 3AE N BE

concavity intervals : (O, 3-43 )u ( 3+43 ,+oo),
convexity intervals : (- 0,0)U (3 ~33+3 )
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The graph of the given function has two points of inflection:
yinf(3 - \/g)z 0.58 and yinf(?; + ﬁ)z 1.33.

Using the results of the investigation of the given function we can draw the
graph of this function:

47
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