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I. COMPLEX NUMBERS
1.1. The Fundamental Operations

The square of a real number is never negative. Thus, for example, the

elementary quadratic equation x* =—1 has no solution among the real numbers.
New types of numbers, called complex numbers, have been introduced to provide
solutions to such equations.

Definition. By a complex number we mean an ordered pair of real numbers
which we denote by (x, y).

The first member, x, is called the real part of the complex number; the second
member, y, is called the imaginary part. We write
z=(x, ).
The equality relation and the arithmetical operations are defined according
to the following rules:

1. equality (x,,y,) = (x,,y,) takes place if and only if x; = x,, y; = y,;
2. (o) (g, 30) = (0 225,y 2 3)

3. (Xl,)’l)' (xz’)’z) = (xlxz —V1Y2,X1Y2 + Y1 X2 )

If the fundamental operations are thus defined, we easily see that the
fundamental laws of algebra are all satisfied.

1. The commutative and associative laws of addition hold:

2, +2,=2, 2,5

7+ (2, +23)= (2, +2,)+ 2, =2, + 2, + 25,
2. The same laws of multiplication hold:

3. 2122 = 297275

Z1(12Z3)=(Z122)Z3 = {12243
4. The distributive law holds:

(Zl + e )Z3 =133 + <9Z3-



1.2. Geometrical Representation of Complex Numbers
Just as real numbers are represented geometrically by points on a line, so

complex numbers are represented by points in a plane. The complex number
z =(x, y) can be thought of as the point with coordinates (x, y). When this is done,

the definition of addition amounts to addition by the parallelogram law.

The idea of expressing complex numbers geometrically as points on a plane
was formulated by Gauss in his dissertation in 1799 and, independently, by Argand
in 1806. Gauss later coined the somewhat unfortunate phrase “complex number”.

1.3. The Imaginary Unit

It is convenient to think of the complex number (x.y) as a two-dimensional

vector with components x and y. Adding two complex numbers is the same as
adding two vectors component by component. The complex number 1= (1,0) plays
the same role as a unit vector in the horizontal direction. The analog of a unit
vector in the vertical direction will now be introduced.

Definition. The complex number (0,1) is defined by i and is called the
imaginary unit.

Theorem. Every complex number z =(x, y) can be represented in the form
Z=x+ yi which is called standard or rectangular form of complex numbers.

Proof.

= (x.y) = (x.O) + (0, y)= x(l,O) + y(O,l) =X+ yi.
Let us now prove that i 2=—1.In fact,

i? =(0,1)0,1)=(-1,0)=—1.

Example 1.3.1.

Find the product of z; =2+ 3i and z, =5—-4i.
Solution.

212, = (2+3i)(5-4i)=10-8i +15i —12i* =22 +7i.



1if n = 4k

g _ i n=dk1
—1,if n=4k+2
—i,if n =4k +3

Exercise 1.3.1. Prove that

1.4. Absolute Value of a Complex Number and Conjugate Complex Number

Definition. If z=(x,y), we define the modulus, or absolute value, of z to

be the non-negative real number ‘z‘ given by
y
=y 57
y ____T = (x,)’)
I B Geometrically, Z‘ represents the length of the
|
|
|

segment joining the origin and the point z = (x, y).
|
yE——1Z=(%-y)

Definition. The number x — yi is said to be conjugate to z and is denoted by z.

Let us calculate ZE.
zz=(x+yi) (x—yi)=x* = (yi)’ =x> + y* =|¢".
1.5. Definition of Division

The division is an operation inverse to the multiplication.
The number z is called the quotient of z;and z,if z;, =z-2z,. If z, #0 then on

multiplying both parts of the relation z; =z -z, by Z we get

i _ 22
z1z2=z(z2z2)andz=z—— — .
2 2243

Example .5.1 Find the quotient of z; =2 +3i and z, =1+ 4i.

Solution.



7, 243 (2+3i)-(1-4i)) _14-5_14 5.

5, 1+4 (1+4)-(1-4) 1+16 17 17"

1.6. The Trigonometric Form of a Complex Number

If the point z=(x,y)=x+ yi is represented by
polar coordinates p and @,we can write x = pcos@

and y = psing then z = p(cos@ + isin ). This form ’
is called the trigonometric form of a complex number . 0

The x-axis along which x is reckoned is called y
real axis and the y-axis along which y is reckoned is the ¢ X
imaginary axis. 0 o

The two numbers p and @ uniquely determine z.
Conversely, the positive number p is uniquely determined by z. In fact, p = ‘z‘

p=+x*+y? (1.6.1)

However, z determines the angle ¢ only up to multiples of 2&. There are

infinitely many values of ¢ which satisfy the equations x = ‘Z‘ cos@, y= ‘z‘ sin @.
The unique real number @ which satisfies the condition —Z <@ <7 1is
called the principal argument of z and is denoted by arg z: ¢ =arg z, then

X . y
L sing=——2 (1.6.2)
Ix2 +y2 IXZ +y2

Let z; and z, be two complex numbers written in trigonometric form. The

cos Q=

product of z; and z, can be found by using several trigonometric identities.

If z;, = p,(cosg, +ising,),and z, = p,(cos @, +isin @, ), then

2127 = P1P2 (cos @, - COs @, +1iCoS @, sin @, +isin @, cos @, + i* sin @, sin K‘z) =
= p1P;((cos @,co@, —sin @, sin @, )+ i(sin @, cos @, + cos @, sin @, )=
= p1P;(cos(g, + @, )+isin(g, +@,))=
P19 (cos(@; + @, ) +isin(g, +¢,)) (1.6.3)

The modulus for the product of two complex numbers in trigonometric
form is the product of moduli of the two complex numbers, and the argument of
the product is the sum of the arguments of these numbers.



Similarly,

Z ..
2P cos(g, — @) +isin(o, — @,) (1.6.4)
2 P

The modulus for the quotient of two complex numbers in trigonometric
form is the quotient of moduli of the two complex numbers, and the argument of
the quotient is the difference of the arguments of these numbers.

Example 1.6.1.
Find the product of z; =—1+ i~/3 and 2y =—J3+i.

Solution.

1) Using (1.6.1) and (1.6.2) write z; and z, in trigonometric form:

( 2T . 27[] ( 5t . 57:)
Zp =2/ cos—+sin— |;  Z, =2/ COS— +Ssin—
3 3 6 6

2) Use (1.6.3)
2139 = 4(0089—7[ +isin 9_7[) = 4(0053_” +7sin 3_”):4(0 — l) ——
6 6 2 2

1.7. Integral Powers and Roots of Complex Numbers

Let z = p(cos@ + isin@). Then z” can be written as

z- 2= plcos @ +isin @) p(cos @ +isin ¢J):p2 (cos 2@ +isin 2¢).
This formula can be extended for raising a complex number to the nth power:

n

7" = p"(cosng+isinne) (1.7.1)

The formula
(cos@ +isin@)" = cosng+isinng

is called De Moivre’s formula.

Definition. A number w is called the nth root of z if w" =z and is denoted
by

w=47.



Let w=r(cos@+isin@) and z=p(cose+ising). Then as w" =z we
have

r"(cosn@ +isinn@)= p(cos @ +isin @).
Two complex numbers written in trigonometric form are equal if and only if their
moduli are equal and their arguments are equal up to multiples of 27 . Thus

T ep = + 2k -
nl=@+2knx g=2"=""

n
If z= p(cos@ +isin @) is a complex number, then there are n distinct nth roots of
z given by the formula

Wy =%(COSM+iSmMj (1.7.2)

n n
for k=0,1,2,....n—1.

Example 1.7.1. Find the three cube roots of 27.
Solution. Write 27 on trigonometric form:
27 =27(cos0+isin0).
Then, using formula (1.7.2), the cube roots of 27 are

0+2kx .. O0+2kx
+isin

w, =3 27(005 j for k =0,1,2.

Substitute for k to find the cube roots of 27 :

W =3(cos0+isin0)=3

( 2T .. 27[] 3 33,
w, =3 COS?+ZSIH? =——4+—1,

2 2

( A . . 475) 3 343,

Wy, =3l cos—+isin— |=—————1.
3 3 2 2

For k = 3 cosines and sines of the angles start repeating, thus there are only three
cube roots of 27.



1.8. Complex Exponentials

Let us write a complex number in trigonometric form
z=placos@+isin @)
Using Euler’s formula
¢'? =cos @ +sin @ (1.8.1)
we obtain z = pe'? in the so-called exponential form.

Representing complex numbers in exponential form is particularly useful in
connection with multiplication and division since we have

ip ip ilp +o, )
2z =pre 'pre P =pipre 2
and
Z ip iQ i@ -
2 P2

If z=pe'? then
Zn :(peiq))n :pneian

This is De Moivre’s formula in exponential form.
On replacing @ for — @ we get such formula

e'? =cos@p—isin @ (1.8.2)
On adding and subtracting formulas (1.8.1) and (1.8.2) we have

o e'? +e7'? in g e'? —e7'?
cosp=——— sin@p=————
2 2i

The product of a complex number z = pe'? by the factor e'® is
Zeioe:pei(gowz)

The geometrical interpretation of this fact is that the multiplication by ¢'® makes

the vector representing the complex number z rotate about the origin through the
i

angle a. In particular, putting azg we see that the multiplication by e 2 =i

10



results in the rotation of the representing vector of the number z through 90° in
counterclockwise direction.

Example 1.8.1.
Calculate the product (1 —i3 )3 (1+i )2 :

Solution.

Expressing complex numbers in the exponential form, we get

. AN AG w
(1—i\/§) (1+i)=|2¢ 3 [\/Ee‘*] =23 .2¢2 =8(-1)-2i =-16i.

I1. Functions of a Complex Variable
2.1. Definitions. Continuity

If w=u+iv and z=x+1iy are any two complex numbers, we might say
that w is a function of z, w= f(z), if, to every value of z in a certain domain D,

there correspond one or more values of w.

This definition, similar to that given for real variables. On this definition, a
function of the complex variable z is exactly the same thing as a complex function
u(x, y)+iv(x, y) of two real variables x and y.

For functions defined in this way, the definition of continuity is exactly the
same as that for functions of a real variable.
Definition. The function f(z) is continuous at the point z, if given any

£ >0, we can find a number 6 >0 such that
f(2)=flz) <&
for all points z of D satisfying ‘Z - ZO‘ <.
The number ¢ depends on &£ and also, in general, upon z,. In this case we write

lim f(z)=7(z0) 2.1.1)

Z—Z
0
A difference z — z, = Az is called increment or change of an argument z.
f(z)- f(zo)=Aw is called the increment or the change of a function f(z).
The condition of a continuity of a function f(z) can be stated in such a way

Jim Aw=0 (2.1.2)
%

11



It easy to show that this definition of continuity is equivalent to the statement
that a continuous function of z is merely a continuous complex function of the two
variables xand y  f(z)=u(x, y)+iv(x, y).

2.2. Differentiability

Let w= f(z) be one-valued function defined in a domain D, then f(z) is

differentiable at a point zyof D if % tends to a unique limit as Az — 0, provided

that z is also a point of D, that is

lim ﬂ: lim f(Z)_ f(ZO) :f,(Zo) 2.2.1)
Az—0 A7 Az—0 2 2

That continuity does not imply differentiability is seen from the following
example:

Let f (z)=‘ z‘ . This continuous function is differentiable at the origin, but

nowhere else. For if z, #0 we have

2 o - -
12 _‘ZO ‘_zz—zozo_zz—z0z+zoz—zoz0_
Z— 2 Z— 2 Z— 2
- Z2—20 _— .
7+ 2 =7+ zy(cos2¢ —isin 2¢),
<=2

where @ =arg(z -z, ).

It is clear that this expression does not tend to a unique limit as z — z;.

If z, =0 the incrementary ratio is z, which tends to zero as z — 0.

2.3. Analytic Functions

A function of z which is one-valued and differentiable an every point of a
domain D is said to be analytic in the domain D.

A function may be differentiable in a domain D save possible for a finite
number of points. These points are called singularities of f(z). We next discuss

the necessary and sufficient conditions for a function to be analytic.

12



1. The necessary conditions for f{z) to be analytic.

If f(z)=ulx,y)+iv(x,y) is differentiable at a given point z, the ratio

flz+Az)- f(2)

Az
Az = Ax +iAy. Take Az to be wholly real, so that Ay =0, then

must tend to a definite limit as Az — 0 in any manner. Now

ulx + Ax, y)—u(x, y) y v(x + Ax, y)—v(x, y)
Ax Ax

e : . . du dv
must tend to a definite limit as Ax — 0. It follows that partial derivatives —, —

b
X Ox

must exist at the point (x, y) and the limit is — +i—. Similarly, if we take Az to
X by

be wholly imaginary, so that Ax=0, we find that —u? must exist at the point
y gy
.ou

(x, y) and the limit in this case is ﬂ —i—.
dy  dy

Since the two limits obtained must be identical, on equating real and imaginary
parts we get

ou_w
ox dy

2.3.1
a_u:_@ ( )
dy ox

These two relations are called the Cauchy-Riemann differential equations.

2. Sufficient conditions for f(z)to be analytic.

It is possible to prove that, the continuous one- sided function f(z) is analytic in a

domain D if four partial derivatives u,,v ,u,,v y exist, are continuous and satisfy

y b
the Cauchy-Riemann differential equations at each point of D.

If wu+iv=f(x+iy), where f(z) is an analytic function, then the real

functions u and v of the two real variables x and y are called conjugate functions.
Let these functions satisfy the relation

0, =0,

13



then by partial differentiation of Cauchy-Riemann equations (2.3.1) we have

0%y 9%u 0%u 0%u 02y 02y
= =— and =— =—

oxdy ax>  dy’ dxdy  ox*  *

Hence both u and v satisfy Laplace’s equation in two dimensions

V29 = ae 2’6 =0 (2.3.2)

x> ay

This equation occurs frequently in mathematical physics. It is satisfied by
the potential at a point not occupied by matter in a two-dimensional gravitational
field.

2.4. Complex Integration

Let f(z) be any complex function of z, continuous along a piece-
wise smooth curve C with end-points a and b, and write f(z)=u(x, y)+iv(x, y).
We divide the arc C into n subarcs by points

20 =Qy 215295 Zy_1» 2, =b and denote z;, — z,_; = Az, =Ax; +iAy,.

Next we take in each subarc an arbitrary point ¢, =&, +i7, and form a sum

z (61 Az, = Z( (S 1 A —v(& . Ay, )+

k=1 k=1
""Z (& A, +ul 1 Ay, ) (2.4.1)

This sum is called an integral sum.

n)=5n —0 as n—oo.

Let’s denote max(]

Definition. The limit of integral sums (2.4.1) (provided it exists) as n — oo
is termed a complex integral along a curve C and is written as

lim Z flg Nz, = j f(z (2.4.2)

n—)ook =1

In addition

14



If(z)dz = Iu(x, y)dx —v(x, y)dy + ijv(x, y)dx + u(x, y)dy (2.4.3)
C C C

Example. Compute the integral

if zImz%dz
\Z\=2

Solution. Taking into account that for the function f(z)=zImz?,

u(x,y)= 2x%y, v(x,y)= 2xy*and using the formula (2.4.3) we obtain

§ZImZ2dZ= J2x2ydx—2xy2dy+i J2xy2dx+2x2ydy.

‘1‘22 X +y’=4 X +y*=4
The equation of the contour ‘ Z ‘ =2 we write in such a way

x=2cost,y=2sint (05t <2nx).

So, we have
2 2z
§>Zlm 22dz=32(-2 J.cosz tsin” tdt + i_[(cos3 tsint — costsin’ t)dt) =-16x.
|z|=2 0 0

2.5. Cauchy’s Theorem

If f(z) is an analytic function and if f’(z) is continuous at each point
within and on a closed contour C, then

[ f(2)dz =0 2.5.1)
C

Let D be the closed domain which consists of all points within and on C.
Then by the formula (2.4.1 ) we can write the integral (2.5.1) as a combination of
curvilinear integrals

Jf(z)dz = Iudx—vdy+i_[vdx+udy.
C C C

We transform each of these integrals by Green’s theorem, which states that, if

0 P . ) )
P(x, y), Q(x, y), a—Q, g— are all continuous functions of x and y in D, then
X oy

15



00 oP
dex+Qdy jj(—x—g}z dy.

Since f’(z)zux +iv, =v, —iu, and, by hypothesis, f'(z) is continuous in D,

the conditions of Green’s theorem are satisfied and so

2)dz = H(ﬂ+—)dxd +z”£———jddy 0

by virtue of the Cauchy-Riemann equations.
2.6. Cauchy’s Integral Formula

Theorem. If f(z) is analytic within and on a closed contour C and Zp be a
point within C, then

1 ¢ f(2)dz

27z — 2

= f(zo) 2.6.1)

Describe about z =z, a small circle ¥ of radius Jlying entirely within C. In

f(z)
Z— 2
cross-cut joining any point of ¥ to any point of C we form a closed contour I’

the region between C and ¥ the function @(z)= is analytic. By making a

within which ¢(z) is analytic, so that, by Cauchy’s theorem,
j (p(z)dz =0.
r

In traversing the contour /" in the positive (counterclockwise) sense, the
cross-cut is traversed twice, once in each sense, and so it follows that

‘ [p(2)dz - [ plz)dz =
Y

Q C

16



J’f dZ J‘f 20 dZ 1 Jf(Z)—f(Zo)

. dz. (2.6.2)
72 22 27a y 7%

Nowon ¥y z—-2z¢= d'? , and so the first of the two terms on the right becomes

f(z)*Fsiede
27t 0 &19

f(Zo)

On using the statement that if f(z) is continuous on a contour L, of length /, on

which it satisfies the inequality ‘ f (z)( <M, then I f(z)dz| < M1, we get, that the
L
modulus of the second term on the right of (2.6.2) cannot exceed
—max 270 .
o x| ()= £(zo )

Since f(z) is continuous at z =z, this expression tends to zero as & — 0. This

proves the theorem.
Complex integral in the formula (2.6.1) is called a Cauchy type integral.

2.7. Complex Series. Power Series

Let an infinite sequence of complex numbers be given:

a,=a, +if,, n=12,...
Definition. An expression a; +a, +...+a, +... 1s called a complex series.

A series is briefly written as z a,
n=1
The sum S, =a; +a, +...+a, 1s termed the nth partial sum of the series.
Making n take on the values 1, 2, ... we obtain the sequence of partial sums of the
series.
As n increases indefinitely a greater and still greater number of terms of the
series is involved in the sum §,,.

Definition. If the sequence of partial sums of the given series has a definite

limit an n — oo i.e. lim S, = § the series is said to be convergent and the number
n—>o0

S is called the sum of the series. If the sequence S, does not tend to any limit or
tends to infinity the series is said to be divergent.

17



The following theorem helps to reduce the study of complex series to that of
real series.

Theorem. The series Zan converges if and only if two real series

n=1

> @, and > B, are convergent.

n=l1 n=l1

Proof. To prove this we denote o©,=a +a,+..+a,,
T, =B +B,+..+ B, then S, =0, +it,, hence

lim§, = imo,+i lim 7,,.
n—oo n—oo n—oo

The theorem has been proved.

Definition. A series Zan is said to be absolutely convergent if the series
n=1

‘al‘ + ‘az‘ +...+ ‘an‘ + ... 1s convergent.

Consider the series chz" or ch (z—2z0)", where the coefficients c,
n=0 n=0

and z, z, may be complex. Since the latter series may be obtained from the former

by a simple change of origin, the former may be regarded as a typical power series.

So far as absolute convergence is concerned, everything that has been

proved for absolutely convergent series of real terms extends at once to complex

series, for the series of moduli ‘co‘ +‘01H Z ‘ +‘6‘2H Z ‘2 +... 1s a series of positive

terms.
The most useful convergence test for power series is Cauchy’s root test,

which states that that a series of positive terms Zun 1s convergent or divergent
n=0
according as lim%/u, is less than or grater than unity. If we write lim?# /‘ cn‘ =—,
n—>00 n—>co R

then we easily see that the power series Z c,z" is absolutely convergent if
n=0
‘ Z ‘ < R, divergent if ‘ Z ‘ > R, and if ‘ Z ‘ =(0 we can give no general verdict and
the behavior of the series may be of the most diverse nature.
The number R is called the radius of convergence, and the circle, center the
origin, and radius R, is the circle of convergence of the power series.

Clearly there are three cases to consider
1) R=0,

18



2) R finite,
3) R infinite.

The first case is trivial, since the series is then convergent only when z =0.

In the third case the series converges for all values of z.

In the second case the radius of the circle of convergence is finite and the power
series is absolutely convergent at all points within this circle, and divergent at all
points outside it.

Example.Find the redii of convergence of the following power series.

1) i(sinin)z”; 2) i(3+(—1)”)”z”; 3) il'z
n=l

n=0 n=1 N
Solution

1) Making use of the ratio test, we find

R 1 _ 1 _1
,}Lr)l:o”q/‘sinin‘ lim”en_e_n e
n—soo 2
2) R=—' bt ol c,|=3+(=1)".
lim%| c,
n—oo

Since the upper limit of a sequence is the greatest point of accumulation, then

lim ”1/‘ Cn‘ =4. Hence Rzi.

n—o0
3) In this case we use D’ Alembert’s test

' n+l n
R=1imM=1imM=1im(l+—j —e.
nos| cpg| noe " (nal) noel

2.8. Taylor’s and Laurent’s Theorems

Theorem. If f(z) is analytic in ‘ - ZO‘ <R, and if z is a point such that
‘ Z—ZO‘=r(r<R), then

f@)=>c,(z-2y)", 2.8.1)

19



Let C be a circle of radius p, centre z=z,, where r < p <R, and consider the

identity
n—1 n
1 _ 1 N Z Z02+...+(Z ZO) +(z zo) _ 1 .
t—z t=zo (1—z0) (r—zo)"  (1—z0)" -2
Multiply each term by ? and integrate round C we clearly obtain
v//]
i f(n—l) z .
£(2) = o)+ Flaodamzg)4or L CO) oyt g,

where

» =(z—z?)” | f(t)at

T2 Ll-z)"(e-2)
This 1s Taylor’s theorem with remainder R,,.

Since ‘ f (z)‘ <M on C we readily see that
" 2mpM "
R|=5 2P k(1]
2mp"(p-r) \p
where K is constant independent of n.
Since r < p we see that ‘Rn‘ — 0,asn —> oo,

Theorem. Let C; and C,be two circles of centre z, with radii R; and R,
(R, < R,); then, if f(z) be analytic on the circles and within the annulus
between C; and C,,

f(z)= icn (z—z0)", (2.8.2)

z being any point of the annulus. The coefficients ¢, are given by

! f(t)dt

' _2mc(t—zo)n+l’

n=0,+1,+2,.. (2.8.3)
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where C is any closed contour, lying within the annulus between C; and C,.

The proof of this theorem is analogous to that of the previous theorem.
The series (2.8.2) is called Laurent’s series.

Now we determine the relation between Laurent and Fourier series. Let the
function f(z)be analytic within the annulus 1— & <‘ Z ‘ <1+ &, then this function

can be represented by Laurent’s series

f2)= > c,2",

Nn=—oo

where

1 dt 1 °F () in
e [T )i e

In particular, for all points z = e lying on the unit circle we have

too .
F@)=rle®)= Ye.em, (2.8.4)
where
1 2z )
¢, == [F(8)e™°d0 (ne z) (2.8.5)
2 0

The series (2.8.4) with coefficients (2.8.5) is Fourier series of the function F (t) in
a complex form since it can be rewritten in the form

F(;):CO + Z(cnei”t +c_neim):a—0+ Z(an cosnt+b, sinnt),
n=1

n=1

where a, =2c,, a, =c, +c_, and b, =i(c, —c_,)

V3 T
On the bases of  a =lIF(0)d0, a, =1J.F(6’)cos n@df@ and
an an
1 V3
b, =—jF(9)sinn0d6’ (ne N).
)

21



If we consider Laurent’s series on a unit circle of a function of a real
argument #, then this series is Fourier series of the function F(t)= f (e” )

: 1 : : I
Example. Expand the function f(z)=-———— into Laurent’s series within

(-1

the annulus 0 < ‘ Z+ 1‘ <2.

Solution. The given function is analytic within mentioned annulus therefore
we can find ¢, by formulas (2.8.3)

2 P
€n = : .[ (Z 1)n+1dZ: 1- 2dZ n+3 (neZ),
270 . (2 +1) 270 1 (z=1)*(z +1)
where ['is an arbitrary circle center z =—1 within the annulus 0 < ‘ z+ 1‘ <2.

1

If n+3 <0 then the integrand 5 3
(z=1)7(z+3)""

1s analytic at all points

within a circle /" including the point z, =—1, therefore by Cauchy’s theorem we
getc, =0 (n=-3,-4,.).

If n+3>0 by Cauchy’s integral formula we have

_n+3

=t (n=-2-10.1,..).

Cn

Hence

2.9. The Residue Theorem

If f(z) is analytic within a given domain D, we have seen that it can be
expanded in a Taylor series about any point z =z, of D and
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(o]

f2)=>c,(z=z)".

n=0

If co=c; =cy=...=¢,1=0, c,, #0, the first term in the Taylor expansion

is c,, (z - 20 )" . In this case f(z) is said to have a zero of order m at z = 20-

A singularity of a function f(z) is a point at which the function ceases to
be analytic.

If f(z) is analytic within a domain D, except at the point z = z,,, which is
an isolated singularity of f(z), then we can draw two concentric circles of center
2o, both lying within D. The radius of the smaller circle R, may be as small as we
please, and the radius R, of the larger circle of any length, subject to restriction
that the circle lies wholly within D. In the annulus between two circles, f(z) has a
Laurent expansion of the form

(o]

f(z)= fcn(z—Zo)” = ch(Z—Zo)“ic_n(z—Zo)”-

n=—o0 nZO I’IZO

The second term on the right is called the principal part of f(z) at z = 20-
It may happen that c¢_, #0, while ¢_,_ ;=c_,_», =...= 0. In this case the
principal part consists of the finite number of terms

C_ C_ C
L 4 2 4+

2720 (Z—Z0)2 (z—z20)"

—m

b

and the singularity at z=z, is called a pole of order m of f (z) and the
coefficient ¢_;, which may in certain cases be zero, is called the residue of f(z)
at the pole z=z.

If the pole be of order one, c_; = lim (z — z,)f(z).
72—z,

If the principal part is an infinite series, the singularity is an isolated essential
singularity.

Now we consider poles of f (z) at infinity. In complex variable theory we
have seen that it is convenient to regard infinity as a single point. The behavior of

f(z) “at infinity’ is considered by making the substitution z=— and examining
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f (1) at £ =0. We say that f(z) is analytic, or has a simple pole, or has an

¢

essential singularity at infinity according as f (;j has the corresponding property

at { =0. We know that f (2) has a pole of order m at { =0, near =0 we have

1 S e ) Com
=Ne¢, e O M L
f(;) Z‘)C " [ +§42 o

and so, near 7 = oo

m

- 2
f(z):chZ n+c_1z+c_2z +..+c_,2
n=0

Thus, when f(z) has a pole of order m at infinity, the principal part of f (z) at
infinity is finite series in ascending powers of z.

Since

3 5
) A4
sinzg=z——+——...,

RIS

the function sin z has an isolated essential singularity, at infinity the principal part
being an infinite series.

The residue can also be defined as follows. If the point z =z, is the only

singularity of f(z) inside a closed contour, and if 2LJ‘ f(z)Mz has a value, that
v//]

c
value is the residue of f(z) at z =z, and denoted by

[ F@)dz=Res (£(2hz) 29.1)
< C

The residue of f(z) at infinity may also be defined.

If f(z) has an isolated singularity at infinity, or is analytic there, and if C is
a large circle which encloses all the finite singularities of f(z), then the residue at
z =00 is defined to be taken round C in the negative sense (negative with respect
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to the origin), provided that this integral has a definite value. If we apply the

: 1 : :
transformation z =— to the integral it becomes

1 1)\d
R
. )¢
taken positively round a small circle, center the origin.

It follows that if

1

lim| —$ | = lim (- z£(2))

{—0 7>

has a definite value, that value is the residue of f(z) at infinity.

Note that a function may be analytic at z =oo but yet have a residue there.

: A : :
The function f(z)=" has a residue A at z = 0 and a residue — Aat z = oo,
Z

although f(z) is analytic at z =oo.
Theorem. (Cauchy’s Residue Theorem)
Let f(z) be continuous within and on a closed contour C and analytic,

save for a finite number of poles, within C. Then

[ £z)dz= 278> Res(f(c) 2, ). (29.2)
C k=1

where ZRe s(f(z);z,) is the sum of residues of f(z) at its poles within C.

k=1

Let z;,2,,..., 2, be the n poles within C. Draw a set of circles ¥, of radius
& and center z,, which do not intersect and which all lie inside C. Then f(z) is
certainly analytic in the region between C and these small circles y,. We can
therefore deform C until it consists of the small circles ¥, and a polygon P which

joins together the small circles. Then

jf(z)dz=jf(z)dz+ Zn:jf(z)dz=zn:_[f(z)dz,

k=1 7. k=1y,

k
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for the integral round the polygon P vanishes because f(z) is analytic within and
on P. Assume, that a point z = z,is a pole of order one and function f(z) has a
form

flz) = : (2.9.3)

where f;(z) and f,(z) are analytic at a point z, and also z, is a zero of order
one of the function f, (z), and fi (Zo )#0. According to

Res(f(z);zo)=lim(z - z¢)f(2)

72,

we have

Res (f() 2 )= fim (z - 20) 71 = jim 113 il

=27 f2 (Z) =2, M_ 11

) _
(2)

Z—ZO

S e

_ f1(Z) _ fl(Z) .
lim fz(z)_fz(zo) f2 (ZO)

27 S

(294)

Example 2.9.1. Compute Re s (cot z;0).

We get cotz = C?S <
sin z
sin z, cos 0 # 0 and by the formula (2.9.4) we obtain

. The point z=0 is a zero of order one of the function

Re s (cot z;0) = cosO_
cosO
+1 ) )
Example 2.9.2. Calculate I(ZZJ, where C 18 a circle ‘ Z ‘ =3.
v 27 +4
z+1

The function f(z)= has singular points z =12i. These points are

- +4
poles of order one since 22 +4= (z—2i)(z + 2i).
On using the formula (2.9.4) we get

1-2i
4i

Res(f(c)-2i)=—2F1 ) =-2*!

(Z2 + 4) 7=-2i 2z

z=—2i
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1+ 2i
4i

Res(f(z);Zi)zz—+1
27

z=2i

On the bases of Cauchy’s residue theorem we have

j(z+1)dz=2m(l+21_1—21]22”!,.

C ZZ + 4 4 4
zdz ) ) .
Example 2.9.3. Calculate j , where C 1s a circle of radius 2
C1—2sin Z

center at the origin.

: : 2 . 2. :
Since 1-2sin” z= 2[% —sin zJ [% + sin zJ the integrand has two

simple poles at the points z _* and z, = _T 3z > 2 |. With accordance with
7y 27 4 4

Cauchy’s residue theorem we have

jLZZ:m(Res[;z;z}Res(;z;_zj}
~1-2sin” z 1-2sin“z 4 1-2sin“z 4

Using the formula (2.9.4) and taking into account that

’

(1-2sin2 z) =—2sin2z

we find
z
Re{%;zjz#:_z,
1-2sin“z 4 —2sin§ 8
T
Re{;-lj— u 7
_oeinl s, 4) _ -(”)_ 8
1-2sin” 7 2sm—5
Hence

J- zdz ( V4 7!] i
—.2227” -_—— | ==
C1—2s1n Z
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Suppose that z=zqis a pole of order m, then in the neighborhood of this
point
c_ C_y c

f(2)=0(z)+ — +(z—zo)2 +...+ﬁ,

where @(z) is analytic at z = z,. In this case it is possible to prove that

m—1

1 . d m
¢ =Res(f(z)z9)= lim ——(z~z,)" f(2), (2.9.5)
(m - 1)! =2y dz™
Example 2.9.4. Find the residue of the function 7 at the point z =1.
22+ 1)
The point z =1 is a pole of order three since
1 B 1
(2+1) =i+
By the formula (2.9.5) we get
2 2
Res| . =ihmd—2(z —i) 31 : :111md—2(z +i)7 =
(22-1-1)3 2!z gy (z—iy(z+i) 2idy
1 .. =5 6 3.
—lim(-3)—4 )z + = =——1
34 * = =

2.10. Integration Round the Unit Circle

We consider the evaluation by contour integration of integrals of the type

2x

I ¢)(cos 0,sin 0)dt9 ,
0

where @(cos@,sin@) is a rational function of sin@ and cos@. If we write
7= eie, then cosé@ =l(z +lj sin @ =l.(z —lj, % =d@; and so
2 Z 2i z) 1z
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2
I @(cos @,sin 6)d0 = J. w(z)dz,
0 c
where w/(z) is rational function of z, and C is the unit circle ‘ Z ‘ =1. Hence

[¥lekiz =22 Res(plcz, )

where z, are poles inside C.

Example Prove that, ifa > b > 0,

.2

sin” 8 d@ 27:( > 2 2)

I = = a—\a~ —b
£a+bcost9 b

27

Now of making the above change of variable, if C is the unit circle ‘ Z ‘ =1,

i z—1)dz i z—1)dz i
e e e et SR F S
c 2 (z +b+1) c 2 (z—a)z+ B) C
where
a_—a+\/a2—b2 ’B_—a—\/az—b2

b b

are the roots of the quadratic 2%+ % z+1=0.

Since the product of the roots @, B is unity, we have ‘ o ‘ ‘ B ‘ =1where ‘ o ‘ < ‘ B,

and so z=a 1is the only simple pole inside C. The origin is the pole of order two.
We calculate the residues at z=a and z=0.
12
o 2)

Res(f(z), @)= lim(z — a)f(z)= lim (Z2 _1) -

e >az?(z-f) a-B
———( ‘)2——a—,8———2 :
o-p b .
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: : : - 1.
Residue at the point z =0 is the coefficient of — in

1s small. Now

2 _4F — 277
(Z 21) _ 1 2Z2 te and coefficient of lis plainly — %'
ZZ(Z2+M+1J ZZ(ZZ +aZ+1j Z
b b
Hence
i Zébzm(Re s(f(z); a) + Re S(f(z);O)) =— %[—f + aTﬁ],

which proves the result.

2.11. Evaluation of Integral of Meromorphic Function

Definition. A function f(z), whose only singularities in the finite of the
plane are poles, is called a meromorphic function.

We now prove a very useful theorem.

If f(z) is meromorphic inside a closed contour C and is not zero at any
point on the contour, then

f(z)dz=N—P, 2.11.1)

| ,
%i f(z)

where N is the number of zeros and P the number of poles inside C. ( A pole or
zero of order m must be counted m times.)

Suppose that z =z is a zero of order m, then, in the neighbourhood of this
point

f(2)=(z2-2z0)" 0(2).

where ¢(z) is analytic and not zero. Hence
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Since the last term is analytic at z =z, we see that f ) has a simple pole at
f(z)
7 = 7o with residue m. Similarly, if z=¢&, is a pole of order k, we see that ]} ((Z))
2

has a simple pole at z =&, with residue — k. It follows, by the formula (2.6.1), that
the left-hand side of (2.11.1) is equal to D m—» k=N —P.

If f(z) is analytic in C, then P = 0, and the integral on the left of (2.11.1) is
equal to N.

. d )
Since d_zln fl(z)= )

, we may write the result in another form,

G R
if(Z)dZ_ACI f( ),

where A denotes the variation of In f(z)round the contour C. The value of
the logarithm with which we start is immaterial, and since

In f(z)zln‘f(z)‘ +iarg f(z)

and ln‘ f (z)‘ is one-valued, the formula may be written

1
N=——Ac arg f(z).
27

This result is known as the principle of the argument.

2.12. Evaluation of a Type of Infinite Integral

Let f(z)be a function of z satisfying the conditions:
1) f(z) is meromorphic in the upper half-plane;
2) f(z) has no poles on the real axis;

3) zf(z) = 0 uniformly, as ‘ Z ‘ — oo for 0<arg z < 7;
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Fo0 0
4) J. f(x)x and J. f(x)}x both converge, then
0

—0Q

_ff(x)dx=2m'zn:Re s(f(z)zp ), (2.12.1)
oo k=1

where z, are poles of f(z) in the upper half-plane.

Choose as contour a semicircle, center the origin and radius R, in the upper
half-plane. Let the semicircle be denoted by 7', and choose R large enough for the
semicircle to include all the poles of f(z). Then, by the reside theorem,

Tf(x)dx+ J.f(z)dz=27zizii:Res(f(Z);Zk).

From (3)), if R be large enough,

f (Z X < & for all points on 7, and so

[ )z

T
[ £Re)Re™ id6
r 0

V2
<g_[d0:pe.
0

Hence, as R — oo, the integral round /" tends to zero. If (4)) is satisfied, it follows
that

Tf(x)dx: 2m'i_ Res(f(z) 24 )-

Example. Prove that, if a >0

—+oo

_[ dx _ V.4
0 xt+at 2\/§a3

If z* +a* =0, we have z*=qa"%""
z; @, s, Iz,

are at ae* , ae* ,ae* ,ae* , Of these, only the first two are in the upper-half

plane. The conditions of the theorem are plainly satisfied, and so

, and the simple poles of the integrand

X . n e
I = ZmZ Reseduesat z=ae* ,ae *
xt+at
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Let k denote any one of these, then k* =—a®* and the residue at the simple pole

-1
z=k is lim(z —k)(z4 —k4) . This may be evaluated by Cauchy’s formula, as
72—k

applied to the evaluation of limits of expressions of the indeterminate form [g},

and so
poe=k) 11k
ok g4kt k47 4k 44t
Hence
too d z 311' il _El
J 7 al [=2m—|aet +aet |=———|e* —ae * |=
X +a 4a 2a
T
=———2isIn— =
2a° \/§a3
—+oo
dx V.4
Hence = .
'([x4+a4 2\/5613

II1. Miscellaneous Problems

1. Show that the functions w=sin z, w=cos z, and w=z"(n is an integer) satisfy
the Cauchy — Riemann equations.

2. Find the analytic function f(z), the real part of which equals
a) x3 —3)cy2 b) x2 - y2 +2x c) %
X" +y
X X -
d)ﬁ—2y e) 2e” siny
x“+y

3. Find the analytic function f(z), the imaginary part of which equals
Y -1y

5 > b)2xy + 3x ctan  —,x>0
(x+1)" +y X

a) —

d) e*(ycosy+xsiny)+x+y
4. Show that the function f(z)= ‘xy‘ is not analytic at the origin although the

Caushy — Riemann equations are satisfied at this point.
5. Prove that the functions
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a) u=x> —3)cy2 +3x°2 —3y2 +1
b) u=sinxcoshy+2cosxsinhy+)c2 —y2 + 4xy

both satisfy Laplace’s equation, and determine the corresponding analytic
function u + iv in each case.

6. Evaluate J Im zdz if a contour C is the straight line segment joining points z =0

C
and z=2+1.
7. Compute the integral I 2 if C is the circle of radius 3 with center at O.
Z—2i
8. Evaluate J. o ZC?Z where C is the circle with center at z = —i.
&t
: d : : : :
9. Compute the integral Z—Z, where C is the circle of radius 2 with center at
vz +9
7=2+1.
: dz : : :
10. Evaluate the integral T where C is the circle of radius R<2

t(z=1(z+1)
with center at z =1.

11. When C is the circle ‘Z ‘ =2, use Cauchy’s integral theorem or Caushy’s
integral formula to prove that

a) ZZdZ =0 b)jsecidz=0
vz +9 2
2
o) _[Z +4dz=10m' d) _[ s1nhz
- z—1 2z+7a

12. Establish these expansions in the region ‘ Z ‘ <1
(o] 1 (o]

-3 R

1+Z n=0 -z n=0

13. Find the zeros of the functions and determine their order:

a) (22 +9)(c2 +4) b) (1—e?)(z2 -4)

sin° Z

) zsinz d)
4
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14. Expand the function f(z)= z%e'% in a Laurent’s series about z = 0.

: Z Z . , :
15. Expand the function f(z)=cos in a Laurent’s series about z = 2.

(z-2)°
16. Examine a behavior of the functions
2
Z Z _
a) b) c)e ©
3+ 72 5-2z4
d) sin z e) el?

17.Classify the points z=0, z=1, and the point at infinity in relation to the

: -2 .1 : :
function f(z)= < sin —, and find the residues of f(z) at z=0,and z=1.

Z Z
18. Find the residues of these functions at their singular points:
z+1 | cos z
a) < b) - ¢) ——
z—1 sin z (z—2z)
1 inz°
d) 72 cosh— e) ALt
2 5
Z Z
Answers. a) 2; b)*+1; ¢) —sin zg; d) %; e) 0.

19.Show that the singular point z =0 of the function f(z)= 1s not isolated.

sin —

Z
20.With the aid of the Cauchy-Riemann conditions prove that the components
u and v of an analytic function u + iv are harmonic functions, that is, they are
continuous with continuous partial derivatives up to the second order, and

satisfy Laplace’s equation
uxx(x, y)+ Uy, (x, y)= 0.

21.Find the residues of the following functions at their poles:

2 nz
2) 77 +1 b) e . c)%
7—2 7—1 (Z2+1)
d) - n>0 e) ——— f)
1) .
g) S 2Z4 h) tan z 1) cot z
(z+1)

22 Find the residues of the functions
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1

1 1
a) et b) cos— C) sin—
Z Z

23.Compute the integral , where C 1s the positively oriented circle

C zt+1
x? + y2 =2x.
dz
¢ (-1 (ZZ "‘1),
circle x> + y =2x+2y.
25. Calculate with the aid of the Cauchy’s residue theorem the integrals

24. Evaluate the integral where C is the positively oriented

+oo D +oo
. 1
) [~ b) jLn,mo
_.oox +1 _oo(x2+1)
o [ 5——dra>0 d)j . a>0,b>0
S x"+a A x +a? x +b)
&) . czosx I J~ xsin x I
X" +9 _wx +4x+ 20

IY. APPENDIX

Fundamental Elementary Functions of Complex Variables

e =cosz+isinz e ¥ =cosz—isinz
. elZ_e—lZ elZ +e—lZ
esing=—— °Ccosz=———
2i
Z —Z Z —Z
. e-—e e +e
esinhz = ecosh z =
2 2

°lnz=ln‘z‘+iargz (argze(—n;n))
elnz=Inz+i2nk, ke Z

: Z+z -2
=X+ =— =
Z=x+Iiy X 5 y >

®sin z =sinxcosh y+icosxsinhy

® cos z =cosxcosh y —isinxsinh y
¢ sinh z =sinh xcos y +icoshxsiny
® cosh z =coshxcos y —isinh xsin y

°lnz= %ln(x2 + y2)+ iarctan>
x
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