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    I. COMPLEX NUMBERS 

  

  1.1. The Fundamental Operations 

  

 The square of a real number is never negative. Thus, for example, the 

elementary quadratic equation 12 −=x  has no solution among the real numbers. 

New types of numbers, called complex numbers, have been introduced to provide 

solutions to such equations. 

 

 Definition. By a complex number we mean an ordered pair of real numbers 

which we denote by ( )yx, . 

The first member, x, is called the real part of the complex number; the second 

member, y, is called the imaginary part. We write 

  ( )., yxz =  

 The equality relation and the arithmetical operations are defined according 

to the following rules: 

 

1. equality ( )11 , yx  = ( )22 , yx  takes place if and only if 21 xx = , 21 yy = ; 

 

2. ( ) ±11 , yx ( )22 , yx  = ( );, 2121 yyxx ±±  

 

3. ( ) ⋅11 , yx ( )22 , yx  = ( )., 21212121 xyyxyyxx +−  

 

If the fundamental operations are thus defined, we easily see that the 

fundamental laws of algebra are all satisfied. 

 

1. The commutative and associative laws of addition hold: 

 

( ) ( ) .

;

321321321

1221

zzzzzzzzz

zzzz

++=++=++

+=+

 

 

2. The same laws of multiplication hold: 

 

( ) ( ) .         

;      .3

321321321

1221

zzzzzzzzz

zzzz

==

=
 

 

4. The distributive law holds: 

 

( ) .3231321 zzzzzzz +=+  



 5 

1.2. Geometrical Representation of Complex Numbers 

  

 Just as real numbers are represented geometrically by points on a line, so 

complex numbers are represented by points in a plane. The complex number 

( )yxz ,=  can be thought of as the point with coordinates ( )., yx  When this is done, 

the definition of addition amounts to addition by the parallelogram law. 

 The idea of expressing complex numbers geometrically as points on a plane 

was formulated by Gauss in his dissertation in 1799 and, independently, by Argand 

in 1806. Gauss later coined the somewhat unfortunate phrase “complex number”. 

 

 1.3. The Imaginary Unit 

 

 It is convenient to think of the complex number ( )yx.  as a two-dimensional 

vector with components x and y. Adding two complex numbers is the same as 

adding two vectors component by component. The complex number ( )0,11 =  plays 

the same role as a unit vector in the horizontal direction. The analog of a unit 

vector in the vertical direction will now be introduced. 

 

 Definition. The complex number ( )1,0  is defined by i and is called the 

imaginary unit. 

 

 Theorem. Every complex number ( )yxz ,=  can be represented in the form 

yixz +=  which is called standard or rectangular form of complex numbers. 

 

 Proof.  

 

 ( ) ( ) ( ) ( ) ( ) .1,00,1,00.. yixyxyxyxz +=+=+==  

 

 Let us now prove that 12 −=i . In fact, 

 

 ( )( ) ( ) .10,11,01,02 −=−==i  

 

 Example 1.3.1.  

 

Find the product of iz 321 +=  and .452 iz −=  

  

Solution. 

 

 =21zz ( )( )ii 4532 −+ = .7221215810 2
iiii +=−+−  
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Exercise 1.3.1. Prove that  













+=−

+=−

+=

=

=

34 if ,

24 if ,1

14 if ,

4 if ,1

kni

kn

kni

kn

ni  

 

  

1.4. Absolute Value of a Complex Number and Conjugate Complex Number 

 

 

 Definition. If ( )yxz ,= , we define the modulus, or absolute value, of z to 

be the non-negative real number z   given by 

 
22

yxz += . 

 

 Geometrically, z  represents the length of the 

segment joining the origin and the point ( )yxz ,= . 

 

 

 

 

Definition. The number yix − is said to be conjugate to z and is denoted by z . 

    

 Let us calculate .zz   

 

 ( ) ( ) ( ) .
22222

zyxyixyixyixzz =+=−=−⋅+=  

 

   1.5. Definition of Division 

 

 The division is an operation inverse to the multiplication. 

The number z is called the quotient of 1z and 2z if 21 zzz ⋅= . If 02 ≠z  then on 

multiplying both parts of the relation 21 zzz ⋅=  by 2z  we get 

 

 ( )2221 zzzzz =  and 
22

21

2

1

zz

zz

z

z
z == . 

 

 Example .5.1 Find the quotient of iz 321 +=  and .412 iz +=  

 

 Solution. 

 

y

x

0

-y

x,y

x,-y

( )

( )

y

z--

--z

-
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( ) ( )
( ) ( )

.
17

5

17

14

161

514

4141

4132

41

32

2

1 i
i

ii

ii

i

i

z

z
−=

+

−
=

−⋅+

−⋅+
=

+

+
=  

 

 

 1.6. The Trigonometric Form of a Complex Number 

 

If the point ( ) yixyxz +== ,  is represented by 

polar coordinates ϕϕϕϕρρρρ   and  ,we can write ϕϕϕϕρρρρ cos=x  

and ϕϕϕϕρρρρ sin=y  then ( )ϕϕϕϕϕϕϕϕρρρρ sincos iz += . This form 

is called the trigonometric form of a complex number . 

The x-axis along which x is reckoned is called 

real axis and the y-axis along which y is reckoned is the 

imaginary axis. 

The two numbers ϕϕϕϕρρρρ   and   uniquely determine z. 

Conversely, the positive number ρρρρ  is uniquely determined by z. In fact, z=ρρρρ  

 

22
yx +=ρρρρ       (1.6.1) 

 

However, z determines the angle ϕϕϕϕ  only up to multiples of ππππ2 . There are 

infinitely many values of ϕϕϕϕ  which satisfy the equations ϕϕϕϕcoszx = , .sin ϕϕϕϕzy =  

 

The unique real number ϕϕϕϕ  which satisfies the condition ππππϕϕϕϕππππ ≤<−  is 

called the principal argument of z and is denoted by :arg z zarg=ϕϕϕϕ , then 

,cos
22

yx

x

+
=ϕϕϕϕ  ,sin

22
yx

y

+
=ϕϕϕϕ    (1.6.2) 

Let 1z  and 2z  be two complex numbers written in trigonometric form. The 

product of  1z  and 2z  can be found by using several trigonometric identities. 

 

If ( )2111 sincos ϕϕϕϕϕϕϕϕρρρρ iz += , and ( )2222 sincos ϕϕϕϕϕϕϕϕρρρρ iz += , then 

 

  ( )21
2

2121212121 sinsincossinsincoscoscos κκκκϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕρρρρρρρρ iiizz +++⋅=  = 

             = ( ) ( )( ) =++− 2121212121 sincoscossinsinsincos ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕρρρρρρρρ ico  

    = ( ) ( )( )⇒+++ 212121 sincos ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕρρρρρρρρ i  

  ( ) ( )( )212121 sincos ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕρρρρρρρρ +++ i     (1.6.3) 

 

 The modulus for the product of two complex numbers in trigonometric 

form is the product of moduli of the two complex numbers, and the argument of 

the product is the sum of the arguments of these numbers. 

y

x

0

y

x

ρ

ϕ
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Similarly, 

2

1

2

1

ρρρρ

ρρρρ
=

z

z
( ) ( )( )2121 sincos ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ −+− i     (1.6.4) 

The modulus for the quotient of two complex numbers in trigonometric 

form is the quotient of moduli of the two complex numbers, and the argument of 

the quotient is the difference of the arguments of these numbers. 

 

Example 1.6.1.  

 

Find the product of 311 iz +−=  and iz +−= 32 . 

 

Solution. 

 

1) Using (1.6.1) and (1.6.2) write 1z  and 2z  in trigonometric form: 









+=

3

2
sin

3

2
cos21

ππππππππ
z ;    








+=

6

5
sin

6

5
cos22

ππππππππ
z  

 

2) Use (1.6.3) 









+=

6

9
sin

6

9
cos421

ππππππππ
izz 








+=

2

3
sin

2

3
cos4

ππππππππ
i = ( ) .404 ii −=−  

 

 

 1.7. Integral Powers and Roots of Complex Numbers 

 

Let ( )ϕϕϕϕϕϕϕϕρρρρ sincos iz += . Then 2
z  can be written as 

=⋅ zz ( )ϕϕϕϕϕϕϕϕρρρρ sincos i+ ( )ϕϕϕϕϕϕϕϕρρρρ sincos i+ = 2ρρρρ ( )ϕϕϕϕϕϕϕϕ 2sin2cos i+ . 

This formula can be extended for raising a complex number to the nth power: 

 

  ( )ϕϕϕϕϕϕϕϕρρρρ ninz
nn sincos +=     (1.7.1) 

 

The formula  

( )n
i ϕϕϕϕϕϕϕϕ sincos + ϕϕϕϕϕϕϕϕ nin sincos +=  

 

 is called De Moivre’s formula. 

 

 Definition. A number w is called the nth root of z if zwn =  and is denoted 

by 

 

     n zw = . 
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 Let  ( )θθθθθθθθ sincos irw +=   and   ( )ϕϕϕϕϕϕϕϕρρρρ sincos iz += . Then as zwn =  we 

have  

 ( )θθθθθθθθ ninr n sincos + = ( )ϕϕϕϕϕϕϕϕρρρρ sincos i+ . 

Two complex numbers written in trigonometric form are equal if and only if their  

moduli are equal and their arguments are equal up to multiples of ππππ2 . Thus 

  




+=

=

ππππϕϕϕϕθθθθ

ρρρρ

kn

r
n

2 







+
=

=

⇒

n

k

r n

ππππϕϕϕϕ
θθθθ

ρρρρ

2 . 

If ( )ϕϕϕϕϕϕϕϕρρρρ sincos iz +=  is a complex number, then there are n distinct nth roots of 

z given by the formula 

 

  






 +
+

+
=

n

k
i

n

k
w n

k

ππππϕϕϕϕππππϕϕϕϕ
ρρρρ

2
sin

2
cos    (1.7.2) 

  for .1,...,2,1,0 −= nk  

 

 Example 1.7.1. Find the three cube roots of 27. 

 

 Solution. Write 27 on trigonometric form: 

 

( ).0sin0cos2727 i+=  

 

Then, using formula (1.7.2), the cube roots of 27 are 

 








 +
+

+
=

3

20
sin

3

20
cos273 ππππππππ k

i
k

wk   for .2,1,0=k  

 

Substitute for k to find the cube roots of 27 : 

 

 ( )0sin0cos30 iw += = 3 

 ,
2

33

2

3

3

2
sin

3

2
cos31 iiw +−=








+=

ππππππππ
 

 .
2

33

2

3

3

4
sin

3

4
cos32 iiw −−=








+=

ππππππππ
 

For k = 3 cosines and sines of the angles start repeating, thus there are only three 

cube roots of 27. 
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  1.8. Complex Exponentials 

 

 Let us write a complex number in trigonometric form 

   ( )ϕϕϕϕϕϕϕϕρρρρ sincos iaz +=  

Using Euler’s formula 

   ϕϕϕϕϕϕϕϕϕϕϕϕ sincos +=ie     (1.8.1) 

we obtain  ϕϕϕϕρρρρ iez =  in the so-called exponential form. 

 Representing complex numbers in exponential form is particularly useful in 

connection with multiplication and division since we have 

 

 
( )

21
21

2
2

1
121

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ
ρρρρρρρρρρρρρρρρ

+
==

iii
eeezz   

and  

  

 
( )

21

2

12
2

1
1

2

1 :
ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ

ρρρρ

ρρρρ
ρρρρρρρρ

−
==

iii
eee

z

z
 

 

If  ϕϕϕϕρρρρ iez =  then  

( ) ==
nin ez ϕϕϕϕρρρρ ϕϕϕϕρρρρ inne  

 

This is De Moivre’s formula in exponential form. 

On replacing ϕϕϕϕ  for ϕϕϕϕ−  we get such formula 

 ϕϕϕϕϕϕϕϕϕϕϕϕ sincos ie i −=−      (1.8.2) 

 

On adding and subtracting formulas (1.8.1) and (1.8.2) we have 

 

  
2

cos
ϕϕϕϕϕϕϕϕ

ϕϕϕϕ
ii

ee
−+

=   
i

ee
ii

2
sin

ϕϕϕϕϕϕϕϕ

ϕϕϕϕ
−−

= . 

 

 The product of a complex number ϕϕϕϕρρρρ i
ez =  by the factor ααααie  is 

 

  z
ααααie =

( )ααααϕϕϕϕρρρρ +i
e  

 

The geometrical interpretation of this fact is that the  multiplication by ααααie  makes 

the vector representing the complex number z rotate about the origin through the 

angle αααα . In particular, putting 
2

ππππ
αααα =  we see that the multiplication by ie

i

=2

ππππ
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results in the rotation of the representing vector of the number z through 090  in 

counterclockwise direction.  

 

 Example 1.8.1. 

Calculate the product ( ) ( )23
131 ii +− . 

 

 Solution. 

 

Expressing complex numbers in the exponential form, we get  

( ) ( )23
131 ii +− = ( ) .162182222 23

2

4

3

3 iieeee

i

i

ii

−=⋅−=⋅=



























−

−
ππππ

ππππ
ππππππππ

 

 

   II. Functions of a Complex Variable 

 

  2.1. Definitions. Continuity 

 

 If ivuw +=   and iyxz +=  are any two complex numbers, we might say 

that w is a function of z, ( )zfw = , if, to every value of z in a certain domain D, 

there correspond one or more values of w.  

 This definition, similar to that given for real variables. On this definition, a 

function of the complex variable z is exactly the same thing as a complex function        

( ) ( )yxviyxu , , +  of two real variables x and y. 

 For functions defined in this way, the definition of continuity is exactly the 

same as that for functions of a real variable. 

Definition. The function  ( )zf  is continuous at the point 0z  if given any 

,0>εεεε  we can find a number 0>δδδδ  such that 

  ( ) ( ) εεεε<− 0zfzf  

for all points z of D satisfying .0 δδδδ<− zz  

The number δδδδ  depends on εεεε  and also, in general, upon 0z . In this case  we write 

 

  ( ) ( )0

0

lim zfzf
zz

=
→

     (2.1.1) 

A difference   zzz ∆=− 0  is called increment or change of an argument z.  

( ) ( ) wzfzf ∆=− 0  is called the increment or the change of a function ( ).zf  

 The condition of a continuity of a function ( )zf  can be stated in such a way 

   

  0lim
0

=∆
→∆

w
z

     (2.1.2) 
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   It easy to show that this definition of continuity is equivalent to the statement 

that a continuous function of z is merely a continuous complex function of the two 

variables x and y  ( ) ( ) ( )yxivyxuzf ,, += . 

 

  2.2. Differentiability 

 

 Let ( )zfw =  be one-valued function defined in a domain D, then ( )zf  is 

differentiable at a point 0z of D if 
z

w

∆

∆
 tends to a unique limit as 0→∆z , provided 

that z is also a point of D, that is 

  
z

w

z ∆

∆

→∆
lim

0

=
( ) ( )

( )0
0

0

0
lim zf

zz

zfzf

z

′=
−

−

→∆
  (2.2.1) 

That continuity does not imply differentiability is seen from the following 

example: 

Let ( ) .  
2

zzf =   This continuous function is differentiable at the origin, but 

nowhere else. For if 00 ≠z  we have 

0

0000

0

00

0

2
0

2

zz

zzzzzzzz

zz

zzzz

zz

zz

−

−+−
=

−

−
=

−

−
= 

( ),2sin2cos0
0

0
0 ϕϕϕϕϕϕϕϕ izz

zz

zz
zz −+=

−

−
+   

where ( ).arg 0zz −=ϕϕϕϕ  

It is clear that this expression does not tend to a unique limit as 0zz → . 

If 00 =z  the incrementary  ratio is z , which tends to zero as 0→z . 

 

  2.3. Analytic Functions 

 A function of z which is one-valued and differentiable an every point of a 

domain D is said to be analytic in the domain D.  

 A function may be differentiable in a domain D save possible for a finite 

number of points. These points are called singularities of ( )zf . We next discuss 

the necessary and sufficient conditions for a function to be analytic. 
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1. The necessary conditions for f(z) to be analytic. 

If  ( ) ( ) ( )yxivyxuzf ,, +=  is differentiable at a given point z, the ratio 

( ) ( )
z

zfzzf

∆

−∆+
 must tend to a definite limit as 0→∆z  in any manner. Now 

.yixz ∆+∆=∆   Take z∆  to be wholly real, so that 0=∆y , then      

( ) ( ) ( ) ( )
x

yxvyxxv
i

x

yxuyxxu

∆

−∆+
+

∆

−∆+ ,,,,
 

must tend to a definite limit as 0→∆x . It follows that partial derivatives 
x

v

x

u

∂

∂

∂

∂
 ,   

must exist at the point (x, y) and the limit is .
x

v
i

x

u

∂

∂
+

∂

∂
 Similarly, if we take z∆  to 

be wholly imaginary, so that 0=∆x , we find that 
y

v

y

u

∂

∂

∂

∂
 ,  must exist at the point 

(x, y) and the limit in this case is .
y

u
i

y

v

∂

∂
−

∂

∂
 

Since the two limits obtained must be identical, on equating real and imaginary 

parts we get 

  










∂

∂
−=

∂

∂

∂

∂
=

∂

∂

x

v

y

u

y

v

x

u
, 

     (2.3.1) 

These two relations are called the Cauchy-Riemann differential equations. 

2. Sufficient conditions for ( )zf to be analytic. 

 It is possible to prove that, the continuous one- sided function ( )zf  is analytic in a 

domain D if four partial derivatives yyxx vuvu ,,,  exist, are continuous and satisfy 

the Cauchy-Riemann differential equations at each point of D. 

 If   ( )iyxfivu +=+ , where ( )zf  is an analytic function, then the real 

functions u and v of the two real variables x and y are called conjugate functions. 

Let these functions satisfy the relation  

  yxxy θθθθθθθθ =  
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then by partial differentiation of Cauchy-Riemann equations (2.3.1) we have 

  
2

2

2

22

y

u

x

u

yx

v

∂

∂
−=

∂

∂
=

∂∂

∂
  and  

2

2

2

22

y

v

x

v

yx

u

∂

∂
−=

∂

∂
−=

∂∂

∂
. 

Hence both u and v satisfy Laplace’s equation in two dimensions 

  0
2

2

2

2
2 =

∂

∂
+

∂

∂
=∇

yx

θθθθθθθθ
θθθθ    (2.3.2) 

 This equation occurs frequently in mathematical physics. It is satisfied by 

the potential at a point not occupied by matter in a two-dimensional gravitational 

field. 

  2.4. Complex Integration 

  Let ( )zf  be any complex function of  z, continuous along a piece-

wise smooth curve C  with end-points a and b, and write ( ) ( ) ( ).,, yxivyxuzf +=   

We divide the arc C into n subarcs by points 

,0 az =  ,,...,, 121 −nzzz bzn =  and denote .1 kkkkk yixzzz ∆+∆=∆=− −  

Next we take in each subarc an arbitrary point kkk iηηηηξξξξςςςς +=  and form a sum  

( ) k

n

k

k zf ∆∑
=1

ςςςς = ( ) ( )( )∑
=

∆−∆
n

k

kkkkkk yvxu
1

,, ηηηηξξξξηηηηξξξξ + 

 + i ( ) ( )( )∑
=

∆+∆
n

k

kkkkkk yuxv
1

,, ηηηηξξξξηηηηξξξξ      (2.4.1) 

This sum is called an integral sum.  

Let’s denote  ( ) 0,...,max 21 →=∆∆∆ nnzzz δδδδ  as ∞→n . 

Definition. The limit of integral sums (2.4.1) (provided it exists) as ∞→n  

is termed a complex integral along a curve C and is written as  

   ( ) ( )∫∑ =∆
=∞→

C

k

n

k

k
n

dzzfzf
1

lim ςςςς    (2.4.2) 

In addition 
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( )∫
C

dzzf = ( ) ( )∫ −
C

dyyxvdxyxu ,, + ( ) ( )∫ +
C

dyyxudxyxvi ,,  (2.4.3) 

 Example. Compute the integral 

  ∫
=2

2
Im

z

dzzz  

 Solution. Taking into account that for the function ( ) 2Im zzzf = , 

( ) yxyxu
22, = , ( ) 22, xyyxv = and using the formula (2.4.3) we obtain 

 ∫
=2

2
Im

z

dzzz = ∫
=+

−
4

22

22

22

yx

dyxyydxx  + i ∫
=+

+
4

22

22

22

yx

ydyxdxxy . 

The equation of the contour 2  =z  we  write in such a way 

 ).20(  sin2 ,cos2 ππππ≤≤== ttytx  

So, we have 

∫
=2

2
Im

z

dzzz = ∫−
ππππ2

0

22
sincos2(32 tdtt  + ( )∫ −

ππππ2

0

33
)sincossincos dttttti .16ππππ−=  

   2.5. Cauchy’s Theorem 

If ( )zf  is an analytic function and if ( )zf ′  is continuous at each point 

within and on a closed contour C, then  

 ( )∫
C

dzzf  = 0      (2.5.1) 

Let D be the closed domain which consists of all points within and on C. 

Then by the formula (2.4.1 ) we can write the integral (2.5.1) as a combination of 

curvilinear integrals  

 ( )∫
C

dzzf  = ∫ ∫ ++−
C C

udyvdxivdyudx .  

We transform each of these integrals by Green’s theorem, which states that, if 

( ),, yxP  ( ),, yxQ  
x

Q

∂

∂
, 

y

P

∂

∂
 are all continuous functions of x and y in D, then 
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  .∫∫∫ 








∂

∂
−

∂

∂
=+

DC

dxdy
y

P

x

Q
QdyPdx  

Since  ( ) yyxx iuvivuzf −=+=′  and, by hypothesis, ( )zf ′  is continuous in D, 

the conditions of Green’s theorem are satisfied and so 

  ( )∫
C

dzzf ∫∫ 








∂

∂
+

∂

∂
−=

D

dxdy
y

u

x

v
0=









∂

∂
−

∂

∂
+ ∫∫

D

dxdy
y

v

x

u
i  

by virtue of the Cauchy-Riemann equations. 

 

  2.6. Cauchy’s Integral Formula  

 

 Theorem. If ( )zf  is analytic within and on a closed contour C and  0z  be a 

point within C,  then 

 

( )
( )∫ =

−
C

zf
zz

dzzf

i
0

02

1

ππππ
     (2.6.1) 

Describe about 0zz =  a small circle γγγγ  of radius δδδδ lying entirely within C. In 

the region between C and γγγγ  the function ( )
( )

0zz

zf
z

−
=ϕϕϕϕ  is analytic. By making a 

cross-cut joining any point of γγγγ  to any point of C we form a closed contour Г 

within which ( )zϕϕϕϕ  is analytic, so that, by Cauchy’s theorem, 

 ( ) .0∫ =
Г

dzzϕϕϕϕ  

In traversing the contour Г in the positive (counterclockwise) sense, the 

cross-cut is traversed twice, once in each sense, and so it follows that    

 

   

 ( )∫ −
C

dzzϕϕϕϕ ( ) .0∫ =
γγγγ

ϕϕϕϕ dzz  

 

 

  

 

Now 

 ( )∫ =
γγγγ

ϕϕϕϕ
ππππ

dzz
i2

1
 

 

z0

C

γ
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=
( )

∫ =
−

γγγγ
ππππ 02

1

zz

dzzf

i

( )
∫ −
γγγγ

ππππ 0

0

2

1

zz

dzzf

i
 

( ) ( )
∫ −

−
+

γγγγ
ππππ

.
2

1

0

0 dz
zz

zfzf

i
  (2.6.2) 

 

Now on  γγγγ   ϕϕϕϕδδδδ i
ezz =− 0 , and so the first of the two terms on the right becomes 

 

 
( )

( )0

2

0
2

zf
e

die

i

zf

i

i

=∫
ππππ

θθθθ

θθθθ

δδδδ

θθθθδδδδ

ππππ
 

 

On using the statement that if ( )zf  is continuous on a contour L, of length l, on 

which it satisfies the inequality ( ) ,Mzf ≤  then  ( ) ,Mldzzf

L

≤∫  we get, that the 

modulus of the second term on the right of (2.6.2) cannot exceed 

( ) ( ) πδπδπδπδ
πδπδπδπδ γγγγ

2max
2

1
0 ⋅− zfzf . 

Since ( )zf  is continuous at 0zz =  this expression tends to zero as .0→δδδδ  This 

proves the theorem. 

 Complex integral in the formula (2.6.1) is called a Cauchy type integral. 

 

 

  2.7. Complex Series. Power Series 
 

 Let an infinite sequence of complex numbers be given: 

 

  ... ,2 ,1  , =+= nia nnn ββββαααα  

 Definition. An expression ......21 ++++ naaa  is called a complex series. 

 A series is briefly written as ∑
∞

=1n

na . 

 The sum  nn aaaS +++= ...21  is termed the nth partial sum of the series. 

Making n take on the values 1, 2, … we obtain the sequence of partial sums of the 

series.  

 As n increases indefinitely a greater and still greater number of terms of the 

series is involved in the sum .nS  

 

 Definition. If the sequence of partial sums of the given series has a definite  

limit an ∞→n  i.e. SSn
n

=
∞→

lim  the series is said to be convergent and the number 

S is called the sum of the series. If the sequence nS  does not tend to any limit or 

tends to infinity the series is said to be divergent. 
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 The following theorem helps to reduce the study of complex series to that of 

real series. 

 Theorem. The series ∑
∞

=1n

na  converges if and only if two real series 

∑
∞

=1n

nαααα and ∑
∞

=1n

nββββ  are convergent. 

 Proof. To prove this we denote nn αααααααααααασσσσ +++= ...21 ,  

nn ββββββββββββττττ +++= ...21 ; then ,nnn iS ττττσσσσ +=  hence 

  

  n
n

S
∞→

lim  = n
n

σσσσ
∞→

lim + n
n

i ττττ
∞→

lim . 

The theorem has been proved. 

 

 Definition. A series ∑
∞

=1n

na  is said to be absolutely convergent if the series 

......21 ++++ naaa  is convergent. 

 

 Consider the series ∑
∞

=0n

n
n zc  or ( )∑

∞

=

−
0

0 ,
n

n
n zzc  where the coefficients nc  

and  z, 0z  may be complex. Since the latter series may be obtained from the former 

by a simple change of origin, the former may be regarded as a typical power series. 

 So far as absolute convergence is concerned, everything that has been 

proved for absolutely convergent series of real terms extends at once to complex 

series, for the series of moduli ...    
2

210 +++ zczcc  is a series of positive 

terms. 

 The most useful convergence test for power series is Cauchy’s root test, 

which states that that a series of positive terms ∑
∞

=0n

nu  is convergent or divergent 

according as n
n

n
u

∞→
lim  is less than or grater than unity. If we write ,

1
 lim

R
cn

n
n

=
∞→

 

then we easily see that the power series ∑
∞

=0n

n
n zc  is absolutely convergent if 

,  Rz <  divergent if  ,  Rz >  and if 0  =z  we can give no general verdict and 

the behavior of the series may be of the most diverse nature. 

 The number R is called the radius of convergence, and the circle, center the 

origin, and radius R, is the circle of convergence of the power series. 

 Clearly there are three cases to consider 

1) ,0=R  
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2) R finite, 

3) R infinite. 

The first case is trivial, since the series is then convergent only when .0=z   

In the third case the series  converges for all values of  z.  

In the second case the radius of the circle of convergence is finite and the power 

series is absolutely convergent at all points within this circle, and divergent at all 

points outside it. 

Example.Find the redii of convergence of the following power series. 

1) ( ) ;sin
0

∑
∞

=n

n
zin    2) ( )( ) ;13

1

∑
∞

=

−+
n

nnn
z       3) ∑

∞

=1

.
!

n

n

n
z

n

n
 

  

Solution 

. 

1) Making use of the ratio test, we find 

.
1

2
lim

1

sinlim

1

eeein
R

n

nn

n

n

n

=
−

==
−

∞→
∞→

 

 

  

2) ,
 lim

1

n
n

n
c

R

∞→

=  but ( ) .13 
nn

nc −+=  

Since the upper limit of a sequence is the greatest point of accumulation, then 

.4 lim =
∞→

n
n

n
c  Hence .

4

1
=R  

3) In this case we use D’Alembert’s test 

 

( )
( )

.
1

1lim
!1

1!
lim

 

 
lim

1

1

e
nnn

nn

c

c
R

n

nn

n

n
n

n

n
=








+=

+

+
==

∞→

+

∞→+∞→
 

 

2.8. Taylor’s and Laurent’s Theorems 
 

Theorem. If ( )zf  is analytic in , 0 Rzz ≤−  and if z is a point such that 

( ),Rr  0 <=− rzz  then 

( ) ( ) ,
0

0∑
∞

=

−=
n

n
n zzczf      (2.8.1) 

where 
( )

.
!

0
)(

n

zf
c

n

n =  
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Let C be a circle of radius ,ρρρρ  centre  ,0zz =  where ,Rr << ρρρρ  and consider the 

identity 

 
zt −

1
 = +

− 0

1

zt ( )
+

−

−
2

0

0

zt

zz
… + 

( )

( )
+

−

− −

n

n

zt

zz

0

1
0 ( )

( )
⋅

−

−
n

n

zt

zz

0

0

zt −

1
. 

Multiply each term by 
( )
i

tf

ππππ2
 and integrate round C we clearly obtain 

( )zf  = ( ) +0zf ( )( ) +−′ 00 zzzf … + 

( ) ( )
( )

( ) n
n

n

Rzz
n

zf
+−

−

−
−

1
0

0
1

!1
 

where 

 
( ) ( )

( ) ( )
.

2
0

0
∫

−−

−
=

C
n

n

n
ztzt

dttf

i

zz
R

ππππ
 

This is Taylor’s theorem with remainder .nR  

Since ( ) Mzf ≤  on C we readily see that  

( )
,

2

2

n

n

n

n

r
K

r

Mr
R 








=

−
=

ρρρρρρρρρρρρ

πρπρπρπρ

ππππ
 

where K  is constant independent of n. 

 Since ρρρρ<r  we see that . as ,0 ∞→→ nRn  

 

 Theorem. Let 1C  and  2C be two circles of centre 0z  with radii 1R  and  2R  

( 1R  < 2R ); then, if ( )zf  be analytic on the circles and within the annulus 

between 1C  and  2C , 

 ( ) ( ) ,0∑
∞

−∞=

−=
n

n
n zzczf       (2.8.2) 

z being any point of the annulus. The coefficients nc  are given by 

 
( )

( )
... ,2 ,1 ,0  ,

2

1
1

0

±±=
−

= ∫ +
n

zt

dttf

i
c

C
nn

ππππ
   (2.8.3) 
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where C is any closed contour, lying within the annulus between 1C  and  2C . 

 The proof of this theorem is analogous to that of the previous theorem. 

 The series (2.8.2) is called Laurent’s series. 

Now we determine the relation between Laurent and Fourier series. Let the 

function ( )zf be analytic within the annulus ,1  1 εεεεεεεε +<<− z  then this function 

can be represented by Laurent’s series 

 ( ) ,∑
+∞

−∞=

=
n

n
n zczf  

where  

 
( ) ( ) ( )Zndeef

df

i
c

ini

nn ∈== −

=
+ ∫∫    

2

1

2

1
2

01
1

θθθθ
ππππττττ

ττττττττ

ππππ
θθθθ

ππππ
θθθθ

ττττ

 

In particular, for all points it
ez =  lying on the unit circle we have 

  ( ) ( )== it
eftF ,int∑

+∞

−∞=n

nec     (2.8.4) 

where 

  ( ) ( )ZndeFc
in

n ∈= −
∫    

2

1
2

0

θθθθθθθθ
ππππ

θθθθ
ππππ

   (2.8.5) 

The series (2.8.4) with coefficients (2.8.5) is Fourier series of the function ( )tF  in 

a complex form since it can be  rewritten in the form 

 ( ) ( )∑
∞

=
−++=

1

    
0

n

tni
n

tni
n ececctF ( ),sincos

2 1

0 ∑
∞

=

++=
n

nn ntbnta
a

 

where ,2 00 ca =  nnn cca −+=  and  ( ). nnn ccib −−=  

 On the bases of   ( )∫=
ππππ

θθθθθθθθ
ππππ

0

0 ,
1

dFa    ( )∫=
ππππ

θθθθθθθθθθθθ
ππππ

0

 cos
1

dnFan  and 

( ) ( ).   sin
1

0

NndnFbn ∈= ∫
ππππ

θθθθθθθθθθθθ
ππππ
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 If we consider Laurent’s series on a unit circle of a function of a real 

argument t, then this series is Fourier series of the function ( ) ( ).it
eftF =  

 Example. Expand the function ( )
( )22 1

1

−
=

z

zf  into Laurent’s series within 

the annulus .21z 0 <+<  

 Solution. The given function is analytic within mentioned annulus therefore 

we can find nc  by formulas (2.8.3) 

 
( )

( )
 

12

1
1

2
12

1

∫ =
+

=
+

−

Γ

n

z

n dz
zi

c
ππππ ( ) ( )

( ),  
112

1
32

Zn
zz

dz

i
Г

n
∈

+−
∫ +ππππ

 

 

where Г is an arbitrary circle center 1−=z  within the annulus .21z 0 <+<  

If 03 ≤+n  then the integrand 
( ) ( ) 32

31

1
++− n

zz
 is analytic at all points  

within a circle Г including the point ,10 −=z  therefore by Cauchy’s theorem we 

get ( ),...4,3  0 −−== ncn . 

If  03 >+n  by Cauchy’s integral formula we have 

( ),...1,0,1,2  
2

3
4

−−=
+

=
+

n
n

c
nn . 

Hence   

( )
( )n

n
n

z

z
n

1
2

3

2
42

12

1
+

+
= ∑

+∞

−=
+

−

. 

  

  2.9. The Residue Theorem 

 If ( )zf  is analytic within a given domain D , we have seen that it can be 

expanded in a Taylor series about any point Dzz  of  0=  and 
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  ( ) ( ) .
0

0∑
∞

=

−=
n

n

n
zzczf  

 If 0c = 1c  = 2c =… = 1−mc = 0, ,0≠mc  the first term in the Taylor expansion 

is ( ) .0
m

m zzc −  In this case  ( )zf  is said to have a zero of order m at .0zz =  

 A singularity of a function ( )zf  is a point at which the function ceases to 

be analytic. 

 If ( )zf  is analytic within a domain D, except at the point ,0zz =  which is 

an isolated singularity of ( )zf , then we can draw two concentric circles of center 

,0z  both lying within D. The radius of the smaller circle 1R  may be as small as we 

please, and the radius 2R  of the larger circle of any length, subject to restriction 

that the circle lies wholly within D. In the annulus between two circles, ( )zf  has a 

Laurent expansion of the form 

 ( )zf = ( )∑
+∞

−∞=

−
n

n
n zzc 0 = ( )∑

∞

=

−
0

0

n

n
n zzc + ( )∑

∞

=
− −

0

0

n

n
n zzc . 

 The second term on the right is called the principal part of ( )zf  at .0zz =  

It may happen that  ,0≠−mc  while =−− 1mc =−− 2mc …= 0. In this case  the 

principal part consists of the finite  number of terms 

 +
−

−

0

1

zz

c

( )
+

−

−

2
0

2

zz

c
…+

( )
,

0
m

m

zz

c

−

−  

and the singularity at 0zz =  is called a pole of order m of  ( )zf  and the 

coefficient ,1−c  which may in certain cases be zero, is called the residue of ( )zf  

at the pole 0zz = . 

 If the pole be of order one, ( ) ( )zfzzc
zz

01
0

lim −=
→

− .  

If the principal part is an infinite series, the singularity is an isolated essential 

singularity. 

 Now we consider poles of ( )zf  at infinity. In complex variable theory we 

have seen that it is convenient to regard infinity as a single point. The behavior of 

( )zf  “at infinity’ is considered by making the substitution 
ζζζζ

1
=z   and examining 
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ζζζζ

1
f  at .0=ζζζζ  We say that ( )zf  is analytic, or has a simple pole, or has an 

essential singularity at infinity according as 






ζζζζ

1
f  has the corresponding property 

at .0=ζζζζ  We know that 






ζζζζ

1
f  has a pole of order m at ,0=ζζζζ  near 0=ζζζζ  we have  

∑
∞

=

=






0

1

n

n
ncf ζζζζ

ζζζζ
+

ζζζζ
1−c

+ ++− ...
2

2

ζζζζ

c
,

m

mc

ζζζζ

−  

and so, near ∞=z  

( ) ∑
∞

=

−=
0n

n
nz zcf + zc 1− + ++− ...2

2 zc .m
m zc−  

Thus, when  ( )zf  has a pole of order m at infinity, the principal part of ( )zf  at  

infinity is finite series in ascending powers of  z.  

Since  

=zsin
!3

3
z

z − + ...,
!5

5

−
z

 

the function zsin  has an isolated essential singularity, at infinity the principal part 

being an infinite series. 

 The residue can also be defined as follows. If  the point 0zz =  is the only 

singularity of  ( )zf  inside a closed contour, and  if  ( )dzzf
i

C

∫ππππ2

1
 has a value, that 

value is the residue of  ( )zf  at 0zz = , and denoted by 

  ( )dzzf
i

C

 
2

1
∫ππππ

= ( )( )0; Re zzfs     (2.9.1) 

The residue of  ( )zf  at infinity may also be defined. 

 If ( )zf  has an isolated singularity at infinity, or is analytic there, and if C is 

a large circle which encloses all the finite singularities of ( )zf , then the residue at 

∞=z  is defined to be taken round C in the negative sense  (negative with respect 
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to the origin), provided that this integral has a definite value. If we apply the 

transformation 
ζζζζ

1
=z  to the integral it becomes 

  
2

d
 

1

2

1

ζζζζ

ζζζζ

ζζζζππππ ∫ 







−

C

f
i

 

taken positively round a small circle, center the origin. 

It follows that if  

  
( )













−

→ ζζζζ

ζζζζ

ζζζζ

1

0
lim

f

 = ( )( )zzf
z

−
∞→

lim  

has a definite value, that value is the residue of  ( )zf  at infinity. 

 Note that a function may be analytic at ∞=z  but yet have a residue there. 

The function ( )
z

A
zf =  has a residue A at z = 0 and a residue   ,at  ∞=− zA  

although ( )zf  is analytic at ∞=z . 

 Theorem. (Cauchy’s Residue Theorem) 

     Let ( )zf  be continuous within and on a closed contour C and analytic, 

save for a finite number of poles, within C. Then 

  ( ) ( )( )∑∫
=

=
n

k

k

C

zzfsidzzf

1

;Re2 ππππ ,   (2.9.2) 

where  ( )( )∑
=

n

k

kzzfs

1

;Re  is the sum of residues of  ( )zf  at its poles within C.

 Let nzzz  ,...,, 21  be the n poles within C. Draw a set of circles kγγγγ  of radius 

δδδδ  and center kz , which do not intersect and which all lie inside C. Then ( )zf  is 

certainly analytic in the region between C and these small circles kγγγγ . We can 

therefore deform C until it consists of the small circles kγγγγ  and a polygon P which 

joins together the small circles. Then 

  ( ) =∫ dzzf

C

 ( ) +∫ dzzf

P

 ( )∑ ∫
=

=
n

k
k

dzzf

1 γγγγ

( )∑ ∫
=

n

k
k

dzzf

1

,

γγγγ

 



 26 

for the integral round the polygon P vanishes because ( )zf  is analytic within and 

on P.  Assume, that a point 0zz = is a pole of order one and function ( )zf  has a 

form 

  ( )zf  =  
( )
( )

,
2

1

zf

zf
      (2.9.3) 

where ( )zf1  and  ( )zf 2  are analytic at a point 0z  and also 0z  is a zero of order 

one of the function  ( )zf 2 , and ( ) 001 ≠zf . According to  

 ( )( ) ( ) ( )zfzzzzfs
zz

00
0

lim; Re −=
→

  

we have  

( )( ) ( )
( )
( )zf

zf
zzzzfs

zz 2

1
00

0

lim; Re −=
→

=
( )
( )

0

2

1

0

lim

zz

zfzz

zf

−

→
=

( )
( )

0

2

0

1

lim
zz

zf

zz

zf

−→

= 

    
( )

( ) ( )

0

2

0

1

02

lim
zz

zfzf

zz

zf

−

−

→

= =
( )

( )
.

02

1

zf

zf

′
    (2.9.4) 

Example 2.9.1. Compute ( ).0;cot Re zs  

 

We get .
sin

cos
cot

z

z
z =  The point 0=z  is a zero of order one of the function 

zsin , 00cos ≠  and by the formula (2.9.4) we obtain  

 

 ( ) .1
0cos

0cos
0;cot Re ==zs  

 

Example 2.9.2. Calculate  
( )
∫

+

+

C
z

dzz
,

4

 1
2

 where C is a circle .3  =z  

The function ( )
4

1
2 +

+
=

z

z
zf  has singular points .2iz ±=  These points are 

poles of order one since ( )( ).2 242
izizz +−=+  

On using the formula (2.9.4) we get 

( )( )
( ) izz

z
izfs

22
4

1
2; Re

−=
′

+

+
=−  

izz

z

22

1

−=

+
= ;

4

21

i

i−
−=  
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 ( )( )
izz

z
izfs

22

1
2; Re

=

+
= .

4

21

i

i+
=  

 On the bases of Cauchy’s residue theorem we have 

 
( )
∫ =







 −
−

+
=

+

+

C

i
i

i

i

i
i

z

dzz
.2

4

21

4

21
2

4

 1
2

ππππππππ  

 Example 2.9.3. Calculate ∫
−

C
z

dzz
,

sin21

 
2

 where C is a circle of radius 2 

center at the origin. 

 Since 







+








−=− zzz sin

2

2
 sin

2

2
2sin21

2
 the integrand has two 

simple poles at the points 
4

1

ππππ
=z  and 








>−= 2

4

3
  

4
2

ππππππππ
z . With accordance with 

Cauchy’s residue theorem we have 

 ∫
−

C
z

dzz

2sin21

 
.

4
;

sin21
Re

4
;

sin21
 Re2

22 















−

−
+









−
=

ππππππππ
ππππ

z

z
s

z

z
si  

Using the formula (2.9.4) and taking into account that  

( ) zz 2sin2sin21 2 −=
′

−   

we find  

 ,
8sin24

;
sin21

Re

2

4

2

ππππππππ
ππππ

ππππ

−=
−

=








− z

z
s  

 
( )

.
8sin24

;
sin21

Re

2

4

2

ππππππππ
ππππ

ππππ

−=
−

=







−

− −

−

z

z
s  

Hence  

 ∫
−

C
z

dzz

2sin21

 
.

288
2

2
i

i
ππππππππππππ

ππππ −=







−−=  
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 Suppose that 0zz = is a pole of order m, then in the neighborhood of this 

point 

 ( ) ( ) += zzf ϕϕϕϕ
0

1

zz

c

−
−

( )2
0

2

zz

c

−
+ − ++ ...

( )
,

0
m

m

zz

c

−

−  

where ( )zϕϕϕϕ  is analytic at .0zz =  In this case it is possible to prove that  

( )( ) ==− 01 ;Re zzfsc
( )

( ) ( ).lim
!1

1
01

1

0

zfzz
dz

d

m

m

m

m

zz
−

− −

−

→
  (2.9.5) 

 Example 2.9.4. Find the residue of the function 

( )32 1

1

+z

 at the point .iz =  

 The point iz =  is a pole of order three since 

  

( )32 1

1

+z ( ) ( )33

1

iziz +−
= . 

By the formula (2.9.5) we get 

 

( )
=















+

is
z

 ;
3

1
2

1
Re ( )3

2

2

lim
! 2

1
iz

dz

d

iz
−

→ ( ) ( )33

1

iziz +−
= ( ) =+

−

→

3

2

2

lim
2

1
iz

dz

d

iz

( )( )( ) =+−−
−

→

5
43lim

 2

1
iz

iz ( )
.

16

3

2

6
5

i
i

−=  

 

  2.10. Integration Round the Unit Circle 

 We consider the evaluation by contour integration of integrals of the type 

  ( )∫
ππππ

θθθθθθθθθθθθϕϕϕϕ
2

0

sin,cos d , 

where ( )θθθθθθθθϕϕϕϕ sin,cos  is a rational function of θθθθsin  and θθθθcos . If  we write  

θθθθiez = , then  ,
1

2

1
cos 








+=

z
zθθθθ  ,

1

2

1
sin 








−=

z
z

i
θθθθ  ;θθθθd

iz

dz
=  and so 
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 ( )∫
ππππ

θθθθθθθθθθθθϕϕϕϕ
2

0

sin,cos d = ( )∫
C

dzz ,ψψψψ  

where ( )zψψψψ  is rational function of z, and C is the unit circle .1  =z  Hence 

 ( ) ( )( ),;Re2
1

∫ ∑
=

=

C

n

k

kzzsidzz ψψψψππππψψψψ  

where kz  are poles inside C. 

 Example Prove that, if a > b > 0, 

 ∫ +
=

ππππ

θθθθ

θθθθθθθθ
2

0

2

cos

 sin

ba

d
I ( ).2 22

2
baa

b
−−=

ππππ
 

 Now of making the above change of  variable, if C is the unit circle ,1  =z   

 
( )

( )∫
++

−
=

C b

az
zz

dzz

b

i
I

1

1
  

2 222

2

=
( )

( )( )∫
+−

−

C
zzz

dzz

b

i

ββββαααα2

2
1

  
2

( )∫=

C

dzzf
b

i

2
, 

where   

 
b

baa
22 −+−

=αααα , 
b

baa
22 −−−

=ββββ  

are the roots of the quadratic .01
22 =++ z
b

a
z  

Since the product of the roots ββββαααα  ,  is unity, we have 1    =ββββαααα where     ββββαααα < , 

and so αααα=z  is the only simple pole inside C. The origin is the pole of order two. 

We calculate the residues at αααα=z  and .0=z  

 ( )( ) ( ) ( ) =−=
→

zfzzfs
z

αααααααα
αααα

lim;Re
( )

( )
=

−

−

→ ββββαααα zz

z

z 2

22
1

lim
( )

ββββαααα

αααα
αααα

−

−
21

 

( )
.

2 222

b

ba −
=−=

−

−
= ββββαααα

ββββαααα

ββββαααα
 



 30 

Residue at the point  0=z  is the coefficient of 
z

1
 in 

( )








++

−

1
 2

1

22

22

b

za
zz

z
 , where z 

is small. Now 

( )








++

−

1
 2

1

22

22

b

za
zz

z
 = 









++

+−

1
 2

...21

22

2

b

za
zz

z
 and coefficient of 

z

1
is plainly .

2

b

a
−  

Hence  

 ( )( ) += ααααππππ ;(Re2
2

zfsi
b

i
I ( )( ) =)0;Re zfs ,

22
22













 −
+−−

b

ba

b

a

b

ππππ
 

which proves the result. 

 

  2.11. Evaluation of Integral of Meromorphic Function  

 Definition. A function ( )zf , whose only singularities in the finite of the 

plane are poles, is called a meromorphic function.  

 We now prove a very useful theorem. 

 If ( )zf  is meromorphic inside a closed contour C and is not zero at any 

point on the contour, then 

 
( )
( )

,
 2

1
PNdz

zf

zf

i
C

−=
′

∫ππππ
      (2.11.1) 

where N is the number of zeros and P  the number of poles inside C. ( A pole or 

zero of order m must be counted m times.)  

Suppose that 0zz =  is a zero of order m, then, in the neighbourhood of this 

point 

( ) ( ) ( ),0 zzzzf
m ϕϕϕϕ−=  

where ( )zϕϕϕϕ  is analytic and not zero. Hence       
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( )
( )

( )
( )

.
0 z

z

zz

m

zf

zf

ϕϕϕϕ

ϕϕϕϕ ′
+

−
=

′
 

Since the last term is analytic at 0zz = , we see that  
( )
( )zf

zf ′
 has a simple pole at 

0zz =  with residue m. Similarly, if  0ξξξξ=z  is a pole of order k, we see that  
( )
( )zf

zf ′
 

has a simple pole at 0ξξξξ=z  with residue – k. It follows, by the formula (2.6.1), that 

the left-hand side of (2.11.1) is equal  to ∑ ∑ −=− .PNkm  

 If ( )zf  is analytic in C, then P = 0, and the integral on the left of (2.11.1)  is 

equal to N.  

Since ( )
( )
( )

,ln
zf

zf
zf

dz

d ′
=  we may write the result in another form,  

( )
( )

( ),ln zfdz
zf

zf
C

C

∆=
′

∫  

where C∆  denotes the variation of ( )zfln round the contour C. The value of 

the logarithm with which we start is immaterial, and since 

( ) ( ) ( )zfizfzf arglnln +=  

and ( )zfln  is one-valued, the formula may be written 

 ( ).arg
2

1
zfN C∆=

ππππ
 

This result is known as the principle of the argument. 

 

  2.12. Evaluation of a Type of Infinite Integral 

 Let ( )zf be a function of z satisfying the conditions: 

1) ( )zf  is meromorphic in the upper half-plane; 

2) ( )zf  has no poles on the real axis; 

3) ( ) 0→zzf  uniformly, as ∞→  z  for ;arg0 ππππ≤≤ z  
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4) ( )dxxf∫
+∞

0

 and  ( )dxxf∫
∞−

0

 both converge, then 

( ) ( )( )∑∫
=

∞=

∞−

=
n

k

kzzfsidxxf

1

;Re2ππππ ,    (2.12.1) 

where kz  are poles of ( )zf  in the upper half-plane. 

 Choose as contour a semicircle, center the origin and radius R, in the upper 

half-plane. Let the semicircle be denoted by Г, and choose R  large enough for the 

semicircle to include all the poles of ( )zf . Then, by the reside theorem, 

 ( ) +∫
−

dxxf

R

R

( ) =∫ dzzf

Г

( )( )∑
=

n

k

kzzfsi

1

;Re2ππππ . 

From (3)), if R be large enough, ( ) εεεε<zzf  for all points on Г, and so  

 ( ) =∫ dzzf

Г

( ) <∫ θθθθθθθθ
ππππ

θθθθ idf
ii ReRe

0

.

0

ρερερερεθθθθεεεε
ππππ

=∫ d  

Hence, as ,∞→R  the integral round Г tends to zero. If (4)) is satisfied, it follows 

that 

 ( ) =∫
+∞

∞−

dxxf ( )( )∑
=

n

k

kzzfsi

1

;Re2ππππ . 

 Example. Prove that, if 0>a  

 .
22 3

0
44

aax

dx ππππ
=

+
∫

+∞

 

 If ,044 =+ az  we have  ,44 ππππieaz =  and the simple poles of the integrand 

are at ,4
i

ae

ππππ

 ,4

3
i

ae

ππππ

,4

5
i

ae

ππππ

,4

7
i

ae

ππππ

 Of these, only the first two are in the upper-half 

plane. The conditions of the theorem are plainly satisfied, and so 

 . ,at  Resedues2 4

3

4
44 ∑∫ 













==

+

∞+

∞−

i
i

aeaezi
ax

dx
ππππππππ

ππππ  
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Let k denote any one of these, then 44
ak −=  and the residue at the simple pole 

kz =  is ( )( ) .lim
144 −

→
−− kzkz

kz
 This may be evaluated by Cauchy’s formula, as 

applied to the evaluation of limits of expressions of the indeterminate form ,
0

0






 

and so 

( )
=

−

−

→ 44
lim

kz

kz

kz
=

→ 34

1
lim

zkz
=

34

1

k
.

4 4
a

k
−  

Hence  

 













+−=

+
∫
∞+

∞−

ii

aeae
a

i
ax

dx
4

3

4
444 4

1
2

ππππππππ

ππππ =













−−=

− ii

aee
a

i
44

32

ππππππππ
ππππ

 

   .
24

sin2
2 33

a
i

a

i ππππππππππππ
=−=  

Hence .
22 3

0
44

aax

dx ππππ
=

+
∫

+∞

 

 

III. Miscellaneous Problems 

1. Show that the functions ,sin zw =  ,cos zw =  and n
zw = (n is an integer) satisfy 

the Cauchy – Riemann equations. 

2. Find the analytic function ( )zf , the real part of which equals  

a) 23 3xyx −    b) xyx 222 +−   c) 
22

yx

x

+
 

d) y
yx

x
2

22
−

+
  e) ye

x sin2  

 

3. Find the analytic function ( )zf , the imaginary part of which equals  

a) 
( ) 22

1 yx

y

++
−   b) xxy 32 +    c) 0 ,tan 1 >−

x
x

y
 

d) ( ) yxyxyye
x +++ sincos  

4. Show that the function ( ) xyzf =  is not analytic at the origin although the 

Caushy – Riemann equations are satisfied at this point. 

5. Prove that the functions  



 34 

a) 1333 2223 +−+−= yxxyxu  

b) xyyxyxyxu 4sinhcos2coshsin 22 +−++=  

both satisfy Laplace’s equation, and determine the corresponding analytic 

function ivu +  in each case. 

6. Evaluate ∫
C

zdzIm if a contour C is the straight line segment joining points 0=z  

and .2 iz +=  

7. Compute the integral ∫ −
C

iz

dzz

2

2

 if C is the circle of radius 3 with center at 0. 

8. Evaluate ∫ +
C

iz

zdzsin
 where C is the circle with center at .iz −=  

9. Compute the integral ,
92∫

+
C

z

dz
 where  C is the circle of radius 2 with center at 

.2 iz +=  
 

10.  Evaluate the integral 
( ) ( )

,
11

33∫
+−C zz

dz
 where  C is the circle of radius R<2 

with center at .1=z  

 

11.  When C is the circle 2  =z , use Cauchy’s integral theorem or Caushy’s 

integral formula to prove that 

a) 0
92

=
+

∫
C

z

zdz
    b) ∫ =

C

dz
z

0
2

sec  

c) ∫ =
−

+

C

idz
z

z
ππππ10

1

42

   d) ∫ =
+

C

dz
iz

z
ππππ

ππππ2

sinh
 

 

12.  Establish these expansions in the region 1  <z  

a) ( )∑
∞

=

−=
+

0

1
1

1

n

nn
z

z
   b) ∑

∞

=

=
− 0

2

21

1

n

n
z

z
 

 

13.  Find the zeros of the functions and determine their order: 

a) ( )92 +z ( )52 4+z    b) ( )z
e−1 ( )42 −z  

c) zz sin      d) 
z

z
3

sin
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14.  Expand the function ( )zf
z

ez
/12=  in a Laurent’s series about .0=z  

15.  Expand the function ( )zf
( )2

2

2

4
cos

−

−
=

z

zz
 in a Laurent’s series about .2=z  

16.  Examine a behavior of the functions  

a) 
2

2

3 z

z

+
   b) 

45 z

z

−
   c) z

e
−  

d) zsin     e) z
e

/1  

17. Classify the points 0=z , 1=z , and the point at infinity in relation to the 

function ( )zf ,
1

sin
2

2 zz

z −
=  and find the residues of ( )zf  at 0=z , and 1=z . 

18.  Find the residues of these functions at their singular points: 

a) 
1

1

−

+

z

z
    b) 

zsin

1
   c) 

( )2
0

cos

zz

z

−
 

d) 
2

3 1
cosh

z
z    e) 

5

2sin

z

z
 

Answers. a) 2;  b) ;1±   c) ;sin 0z−    d) ;
2

1
  e) 0. 

 

19. Show that the singular point 0=z  of the function ( )

z

zf
ππππ

sin

1
=  is not isolated. 

20. With the aid of the Cauchy-Riemann conditions prove that the components 

vu   and   of an analytic function ivu +  are harmonic functions, that is, they are 

continuous with continuous partial derivatives up to the second order, and 

satisfy Laplace’s equation 

( )yxu xx , ( ) .0, =+ yxu yy  

 

21. Find the residues of the following functions at their poles: 

a) 
2

1
2

−

+

z

z
    b) 

iz

e
z

−

ππππ

   c) 

( )32 1

1

+z

 

d) 
( )

( )0 
1

2

>
−

n
z

z
n

n

  e) 

( )22

2

1+z

z
   f) 

53

1

zz −
 

g) 
( )4

1

2sin

+z

z
   h) ztan    i) zcot  

 

22. Find the residues of the functions 
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      a) ze

1

    b) 
z

1
cos    c) 

z

1
sin  

23. Compute the integral ∫
+

C
z

dz
,

1
 

4
 where C  is the positively oriented circle 

.222
xyx =+  

24.  Evaluate the integral 
( ) ( )∫

+−C zz

dz
,

11
 

22
 where C  is the positively oriented 

circle .2222
yxyx +=+  

25.  Calculate with the aid of the Cauchy’s residue theorem the integrals 

a) ∫
+∞

∞− +

+
dx

x

x

1

1
4

2

     b) 

( )
0 ,

12
>

+
∫

+∞

∞−

n

x

dx
n

 

c) 0 ,
22

2

>
+

∫
+∞

∞−

adx
ax

x
   d) 

( )( )
0b ,0  ,

 2222
>>

++
∫

+∞

∞−

a
bxax

dx
 

e)  
9

cos
2∫

+∞

∞− +
dx

x

x
    f)  

204

sin
2∫

+∞

∞− ++
dx

xx

xx
 

 

   IY. APPENDIX  

 

Fundamental Elementary Functions of Complex Variables 
 

zize
iz sincos +=•    zize

iz sincos −=• −  

i

ee
z

iziz

2
sin 

−−
=•    

2
 cos 

iziz
ee

z
−+

=•  

2
sinh 

zz
ee

z
−−

=•    
2

cosh  
zz

ee
z

−+
=•  

( )( )ππ−∈+=• ;arg   arg  lnln  zzizz  

Zkkizz ∈π+=•   ,2lnLn   

iyxz +=   
2

zz
x

+
=   

i

zz
y

2

−
=  

yxiyxz sinhcoscoshsinsin +=•  

yxiyxz sinhsincoshcos cos −=•  

yxiyxz sincoshcossinhsinh +=•  

yxiyxz sinsinhcoscosh cosh −=•  

( )
x

y
iyxz arctanln

2

1
ln  22 ++=•  


