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Class Hours for Module:
»Field Theory. Complex Variables”

Structure of the Module
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1 Scalar and Vector
Fields 18 18 J 40
2 Complex
Variables 14 14 ) 31
Total 32 32 - 71

Contents of the Final Module

1 Scalar and Vector Fields.
1.1 Scalar Field. Directional Derivative. Gradient.

1.2 Curvilinear Integral of the II-nd type. Green Formula.

1.3 Surface Integral of the II-nd type. Gauss — Ostrogradskiy Formula.
Stokes Formula.
1.4 Vector Fields. Vector Lines. Vector Field Flow. Divergence of the
Vector Field. Circulation. Rotor of the field. Hamiltonian.
1.5 Special Vector Fields. Helmholtz Theorem.
2 Complex Variables.
2.1 Limit and Continuity of the Function with the Complex Variables
2.2 Derivative of the Function with the Complex Variable. Cauchy-Riemann
Condition. Analytical Functions.
2.3 Integral of the Function with the Complex Variables, its connection with
the curvilinear integral of the II-nd type. Cauchy theorem. Cauchy
Integral Formula. Cauchy Integral.
2.4 Series in the Complex Area. Taylor Series.
2.5 Laurent Series. Classification of the Isolated Critical Points.
2.6 Residues. The Main Theorem about Residues.
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Ne Number, Topic of the Lecture Yac.
1 Scalar and Vector Fields
1 L.1 Scalar Field. Directional Derivative. Gradient of Function. )
Hamiltonian.

L.2 Vector Field. Curvilinear Integral of the second type and its

2 calculation. 2
T1 Usage of the Curvilinear Integral of the second type.

3 | L.3 Green Formula and its usage. 2




L.4 Surface Integral of the second type.
T2 Calculation of the Surface Integral of the second type.

L.5 Divergence of the Vector Field. Gauss — Ostrogradskiy Formula.

L.6 Rotor of the Vector Field. Stokes Formula.
T3 Calculation of the Circulation of the Vector Field.

L.7 Properties of the Vector Fields.
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L.8 Work in the Potential Field. Helmholtz Theorem.
T4 Finding of the Potential of the Potential Field.
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2 Complex Variables

L.9 Complex numbers, operations with them. Euler Formula.
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10

L.10 Complex Variables. Main Definitions.
T5 Usage of the Euler formula.

11

L.11 Derivative of the Function with the Complex Variable. Cauchy-
Riemann condition.

T6 Determining of the Analyticity of the function with the Complex
Variable.

12

L.12 Integral of the Function with the Complex Variable and its
Properties.

13

L.13 Cauchy Integral theorem for Simply Connected Domain and
Multiply Connected Region.

14

L.14 Cauchy Integral Formula. Derivatives of the Analytical Function
with the Complex Variable of the higher order.

15

L.15 Laurent and Taylor Series.

16

L.16 Classification of the Isolated Critical Points. Deductions and its
usage.

T7 Calculation of the Improper Integrals of the Function with the Real
Variable using Deductions.

Syllabus of the Practical Classes
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Number, Topic of the Lecture

Yac.

1 Scalar and Vector Fields

Scalar Fields.

Characteristics of the Scalar Fields. Directional Derivatives. Gradient.

Characteristics of the Vector Fields.

Calculation of the Curvilinear Integrals of the 1I-nd type.

Calculation of the surface integrals of the II-nd type.

Vector Field Flow.

Divergence.

Circulation. Rotor of the field.
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Special Vector Fields.
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2 Complex Variables

Complex Variables. Basic Functions with the Complex Variables.

[\

Derivative of the Function with the Complex Variable. Cauchy-




Riemann Condition.

12 | Integral of the Function with the Complex Variable. Cauchy Theorem.

13 | Cauchy Integral Formula. Cauchy Integral.

14 | Taylor Series.

15 | Laurent Series.
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16 | Deductions. Usage of the Deductions for Calculation of the Integral.

The List of Knowledge and skills

Student must know:

1 Conception of the Scalar and Vector Fields, its characteristics.

2 Properties of the Vector Fieds (solenoidality, potentiality, irrotationality).

3 Conception of the Function with the Complex Variable. Conception of
the Limit, Derivative, Integral of the Function with the complex Variable.

4 Definition of the Derivative of the Function with the Complex Variable
and Condition of the Defferentiability.

5 Conception of the Analytical Function with the Complex Variable.
Cauchy Theorem. Cauchy Integral Formula.

6 Decomposition of the Functions with the Complex Variables in Laurent
and Taylor Series.

7 Deductions. The main theorem about Deductions.

Student must have skills:

1 In finding main characteristics of the Scalar Field (surface lines of the
level, directional derivatives, gradient).

2 In finding main characteristics of the Vector Field (equations of the
vector lines, flow, divergence, circulation, rotor, potential)

3 In making operations with the complex numbers.

4 In finding Real and Imaginary Part of the Function with the Complex
Variable.

5 In checking Cauchy-Riemann condition and in finding derivative of the
Function with the Complex Variable.

6 In usage Cauchy Integral Formula for calculation of the Integrals and for
calculation of the Curvilinear Integral of the Analytical Function with the Complex
Variable.

7 In distributing in Laurent and Riemann Series, in using them.

8 In finding deductions and in calculation of the integrals using deductions.




1 FIELD THEORY
1.1 Scalar Field

Let G be any domain on the surface or in the space.

Definition. If there is a constant u connected to every point M of the domain
G, we say, that the scalar field of that point is defined.

Example. Temperature field, pressure field.

Scalar field is defined by the scalar function = f (M),

Definition. A set of points, in which scalar function takes the same value
S(M)= 7, (c= const), calls level line (level surface).

C-= f(M), c- f(xay) wim € = f(x,y,z),

Example 1. Find level lines of the function u = lz :
X
Solution.
c- lz, y=ex’,
X
Level lines in that case is a set of parabolas
(figure 1.1). A
y
c>0
X
c<0
Figure 1.1
Example 2. Find level surfaces of the function u = \Jx* + y*+ z° .
Solution.
z
cz X2t yit 2t Xyttt level
surfaces is a set of the concentric spheres >
(figure 1.2). y
X
Figure 1.2



1.1.1 Directional Derivative

Let = f(x,¥) be a function of the scalar field, MU G.

Au
Definition. The ratlo— is called the derivative of the function # = f(x,y)

Al
at the point M in direction of the vector /, when A7~ 0 (if exist), labels as %—L;
According to definition
ou _ . 7
TRV ()
du_ . Du_ . N M 5
Consider 37" Al}%_l]: Jim Of( )A lf( ) , MN PI (figure 1.3).
I LetMN:Al,thenAx:Alcosa,Ay:AICOSﬁ_
Y Vv -0 1 D
.y oL N~ | = i: 0 (cosa COS,B)
2 2 . 2 .
, f l H\/l” IRVAREAS:
M 1 /
‘ e cosf = L cosf = ————=
x x+Ax X Then, Jlxz + lyz ’ Jlxz + ly2 and
Figure 1.3

cos’d + cos’f = 1.

Change: Qu= f(N)- f(M)= f(xtdx, ytdy)- f(x,y). Rewrite that
equality as follows O u= f(xtbdx, ytdy)- fx, ytAy)t f(x, y+hy)- f(x, ),
then & =0 wutd u. Substituting the last equality into the formula (1), we have:

du _ .. 0N u AMD 0A u A u 0
— = lim m + N i x y -
d/ vi-og A/ AID VlODAx Ay 0

So, the derivative of the function of the scalar field u=f{x, y) in direction of

the vector / equals to:

Similar we can prove, that for the function with three variables 4 = f(x,,z2)
the derivative in direction can be calculated using the following formula:
du Jdu

0u 0u
— = —cosd + —cosf + —cosy
0/ 0dx dy 0z ’

where ZO = (COSU , cosﬁ , COSV), cos’q + COSzﬂ t COSZV = 1, and cos(, COS,B , COsY

are called directional cosines of the vector .

Note. Conception of the directional derivative is generalization of the partial

du 0u du
derivatives I E, P that can be considered as derivatives of the function

u= f(x,y,z) in the direction of the axes Ox,0y,0z .
8



Example. Find the derivative of the function u= x’- 4yz at the point
M(-2,1,0) in the direction from that point to the point (2,1, 3).
Solution. Find coordinates of the vector MM, = I and its directional cosines:

4 4 3 3
MM.(4.0.3). cosq = =—_cosf =0_cosy = = —
1( s Uy )a \/m 53 ﬁ ’ y \/m 5
0u
Partial derivatives of the function at the point M : I = 2X|M = -4,
M
0u du
| =-4 =0 —| =-4 = -4
0y ) Z|M $ 9z, yIM .
So, O_u: —4Xi+ 0- 4)(3: —ﬁ.
d/ 5 5 5
Because ﬁ < 0, function is decreasing in the given direction.
Answer: —4.
1.1.2 Gradient of the function
du- du- Odu- J0u 0u dul
Definition. Vector gradu= —i+ —j+ —k or gradu= D—u, —u, —u+ is
dx dy~ 0z 00x dy dz(

called gradient of the function 4 = f(x,,2).
d -
Obvious, that O_th = gradu ¥ .

Gradient of the function indicates direction in which change of the function
is the largest.
Properties:
1) grad(u+v)= gradu+ gradv ;
2) grad(cxu)= cxgradu ;
3) grad(uw )= v xgradu + u*gradv

1.2 Hamiltonian

The main operations with the scalar field # and with the vector field F are:
gradu divl_j, rot I (divf, rot ' take a look later). Operations of the finding

gradient, divergence and rotor are called vector operations of the first order
(derivatives of the first order are involved). These operations can be easily written
down using Hamiltonian (symbolic vector “nabla”):

09 9 0
D_D_a_a_+-
0dx dy dz[



It takes the meaning only in combination of the scalar or vector functions.
Symbolic multiplication of the vector J by the scalar # or vector F can be done

according to the rules of the vector algebra, and “multiplication” of the symbols

d 0 9 . _ _
— by the values u, P, O, R is understood as finding of the partial

x’ @’ 0z
derivative of those values.
F le. oradu= T where 0= i+ L7+ L%
or example, gradu = U xu, where Ix 0y J PR
1.3 Vector fields

Definition. If there is a vector quantity £ connected to every point M of the
domain G, we say that the vector field of that quantity is defined.

Example. Speed field, voltage field.

If there is a rectangular coordinate system in space, then vector field is
defined by the vector function

F(M)= P(M)i+ Q(M)j+ R(M)k,
where P(M)= P(x,y,z), O(M)= O(x,y,z), R(M) = R(x,y,z) — scalar functions

F(x, v,z) = P(x, y,z)f + O(x, y,z)} + R(x, y,z)l; — spatial vector field.

At the plane, vector field is defined as f(x, y)= P(x, y)f + O(x, y)} (plane
vector field).

Definition. Vector line of the field F(M ) is called a curve, for which every
tangent line in each point of the curve consists with the direction of the vector
F(M).

Example. In the speed field of the spreading fluid, vector lines are the lines,
along which parts of the fluid move (current streamlets); for magnetic field of the
Earth, vector (force) lines are the lines, that come out of the North Pole and end up
at the South Pole.

Total of all the vector lines of the field, which go through some closed
curve, is called vector tube.

Let vector field be defined by the vector F=Pi+ Q}+ Rk, where
P= P(x,y,2), 0= O(x,y,2), R= R(x,y,z) are continuous functions of the
variables X-)»>Z | that have continuous partial derivatives of the first order.

Vector lines of the field F(x, v,z) can be found from the system of the
differential equations:

. & for spatial vector field
- - — I0r Spatial vector 11€ida,
P(x,,2)  O(x,y,z) R(x,.2) P
dx

- Y .
= — for plane field, that can be written as:
P(xy) Oxy) T

10



dy _ O(x,y)

& Plry) y'E ().

Above equations follow from the ZA
condition of collinearity of the vectors

F(P,0,R) and dr(dx,dy,dz) (figure 1.4). / %@

P 0

v

Figure 1.4

1.3.1 Integral by region (II-nd type)

We consider only two domains in vector field: lines and surfaces.
Definition. Line is called oriented, if direction is defined in every point of
that line, concurring with the direction of the tangent line (figure 1.5).

T

Figure 1.5

Definition. Surface is called oriented, if direction is defined in every point
of that surface, concurring with the direction of the normal line at that point.
(figure 1.6).

11



Figure 1.6

We denote oriented domain as G, and we set unit vector as oriented vector,
that defines direction at random point M , and denote it as / ( M ) .

Let G be any oriented domain, I (M ) be oriented vector, and IF(M ) be a
vector function at every point of that domain. Let’s split randomly domain G by 7
parts: G,,..., G, (GUG,U..UG, = G). Let A}, be measures of the domains G,
and let 4 = m?x|A f i|. Randomly, in every domain G,, we choose a point M, and
calculate the value of the vector function F(M -

Let’s trace the vector A_ul at the point M, whose direction concurs with the
direction of the oriented vector at the point M;, and the length equals to the
measure of the domain G, i.e. A_ﬂ, =0y, XZ(M ,.) . Calculate scalar product:
F(M)xby,.

Consider sum

n n

Y F(M)ayu,=Y (F(m,)x(a,)]ap,.

i=1 =1
That sum is called integral sum for the vector function f(M ;) over the oriented
domain G .

n

Definition. If integral sumzn F(M,)bu, =Z (F(Mi) XZ(Mi))Aﬂi has limit
=1

i=1
when 4 = mf‘X|A H l-| ~ 0 that does not depend on the way domain G was splitted
into parts, does not depend on the way intermediate points M, were chosen, then

we call it the integral from the vector function f(M ;) over the oriented domain G
(second type integral) and denote as

[F()dy = imy T

G

12



1.3.2 Curvilinear integral of the second type.

Definition. If domain G is the line L, and its oriented vector at the random
point M — [ (M ) , then the integral

[ Fxdl= [ P(x, y, 2)dx+ Q(x, y, 2)dy + R(x, y, z)dz
L L
is called curvilinear integral of the second type over the space line L.

Probl tation of work of th tor field
roblem (computation of wor Tet variable 1Eorc)e F(M)= P(M)i + Q(M)

move material point along the curve L from the
point M to the point N (figure 1.7). We need to
calculate work of that force at the given path. For
that we split the curve L up by n parts using points
M = MO,MI,MZ,...,Mn: N, then

X x+Ax X A, = Z A = Z F(Ml.)A Zi,
Figure 1.7 =l 1

where A; = Axi+ Ay, ;.
Work equals to the limit of the sequence of integral sums when

A= ml_ax|A li| ~ 0 and denotes as 4~ JFXdZ dl= dxi+ dy] but it is curvilinear

L

integral of the second type by definition.
Because 4, = z P(M)Ax,+ O(M )Ly, then A= J’P(x,y)dx+ O(x,y)dy
=1 L

is work of the vector field F(M):= P(M )E + QM )} along the arch Y.

If field is spatial F(M)= P(M)i+ O(M)j+ R(M)k, then work can be
calculated using the formula:
= JP(M)dx+ O(M)dy + R(M )dz
L
Note 1. Self-contained curve L 1is called a closed loop. The integral is called
circulation of the vector F over the self-contained loop L and denotes

ok NF_(M)dZ_

Note 2. Curvilinear integral of the second type depends on the direction of
Fdl-= -J Fdl

A

the bypass of the curve, J

4B

13



For the self-contained loop L, counterclockwise bypass is a positive

direction.

1.3.3 Calculation of the curvilinear integral of the second type

Let curve L be parametrically defined x = x(¢), y= y(#), z= z(t), ;< t< ¢,

then
J Fdl-= J’ P(M)dx+ Q(M)dy + R(M)dz =
4B AB
= [ PBx(e).(1).2(¢)8x () de+ Ox(t), y(t).2(¢) By 1)t +
+ RBx(¢),»(t),z(1)gz (¢) dt
- ydx . . .
Example. Calculate FENRE where L is a triangle ABC with the
L
vertices A(1, 0), B(1, 1), C(0, 1).
Solution.
~ dy ydx xdy ydx xdy - ydx " xdy - ydx
erte down the equatlons of the lines AB, BC, CA (figure 1.8)
parametrically:
AB: E,x: Oszr=<1;
gy =1;
[ = —¢
. T—1=r=<0;
0 x=1¢z,
CA: Ep/:l—t,OStSI
0 Ox=10 |
ydx - xdy _[AB:[ 0_,t0-dt-1-dt
y Then [ =5 =71 =67 | 3
4, Xt Bcrcl B0 1+1¢
C (0,1 B%l 1) <
-—1 dt = -arct t|l‘-£-
J [Tre ST
A(1,0) x
Figure 1.8
de-xdy 0BC:EYT TPD 0 ape 0dt__ dt
X~ X r
Iyx+yy Dy I’D I £+ 1 e U
BC H 1 £< H -1 1

14



il 0 x=1t, [ 1
ydx - xdy _0CA:0 _ 0 . (1-¢)ydt- (- dt) _ dt 1 dt
[ o brElap®] I TR
L Xty b4 1- 204 g 20-20+1 240, 1
Ho< £< 1 i ")
1 1
= lj dt2 = arctg2ﬁt- =L
20%-1%1 0 2-
1728 4
~xdy - ydx moom
SO,I\I )2; yz =-—-—+—=-=0,
ST xTty 4 4 2

Answer: 0.

1.3.4 Calculation of the area of the plane figures using the curvilinear integral

of the second type
[ as x< b,
Let D be the correct domain, so that D : [] (figure 1.9q) or
Dy1(x) S$ys yz( )

n. [ c< y<d,
-Hxl(y) ¢ x< xz(y). (figure 1.9b).
% B, y=y,x)
A 3 C
| B YW
\ a b x
a) Figure 1.9
Then
b b b
SD - I(yz(x)_ yl(‘x))d‘x: Iyz(x)dx'Iyl(x)dX: I de‘ J yde
a a a AB,C AB,C
=- [ ydx- ydx = - Nydx
ALIC CB[ZA IL\IV '
So,

= - IL\Iydx ‘ @)

Similarly (figure 1.9b),

d d a N\ - N
S, - [(xz(y)- x,(y))dy = [xz(y)dy-[xl(y)dy: B;LBZde BzLBIXdy: Ndy ) Ndy'

15



Sp = Nedy

3)

—_ “Zz

Sum up (2) and (3), we get: Sp - E.NXdy - ydx 4)
L

Example. Calculate the area of ellipse: x_ + Jb}_z = 1.
a’
Solution.

Write down the equation of ellipse parametrically:

x = acost,
i o 0<t<2m.
0y = bsint,

Using formula (4), we can calculate the area of ellipse:
21 21

Nxdy ydx = %J’ acost becostdt + bsintasint dt = 2bj dt=Tnab,
0 0
Answer: Tab.

1.3.5 Connection of the curvilinear integral of the second type with the double
integral (Green formula)

If F is a plane vector field and functions P(x,y), O(x, ), Py'(x, V), Q; (x,7)

are continuous in the domain D and at the boundary L, then Green formula takes
place:

09 P
e s ooy =[[ 52 5y
00x 0y
Where bypath of the loop L is in the positive direction.
Proof.
aP b yz(x)a b »a(x) b b
” a—dxdy I dx I —dy J' P(x,y) dx= I P( x,yz(x)) dx - J' P( x,yl(x)) dx =
D y a y (%) ay a (x) a a
1 X
= [ P(x,y)dx- [ P(x,y)dx=- [ P(x,y)dx- [ P(x,y)dx=- NP(x,y)dx
AJ.J?.ZC Ail;lC ci[zA Allc IL\IP -0
Similarly, changing the order of integration, we get:
d w0, % (7) d d

” aaQ dxdy = de I anx IQ(x »)

x (»)

dy= [O(x,(¥).y)dy~ [Q[x(v).y) dy =

x (») ¢ ¢

= [ Qaydy- [ QGoyydy= [ O y)dyt | Q(x,y)dy=;ﬂp(x,y)dy_ ©)

B,CB, B4B, BCB, B, AB,

Sum up (5) and (6), we get Green formula.

1.3.6 Surface integral of the second type.
Flow of the vector field.

16



Take a look at the integral over the oriented domain IF Ui case, when
G

the domain G is the smooth double-faced surface ¢ (figure 1.10).

= — Definition. Surface 0 is called smooth,
if we can transact tangent plane in every point.

Definition. Surface 0 is called double-
faced, if normal line to the surface comes back
™ {o the reference position when bypasses over
J}arbitrary closed loop.

Figure 1.10

Assume, that in every point of the surface 0 , vector field F(M) is defined.
Let 0 , double-faced surface, be the domain of integration of the vector
function F' (M), oriented vector is the unit vector n(M ) to the surface 0 at the

point M, whose direction defines one of the sides of the surface.
Definition. Integral over such oriented surface is called surface integral of
the second type and defines

jf(M)%’

where do = ;(M )dU is a vector, which length equals to the area do of an

element of the surface 0 , and direction concurs with the direction of the normal
line to that surface at the point M.
So,
[ F(M)xdo = J'F(M)Xn(M) do
Definition. Quantity of fluid, passing through the surface 0 in time unit, is
called the vector flow.
Problem (about vector flow through the surface).

Consider speed field v (M) of fluid in space (fluid does not compress).

Calculate flow of the vector U (M). We split the surface 0 by n parts 0,
A0, are the areas of those parts. In each part we choose random point M;(x;,y;,z;)
. Vector p; is the unit vector of the normal line to the sector 0 ;.

Quantity of fluid, that passes through 0 ; in time unit, approximately equals
to the volume of cylinder (cylindrical pole), whose height equals

17



hl. = np;U_i - ‘U_i‘COS(ni,U_i) = U_iﬁi .
Flow of the vector y ; through 0 ; equals: N , = A A0, = U_iZiAUl. =000,

Length of the vector A g ; equals to the area of the surface part.
That is why flow of the vector y through the surface 0 approximately

equals to:
n=Yn=Yvho,=: ” vinha .

Definition. The limit of that sum when #- ® if A - 0 (A1 is the
maximum diameter of the sections), is called the flow of the vector field v (M)

through the surface 0 and defines as: B o
= J’J'U(M)nda = J’J’U(M)da -

Integral on the right hand is called the surface integral of the second type.
Thereby, physical meaning of the surface integral over the surface 0 is the

flow of the vector field (M) through the given surface.
Surface integral has the following properties:
= [ F(M)n(M)do = - [f F(M)n(M)do ’
where 0 *, 0~ are different sides of the surface 0 .
We reduce the calculation of the surface integral of the second type to the
calculation of the regular integral. For that, we need to present the unit vector  of
the normal line to the surface by the instrumentality of the direction cosines:

n= cos(j ;)Z + cos(m ;); + cos(;] /2)%
Define g = (;ﬂ z) B = (J] J),y = (J] k) , then unit vector can be written as:

n=cosd i+ cos,BJ+ cosy k = {cosa ,cos f§ cosy}

If the equation of the surface 0 is presented by the formula z = g(X, ), then
u=g(x,y)-z=0 is the surface of the level when ¢=0.
Vector gradu is going to be perpendicular to that surface. Because

Nz 1+ g2+ g,

gradu = {g;,g'y,- 1} , then N-= {g;ag'ya‘ 1] , n= W,

_ngﬁ-lﬁ ngﬁlﬁ
DR

Positive direction of the vector 5 is the direction when the angel between

vectors n, k is acute, e.g. cosy > 0
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Define D,, as a projection of 0 over XOy, similarly D,., D,. are
projections of 0 over xOz and YOz, and their measures are respectively:

AS.,,AS, _,AS, ..
Then,
AS. =40 |cosy|= Ao cos(m,z) ,
AS..=AMo0 |cos[3 |: Aa cos(;],y) ,
AS, . =Ao |cosa |= Ao cos(m,x) _
Because, 4 S, , 0 dxdy when Ao - do | then
do = dxdy
similarly
Jo = dxdz L do - dydz .
|cos,/3 | |cosa |

Hence, 1 = [[ Fxndo - H[P(M )dydz + Q(M )dxdz + R(M )dxdy] =

” P(x(y,z),y,z]sign(cosa ) dydz + ” Q(x,y(x,z) ,z) sign(cos B ) dxdz +

D

+I R(x v,z ))mgn(cosy)dxdy.
D

Definition. The flow of the vector through the closed surface is the
difference between outgoing and i 1nc0m1ng flows (for example, fluids).

B, M0 -0, 0 ° ﬂ)F(M)n(M)do |

If M =0 through the closed surface, then there are no sources inside the

surface, limited by 0 .
If N >0 through the closed surface, then there is a positive source of the

vector field.
If 1 < 0, there are outflows inside, e.g. negative sources.

Methods of calculation of the flow of the vector field

1 Method of the projection over the one of the coordinate planes. Not
closed surface 0 projects over the plane XOy in the domain D,,. In that case
plane 0 is defined by the equation Z = g(X, ), and because the element of the area
do of that surface equals
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_dxdy

do =
|cosy

9

then calculation of the flow of the vector field F reduces to the calculation of the
double integral by the formula

nzﬁfémrIf

D,,

Fxn
|cosy

dxdy (7)

z=g(x,y)

Unit vector of the normal 5 to the chosen side of the surface ¢ can be found by
the formula

- -gli-gjtk
n=t , (8)
N
a C0S} equals to the coefficient of the unit vector k , formula (8):
1
cosy = 1
g;2+g1y2+1- (9)

If angel / between axes Oz and normal vector 5 is acute, then in formula (8) and
in formula (9) we need to take ,,+” sign, if angel is obtuse, then ,,—” sign.

If it is easier to project surface 0 at the coordinate plane YOz or xOz , then
formulas (7), (8), (9) are:

_ - Fxn _ - Fxn
N = [[Fxndo = [[ & dydz or N = ([ Fxndo = || ! dxds
0 D, |Cosa =9 (3,2) 0 D |Cosﬁ | v (x.2)
where vectors of the normal lines are, respectively:
B T % B Rty
n:i.l ¢J"] ¢Z n=-t ¢,xl+.] wzk

' ) or - ] ' ’
NI N
and directional cosines:
1 1

' — cosf - ¢ ' ,
Jleglreg Wty

Note. In case, when the surface 0 is defined implicitly by the equation
® (x,¥,2)= 0, unit vector of the normal line can be found by the formula:

; o it0 jtO k
|2 1 2 1 2 .
Jorvo tro!
Example 1. Find the flow of the vector field F'= (x - 32) i+
+ (x+ 3y+ z) }+ (5x+ y) k through the upper side of the triangle ABC with the
vertices A(1, 0, 0), B(0, 1, 0), C(0, 0, 2).
Solution. The equation of the plane of the triangle ABC is: 2x* 2yt z= 2
we get Z= 2~ 2x- 2y Triangle ABC is projecting one-to-one at the plane XOy in
the domain D, , which is triangle OAB (figure 1.11).

cosa =t

n-=
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Angle V is acute, that is why in formulas (8)
and (9) we take ,,+” sign, we get:

n= —2;+ 2}+ k. g;+ %_'+ l% and cos) = !
Jara+1 3 3773 3
Scalar product is
- - 2 2 1
Fxn=(x-3z)=+ (x+3y+ z)=+ (5xt y)==
3 3 3
_9x+T7y-4z
Figure 1.11 3 '
Substitute results that we got into the formula (7) and calculate flow:
FXZ 1 1-x
n = dxdy= [[|9x+ 7Ty- 4 dxdy= [dx [ (17x+15y- 8|dy-=
P, o= [flone 7= el = ] 1720157 )
'y = g(x,y) e
1
- J'ﬁl%c(l- 0t Do wy2-8a- olacs - Deso oL
) 2 0 6 2 3
A 11
nswer: 1—.
3

2 Method of the projection ower three coordinate planes. Let 0 be the
surface that projects one-to-one at all three coordinate planes. Denote D, D_,

D, as projections of 0 at the planes XOy, xOz , yOz respectively.

Suppose that the equation @ (x,y,z) = 0 of the surface 0 can be one-to-one
solved with respect to each variable X = X(»,2), ¥ = ¥(x,z), z= z(x,»). Then the
flow of the vector field F can be calculated by the formula

Mn=t ” P( x(y,z),y,z) dydz t L[ Q(x,y(x,z) ,z) dxdz t ZU R(x,y,z(x,y))dxdy (10)

Sign in front of every integral depends on the sign of the appropriate
directional cosine of the normal vector (value of the cosine of the acute angle is
positive, value of the obtuse angle is negative).

Example 2. Find the flow of the vector field F: [xy, vz, xz} through the

face of the sphere x” + y°+ z° = 1, located in the first octant.

Solution. Because the part of the surface is located in the first octant (angles
between normal vector and coordinate axes is acute), then in formula (10) in front
of every integral we need to take “+” sign. Taking into consideration, that
P=xy,0= yz, R= xz and from the equation of the sphere

z=1-x* -y, y=Al-x*- 27, x=4J1- 22 - y*,

we get
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N = ” xydydz + ” vzdxdz + ” xz dxdy =

D,V )0

”\/1 z* - Y’ ydydz + ” V1-2°- x dedz+”x\/1 x*- dxdy

Pass to the polar coordmates and calculate the thlrd integral, which is in the

right side of the last equality (the first and the second integrals can be calculated
analogically).

\/7_ _ DHX PCOS¢ 0<¢ < <L
”x 1- x dxdy = 2
I.

szdl- p’cospdpdp =

D,,

I:EEII:I::I

cosf d¢Ip2\/1-p2dp :J p\1- pidp = D p s, E fsmztcosztdt:
0

[ WS

0 Hdp = costdt
3 3
= lj sin” 2¢dt = lj (1- cos4t)dt = lDEE: .

m m m 37T
The flow that we were looking for equalsto [1 = —+ —+ —= —
16 16 16 16°

3n
Answer: —.
16

1.3.7 Divergence of the vector field

Definition. Divergence of the vector field F at the point M denotes by the

symbol diVF(M ) and can be found as:
Q)F(M)Zda
dlvF(M) = hm : ,
vV

e.g., divergence of the vector field is the limit of the ratio of the flow of the vector
field through the closed surface 0 to the volume V', limited by that surface, given
that domain goes to the point M (4 — its diameter).

Divergence characterizes the capacity density of the source of the vector
field. That scalar quantity can be calculated by the formula

divF(M)= [ xF,

or

OP(M) , JQM) | ARWM)

divF (M) =
0x Y 0z

Properties:
1) dive = 0, ¢ — constant vector;
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2) div(e Fi+ B F2)=a divFi+ pdivF,, 0, - const;
3) div(¢ (M) xF(M)) = grad§ xF + § xdivF , because

@ *xP), + (9 X0), + (§ XR). = § xP+§ xP.+§ xQ+§ X0 +§_XR+§ xR_;
4) div(p xc) = grady *c;

2 2 2
5) divgradu = Au = 0fu Qw0

where A — Laplace operator:

x> 0yt 0z’
(R
A= 2 + 0y + 1 (Au= 0 — Laplace equation).

1.3.8 Gauss — Ostrogradskiy Formula
Gauss — Ostrogradskiy theorem. Let vector field /(M) have continuous

partial derivatives Px' , O,, R; in any domain V' and at its boundary, let closed

surface 0 limits any domain V‘. Then
g)F Xndo = ”J div F(M)dv
g V

e.g., the flow of the vector F through the closed surface 0 equals to the triple
integral over the domain / from the divergence of that vector.
In coordinates:

[ 0P, 90 IR - O)(Pdydz+ Qdvdz + Rddy) . (1)
0dx dy 0dz[ r

Proof. Let domain D be the projection of the surface 0 at the plane xOy,
zZ= Zl(x, y) and z* zz(x, y) are the equations of the parts of the surface 0
(bottom part 0| and upper part 0 ,), Z;, Z, are continuous in D .

Denote P= F,,0= F,,R=F_

Consider
) aFvZ ) 22(x7 J’) 6sz
I-= I‘!'/J' . dxdydz = J'bl' dxdyq(l’ E dz .

Calculate inside integral using the Newton-Leibniz formula:
I: II HF;(X, ya Zz(xa y)) - F;(X, ya Zl(xa y))HdXdy
D
Express double integral through the surface integral of the second order
(when to the random points M (X, ¥) of the domain D respond points (X, , 2),
that circumscribe the surface 0 as points of entry and as output points through the
surface)

I= HFZ(x, v, Z)dxdy- J'J'Fz(x,y, z)dxdy.

U] gy

Substituting in the second integral interior by the outer face, we get:
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I:= lJ‘FZ X, Y,z dxdy+}[IFz(x,y,z)dxdy: Q)Fz(x,y,z)dxdy.

So, I = LU aazz = g)Fz(x, v, Z) dxdy

Similarly we prove, that

J” aai ﬂ)F X, v, z) dydz ”;J'zidXddez g)ﬂ(x, ¥, z) dxdz .

Adding these equahtles by parts, we get .
divF (M)dv= () Fdydz+ (|)F dxdz+ () F.dxdy = () F xdo
I 0 (Drdsaz+ () 0

Example. Find the flow of the vector field F: [x- 3z, x+ 3y+ z,5x+ y}
through the outer face of the pyramid CAOB with the vertices O(0, 0, 0), A(1, 0, 0),
B(0, 1, 0), C(0, 0, 2).

Solution. Because P=x-3z,0=xt3y+t 2z, R=5xty then, using the
formula (11), we get

1

I m(n 3+ 0)dv 4”VJ dv=4V,,.. 13

4

1
Answer: 1—.
3

1.3.9 Rotor of the vector field

Definition. Vector rot f(M ) is called rotor of the vector field, can be found

as:
i j ok
rot F(M)= T x Foll 00 ,
ix 0y 0z
P O R
e.g.

ot F(M)={R',- Q';P' .- R';0',- P'} .
Direction of the rotor is a direction, around which circulation has the

maximum value in comparison with the circulation around any direction that does
not concur with the normal line to the plane domain, restrained by the closed loop.

Properties:
1) rotc=0;
2) rot(@ Fi+ P F2)= 0 rot Fi+ f rot Fa;
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3) rot(¢ (M)@(M)) = grad§ x F + § xrot F ;
4) rot(¢ (M)XE) = gradg x Z;

5) rot(grad¢ )= 0;
6) div(rot F)= 0.

1.3.10 Stokes formula

Stokes theorem. Circulation of the vector field F(M ) over the closed loop

L equals to the flow of the curl of that vector through the surface 0 , stretched at
the loop L, e.g.
C= (M)dl = [ rot F(M)xn(M)do = ([rot Fxda
AR fJrecer

In coordinate form
NPdx+ Qdy + Rdz= [[ (R, - Q)dydz+ (.- R,)dxdz + |0, - P)dxdy
L o

Pass over the loop L can be chosen so, that if you look from the end of the
normal vector at the motion over the loop L, the direction of the motion has to be

counterclockwise.
In particular case of the Stokes formula, when the vector field is flat, then

R=0,z=0, I?(M )= P(M ); + OM )}, and Stokes formula is the following:
NPdx + Ody = [[(Q, - B, )dxdy.
L D

got Green formula.
Physical meaning of the Stokes formula is the statement that the flow of the

vector field F equals to the quantity of the liquid weaving through the surface 0

in time unit - L
dl = tFd
lL\|F U ro g

1.3.11 Properties of the vector fields

1 Solenoid vector field.

Vector field F= Pi+ Oj+ Rk is called solenoid in the domain V, if
divl?(M )= 0 in each point M of the domain V.
N = ([{divFdvz 0
I

Then from the Gauss-Ostrogradskiy formula: , e.g. the

flow of the solenoid vector field through any closed surface ¢ ', that restricts the

domain ' 1, equals to zero.
2 Irrotational vector field.
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Vector field F(M) is called irrotational in any domain V', if in every point

of that domain rotf(M )= 0. Then from Stokes formula, C = 0 over any closed
loop L, belonged to the domain V.

3 Potential vector field.
Vector field is called potential in any domain V', if there exists such scalar

function u(M) or u(x,,z) that F(M) = gradu(M) = Oxu, MOV .
Function (M) is called potential of the vector field.
Theorem 1. For vector field to be potential in any domain V", it is necessary

and sufficient to have rot f(M =0, MOV .
Proof.
Necessity. Let F (M) be potential field in the domain /. Then

F(M) = gradu(M) = 0 xu, rotF(M) =0x F.
So, rotf(M )= 0x (D_Xu) = 0 (because 0 &0 xu are collinear vectors).
Sufficiency. Given that rotF(M )= 0 in the domain V', e.g. F(M ) —
irrotational field.

rot F(M)={R',- Q';; P'.- R'; Q- P' | = 0,if R,= O P.= R; Q.= P,

z

Look at the following function:

X y z
u(x,y,z)= J' P(x,y,z)dx + I O(xy,y,z)dy + I R(x4,¥,,2)dz .
X0 Yo 20

Calculating, we get:
u, = P(x,,2);

”y = J'Py'dX+ O(xy,y,2)t 0= _[Q;dX+ 0= 0, tak kak Py =Q0.;
' * ' y ' * ' y '
u, = Jgd)ﬁ' I Q.dy+ R(xy,yy,2) = IRxdx'I' IRy(xmyaZ)dy'l' R(xy,¥9,2) =
Xo Yo Xo Yo

= R(x,,2) = R(x,,2)t R(x,¥,2) = R(Xy,¥,,2) * R(Xy,,2) = R,
because P = R, and O.= R, .
So,
gradu(M) = f(M).
Theorem 2. If field F(M ) is irrotational in the domain V', then curvelinear

integral J'F vl (™
AB

V.

type) does not depend on the way of integration in the domain

Proof.
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f(M ) is irrotational, that is why rotF(M )= 0, MU V. Then, by the Stokes
formula: Ndel =0,
L

NFxdi= [ Fxdi+ [ Fxdi= [ Fxdi- [ Fxdi=0
NPdi= | Fods [ Pz | Fodl- [ Fiizo

AMB BNA

E

ANB
Fxdl= [ F xdl

B e.g., AJ\./IB A-][VB '

N It follows from the theorem, that for curvelinear
integral of the second type not to depend on the way of
integration it is necessary and sufficient, for the field to be
potential.

Figure 1.12 If the vector field F(M ) is potential in the

A

~— — — [OrotF=0i in V0
domain V', then NF' xdl = ” rot F'xdo = DrotF 01 th.edomam VD -0
7 ; Ofor the potential field

1.3.12 Work in the potential field

Physical meaning of the curvilinear integral of the second type is work, that
is why if vector field (M) is potential in the domain V', then

_ Othe potential field [
A:J'del=Jde+Qdy+Rdz=D \ , 0=
) ) iP=u,Q=u, R=u.p

= Iu;dx+ u;dy+ u;dz = Idu = u(B)- u(A)

L L

, where AB = L (open curve).

So, work of the vector f(M ) in the potential field equals to the difference
of the potentials at the start and at the final points.

1.3.13 Helmholtz theorem

Theorem. Any vector field f(M ) can be presented as a sum of two vector
fields, one of them is potential, another one is solenoid.

Proof. Let F(M ) be any vector field. Then din(M )= f(M) is a scalar
function. Find potential field Fi(M)= gradu(M), potential ¢ is a solution of the
Laplace heterogeneous equation: A u = f (M),

0 *u . q° u, 0 *u
ix> 0y’ 6 2
Let’s show, that vector field Fz = F- F, is solenoid. To do that we need to

find divergence: B B B _ o
divF:=divF-divFi= f(M)-div(lu)= f(M)-Ux0 u=

E.g.,

= f(M) orhu=0x0 u.
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= f(M)-bu= f(M)- f(M)= 0, that is why F, is a solenoid field.
F(M)= Fi(M)+ F2(M)

potential

Consequently,

solenoid
1.4 Tasks for personal work

1.4.1 Defined scalar field #(x,Y,z), vector [ and point M . Find:

1) Derivative of the field u(x,Y,Zz) at the point M in the direction of the vector /;
2) Gradient of the field #(x,y,z) at the point M ;
3) The maximum velocity of increasing of the field #(x,y,z) at the point M .

1.01.
1.02.
1.03.
1.04.
1.05.
1.06.
1.07.
1.08.
1.09.
1.10.
1.11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
1.25.
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uz=x"-y'+ 2>, [=2i- j+2k, M1;2;- 1)
u=xyt yz- xz, l=i-2j- 2k, M(0;1;-1),
u-= x2y+ y22+ xzz, Z: 3}- 4%, M(1;0;2)
u=xz+ y'x- yz°, [= 4i+ 3;, M(2;1,0)
us xyz’ + zy, [=-2i+ 2}+ k, M(-1,0;2),
u=3x"+2y°- 4zx, Z=;-}+ \/5%, M(2;1;- 1),
u=2x+ xp* + 327, E 22+}-%, M(2;2;0)
u=x’y’z", I= 4i- 2}+ 4k , M(1;2;3),
u=xyz- y'z, [= 4i+ 4}- 2k, M(2;0;1).
u=x’yz+ y+ xyz’, [=2i+ 2}+ %, M(1;-1,0)
uz xy’z, Z=;-2}+ k, M(0:1;2),
u=2xy+ 3yz°, E 2;-2;+ \/g%, M(-1;21),
u=3xy+ 2yz°, Z:;+}+ 2k, M(2;0;2)
uz3x+2y*- 422, = 4}- 3k, M(1;1;0)
u=2xz+3xytdyz, [=i- j+ 2k, M(1,2;-2).
u=3x"+ yz- xz°, [= 22-2;+ %, M(0;-1;2).
u-= 3xy2+ 2yz3, = 4i- 3%, M(2;0;1)
u=2xy-3yz°, [=2i- j+ 2k, M(1;1;0) .
u-= x2y+ xyz-yzz, Z:;-}+ \/7%, M- L),
u=2xyz’ - 3xzy°, =i+ 2}+ 2k, M(2;1;- 1),
u=xy'z+ x°z°, [=2i+ 2}+ k, M(0;-1;3).
u=4xz+ 3yz°, Z:;-}+ \/7%, M(1;0;-3).
u= xy* + yz°, Z:-;+}-7l;, M(21;-3)
u=4xz+3yz’, E 22+}-%, M(3;0;1).
u=2xy-3yz+4xz, [=i+2j-k, M@1;3;-1).



b

1.26. u=xy’z+2x°z’,
1.27. u=2xyz+ 3x°z°
1.28. u=3xy"+ 4yz°,
1.29. u=2xy-3yz°,
1.30. u=3xy+ yz°,

1.4.2 Defined vector field F(x, y,z) and closed surface ¢ = 0, U¢

2i- j+ 2k M(1;3;-2)
= 4i+ 3k, M(2;-3;-1).
= -3i- 4k, M(-2;0;3) .
=2i-2j+k, M (- 1;0;1)
=it j+ 2k, M(2;0;2).

,. Find:

1) The flow of the vector field F through the surface 0 using definition and using
the Gauss-Ostrogradskiy formula;

2) Circulation of the field F over the closed loop L= 0, Na, using definition and

using Stokes theorem.
2.01.

2.02. F= (x- y)z+ (vt Z)]' 2Xk;
2.03. F= yzi+ xj- yk;

204 F= (x- p)i+ (y- 2)k;
2.05. F= (2x- y)i+ Gx+ p)j+ zk;
2.06. F=2xi- yj+ zk;

2.07. F=-yi+ xj+ zk;

2.08. F=xi- yj+ zk;

2.09. F= (x+z)i+ v/,

2.10. F = (x- y)2+ (x+ Z);Jr 2y1;;
211. F= xi+ (x+ 2)j - 2yk;
2.12. F=-3pi+ 2xj+ (x+ 2)k;
2.13. F= -2yi+ 3zk;

2.14. F

2.15. F=3xi- zj;

2.16. F= xi- (x+2y)j+ yk;
2.17. F=xi+ zj- yk;

2.18. F = xi- Z}"' y%;

2.19. F= (x+ z)i+ yj;

2.20. F= (x+ y)i- 4yj+ 2xk;
221. F=xi-2zj+3yk;

222. F=xi+ j+ yk;

2.23. F = 3xi- 2yk

= (x-3y)it (vt 5z)j+ 2xk; 0,:x7+ Y=z

L2 2_ 2.
g,:x" +y =z,
2_22:1_

5

g,:x" -y

g,:y-= x*+ 2%

5

0,:x°+y+z2°=4;0,:

L2 2. 2,
g,:x"+ty =z

) 2 - .
g,:x"+ty =z

g,:z=8-x"-y%;

>

cyz= vi4 2
g,:x=y +tz

b

= 12 2,
0g,:x=)y +tz

b

2

g,:x -y -z°=1,

L2 -2 2,
g,:x =y tz

0,:2=6-x"-y%;
0,:z= x"+y%;
0,:2=4-2(x"+ y%);
01:x2+ Y+ zi=1;
g,:z= 8- x- )%,
g,:z= X+ )%,
01:x2+ Y -2z=0;
0,:z% 4-x2-y2;
g,:x" -y -2=1;

0,
0,

F: (x- y)z+(y+z)]+(y z)k 0,:x’ -y -2"=1;0,:x+y" +2°=3(2> 0).
7g,:x +y°+2°=9;0,
0,:z=1(0< z< 1),

:z=20(z20),

:x= /5.

y=1

3z= x>+ )’

X+ Y+ 22 =2(2>0).

qg,
0,:2=3+2y(z20),
1)

2 2
,iZEXTE Y.
Xty i 2,

X+ Yt zi =2,

Lixt4 Y+ 22 =8(x20).
1z= 3,

X+ =27 (220).
,iz= 1,

2: 27 2(x*+ 7).
X4 ytE 27 (220).

qg,
qg,
L0,:x+ Y+ 2= 3(2> 0).
0
qg,
1)

g

g

1)
0g,:z= x+y
0,:z=1,
0,:z-2x=0,
0,:2=0(z>0),
0

,ix= 2,

29



2.24.f:(x-2y)f+(z-x)}+ xk ; g,:x-y*-2z"=1; 0,:y=2,

2.25. F = yi+ 2xj+ zk; 0,:x*+y 4 z2=1; 0,:2=0(z>0).
2.26. F= (x+ 2)it (y+ 2)k; g,:z= X"+ y%; 0,:z=1,
227. F= (x- 2)i+ yj; g,:z=1-x"-y* 0,:z=x"+ %,
2.28.F:(x+ y)f+ 2xk ; 0,:z= x4y, 0,:z2= 4,

2.29. F = xi+ z}+3yl€; 0,:x°+y*-2=0; 0,:z-2y=0,
2.30. F= xit j+ yk; 0,:229-x*-y*; 0,:2=0(z>0).

1.4.3 Defined the vector field I?(x, v,z). Prove, that the vector field
]?(x, y,z) is potential. Find the potential of the field f(x, V,2).
3.01. F=3x%+2yj- 4k.
3.02. F= (2x+ 1)i- 4y*j- 2zk.
3.03. F= (x*+ x)i+ 4j- 2zk.
3.04. F=4i- (y*+1)j+ 3zk.
3.05. F=5xi- (y+2)j+ (22 + Dk.
3.06. F= (2x*+ x)i+ y*j- (3z+ 2)k.
3.07. F=5i- (y+3)j- (z*- Dk.
3.08. F=(1- 3x)i+ 5+ (322 + 2)k .
3.09. F= (4x>+ )i+ 3y-2)j+ zk.
3.10. F= Bx+ 4)i+ (y*-2y)j+ 4k.
3.11. F= (2- 3x)i+ (497 + 3y)j+ 2z+ k.
3.12. F= (1- 2x%)i+ (3- y)j+ (4z+ Dk.
3.13. F=2x%- y*j+ k.
3.14. F= (5x+ 2)i- By+ 1)j+ (2z- Dk.
3.15. F= (2x*+ x)i+ y*j- (3z+ 2)k.
3.16. F= (1+ 3x)i- 2yj+ (4- 32)k.
3.17. F= B3x- x%)i+ (2- 4y)j+ 3k.
3.18. F= (2x+ 4)i+ By-1)/+ (z+ 2)k.
3.19. F=3xi+ (2- 4y*)j+ Bz~ 2k
3.20. F= (x*-2)i+ (y-2)j+ (22 + 22)k.
321. F=(1- 2x+ x%)i+ (4y- 1)/ - 2zk .
3.22. F=2i-(3y*+ y)j+ (4- 32)k .
3.23. F= (2x- xD)it (1- 4y)j+ (22 + Dk .
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3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.

= (4x*+ Di- Gy+2)j+ (1- 2Dk
= (1+ 2x%)i+ By-1)j+ 4zk.
=3i+ (4)°+ 3y)j+ (2z+ k.

= (x*+ Dit By-2)j+ 4z°k.
= 2x%- (3y*+ 2y)j+ (2% - 32)k .
(3x-2)i+ 2y+ 1)j+ (z- Dk.

Sl I Ie- T e T Ries [ Ies |

= (4-3x%)i+ 2y - y)j+ (1- 22)k.
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COMPLEX VARIABLES
2.1 Complex numbers and operations with them

Definition. Complex numbers are the numbers
z=xtiy, (1)

where X and V are real numbers, and 7 is imaginary unit (;* = - 1). Number X is a
real part of the complex number and denotes x= Rez, V is imaginary part:
y=Imz,

Two complex numbers are equal if and only if equal their real and imaginary
parts.

Number z = x- iy is called adjoined to the number Z = X+ iy .

(1) is an algebraic form of the complex number.

Complex number Z= Xt iy corresponds at the plane to the point with the

coordinates (X,)). Coordinate plane in that case is called complex plane.
Complex number is presented as a radius-vector. The 4

length of the radius-vector is:

r=‘z‘=«/x2+ y2 ) z

is called the module of the complex number (72 0). Angel ¢ ,
generated by the radius-vector 0z and the positive direction of ¢
the axes Ox is called the argument of the complex number and

v

F1 2.1
denotes ¢ = argz = arctgZ (x% 0). igure
X

The argument of the complex number is a multiple-meaning value:
Argz=argzt 2mk (k= 0,- L1, -2,2,..) where argz is a main meaning of the
argument, that lies in the interval (—m; «].

From the figure 2.1 we see that:

Xz rcosp,y=rsing,r= o= Jx'+ y*, tgh = %

If in algebraic form substitute X and V with the X= 7C0S§ and y = rsing
then complex number Z = X* iy can be written as:
z= r(cos¢ t ising ) (2)
It is trigonometric form of the complex number.
The equality cosf + ising = e” was proved by Euler, using it, we can write
zz re. 3)
It is exponential form of the complex number.
Let z,= x5t iy, u z,= X, 1 iy, be two complex numbers in algebraic form.
Then:

1) z, 1 zz=(x1i x2)+i(y1i yz);
2) z,%z, = ('xl ¥ iyl) X(x2 * iyz) - (xlxz - J’1Y2) ¥ i(x1y2 ¥ xzyl);
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Xt iy, X2 1y, - (xlxz * y1y2) i i(sz’1 ")) XXt D, p T2 M)y
Z, Ny, X0, X4y X4y, Xt ¥

If complex numbers are in trigonometric form, e.g. Z = K(COS‘P  t ising 1)
and z, - ”z(COS¢z ¥ iSin¢z) , then

1) z,%z, rl(cos¢1+ isin¢1)xr2(cos¢2+ isin¢2) = rlxr2><(cos(¢l+ f,)+ isin(¢1+¢2))

b

rl(cos¢1+ isin¢1)

2)%: :%ECOS(¢1'¢2)+iSin(¢1'¢2)§;

rz(cos¢2+ isin¢2)

3) z" = r”(cos¢1+ isin¢l)" - r”(cosn¢ t isinng ) , n0 ¥ —Moivre formula;

n n

4) ¥z = ifr[cosg + ising | - Wﬁ%sq’ * 2T isin¢+—2kn5, k=0,1,2,,n-1.

2.2 Concept of the function with the complex variable

Further we consider different sets of complex numbers. They are defined as
equalities or inequalities. For example, condition |z,|= R, R= const defines a

circle with the radius R and with the center at the point z, (figure 2.2a); condition
argz = const is a ray, that comes out from the origin angularly ¢ = argz

(figure 2.2b).

0 g 0
a) b)
Figure 2.2

Definition 1. If to every complex number z, that belongs to the set D, put
adequacy any single complex number or any collection of the complex numbers ©
, We say, that @ is a function with the variable z, defined in the set D and denotes

W= f(2). (4)

If take into account, that Z= X* iV and put @ = u + iv, then for extension of a
definition of the function @ it is enough to define two functions with real variables
w=u(x,y) uv:v(xy).

Consequently,

\4

0 = u(x,y)t v(x,y). (5)
From (4) we can come to (5). Such transition is called elimination of the real

and imaginary parts.
Example. Eliminate real and imaginary part of the function: @ = z*.
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Solution. Because Z=X*tiy, then o ={xt iy)2 = x2- 2+ 2xyi.  So,
u(x,y)= x>~ y* and v(x,y) = 2xy.

Definition 2. Complex number @, = u,* v, is called the limit of the
function @ = u(x,y)*t iv(x,y)= f(z) of the complex variable Z= X* iy when
A Zo(xo, yo) , if for every, as small as possible, positive number ¢ we can
indicate such positive number 0 , that from the inequality |Z' ZO|< 0 follows
inequality |/ (z)- w,|< ¢ .

Given definition can be written as: 1M .f(2)= @,

Z- zg

From the definition it follows, that if @, is a limit of the function ® = f(2)
when z - z,, then the value ¥, does not depend on the way along which point z
comes to the point Z,. From the definition it also follows that if the limit of the
function exists, then the following limits exist:
}}Ig u(x,y) - MO and }}Ig V()C,y) - VO .
Y= Yo Y=Y

Definition 3. /(2) is called continuous function at the point z,, if it defined
in any neighborhood of that point and }Hg (@)= 1(2)) Function f(2) is

continuous in the domain D, if it continuous in every point of that domain.

Continuous functions with the complex variable have same properties as
continuous functions with the real variables. Particularly, if function © = f(2) is
continuous in the closed domain D, then that function:

1) is absolutely limited in that domain, e.g. |/ (2)|< M ;

2) reaches its maximum and minimum value in the closed domain D .

2.3 The main basic functions with the complex variable

Define the main basic functions with the complex variable Z= X+ iy

Exponential function. Exponential function w = ¢is defined by the formula

w=e = ex(cosy+ isiny) )

Let ¥=0 in that equation, determine, that for the real values z= X
exponential function e® concurs with the exponential function with the real
variable: e” = e*.

Logarithmic function. Logarithmic function defines as a function, inverse
to the exponential function: number W is called logarithm of the number z# 0, if
¢" = z and denotes W= Lnz  Because the value of the exponential function ¢" = z
is always different from zero, then logarithmic function W= Lnz is defined
everywhere at the surface z, except the point z = 0.

Put z = re”, w= u+ iv, we get, by the definition of the logarithmic function,

utiv -

"V = rxe? abo &' xe" = rxe .
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From here we have:
e'=r,v=¢ +2kn, eg u=Inr,v=¢ +2kn (k=0,t1,12,..)

Therefore, w= Lnz=u+iv=Inr+ i(¢ ¥ an) = 1n|z|+ i(argz+ 2kﬂ) ,
e.g. Lnz= 1n|z|+ i(argz+ 2kﬂ) or Lnz= ln|z|+ iArgz  where Argz = argz+ 2km

The last formula shows, that logarithmic function with the complex variable
has infinitely many values, e.g. W= Lnz — multiple-valued function

One-valued path of that function can be extracted by the substitution in the
last formula specified value k. Let k= 0, we get one-valued function , that called
the main value of the logarithm Lnz and denotes as Inz:

Inz= In|z|+ iargz , where =T < argz< 1

If z — is a real positive number, then argz= 0 and Inz= In|z
value of the logarithm with the real positive number concurs with the regular
natural logarithm of the number.

Logarithmic function with the complex variable can be presented as:

Lnz=1Inzt+ 2kni.

Power function. If 7 — is a natural number, then the power function is

defined by the equation w= z" = 7" ( cosnf + isinng ) . Function w= z" — is an one-
1

, €.g. the main

valued function. If 7 = g (q 0¥ ) , then 1n that case
1
- [ + . + il
wz z0= 4z = (/MDCOSM+ i51nM+,where k=0,1,2,.,9-1
I q q il

1
Here function — is a multiple-valued function (¢ -valued). It is possible
to get one-valued path of that function, attaching to k& definite value, for example
k=0.

(P, ql ¥ ) , then the power function is defined by the equality

q q i

P Mgcosp(argz+ 2le) . isinp(argz+ 2km | [
0

. p . . .
Function _ 4 —isa multiple-valued function.

Trigonometric function. Trigonometric function with the complex variable
z= xt iy is defined by the equalities:

iz -iz iz -iz
- e

_éite _sinz _ COSZz
—, COSZ = ,tgz = ,Ctgz = —
2i 2 COSZz sinz

Trigonometric functions with the complex variable have the same properties
as the functions with the real variables.

sinz =

Hyperbolic functions. Hyperbolic functions are defined by the equalities:
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z -z 4 -z
e -e ete shz chz
,chz= ,thz= —— cthz=

chz shz

shz=

The connection between hyperbolic and trigonometric functions is:
shiz=isinz,sinz= -ishiz,chiz= cosz
From the definition of the hyperbolic functions follows, that functions shz, chz
are periodic with the period 27 ; functions thz, cthz have the period Ti.

2.4 Differentiability and analyticity of the function with the complex variable

Definition. Let /(2) be a function defined in any neighborhood of the point
z . Then, if the limit

i LG4 @ dle) o
bz- 0 Az dz
exists, then it calls the derivative of the function /f(z) with the complex variable z
, and the function f(2) is called differentiable at the point z.

Recall, that the function with two real variables u(x,») is called
differentiable, or the one that has total differential at that point (X-)), if the leading
linear part and the infinitesimal part with the higher order of infinitesimally with
respect to 4x, 4y can be extracted in total increment of that function at that point,

e.g.

u(x+Ax, y+by)-u(x,y)= AAx+ Bhy+alx+ fAy, (6)
d du
¢, - 0 when 8x,0y - 0 also A=—u,B:—.
0x dy

Theorem. If the function f(z)= u(x,y)* iv(x,y) is defined in any
neighborhood of the point Z= X* ¥ then for function /f(Z) to have derivative at
that point, it is necessary and sufficient for the functions ¥ and VvV to be
differentiable in the point z (X, y) with respect to X and with respect to V' and
have place the following condition:

0u _0v du_ 0V _ .
Ix @; E_ ™ (Cauchy-Riemann condition).

Proof.

Necessity. Let the function f(2) be differentiable at the point 2= x* iy It
is necessary to prove, that functions #(x,») and V(x,») are differentiable at that
point (x,») and Cauchy-Riemann condition is satisfied.

Because function f(2) is differentiable at the point z, then its increment
can be written as:

f(zthz)- f(z)=cbz+ bz,
and /) - 0 when Az~ 0,c¢= f'(2),eg.
fztbz)- f(2)= fi(2)bz+ )bz,
By the definition: z= xt+ iy Az=Ax+idy;
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S(@)= ulx,y)t iv(x,y);
fz+Az)=u(x+Ax, y+ Ay)+iv(x+ Ax, y+ Ady),
f(2)=A+iB y=a+if .a,p - Ompudx- 0,40y~ 0,
Then
f(z+Az)- f(z)=[u(xtbx, y+ Dy)- u(x,y)]+ i[v(x+dx, y+ Dy)- v(x,y)]=
= (A+iB)(Ax+iby)+ (o +if)Ax+idy).

Hence,
u(x+ bx, y+ Ay)-u(x,y)= AAx- BAy+alhx- fAx, (7)
v(ixtAx, y+ by)- v(x,y)= BAx+ Aby+aly+ fAx, (8)
Expressions (7) and (8) look like the expression (6). Comparing them, we note
i 0u ov oV
A= -2 and B*= -—; A= — and B= —,
X Y 0y X
because f'(z)= A+ iB=u'tiv',
Hence,

T TS ©

So, it is proved that if the function f(2) is differentiable at the point 2= X+ iy
then its real and imaginary parts u(x,»), v(x,¥) are differentiable at the point
(x,) and satisfy conditions (9).

Taking into account Cauchy-Riemann condition, the derivative of the
function f(2) = u(x,y)+ iv(x,) can be found by the formulas

' du dv o, _0v du o _du du
/(@)= PR /(2= 0y lay,f(Z)- Tx lay,f(Z)- ay+’ax'

Example. Check Cauchy-Riemann condition and find derivatives of the
functions: 1) w= f(z)= z*;2) w= z Rez.

Solution.

1) 2= x* iy then & = (x+t iy)2 = x?- y?+ 2xyi, that is why u(x,y)= x>~ y

v 0v

2

b

v(x,y) = 2xy.
Ou _ 0v_ .~  O0u_ v _ )
Because 5= 2%, 3—=2x;-—=-2y,-—=2y  then Cauchy-Riemann
0x dy dy 0x
o du 0V Ju oV _
conditions — = —, —— = - — are satisfied.

dx dy’ dy dx
dw_ du .dv . :
Hence, —= —+i—=2x+i2y= 2(x+ zy) =2z,
lz dx Ox

2) w=zRez= (x+iy)x= x>+ xyi, then u(x,y)=x2, v(x,y)=xy_ Find
du_, v, v

——=2 = (0. —=
ix v dy . ly ox Y
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b0y du

Cause Hx "0y 0y x>
satisfied and the function ® = zRez does not have the derivative.

Definition. If the function f(2) is differentiable not only at the given point

Z,, and also in any neighborhood of that point, then it calls analytical at that point

Zy.

then Cauchy-Riemann conditions are not

Definition. Function /(2), analytical in every point of the domain D, is
called analytical in the domain D .

2.5 Integral of the function with the complex variable.
Cauchy theorem

Let /(2) be continuous function with the complex variable, defined in every
point of the arch 4B. z
Split up the arch AB by n parts, randc z
choosing points A=z, 2z, Z,,..Z, A
(figure 2.3).
At each part, randomly choos z int ¢; and

& A
get sum: Z S )bz, where bz, = z,,, - z,  Figure 2.3
=1

The limit of that sum (when max|Az,| goes to zero) is called the integral of the

function /(2) along the edge AB and denotes J f (z)dz.
4B

max‘A zk‘a 0

E.g. J f(2)dz= lim Z JEA 2, where |A Zk| is the length of the chord of the
B =1

1/
elementary arch z/Z , .

Properties of the integral.
The following properties come from the definition:

1. JB[fl(z)i fo(2)z = J f(2)d=t J fi(2)dz.

B B

7. JBcf(z)dz= cJ f(z)dz’ ¢- const.

4B
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3 Jgf(z)dzz -; f(z)dz-

A
4. If the edge 4B is splitted by point C, then
J f(z)dz = J f(z)dz + J f(z)dz
4B AC B .
5. Estimation of the absolute value of the integral

J f(2)dz|< ML,

If for curve 3, that has length L: |/ (2)|< M | then

Proof.
z FEbz,

S Z FED|Az,| MZ Az,|, |Az] is the distance between
=] =1
points z, and z,.,, and Z |A Zk| is the length of the kinked curve, inscribed in the
eS|
arch 2B, that is why Z Az |s L.
3]

Therefore, < ML .

;:f@k)Azk

Coming to the limit, we get < ML

J f(2)dz

6. Expression of the integral of the function with the complex variable in
terms of the curvilinear integral of the second order.

Because f(2) = u(x,y)* iv(x,¥) and z, = x, + iy, , then

i Sz )bz, = Zn [u(x, v )t iv(x,, y)I(hx, + by, )=

- Z [u(x, )b x, = v(x,, v )by, T4 iz [V(xe, ybx, 4 uCx, y)by,].
-1 =1
These sums are the integral sums of the curvilinear integrals of the second

type. That is why the passage to the limit with the condition m]?x|A Zk| - 0 cg.,

m]?X|Ayk| ~ 0 gives the possibility to write down the formula
J f(2)dz = J u(x, y)dx = v(x,y)dy + iJ v(x, y)dx + u(x,y)dy
4B

4B 4B

In that formula real and imaginary parts can be segregated.

7. Transformation of the integral with the complex variable into the regular
integral from the complex function with the real variable.

Ox= x(¢),
If the arch 4B is defined by the parametric equation Hy - ) LSt t,,
then z = z(t) = x(t) + iy(¢) is the complex parametric equation of the arch 4B.

Then
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[ 16X [ 7150+ U0 01

- [ SIO+ BOFXO O = [ (20020

Given formula brings calculation of the integral with the complex variable to
the calculation of the definite integral with the real variable.

— ., where /' is a circle with the radius R and with
0

Example 1. Find
the center at the point z,= 0 + iff .
Solution.

The equation of the circle is: Y4
(x-a) +(y-B) = R (figure 2.4).

Let x-a = Rcost, y- § = Rsinz,. 7
' Ox=0a +Rcost,0 ) ) p

The equation [ : 1< 2 is a parametric |
1 Ny =P + Rsint, P T

a
equation of the circle, then its complex parametric equation is: Figure 2.4 o

z=xtiy=0 +if + R(cost+ isint)= z,+ Re", and dz= d(z,+ Re™) = iRe'dt .
~ dz T iRe'dt _ .
' | - —=2n
That is why !\'z- P Jo Ro i
Answer: 2Ti.
The main Cauchy theorem. If the function f(2) is analytical in simply

connected domain D, limited by the closed 10013 A , and also at the points of that
loop, the integral of that function over the loop 4 equals to zero:

Nf(z)dz -
Proof.

Let the function w= f(2)=u(x,y)t iv(x,y) be analytical in simply
connected domain D . It follows existence of the continuous partial derivatives of
the functions #(x,y), v(x,») in the domain D. Let 4 be a closed loop, limiting
domain D (ﬁgure 2.5).

Then Nf(Z)dZ N(x Y)dx=v(x,y)dy+ lN(x y)dx+ u(x,y)dy

Using Green formula

NP des Qv [ 52 55y,
Y
we get
Nf(z)dz JH-G—V—a—”_dd u@% Z_;de
Because function /f(z) is analytical, then Cauchy-
%emann conditions take place:



Figure 2.5

Therefore, N(z)dz =0
Example 2. Calculate the integrals:
N[22 - 3z)dz.
nN ,

R -
2)1-]ASI—Z_ZO,lfa)A:|z—ZO|=R;

6) 4 is aloop that does not contain point .
Solution.

1) Because function f(z)= z’-3z is analytical at all plane, then

N2 - -
L\[Z 32)dz= 0 gyer any closed loop.

_fdz - )
2) 1= M,lfa) AI|Z' ZO|— R.
o~ dz . . .
From proved above (Example 1) 1= |\|—Z_ ~ 2Mi Note, that the point Zz, is
0
inside the circle |Z - Zo| = R and function f(2) is not analytical at that point.

N o~ dz
6) If 4 is the loop, that does not contain the point z,, then /= Nz-7 =0,
A 0

Answer: 0; 211, 0.
Theorem. If the function f(z) is analytical in the multiply-connected
region D, limited by the external loop 4 and inside loops yi, y....., 7., and also by

the loops A, 71, 7,..... 7n, the fo“fé}%?tﬁ%“@&}%&ﬁ%%ﬁ%rﬁ%?ecg by the loop A, exist two
loops tz)dnd Yh§\|f@apfon f(z), analytical in the
domainZbetween 169ps A and y,, y,, and also at the above
Proof. mentioned loops.
We prove theorem for n=2. Trace arches: lk, mn  pg, connecting loops [ with

Y, 71 ¢ 7, 7, with 4 and denote as C, closed loop
lkzmntpg fl andas C, — klrgpunmsk (figure 2.6).
Then domains inside the loops C; and C, are simply

connected and the main Cauchy theorem takes place:
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Figure 2.6

Nf(z)dz= 0 Nf(z)dzz 0

Adding these equalities and using the third property for integrals, we can
note, that integration over every arch /& mMn P4 performed twice in different
directions, and bypasses of the loops yi, . clockwise (e.g., in opposite direction).
So,

~ ~ ~

@z~ ey = 0

A
the necessity follows.

2.6 Cauchy integral. Cauchy integral formula

Theorem. Let f(2) be analytical function in the simply connected domain
D, limited by and on the closed loop 4. Then the value of the function in any
point Z,0 D can be found by the formula

_ 1 /()
f(zy)= %1 —, dz.

Proof.

Let f(2) be the function in the domain limited by and on the closed loop A4 .
Fix the point z, inside the loop 4 and consider the function

¢(Z): f(Z)_ f(ZO)-

z- z,
That function is analytic in every point of the loop and on the loop A4,

. - . 0oo
except the point z,. E.g., when z= z, we get uncertainty Tod> that expands,

because when z - z, § (2) ~ [f'(z,). If we redefine function ¢ (z) at the point z,
by the condition ¢ (2)= f'(z,), then ¢ (2) be the continuous function in all domain

limited by the closed loop.
ey,

Therefore, the function itself is going to be limited
and [# (2)|< M | where M is any positive number.
Figure 2.7
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Let y be the circle with the radius P , with the center at the point z,, that is
inside A4 . In the domain limited by the loop 4 and y, function ¢ (2) is analytical,
because point z = z, (at that point analyticity is broken) is taken away from the

domain.
Using Cauchy theorem for multiply connected region, we get

]Sp (z)dz = N (2)dz.

According to the rule of estimation of the absolute value of the integral, we

get:
N (z)dz|< ML, = 2mp M _
Passing to the limit when ¢ - O in the last equality, we get
N (2)dz=0
A~ 2
or

\ (Z;: Z(Zo)dz= 01 -Z(_Z)Zdz- f(Zo)TZfZZZ = 0. (10)

According to the Cauchy theorem for multiply connected region

~odz o~ odzo omi . .

I\IZ_ Z !\IZ_ - Ti  That is why equality (10) takes on form:
0 0

4

N2 -onif(z)= 0

4

From here,

)= - N

27Tz Z- 2,

That formula is called Cauchy 1ntegra1 formula, and the integral on the right
is the Cauchy integral. From that formula we see that the value of the analytical
function inside the loop A defines by the value of that function on the boundary of
the domain C.

Example. Calculate / 2]” Nzﬂ , where 4: 1) |Z| 2;2) |Z|- =
Solution.

1) By the condition 1= —NL function f(z)= 2z’ is analytical

everywhere. Then z, = -1 lies inside the circle |z|< 2, that is why by the Cauchy
formula /= f(-1)=1,

1
2) the point Z, = - 1 lies outside the circle |Z| < > that is why by the Cauchy

theorem /= 0.
Answer: 1; 0.
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2.7 Higher order derivatives of the analytic function

Theorem. Analytical function is infinitely many times differentiable, and
the following formula have place
O WAL
f ( ) 2”1 Z _ Z)n+1 :

Proof.

We showed that if the function /f(2) is analytical in the domain D, limited
by and on the loop A4, then the value of the function at any point Z, that belongs to
D, can be found by the Cauchy formula

© 4

f()‘— e~

No matter what point z is, it is always possible to choose such value Az that
new point z+ Az is going to lie inside the domain D . Let, for example, Az| be the

shortest distance from the point z to the boundary of the domain. Then, for the
new point z+ Az, by the Cauchy formula

fe+b2)= 5 ]\,gf(f) d |

-z-Az

Consider

f(ztL2)- f(2) . @) sz,
27T1AZI\E{ .

Az -z-hAz ¢-z D
After transformation

fzthz)- fz). 1 & S ©)
Az _27TiN(f-Z-AZ)(5‘Z)dE’

When Az - 0, we get

1= g e (1)

We got formula for n=1. Substltutlng in the formula (11) z by z+Az and

forming new ratio: f (z+ 4 Z) f (2) , we get formula for the second derivative:

f( )= T l\(f(é) d¢  and so on.

So, f(n)( )= T l\l(ff(f)nﬂ

From the analyticity of the function in any point, follows existence, in
neighborhood of that point, of the derivatives of any order, and therefore their
analyticity.

2.8 Series of the analytic functions
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0

Definition. Power series are the series Z C,(z- z,)" , where C, are constant
=0

complex numbers (coefficients of the series). For power series the following
properties have place:

1. For the power series Z C,(z- zy)" , that have both points of convergence
n=0

and points of divergence, there always exists such a real number R 2 0, that inside
the circle |Z - ZO| < R the given series converge, and outside diverge. The domain

|Z - ZO| < R is called the domain of convergence, and the number R is the radius of
convergence of the power series.

2. The sum of the power series is the analytical function in the domain of
convergence.

3. Power series in the circle with the radius f < R converge evenly. It can
be termwise differentiated and termwise integrated over any arch, that lies in the
domain of convergence. The radius of convergence of every newly built series
equals to the radius of convergence of original series, and the same actions are
performed with the series sum.

Example. Find the domain of convergence Z % :
n=0
Solution. Use Dalamber property
A
Y _ A ntl 4y
|2 L) 2 L i< 1 then [z~ 14 < 2,
o2z 1) 2
19) X wher zy=1-7iand R=2.
% Because
Figure 2.8 |Z- 1+ i|= |x+ iy- 1+ i|< 20 \/(x- 1)2+ (y+ 1)2 <2,

and the last inequality defines domain, limited by the circle with the center at the
point Z,(1,- 1) and by the radius R= 2.

2.8.1 Taylor series

Power series inside its domain of convergence define analytical function —
the sum of the series. The converse preposition is also true.
Theorem. Any function f(2), analytical inside the circle with the center at

the point z,, develops, inside that circle, in the power series:
/()Y Cz-2),
n=0
Coefficients can be calculated by the formula:

c =G 0,0,

" n!

45



Proof.
Consider function f(2), analytical inside the circle k with the center at the

point z,.

Let z be any point of the circle. Then by the
. VA
Cauchy integral formula f(2) = 207 N dé .

Draw inside the circle k& the circle L with the
center at the point z, with the radius 7 so, that the point
z 1s inside of that circle (figure 2.9).

Then the equation of the circle L: |<Z - Zo| = 7. The

distance between points Z and Z, is less than 7.

Figure 2.9

Consider fraction

1 1 1 1
f-z {-z-(2-2) -z .24, (12)
{ -z,
z-z
where ¢=ql |Q|<1.
{ -z
Consider expression (12) as a sum of decreasing geometric progression with

zZ
and with the denominator L

1
{_Zo E_Zo

a
sum of the geometric progression —q =ataq+aq’t .. we get:

the first member . Then according to the

11 z-z, | (z-z) _v (z-z)"
(s A G ke
Multiplying series (13) by f(¢), we get:
A EES Vi S (SR N CEES A L RN

(-2 &z (-3z) €-z) & -z
Because |f - ZO|= r, taking onto account analyticity of the function
|f(5)|< M when ¢ 0 L then

(z- zo)”f(f)‘:

n

)]
£ -z

z- Z

"M

0 X

{_Zo

q

(Q( - Zo)m1
nx%: %z
r r &,

q| converge and are majorant to (14), that is why

Series Z q
n=0

series (14) converge and can be termwise integrated
[ - - 2 0
N RSO (222 SO (222 @), L
f( ) {_ZO (E—ZO)Z (6_20)3 6
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_ AD IRy f(f) f(c‘)
_ZITZIL\'Z di 27Tl IL\'( pdi .

- 2, 2mi {-z, {-z,
(n) z
 fe £ ez LE 0)< Sz %( 2)' 4 e (1)
Therefore,
_ v o Sz . 1 f©)
f(Z)_ }ZOCn(Z ZO) , where Cn - n! 0 oM b(g _ Zo)n+1

Power series (15) are called Taylor series for the function /(2).
2.8.2 Laurent series

It was earlier shown, that the domain of convergence of the power series
C,t Cl(z- ZO) + Cz-z)+ ..+ Cz-z)'+ .= iOCn(Z- Z,)"
is a circle: |z- zy|< R.
Consider series
S G Sifoet e

z-zy, (z- 20)2 (z- z,)" =1

1
Make substitution - = { and get series:

2o
C{+C{*+.+C{"+ .= Y CL"
n=1
That power series converge in the circle |Z |< p . Coming from { to the

1

1
variable z, we get: —|z . | P, |Z - Zo| > ;, e.g. the domain of convergence of the
0
series (16) 1s exterior of the circle with the center at the point z, and with the

1
radius z = —.

Consider series, infinite in both sides

C—n C'l + C0+ CI(Z- ZO)+ .ot Cn(Z_ Zo)n L Z Cn(Z_ ZO)n . (17)

(z-z))" 7 (z- z) o

That series are convergent if simultaneously converge series:
z C.(z- z,)" and z C.(z- z,)".

The domain of convergence of the ﬁrst series is a circle with the radius R,
with the center at the point z,. The domain of convergence of the second series is
exterior of any circle with the radius 7, with the center at the point z,. If 0< < R

(figure 2.10), then their shared part, the ring, is the domain of convergence of the
series (17).
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A set of the points z, that are in the ring, satisfies condition
r< |z— ZO| <R,

If »> R, then series (17) do not have points of
convergence. If R= r, then series (17) can have points of
convergence only on the circle = R.

Sum of the series (17) is analytic function in the ring of
convergence.

Converce proposition is true, it is called Laurent
theorem.

Figure 2.10

Laurent theorem. Any function, analytical inside of the ring
0<r< |Z - ZO| < R with the center at the point Z,, can be decomposed in series
inside of that ring

00

f@= Y G-z,
1 »~

z
coefficients can be found from the formula GC.- 27Tl'NZ-f§0;n+le’

n=0;1 1t 2;... and L is any circle with the center at the point Z,, that is inside
of the given ring (without proof).

That series are called Laurent series for the function /(2) in the ring under
consideration.

2.9 Isolated special points

Points of the plane, in which function f(2) is analytical, are called true
points of that function, and points, in which function /f(2) is not analytical,
particularly, points, in which function f(2) is not defined, are called special
points. Special point is called isolated, if there are no more special points in any
neighborhood of that point.

If z, is isolated special point of the function f(2), then in small enough
circle with the pricked center z,, that is the ring with the internal radius, equal to
zero, a function f(2) is going to be analytical and can be decomposed in Laurent
series

[04] 00 00 C
z)= C,(z-z)" =) C,(z-z))"* 1 18
A n:z-oo ‘ ;o 0 nZl(Z_ Zy) (18)
00 00 C_
Series ;()Cn (z- z,)" are called true part, and series ;1 - z) are called

the main part of decomposition of the function f(2) (18).
Three cases are possible:
1. The main part is missed in the decomposition (18).

In that case point 2, is called removable special point (RSP).
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f(2)=C,t C(z-z)t ..+ C(z-2z))" + ...,
lim f(z)= C;

z+ 2z,
So, if redefine function f(2) in the point z,, setting f(z,) = C,, then point
Z, becomes true point.

Example 1. Find special points of the function f(z)= % and define their

type.
Solution. z = 0 is a special point. Decomposition of the function f(z)= sinz
3 5 : 2 4 1
. . . z>, z Sinz z5 z . Sinz
In series: sinz= z- =+ ——- ..., then =]1- =+ = -..and lim = 1.
31 5! z 31 5! -0 gz

0
Setting f(0) = 1, uncertainty 0 can be removed. Therefore, z= 0is RSP.
Answer: z= 0 is RSP.
If z, is removable special point (RSP) of the function f(Z), then the finite
limit of the function Zhr% (2 exists.

2. The main part contains the finite number of terms.
The point z, is called the pole of the kth order (PxO), if

- C C
=Y C(z-z)"+ —L—+ .+ —— i
f(2) ;O (27 zp) - 2) - z) , where k is the pole order.

Example 2. Find special points of the function f(z)=

CcOSz )
and define their

type.
Solution. z=0 is a special point. Decomposition of the function
2 4 3
: . : z0 |z
f(2)= cosz in series: cosz= 1- -+ - . then <8Z-1_2,2
2! 4 z oz 2! 4]

Therefore, z = 0 is a pole of the first order (P10).
Answer: z = 0 is the P10.

If z, is a pole (P), then the limit Zhn}O J(2)=®  The pole of the first order is
called a simple pole. A point Z, is the pole of the xth order of the function f(2), if
lim f(z)(z- z))* = C# 0
zZ- ZO ¢

3. The main part contains infinite number of terms.
A point z, is called considerablyg special point (CSP).

[

1= Cz-z)"

n=-o

1
Example 3. Find special points of the function f(z)= ¢z and define their
type.
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Solution. z= 0 is a special point. Decomposition of the function in series:

1 1 1
+

z 2122 317
Therefore, z = 0 is a considerably special point (CSP).
Answer: z= 0 is a CSP.

If z, is a considerably special point (CSP), then the limit Zhr% /() does not

exist.

t..

2.10 Residues. The main theorem about residues

Let 2, be isolated special point of the function f(2). In the neighborhood of
that point, the function f(Z) can be decomposed in Laurent series:

F()2Y Camz) s~ s =

- ...
z-z, (z-2) ’
coefficients can be found from the formula:
_ 1 & f(2)
C | dz n=0;t 1t 2.

n- . +1
2mi 3Nz~ z,)"

Definition. Coefficients by the (z- z,)"' in Laurent decomposition, e.g. the

number C_; is called the residue of the function /f(2) with respect to the special
point z, and denotes as C,= l}zgosf(z) or 17 Ag)+f(z).
From the formula for the coefficients of Laurent series follows, that
C., - }Z{%s f(2)= %l [('f(z)dz_
The main theorem about residues. If the function f(2) is analytical inside
and on the closed loop 4, except the finite number of the points z;, z,,...,Z, inside
A , that are poles, then N(z)dz equals to the product of 2mi by the sum of the

residues with respect to the special points of the function f(2), that are inside of
the domain, limited by the loop 4 .

le(z)dz = o1 ZZ Res/ (). (19)

Proof.
Special points, that are inside the domain, limited by the loop A , separate by

the neighborhoods V,, V,,..., ¥, of so small radius, that they lie inside the domain,

limitEABY (S 1 BSEEE ooy iR, £omyected
regions, we have:
IAS]f(z)dz -y ,Qf(z)dz _ (20)

By the definition of residues:

N/ (z)dz= 2miR
50 ’k\lf(z) z ! Z:Eksf(z) . 21).
Substituting (21) in (20), we get formula (19).



Figure 2.11

Therefore, to calculate integral, it is necessary to know the formula for
calculating the residues.

Calculation of residues

1. If the function f(2) is analytical at the point Zo or Z,, a removable
special point (RSP) of the function f(2), then I}gos f(2)=0,
2. Let z, be a simple pole of the function f(2), then

f(2)= Z C,(z-z)"t

=0 T 2

Multiplying term by term from the right and from the left by the (z- z,), we

get:
f(2)z- z)= Z C,(z-z)""+ C.,.

Coming to the limit when z - 2, , then € hm J(@)(z-z)
So, if z, is a simple pole of the function f (2), then
Res f(2)= lim f(2)(z~ z))f,
1240

If the function /() can be presented as /(2 V() where the functions

# (2), ¥ (2) are analytic at the point Zp» ¥ (2)= 0, § '(z,)# 0, then

] ¢ (2
Res /()= H2)
2Ty

If the point z, is the pole of the kth order of the function f(2), then

Resf(z)‘(k 1)'11me(Z)(Z ZO)kD
or
d* ' 0f(2)(z- z,)"E
Res f(2)= (k- 1)|zqm D R -
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3. If z, is a considerably special point (CSP) of the function f(2), then its
residue at the given point can be found from the decomposition of the function

f(2) in Laurent series Res f(2)=C,

dz ~ )
Example. Calculate the integral N(z— 222+ 1)’ where 4 1‘2 - 1- l‘ =2
1

Solution.
Special points of the integral function are: z,, = 1, z;= -i, z,= i,
Points Z,=1, z,=i can be found in the domain, limited by the loop

A‘Z 1- A 2 ﬁure212
ne the ype of the special points:

1) z,=1, lim I
L2702 (2 1)2(22 4 1)
So, Zi» = | is a pole. Find the order of the pole:

P Cull )RS O S P
=1(z-D*(Z*+1) =1z2+1 2

Then z,,=1 is the pole of the second order (P2P).

Figure 2.12

. | !
=; 1 =] = =i A
2 AL INGTAE ) - ) et iNz-d) Tt s apole
(z-1) : 1 _ 1

’ ST SRR | .
The order of the pole is: 1im Y- 12zt i)z-1) (-1 z+i) 4 So, Z, = 1 1s

the simple pole (SP).
Knowing the types of the special points, find the residues of the function at
the given points:

0 (z-1)? 0 . =2z 1
)b 7, = 1is P2P, th = -2
) because 2z, = L is en Resf(z) lzlfng(z REr 1)% lzp}(z2 1y 7
= R = 1 (z-10) - 1 1 _1
2) z, = 1 is SP, then esf(z) lm(z 02(z+ i)z~ 1) Zlfl}(z_ 02(zti) 4
~ dz 0 1,10 mi
= 2]]'1 - _+ —. - -
Then - 1I\l| ,(z- 1)?(z2+ 1) C 2 4% 2 -
1
For z,=1 (SP), the function (z- DA+ 1) can be presented as
1 S
_ 1)° (Z+ i) _ 1 _ 1
(z- 1)2(z+ i) . then Res /(2)= lim {2~ Slim— = L.
e ( _ 1) i (z-1)?(z+ z) 4
Answer: - %
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2.11 Calculation of the improper integrals

Improper integrals w1th the real variable can be found using residues:
I f(x)dx = Zmz Res f (2), (22)
where Z= z; are isolated special points of the function f(2), that are above the

axes x, and the function f(2) satisfies to the condition: |z|*f(2) - 0 when |z| - ©

If = z; are isolated special points of the function /(2), that are on the axes
x and |2[*f(2) = 0 when |z]» © | then

[ /(= iy Resf(2) 23)

. d
Example 1. Calculate I 1 +);2

- 0 when |Z|—' b

B z
ccausc
1+ z 1+ z?

, then we can use above mentioned formulas.

o d ~ d ~
_[ 1+ );2 = ;v\jH Zzz = N - i)fz i) C is a boundary of the semicircle with the

Solution. Write the function f/(z) =

enough big radius that contains all of the spec1al points of the half plane
Special points of the function: z, = 7, z, = -1,
There is a point z = above the axes x, that is the simple pole of the

, ) 1
function f(2) = - )zt i)’ then
.1 1
R lim—= 9 o1
s /@) Ime S T M T T
Because special point is above axes x, then, using formula (22), we get
I dx2 = 2nii.: m.
1+ x 2i
Answer: T .
2. Calcul [
Example 2. Calculate L (1+ x2)2 :
1 z 0
Solution. Work in the function / (2) (1 . 22)2 . Because (1 R 22)2 ~ % when
|zl -~ © _ we can use above mentioned formulas.
X ~ dz : fth el
1+ x b'(“ i Z- i (z+ ) C is a boundary of the semicircle

with the enough big radius, that contains all of the special points of the half plane.
Special points of the function are: 2, = 1, 2, = ~ 1,
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Above the axes x, there is the point z, = 7, that is the pole of the second

. - 1
order of the function f(2)= ——= ~ . Then,
(z- D) (zt i)

1 (z- iy D'_,DID_ 1-2 0. 2 i

R I = 1 =l s

eSf(Z) Zl}’rllH(Z l) (Z+ Z)z }F}D(z+ l) E zrrllD(Z+ 1)3% 8’ 4
to dx

g ig_nm
: ———— = 2Mi-—<= —
According to the formula (22), we have I (1+ x2)2 H 45 2

n
Answer: —.
2

00

Example 3. Calculate I e 1
_ 1 z
Solution. Work in the function f(Z) - (Zz+ 1)(2_ 1) (Zz+ 1)(2_ 1) -0

when |z] - © | we can use formulas (22) and (23).

. dx & dz iy dz :

L Nevz= " Ne=aee pz-1)+ € is a boundary of
the semicircle with the enough big radius, that contains all of the special points of
the half plane.

Special points of the function are: z;= i, 2, = =1, z;= 1,

Above the axes x, there is the point z; = i (P10), on the axes x, there is a

point 23 = 1 (P10) of the function J(2) = - i)(z}r D=1 Then,
(z-1) o1 -1+
Resf @)= I 22 4
(z-1) 1

R:esf(z) - lzlfrllm: 7

Using formulas (22) and (23), we get
dx O-1+i0, _.010_ «

e i s

n
Answer: - —.
2

2.12 Tasks for personal work

2.12.1 Upbuild the domain G in the complex plane (geometric sense).

1.01. G:|z+ 1~ zi|= 3. 1.10. G:|z- 1+ i|< 2.
1.02. G:|z-1-i|]= 2. 1.11. G:Rez> 2.
1.03. Gz + 1-d|]=1. 1.12. G:Imz< - 1.
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1.04. G:Rez- Imz= 2.
1.05. G:0< argz< /4.,

1.06. G:|z- 1|+ |z+ 1= 3,

1.07. G:|z+ 2|- |z-1]= 3.

1

1.08. G:Re—= 2.
z

109, G: 22 Y= 1
z+1

1.19. G:0< Re(iz)< 1,

1.20. G:|z|= 1+ Rez.
1.21. G:Rez+ Imz< 1.

1.22. G:[2z|> |1+ 2.

1.23. G:|z- 2| |z + 2= 3.

1.24. G:|z- 1- 2i|= 2.

1.13.
1.14.

1.15.
1.16.

1.17.

1.18.

1.25.
1.26.

1.27.
1.28.

1.29.
1.30.

G:0< Rez< 2,
G:0< Imz< 3.
G:|Z|+ Rez< 1,
G:0<argz<m/4,

m
G:-—<argz< 0,
4 g

G:lz-2|+]z+ 2]= 5.

G:|2z+1-2i= 2.
G:2z-1-i=1,
G:[2z+1- =2,
G:Re(2z)- Im(22)= 1.
G:argz=1m/4,Rez< 2,
G:Re(z)- Im(z)= 1,

2.12.2 Find out, if the function is analytic: if yes, find its derivative at the

given point.

2.01.w = (Rez)*-e”,
2.02. 0 = Rez-Imz-sinz
2.03. @ = Imz-cosz,
2.04. w = Rez-¢e”,
205.0=z-Inz,

2.06. w = 9z - ie”,
2.07.w = 8z° - sinz,
2.08.0=2z"-i(z+1),
2.09. 0 = (iz)*- i,
2.10. w = ze* + ie’,
2.11. 0 = (z- Z)cosz,
2.12.0 = z°z°¢",

2.13. v = z-cosZ,

2.14. 0 = sin(i+ z)+ 2°+ 1,
2.15. 0w = i(l1- 2)+ €,

zy= -1,

z,= 0,

z,= T /3,

Zy =

Zy -

Zy= 0.

2.16. w
2.17. 0
2.18. W
2.19. ¢
2.20. w
2.21.0
2.22.W
2.23. 0
224, W

2.25. 0
2.26. w0
2.27.0
2.28.w

2.29. 0

2.30. w

=(z- 1)+ z+itl, z,=0,
=(z- D™, zo=1-1.
=(I- z)sinz zy= T /4.
:e—iZZ’ ZO:i-
=i+ e'iz, Z():l‘l..
:Z—ez, ZO:'I'Z..
= z+sinz | zy=2i-1
=@+ 1)t e, zy= 20,
=isin(z+ 1), Zy =0,
=l.cos(z-i), zy= it 1,
i
2
= DRe£+D €3, zy= 21,
130
:ReDEEImDEECOSﬁE.], Zy= T,
125 020" g2
Uz0O . 0z0O
= Imp—=:-sinf—- z,=TM/6,
1287 H2fr
0z0 >
= Reg—--e? zy=1
HZD ’ 0
=2z-In(2z2), Zy= 2
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3.01.

3.02.

3.03.

3.04.

3.05.

3.06.

3.07.

3.08.

3.09.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.
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2.12.3 Calculate the integral over the given curve.
J’ zdz

AB

I zdz

X

B

J' Im zdz

AB

N
&
NN NN

A
S

N N
S S

X
s3]

SIS
&

&

-

N

-

AB: is a line segment, connecting points 4= 0 and B= 3+ 2i.
AB: is a semicircle |z[= 1, 0 § < 7 .
AB: is aradius vector of the point z= 1+ 7.

AB' is a line segment, connecting points 4= 0 and B= 1+ i.

AB: is an arch of the parabola y = x°, connecting points 4= 0
and B=1+1i.

AB:isanarch y= Jx, connecting points 4=1+7 and B= 0.
AB: is a line segment, connecting points 4= 2+ 4i and B= 0.
AB:isanarch y= x°, connecting points 4= 0 and B= 2+ 4i ,

AB: is an arch y=2+2x, connecting points A= 0 and
B=2+4i.

AB: is a line segment, connecting points 4= i and B= 1.
A:isacircle |2]= 2.

AB: is aradius vector of the point z= 2+ 1.

AB: is a radius vector of the point z= 2-i.

AB: is a semicircle |2[= 1, 0<¢ <

AB: is a part of the circle |2|= 2, 0<¢§ <m/2.

AB' is a radius vector of the point (-1~ 1),

AB: is a semicircle |2|= 2, 0§ <.

AB: is a part of the circle |2|= 2, m/2s ¢ <.

AB: is a semicircle |2[= 3, 0< ¢ <.



3.20. AB:

-

s

X
s3]

N
S}

3.21.

N |

+

—
T

N

3.22.

N

X

xQ

3.23.

b

(z+ Ddz

T2V

— A

3.24. . AB:

X
s3]

(z+ Ddz

B

3.25.

X

3.26.
397 I;\;‘[Si - cosz)dz ’

328 ez(i+ l)dZ

AB

3.29.

(z+1)

z

dz

b

3.30.

AB

is a part of the circle |z[= 1, 0<§ <m/2,

)z f:isacircle |z- 5= 1.
, A:isacircle |z|7 1.

A:isacircle |z|7 1.

is a line segment, connecting points 4= 1+ i and B= 2-i.

AB: is a semicircle |2|= 2, 0< ¢ <

Noit Dt sinz)dz - 7. g 4 cirele |2- 1= 1.
p|

A:isacircle |z~ i|= 2.

AB: is a line segment, connecting points 4= -i and B= - 1.

AB': is a line segment, connecting points 4= -i and B= 1+ 1i.

AB': is a line segment, connecting points A= i and B=1-i.

2.12.4 Decompose function in Laurent series in the neighborhood of the

given function (or in the
401, ¢ = ——
-
4.02. ¢ = L,
z+1
403¢'——¥L——
T (z-1D(z-2)’
4.04. ¢ = L
o (z-1)(z-3)’
405¢_@-D&-®’
4O6¢'———L——
o (z-i)(z-1)°
o1
4.07. ¢ - m,

ring).
2-2z+5
220, 412 4= —"C2 0 z=2,
(z-2)(z7+ 1)
2—
=1 4134= 220 qcpc2,
(z-2)(z7+ 1)
2,20, 4.14.¢ =1+ZZZ, 3= 1.
zy= 1, 4.15. ¢ :1+ZZZ, Zy= -
2<|z|<4, 4.16.¢=; z,= 1,
(z- 1)(z- i)’ ’
2z
=1 = = -3
zy= 1, 4.17. ¢ -zt 1)’ Zy= -1,
3
%70, 4180 —— )= 1.

(ztD(z- 1)’
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1

4.08. ¢ = et
3
4.09. ¢ = -y
4
4.10.¢ = m,
4.11.9 = S —
o (z-i)z-2)’
1
4.23.¢ = el 2o

1
4.24. ¢ = 2 exp—,
z

4.25 ¢:;
o (z- D)(z-5)°
1

2z-1

4.26. ¢ =

b

1< |Z|< 5.

z,= 1.

4.21.¢ = sin

z-1

4229 = (z- 1)sin—,
1-z

1
427. ¢ = i
) 1
4.28. ¢ = - DGE- D’
429.¢ = 1
T (Bz-D(z-1)°
1
4.30. ¢

) (z- D(Bz-2)’

2

:1‘

2.12.5 Calculate the integral of the function with the complex variable, using
the theorem about residues and using the Cauchy formula.

~ (z
5.01. NZZTI’

A

~ (7

5.02. szi—l’

A
~ dz
1
5.03. ]>.(Z_ D27 2)

~ (7

5.04. Nﬂ

A4

~ 1
~d
5.05. ]J\Ismz z,
Rkin2 Lz
5.06. ]A\IB ~az,
5.07.

5.08.
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A4:

lz- =1,
|z|= 2
|z = 3
|z|= 2
|z|= 1
2= 1
|2]= 1
2= 1

5.12

5.13.

5.14.

5.15.

5.16. NI

5.17.

5.18

5.19.

~ ]z

4 9
)z +1
~ ]z

4 )
L'IZ +1
~ 73z

Llizzw 1’

z

e

I~\|7dz
). Z2°(z*- 9)

Zdz >
2mi

ﬁ%sinzldz
)2 z
& dz

) l/f\l(z— 3)(22 -1)°
~ 1 2

NT’ZZ‘eZdZ R
21

A

A

A:x*+y
A:|z-2
AlH=1.
AlH=1.
Ad:l2= 2.
Ad: 2= 3.
=2,
A2,



~ ] 2
5.09. 0S— exp—dz,
IA~\|: z z

sin —
~
A ,

4 exp—

5.10.

~Z-1 sin2

5.11.N Z 4,
AN ‘

~ zdz

5.23. W,

~ 7+ ]
5.24. N22—+1,

A

~ z+]
5.25. %’

~ 7

LJEZZ + 3 5

5.26.

ER

|2[= 1
2= 2

|z 3|= 33,
s |z- 4= 44.
- z-0,1]= 0,2,
. |Z+ i|: 1.

1

5.20. N1+ 2)edz,
f

1
521. N1+ z)’e?dz,
fi

1

5.00. N1+ 2+ e 2dz,
fi

~ ]z
5.27. I\h,
). z2-3
~ 2zdz
5.28. N -
L\l(z- 2)'(2z+ i)
~ (7
5.29. 2

_ 1>
A~Zl

5.30. Nsin
A

z- le,
z

2]+ 3
2] 3
2]+ 3
;|Z‘1|: 3,
= 4
;|Z‘1|:3,
;|Z‘i|: 0,5.
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