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Introduction 
      In modern telecommunication systems the information, as a rule, is transferred in 

a digital form and processed by a digital methods. Thus the important role is played 

the coding information methods.  

      The teaching material is broken into the numbered Lectures. The Lectures are 

devoted a statement of the error-correcting coding theory. The theoretical material is 

explained by Examples and Exercises.  

      At the beginning of each Lecture the lecture plan is resulted, in which references 

to the recommended literature are given. For checking of knowledges it is 

recommended to use the Questions placed in the end of each Lecture. In the end of 

Lecture for students independent work the Tasks for the decision of problems are 

given. Tasks and methodical instructions for the making of Course Work  

on the Module-4 subjects are given in the Attachment B.1. In Attachment A help data 

about code characteristics are given. 

      For the best mastering of a theoretical Lectures it is recommended to familiarise 

preliminary with the text of each Lecture and to prepare questions to the lecturer.  

After each Lecture to make the personal abstract with using of the present manual, 

the literature and to make written answers to control Questions. In the end of each 

lecture are the Tasks having the form of problems. Some Tasks have the raised 

difficulty (are noted by a sign*). They can be solved in an auditory with the teacher 

on a practical training. 

      

The most important terms and theory positions are italicised also by special 

frames.  

       

      The theoretical material of Module-4 is stated in the form of the numbered 

Lectures (L-1 … L-13). For the convenience the double numbering of a each Lecture 

elements (formulas, figures, tables, examples, tasks, questions and exercises) is 

accepted. The first figure of number specifies Lecture’s number and the second the 

serial number – an element within Lecture. For example, numbers (1.2) and Figure 

1.3 designate numbers of the formula and figure from the first Lecture. 
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Lecture 1 
Appointment, structure and classification 

of error-correcting codes 
 

 Plan 

     1.1. Error-correcting codes in telecommunication systems [1, Section 10] 
     1.2. Classification of an error -correcting codes [1, Section 10.1] 

 

1.1.Error-correcting codes in telecommunication systems 

 

     In the theory of a modern telecommunication systems the considerable attention to 

coding methods of the information is given. 
 

        Coding – an operation of an identification of the symbols or groups symbols 

from one code by symbols or groups symbols to other code. Necessity of coding 

arises, first of all, from requirement to adapt the message form to the given 

communication channel or to any other device intended for transformation or 

storage of the information. 

 

      The typical block diagramme of digital telecommunication system is resulted on 

figure 1.1. The source produces messages which it is necessary to transfer through the 

channel of a telecommunication systems. It can be sequences of discrete messages 

(data, cable messages etc.) or continuous messages (speech, audio, TV, etc.), 

transformed to the digital form. 

      The real messages contain redundancy and for the matching of the information 

source with the transmiting channel usually use the source encoder. Together with 

the decoder they form the source codec. The source coding methods were studied in 

the Module-2. The primary goal of the any telecommunication system is the 

information transmitting with the given fidelity and speed. These requirements are in 

contradict, and, increasing of information speed leads to decreasing of the noise 

immunity and transmitting fidelity.  

     In the agree with the well known Shannon theorems, as is wished considerable 

increase of fidelity of the information transfer if a transmiting rate through the 

channel Rchan does not exceed the channel capacity C  basically is possible. It is 

reached by using of the enough long error-correcting codes (ECC). 

  

      The error-correcting codes are the codes which allow to detect and correct of the 

errors arising from noises and distortions in the communication channels. 
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    With that end in view the redundancy is entered into structure of error- correcting 

codes. Codec ECC (the channel encoder and the decoder) are shown on figure 1.1. In 

real conditions the length of a code is limited by admissible complexity of coding and, 

first of all, for decoding devices.  

      Therefore the result from the using of error-correcting codes depends on the 

parametres of a code and restrictions on realisation of the channel codec.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The modern theory offers a wide set of error-correcting codes, various on 

structure, construction principles and error-correcting ability. In the subsequent 

lectures the important classes of the codes with effective coding/decoding algorithms 

are considered. 

 

1.2. Classification of the error-correcting codes 
 

      The error-correcting codes can be classified to various signs. The structure of 

classification of codes is resulted on figure 1.2. On a way of formation ECC are 

subdivided on block and continuous codes. Formation of the block codes provides 

splitting of transferred digital sequences into separate blocks which move to a 

encoder input. To each such block on an encoder output there corresponds the block 

of the code symbols which work is defined by a rule named as the coding algorithm. 

Formation of the continuous codes is carried out continuously in time, without 

division into blocks as defines the name of this class of codes. Block codes 

historically have been discovered and studied earlier, at the beginning of 

development of the coding theory. In a class of continuous codes it is necessary to 

        Figure 1.1–Typical block diagramme of a digital telecommunication system 

 

Modulator 

   Receiver Source 

decoder 

Channel 

decoder 

Demodulator 

 

Channel 

encoder 

Source Source 

encoder 

 

Continuous 
channel 

Modem Channel 

codec 

Source 

codec 



   8 

 

 

note a convolutional codes which exceed on characteristics of the block codes, and, 

for this reason, find wide application in a  

telecommunication systems. Many codes carry names of scientists which have 

discovered and investigated them. Such examples are the continuous Fink- 

Hagelbarger’s code offered by Soviet scientists L.M.Fink and German expert R. 

Hagelbarger. Long time this code was in the literature as an indicative example of a 

continuous code with simple encoding/decoding algorithms, but after elaborating a 

convolutional codes has given way to them. For the description of procedures of 

coding/decoding both block, and convolutional codes usually use an adequate 

mathematical apparatus. For the description of linear codes the well developed linear 

algebra is used. Formation of nonlinear codes is made with application of nonlinear 

procedures. Such approach allows to construct in some cases nonlinear codes with a 

number of special properties. In the error-correcting coding theory the problem of  

realisation complexity encoding/decoding procedures and in particular decoding 

procedures is important. Therefore some classes of codes (Hamming codes, Bose-

Chaudhuri-Hochquenghem codes, Reed-Solomon codes, Fire codes etc.) have been 

developed together with the decoding algorithms connected with structural properties 

of these codes. And, on the contrary, the elaborating of a new decoding algorithms 

for convolutional codes (Viterbi algorithm, sequential decoding, threshold decoding) 

initiated a searches of the corresponding codes. Distinctive advantages of error-

correcting codes induced searches of new approaches to realisation of ways to 

increase of a noise immunity and efficiency of telecommunication systems. On figure 

1.2 new methods of encoding/decoding( signal-to-code structures, turbo-codes,time-

space coding) are noted accordingly. 
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                                                          Questions 
 

      1.1.What is an appointment of the error-correcting coding by transmitting of the 

digital information? 

      1.2. The codec of a error-correcting code consists of what elements? 

      1.3. In what difference of coding procedures the block and continuous codes 

consists? 

Tasks 

 
      1.1. Represent the block diagramme of telecommunication system and describe 

appointment of its separate blocks. 

      1.2. Result classification of error-correcting codes by ways of formation and 

structural properties. 

      1.3. Result the scheme of inclusion of the encoder and decoder of the error-

correcting code as a part of digital telecommunication system. Explain 

appointment of the scheme elements.  

 

Lecture 2 
Parametres of the block error-correcting codes 

 

 Plan 

 

        2.1. Key parametres of the block error-correcting codes [1, Section 10]                                  

 

2.1. Key parametres of the block error-correcting codes 
 

 

       There are the following parametres of the block codes. 
 

 

The code basis m is the number of the various symbols used by a coding. 

 

      In practice a codes with the basis m=2 are used. These are binary codes. For 

construction of binary code word the binary alphabet with symbols {0,1} is used. 

Wide practical using of binary codes is defined for a reason of simplicity of a binary 
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logic elements construction in the codec memory devices. A block code consists of a 

set of fixed length vectors named code words. The length of a code word is the 

number of elements in the vector and is denoted by n. 

 

 The length of a code word n is the number of elements in the code vector.  

 
       

 

 

      Redundancy in the block code words can be entered as follows.  

     Let on a block encoder input the information block a = {a1, a2, a3, a4, …, ak} 

arrives. By the block coding code word on the encoder exit can look like: 

b={a1,a2,a3,a4,…,ak , c1,c2,c3,...,cn-k}, 

 

where (c1, c2, c3, …, cn-k) – additional symbols. Values of additional symbols are 

defined by coding rules. Such code is called as systematic. 

 

      Each code word of length n symbols contains in a systematic codes k 

information symbols. Thus to an information symbols are added r=(n–k) 

additional symbols which are depend from information symbols and used by the 

decoding for detection and correction of an errors. In nonsystematic codes 

information symbols in an explicit form in a code word do not contain. 

 
     The total quantity of the possible code words of the block error - correcting code 

      is defined by the formula:  

                                            M=m
n
.                                                                      (1.1) 

      For a possibility of detection and correction of an errors these M code words not 

completely use for an information transfer. From these m
n 

code words we may select 

M0=m
k
 code words (k<n) to the forming a code. Thus block of k information bits is 

mapped into a code word of length n selected from the set of M0=m
k 

code words. 

These words named allowed as they are allowed for an information transfer. 

      We refer the resulting block code as an(n,k) code, and the ratio 

                             
n

k
R

c
=                                                                                         (1.2) 

  is defined to be the code rate . 

 

Quantity of the allowed code words is equal  

                                                           M0=m
k
. 

 

 In the error-correcting code possible words are used not completely i.e. M0 <M. 

It illustrates redundancy of a code. 
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The rate of a error-correcting code is defined also by the ratio 

                        Rcode=(logmM0)/(logmM)                                                        (1.3) 

In nonredundancy codes M0=M (or k=n) and the rate is 

                                           Rcode=1                                                                     (1.4) 
 

For the characteristic of error-correcting codes enter concept redundancy of a code. 

 
 Redundancy of a systematic codes χred is a relative share of the number of 

additional symbols (n – k) in a code word on its length n symbols:  

                                         χred=1–Rc=(n–k)/n                                                      (1.5) 

 

    For simple (nonredundancy) codes (n=k)  χred = 0. 

      Exercise 2.1. As is known, in a binary channels under the noises and distortions 

there are an errors in the form of transitions of a transferred symbols to an opposite 

symbols. For example, by transfer of a symbol 1 transition (1→0) is possible and, 

accordingly, transitions (0→1) are possible also.Consider the possibilities of 

construction of the binary error-correcting code intended for transfer of messages 

with symbols from alphabet with volume of MA, and allowing by the receiving to 

detect the channel errors. Specify the encoding and decoding methods of such code. 

For the developed algorithm of a coding define the rate and redundancy of such ECC. 

      Instructions. The providing of an errors detection in the transmitted code words 

will be possible if for the allowed code words to give a forms which changes by 

errors in symbols of this words. Then detection of errors (i.d. decoding) can be made 

bycheck of conformity of the received words to this in advance known forms. At the 

first development times of the error-detecting codes the maintenance in the 

transmitted allowed words of «even number of unit symbols» was considered as 

simple way. So the «Code with even number of units » has been invented.  

      Decision. We will consider a variant of construction of the binary systematic code 

intended for transfer of letters, chosen from the alphabet of a volume MA. According 

to above considered rule the information block a = {a1, a2, a3, a4, … and, ak} of each 

word should contain k binary symbols ai. The total quantity of information blocks 

should be precisely equal to volume of the source alphabet MA. That is the equality 

MA.=2
k
 guarantees transfer of each symbol of the source, and the corresponding to it 

code words of a systematic code. The quantity of units in an information blocks 

depends from a primary simple code and can be both even and odd. It appears that for 

realisation of encoding and decoding of such code words it is convenient to use the 

procedure «module-2 addition», defined in the manual [3, Section 2.1.2]. This 

procedure defines the simple way to find of the parity of units number in a code word. 

To everyone information block we will attribute one additional symbol (r=1) so that 

the quantity of units in again formed word was even.  

      Encoding it is made in such sequence: 

 1. Let information block a is represented by a primary code: a1→101010; 

 2. By consecutive module-2 addition of the primary code symbols defines 

 an additional symbol с=1; 
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3. We form allowed code words, finishing an additional symbol to the block of 

information symbols b=1010101. It is visible, that the coding rule is carried 

out, since the number of units remains even; 

4. By the other form of a primary code it is received: a2→101011, с=0 and 

b2=1010110. 

5. It is obvious, that any transition ((1→0) or (0→1)) changes number of units in the 

received words. If by decoding to use procedure of calculation of units number 

it is possible to detect errors. 

      Remark. It appears, such code allows to detect not any errors configurations. The 

simple analysis shows, that two-multiple change of symbols cannot change parity and 

such errors in this code to detect it is impossible. It is recommended to make such 

analysis for other variants of error combinations independently. 
 

      The rate and redundancy of a code with even units number and by parametres : 

k, r=1, n=k+r=k+1 are defined by formulas: 

                              
1k

k

n

k
R

code
+

==  and 
1k

1

n

kn
red

+
=

−
=χ . 

    It is visible, that for the big lengths of the information block k>>1 the rate of such 

code is close to Rcode=1, and redundancy by transfer for example letters from the 

Russian text with alphabet volume MA. = 32 (k=5) will be small
6

1
red

=χ . 

 

                                                          Questions 
 

     2.1.What is the reason of wide application of binary codes in telecommunication    

systems? 

     2.2.Make definition of the systematic block code. 

     2.3.Whether placing of additional symbols in front of the block of information 

symbols in a systematic code is possible? Whether will change it redundancy 

of a code? 

 

Lecture 3 
 

Block codes ability to detect and correct of the errors 

 
Plan 
 

 3.1. Code ability to detect and correct of the errors [1] 

 

Instruction. Study the elements of the general algebra from the manual [3, Section 2] 

 

3.1.Code ability to detect and correct of the errors 
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      Let's establish dependence of detecting and error-correcting ability of the block 

codes from a code parametres. It is useful to consider a binary code with parametres 

n=3, k=2. All words of this code (M=8). It is possible to divide by sign «parity of 

units number in a code words» on two groups:  

     –Words with even number of units, 

     – Words with odd number of units. 

    The code constructed by this principle named “A code with even number of units” 

   is considered in the Exercise 2.1. 
 

      Example 3.1. A binary code(m=2, n=3) with even number of units. 
  
      In table 3.1 the full set of binary words (m=2,n=3, M=8) is divided into a set of 

the allowed code words (M0=4) containing words with even number of units  

(including a word 000 (number 0 – even)), and the set of the forbidden words with 

odd number of units. Their total quantity is equal to difference Mforbid.=M– M0=4. 
 

      The allowed code words are used for an information transfer through  

 the channel (Are allowed for transfer). 

      The forbidden  words are not used for an information transfer through 

           the channel (Are forbidden for transfer). 

 

Table 3.1 – Code with even number of units 
 

          

      In the coding theory the important role plays the concept distance between code 

words. Everyone binary block error-correcting code are characterised by a parametre 

code distance. 

      The code distance dmin is the minimal Hamming distance
 
between the allowed 

code words. 

         The code distance dmin is one of the major parametres of error-correcting codes.  

Let consider a pairs of the allowed code words from a table. 3.1. It is possible to 

establish, that for this code a minimal distance is dmin =2. Such distance allows to 

detect a single errors in the channel. If the transmitted code word is b=1 1 0, and the 

                                             Full set of a words (M=8): 

{000,001,010,011,100,101,110,111} 

           The allowed code words 

         (with even number of units) 

         M0=4 

The forbidden words 

(with odd number of units) 
                   

                  Mforbid.=M–M0=4 

{000,011,101,110}     {001,010,100,111} 

Code parametres: Сode rate Rcode=1/2, 

                     Code distance dmin=2, 

                    Code can detect qdet=1 errors 
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error in the channel is characterised by a word (an error vector) e=0 1 0 the received 

word b
)

 with an error on the channel exit is defined by module-2 addition: 

 b=1 1 0,  

 e =0 1 0, 

                           b
)
=(a ⊕ e)=1 0 0. 

      From this it is visible, that the symbol «1» in the error vector e changes the 

corresponding symbol in transmitted word b to an opposite symbol. 

For the characteristic of quantity of the channel errors enter concept the brevity of an 

errors. 

The brevity of an errors q is a quantity of the channel errors within a codeword. 

     For example, for words from table 3.1 the error vector variants with brevity q=1 

are e=100, 010, 001. And the double errors  are:110, 011, 101. 

 

    The code ability to detect and to correct of the errors depends from the code 

distance dmin . 

 

Error detection is the fixing by decoding of the error presence of certain brevity in 

the received word b
)
. 

 

Error-correction is the detection by decoding of an errors in the certain symbols 

of the received words and their subsequent correction. 
 

      According to these definitions error-correcting codes are subdivided into  

following classes: 

1. The error-detecting codes which detect of the channel errors  

2. The eror-correcting codes which correct of the channel errors and named in the 

literature as codes with direct correction of errors (i.e. with errors correction by 

 a code methods).  

      The relation between code distance dmin and error-correcting ability of a code we 

will establish on an example of a code with even number of units (see table. 3.1). It is 

convenient to use a geometrical representation of code words represented on figure 

3.1. Let's represent a code words by set from three symbols (x, y, z), and values of 

these symbols will choose from the binary alphabet {0,1}. It is possible to represent 

all possible code words by the points in the Cartesian system with coordinates 

 (x, y, z). Thus words will form tops of a three-dimensional cube. On figure 3.1 these 

tops are marked as follows: 

 – By the sign "•" notes the allowed code words, 

 – By the sign "× " notes the forbidden code words. 

      It is visible, that the code structure is that between the allowed code words are 

forbidden words. They form a «protective interval». Therefore the action of any 

single error translates any from the allowed word to the nearest forbidden words. This 
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property leads to the decoding rule of a code with even number of units and detection 

of any single errors. 

 
      Reception from the channel output of the forbidden code words allows to 

 assert that in the channel there was a single  error. 

 

      It is easy to be convinced that this code does not allow to detect double errors 

(because «the protective interval» is nonsufficient). By an induction it is possible to 

prove, that any binary code with even number of units allows to detect any errors if 

their brevity is odd , and does not detect any errors if their brevity is even. The 

concept of «a protective interval» is easily applicable for a study of the relation 

between code distance and code ability to correct of an errors. If the minimum 

distance between the allowed code words (code distance) is dmin, that as is shown 

from figure 3.2 the protective interval contains (dmin–1) of the forbidden words and 

for "transfer" of each allowed word to the nearest allowed word it is necessary by 

errors to make (dmin–1) "steps". Clearly, that all errors with brevity q=1,2,3 … (dmin-

1) can be detect. 

 

 

 

 

 
 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

      

      

From here follows, that: 
 

If the code distance of a binary code is dmin the code ability to detect and of  

the errors with brevity qdet is defined: 

 

0 0 1 

y 

Error 0 1 0 

0 1 1 

0 1 0 

1 0 0 

Error 0 0 1 

Error 1 0 0 

 x 

z 

0 0 0 

1 1 0 

1 1 1 

                 Figure 3.1– To an illustration of a code correction ability 
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     Let's take advantage of similar representation for estimations of ability to correct 

of the errors. On the figure 3.3 the layout of the allowed code words ballow.1 and ballow.2 

is shown. Between them are allocated (dmin–1) the forbidden words. Let's divide all 

set of the words on two allowed subset as is shown in a figure 3.3. If, for example, 

the received word b
)

 is allocated into «allowed decoding subset of a word ballow.1» that 

during the decoding becomes decision about transmitting of the word ballow.1,  

i.e. thereby the transition errors of the word ballow.1 to the nearest forbidden words are 

corrected. It is similarly possible to explain error-correcting process by the 

transmission of the word ballow.2. It is visible, that the distance of each allowed 

subset is (dmin–1)/2 (by dmin is odd). It defines error-correcting ability of a code. For 

even values dmin the distance of each allowed subset is [(dmin/2)– 1], that also defines 

error-correcting ability of a code.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Thus: 

      If the code distance of a binary error-correcting code is dmin  the code ability to  

correct of the errors is defined by the expressions: 

 

Protective interval – error detection zone 

 

 

Figure 3.2 – To an illustration of a error-detecting ability 

 

  dmin 

ballow.2 
ballow.1 

               Figure3.3 – To an illustration of a error-correcting ability 
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Lecture 4 

 
Algebraic description of the block codes 

 
Plan 

 

           4.1. Algebraic description of the block codes [ 2, Section 3.2] 
                                                                          

 

Instruction. Study the elements of the general algebra from the manual [3, Section 2] 

 

 

4.1. Algebraic description of the block codes 

 

      For the description of the linear block codes use a mathematical apparatus of the 

general algebra. By the block coding form code words b = (b1, b2..., bn). Symbols of 

binary codes choose from the Galua Field GF (2). The set of words forms 

 n-dimensional vector space over Field GF (2). For elements of this space (vectors) 

the addition and multiplication operations and operation of multiplication of a vector 

and also a scalar product of a vectors are defined. Some vectors subset of the space 

Bn which satisfy to the vector space axioms organises subspace Ak .  

      The binary block code with block length n and 2
k
 allowed code words is called as 

the linear (n, k) code if its code words form k-dimensional vector subspace Ak   of 

n-dimensional space Bn.. Subspace Ak is generated by the basis from k linearly 

independent vectors, which organise the lines of a generator matrix of the (n, k) code: 

G=



















=



















n ,2 ,1 ,0 ,

n ,1121110

n ,0020100

1

0

kkkkk
gggg

gggg

gggg

g

g

g

L

MMMM

L

L

M
.   (4.1) 

     It is possible to present code words in the systematic form, forming separately 

informational part from k numerals and a check part from r = (n– k) additional 

numerals. 
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The generator matrix of a systematic code looks like: 

 

 

Gsyst = PI k  = 

nkrnk

nrn

nrn

gg

gg

gg

,,

,2,2

,1,1

1000

0100

0010

0001

K

MLM

L

L

−

−

−

.                                              (4.2) 

 

 

    

   Matrix Gs contains identity matrix Ik wich defines the information part of a code 

words and matrix P defines the additional simbols. Transition to the systematic form 

is made by a linear combination of rows from the matrix (4.1). Such transition is 

illustrated by a following example. 

      Example 4.1. Matrix transformation of the nonsystematic code. 

 

      The nonsystematic block code (7,4) is set by the generator matrix: 

Gnonsist =

1111000

1100100

1010010

0101101

 (4.3) 

    Using a method of the linear combination of rows from a matrix (4.3) we will 

transform it to the systematic form (4.2). For forming of a systematic generator 

matrix a rows of an initial matrix (4.3) it is convenient to present in the form of a 

table. 4.1. in which rows g1ns, g2ns, g3ns and g4ns are shown. 
  
Table 4.1– Rows of the nonsystematic generator matrix  
 

g1ns 1 0 1 1 0 1 0 

g2ns 0 1 0 0 1 0 1 

g3ns 0 0 1 0 0 1 1 

g4ns 0 0 0 1 1 1 1 

 

       Using Modulo-2 addition rules the elements of these rows by exhaustive search of 

rows in various combinations it is established that by the most suitable variants for 

the forming of a matrixes rows for the systematic code are the following: 

g1syst.=(g1 ns ⊕g3 ns ⊕g4 ns), g2syst.=(g2 ns ⊕g3 ns), g3syst.=g3 ns, g4syst.=g4 ns . 

       

The outcome of an evaluation of the matrixes rows of the systematic code is reduced 

in table 4.2. 

 
 

Ik P 
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Table 4.2– The matrixes rows of the systematic code 
 

g1 syst 1 0 0 0 1 1 0 

g2 syst 0 1 0 0 1 0 1 

g3 syst 0 0 1 0 0 1 1 

g4 syst 0 0 0 1 1 1 1 

       

      The matrix of the systematic code in the standard form low given: 

 

G syst =

1111000

1100100

1010010

0110001

 (4.4 

 

In the block codes theory the important role plays the concept weight of a code word. 

 

 

  

 

 

     Example 4.2. An evaluation of the Hamming weights of the code words.  

 

      We will define values of the Hamming weights for the code words by table. 4.3: 
 

     Table 4.3 – The Hamming weights of the code words 
 

Bynary code words Weight 

wH(bi) 

b1 1 0 1 1 0 1 4 

b2 0 1 0 0 0 1 2 

       

      The strukture of a generator matrix allows to define the minimum distance of the 

block codes. This position is illustrated by following exercise. 

 

      Exercise 4.1. Definition of the code by its generator matrix. 
 

      Generator matrixes of the error-correcting codes by (4.3) or (4.4) are set. Show 

how to define code distance of a codes by a known generator matrix. 

The Hamming weight wH of the binary code word is equal to an amount of units in 

a code word. 
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Instruction. By elaborating of a method for the definition of a code distance it is 

necessary to consider, that the zero combination b0 = (00 … 0) also is allowed. 

 Decision. It is above noticed, that the allowed code words are defined by a linear 

combinations of the rows of a generator matrix. As the zero word b0 = (00 … 0) also 

is allowed, and rows of a generator matrix g1, g2, g3, g4 also are the allowed words 

then Hamming distances from these words to a zero word b0 it is defined their 

weights dH (gi, b0) =wH (gi), i = (1 … k). Further it is necessary to find the minimum 

weight, i.e. the minimum distance. Such conclusion from here follows: 

 

 The code distance as the value of the minimum distance between the allowed 

code words is defined by the least weight of rows of a generator matrix . 

 

      Example 4.3. Definition of the Hamming weights of the generator matrix rows of 

a systematic code. Define values of the rows weights of a generator matrix from the 

Example 4.1 (table 4.2). Outcomes of evaluations are reduced in table 4.4. 
 

 

Table 4.4– The Hamming weights of the generator matrix rows 

for the systematic code 
 

               The generating matrix rows Weights 

wH(gi) 

g1syst 1 0 0 0 1 1 0 3 

g2syst 0 1 0 0 1 0 1 3 

g3syst 0 0 1 0 0 1 1 3 

g4syst 0 0 0 1 1 1 1 4 

     The analysis of data makes definition of the minimum distance of the systematic 

code from table. 4.4 dmin (syst.) =min {wH (gi)} =3.  
 

      Exercise 4.2. Define by the same way the code distance of nonsystematic code 

from an Example 4.1 (table. 4.1). 
 

      Instruction. The statement about code distance of a block code from Exercise 4.1 

is fair both for the systematic and for nonsystematic codes. 

      Decision. We will apply a technique from the Example 4.3. Outcomes of 

evaluations the weigths of rows are reduced in table. 4.5. 
 

Table 4.5 – The Hamming weights of the generator matrix rows 

for nonsystematic code 

 

 

Generator matrix rows 

Weights 

wH(gi) 

g1ns 1 0 1 1 0 1 0 4 

g2 ns 0 1 0 0 1 0 1 4 
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g3ns 0 0 1 0 0 1 1 3 

g4ns 0 0 0 1 1 1 1 4 

  

     The analysis of these data makes definition of the minimum distance of 

nonsystematic code from таб.4.5 dHmin (ns) =min {wH (gi)} =3. The received outcomes 

allow to state that systematic and nonsystematic codes from the Example 4.1 on the 

value of code distance are equivalent. 

Thus: 

 

The code distance of a block code is a least weight of nonzero rows from the code 

generator matrix. 

 

      The above noted dependence between the minimum distance of block codes and 

weights of nonzero rows can be used for forming of a generator matrix of a block 

code with the beforehand set code distance. This is illustrated by outcomes of  

an Examples 4.4 and 4.5. 

 

      Example 4.4. A generator matrix of a code with even number of units. 
 

      Let's form the generator matrix of the systematic (n, k) code which detect a single 

errors (qdet=1). Such code should have code distance dmin= qdet+1=2. Hence, the 

nonzero rows of a generator matrix of this code should have the minimum weight 

wH=2. According to the standard form (4.4) each row of the systematic code matrix 

already contains a numeral 1 (defined by an submatrix Iк), the weight should be 

increased the weight of every rows to 2 having added in last numerals every rows (as 

a part of submatrix P) a numeral 1. 
 

     For an example the generator matrix such (7,4) codes with k=4 will look like 

0011000

0010100

0010010

0010001

, (4.5) 

and unit in submatrix P can be in any place of a line. 

 

       Exercise 4.3. Generator matrixes of the codes which can detect double errors. 

 

      Form generating matrix of the systematic code which can detect double errors. 
 

      Instruction. From the theory does not follow that such codes there can be only 

one. It is recommended to consider at first a principle construction of a matrix at least 

one code and then on this basis to give generalisation and to find matrixes of several 

more codes. 
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      Decision. The code can detect errors with brevity qdet=2 should have the 

minimum distance dmin= qdet=2+1=3. Hence, rows of a generator matrix of such code 

should have the minimum weight wH=3. From a general view of a generator matrix of 

a systematic code (4.2) follows what to get such weight it is possible by the choice of 

rows of the submatrix of additional symbols P, and one of row of this submatrix 

should have the weight equal 2.  

Following variants of submatrix P are possible:  

P1=

111

101

011

110

; P2=

101

111

110

011

, P3=

110

011

101

111

,                                   (4.6) 

which differ permutation of rows. As the minimum of each weight rows of these 

matrixes is equal to 2, they can be used for forming of systematic codes with the 

minimum distance dmin=3. In particular, the generator matrix of one of such codes 

looks like: 

 

G=

1111000

1010100

0110010

1100001

                                                             (4.7) 

 

Questions 
 

      4.1.Codes with generator matrixes (4.3) and (4.4) have the identical minimum 

distance. As it to explain ? 

      4.2.Whether error-correcting properties of a block code vary by permutation of 

columns of a generator matrix? 

      4.3.Whether is the only the one method of transformation from nonsystematic 

generator matrix to the systematic code matrix for forming which is 

considered in the Example 4.1?  
 

Tasks 
 

      4.1.Offer a transformation method of a generator nonsystematic matrix (4.3) for 

deriving of the systematic matrix which is alternative to a method from  

             Example 4.1. 

      4.2*. Following a method stated in Exercise 4.3, form generator matrix of the 

systematic code which correct triple errors. Is the discovered by you code 

the unique? 
 

Lecture 5 
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Encoding and decoding of the block codes 

 
Plan 
 

        5.1.Encoding and decoding of the block codes[2, Section 3.3] 

        5.2.Syndrome decoding of the block codes 

         5.3. Majority decoding of the block codes 

 

5.1. Encoding and decoding of the block code 

 

      In the center of the block coding theory is the concept of a generator matrix (4.1) 

and (4.2). 

      If a =| a0, a1..., ak |– row-matrix of a primary code the coding make  

                                          by a rule: b=a·G. 
 

The coding rule of a block code is defined by the product 

                                            b=aG,                                                                        (5.1) 

 

where a =|a0, a1..., ak |– row - matrix of a primary code at the encoder input, 

           b =|b0, b1..., bn|– row - matrix of a block code word at the encoder output, 

            G – a generator matrix of the linear (n, k) code. 

 

      Example 5.1. The encoder of a code (7,4). 
 

      The structure of the encoder of a systematic code (7,4) is defined by a generator 

matrix (4.4) and a rule of coding (5.1).  

 

If on an encoder input is the symbols row  of a primary code a = (a1, a2, a3, a4) then 

symbols of the allowed code word on its output b = (b1, b2, b3, b4, b5, b6, b7) are 

defined by following equalities: 

 

b1=a1, b2=a2, b3=a3, b4=a4, b5=a1 ⊕a2 ⊕a3 ⊕a4, b6=a1 ⊕a2 ⊕a4, b7=a1 ⊕a3 ⊕a4. (5.2) 

 

On figure 5.1 the structure of the encoder of a systematic code (7,4) with equalities 

(5.2) is shown. 
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By the decoding of block codes the check relations establish with use of the 

 parity check  matrix H which space of rows is orthogonal to space of rows of a 

generator matrix, that is: 

 

                                                   G·H
T
=0.                                                             (5.3) 

Here T– an index a transposition.  
 

The rows space of the parity check matrix H is orthogonal to the rows space  

 of the generator matrix G: 

                                                                    G·H
T
=0. 

 

 

      If the generator matrix is set in the form (4.2) for performance of a orthogonality 

condition the parity check matrix should look like: 

  
H = |P

T
 : In-k|,   (5.4) 

 

where P
T
– transposed submatrix P of generator matrix G,  

  In-k – an identity matrix a size [(n – k) ×  (n–k)]. 

 
 

 

      Exercise 5.1. A parity check matrix of a systematic code (7,4). 

 

      The generator matrix of a systematic code (4.7) is set: 

 

Gsyst.=

1111000

1010100

0110010

1100001

 

 

     According to a rule (5.4) form the parity check matrix of this code. 

Solution. Sequentially we discover the submatrixes entering into the formula (5.4): 
 

–The transposed submatrix a size [(n– k) ×k]: 
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                                        P
T
= 

1101

1011

1110

, 

–The identity submatrix a size [(n–k) × (n–k)]: 

 

                                  I(n–k)= 

100

010

001

. 

We unite submatrixes in the uniform parity check matrix of a code: 

 

         Hsyst.=

1001101

0101011

0011110

.                                           (5.5) 

 

      From a condition of orthogonality of generator and parity check matrixes of a 

linear code (5.3) follows that each allowed word of a linear code generated by a rule 

b = aG also satisfies to an orthogonality condition:  

                   b·H
T
 = a·G·H

T
=0.                                                             (5.6) 

   By transmission through the channel code symbols are distorted. The received 

words look like b
)

=b⊕e, where b = (b0 b1... bn), and an error vector е = (е0е1... еn). 

  By decoding calculate a syndrome vector 

                       S = b
)
·H

T 
=(s0 s1...sn-k-1).                                                       (5.7) 

      The syndrome depends only from a error vector:  

S = b
)
·H

T
=(b⊕e) H

T
= b
)
·H

T
 ⊕e·H

T
. As the condition of orthogonality b

)

·H
T
=0 is 

satisfied, the syndrome is equal: 

            S = e·H
T
                                                                             (5.8) 

      From here the simple rule of an error detection follows: 

 
 

 
If the syndrome S=0 then an error vector е=0, i.e. in the channel there 

were no errors and the received word belongs to set of the allowed code 

words. 

 If S≠0 word b
)

 contains errors. It is possible on the syndrome symbols 

to define a configuration of a error vector. 

       

This principle underlies syndrome decoding. 

 

5.2. Syndrome decoding of the block codes 
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      The principle of syndrome decoding we will consider on an example of a simple 

block code. 

 

Example 5.3. The syndrome decoder of the systematic code (7,4).  

 

     According to a rule (5.8) for realisation of the syndrome decoder it is necessary to 

form the transposed parity check matrix of a code (7,4). The parity check matrix of 

this code looks like (5.5). Applying to it a rule of a transposition of matrixes it is 

received: 

  Hsyst.=

1001101

0101011

0011110

.         Hsyst.
Т
=

100

010

001

111

101

011

110

                                               (5.9) 

     It is convenient to note the syngle errors from a telecommunication channel so: 

    e1=(100…0), e2=(010…0), e3=(001..0), …, en=(000..1).                        (5.10) 

 

     In such form the error vector ei represents a symbol set from n elements in which 

on a place with number i the symbol of an error 1 (at the left) is arranged and on 

remaining places zero symbols are arranged. Error vectors can be presented in the 

form of an identity matrix: 

 

           E=

n

i

2

1

e

e

e

e

⋅

⋅

⋅

=In=

1000000

0100000

0010000

0001000

0000100

0000010

0000001

,                                    (5.11) 

which each row is the single error vector. Using properties of identity matrixes, it is 

easy to show, that the matrix of syndromes coincides with the transposed parity check 

matrix of this code (5.9): 

                S = E·H
T
=In·H

T
=H

T                                                                               
(5.12) 
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By the syndrom decoding of a block code the matrix of syndromes S coincides 

with the transposed parity check matrix of a code H
T
. 

       

It is the foundation for tabling of syndromes. The more low reduced table 5.1 of 

syndromes for a code (7,4) is made according to rows of the transposed parity check 

matrix (5.9) . In the table to each vector of an error there corresponds the vector of 

the syndrome specifying a location of an error symbol in the received code word. 

 

Table 5.1 – The syndromes for decoding of a code (7,4)  
 

Syndromes  

011 
 

110 
 

101 
 

111 
 

100 
 

010 
 

001 

Error 

 

e1 e2 e3 e4 e5 e6 e7 

 

      It allows to formulate of syndrom decoding algorithm. 

The syndrom decoding algorithm of block codes  is the following: 

1.Forming of the transposed parity check matrix of a code H
T
. 

2.Tabling of syndromes for decoding of a(n, k) code. 

  3.An evaluation of syndromes (as tab. 5.1) on structure of the transposed parity check 

matrix of code H
T
 
 
and a vector of error symbols of a decoded codeword by a rule 

(5.12). 

4.Forming of a vector of an error ei on the basis of the syndromes table. 

5. Error correction in the received code combination by a rule: bi=b
)

⊕e 

      The structure of the syndrom decoder of the code (7,4) realising this algorithm is 

reduced on figure 5.2. According to rule (5.12) received channel symbols move to 

modulo 2 adders.The connections with lines of channel symbols are available there 

where in rows of the transposed parity check matrix the symbol 1 is arranged. 
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            bi=b
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      In the scheme of the syndrom analyzer with according to given tab. 5.1 there is a 

transformation of syndrom vectors S = (s0s1... sn-k-1) in the corresponding error vectors 

e which then move to the error corrector.  
 

5.3. Majority decoding of the block codes 

 

      Some block codes suppose realisation of simple majority algorithm which is 

based on a possibility to express each information code symbol of a word by several 

ways through other received simbols.  Let’s consider a systematic code (7,3): 

 

            G=

1011100

1110010

0111001

 .                                               (5.13) 

 

 

 

 

 

 

 

To this matrix correspond transposed parity check matrix: 

 

                    H
T
=

   

1000

0100

0010

0001

1011

1110

0111

 ,                                                              
         (5.14) 

      Let's designate the code combination received from the channel as  
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b=(b1,b2,b3,b4,b5,b6,b7). 

      As a considered code – systematic, first three symbols (b1, b2, b3) are information 

symbols. Using structural properties of this code, it is possible to form during 

decoding process both trivial and compound estimations of information symbols 

which are presented to table 5.2. On the basis of columns of a parity check matrix 

(5.15) we will write down verifying parities: 

               b1 ⊕b3 ⊕b4=0, b1 ⊕b2 ⊕b3 ⊕b5=0, b1 ⊕b2 ⊕b6=0, b2 ⊕b3 ⊕b7=0, (5.15) 

 

      which allow to form compound estimations. For example, on the basis of the first 

equality from (5.15) follows the compound estimation of the first information symbol 

b1=b3
⊕b4. The trivial estimation of this symbol also is, actually, this symbol b1=b1, 

as a code is systematic. Expressions for other information symbols are made 

similarly. They are presented in the table5.2. 

 

   Table 5.2– 

Majority 

decoding of the 

block code 

 

      

 

 

 

 

 

      

 

       

       

 

     After formation of estimations they move on a majority element in which the 

decision on each information symbol is taken out «on the majority of voices». 

 For example, if estimations of an information symbol b1 look like: 

  

                             b1=b1=1, b1=b3 ⊕ b4=1, b1=⊕b5+⊕b7=1, b1=b2 ⊕b6=0, 

in which the quantity of estimations «1» exceeds quantity of estimations «0» the 

majority element passes the decision «on the majority»: b1=1. The compound 

estimations enumerated in tab. 5.2 are called as orthogonal estimations as 

incoincident numerals enter into them. The number of orthogonal estimations N and a 

breavity of errors qcorr., corrected at majority decoding are in the ratio: 

                  qcorr. ≤ (N–1)/2.                                                            (5.16) 

 

Estimations of an information symbols 

Symbol 
 

b1 

Symbol 

 

b2 

Symbol 

 

b3 

T r i v i a l  

     b1=b1      b2=b2     b3=b3 

C o m p o u n d  

b1=b3 ⊕b4 

b1=b5+⊕b7 

b1=b2 ⊕b6 

b2=b4 ⊕b5 

b2=b6 ⊕b1 

b2=b3 ⊕b7 

b3=b5 ⊕b6 

b3=b7 ⊕b2 

b3=b4 ⊕b1 
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      The code with a generator matrix (5.13) allows to form N=3 orthogonal 

estimations and, accordingly, to correct unitary errors in information symbols by 

considerable simplification of decoding algorithm. It is necessary to notice, that rules 

of formation of estimations can have cyclic properties that simplifies decoding 

procedure.  
 

      Example 5.4. Structure of the majority decoder for the code (7,3). 

 

      Let's generate structure of the majority decoder of a code (7,3) on the basis of 

estimations system from table. 5.2. It is easy to see, that checks have cyclic 

properties.  

For example, indexes in compound estimations b1=b3
⊕b4, b2=b4

⊕b5 and b3=b5
⊕b6 

change on 1 towards increase. Taking into account it the structure of the decoder of 

the code (7,3) realising majority decoding algorithm looks like, shown on figure. 5.3. 

The decoder consists of the shift register, the switchboard on the input, operated from 

system for block synchronisation, schemes of estimation formation and a majority 

element. The decoder works as follows. At the beginning the switchboard on an input 

is established in position «1» and the decoded code word 

                                                        b = (b1, b2, b3, b4, b5, b6, b7) 

 is entered in the shift register cells. Thus on inputs of a majority element the 

compound estimations defined by tab. 5.2 operate both trivial and compound 

estimations. The decision about a transmitted information symbol b1 is read out from 

an exit of a majority element. Then the switchboard is established in position «2» and 

there is on one symbol shift of the word. On this step, owing to cyclic properties of 

estimations the second information symbol are formed and the decision on an 

information symbol b2 is read out from an exit of a majority element. Further process 

repeats up to reception on a output symbol b3 etc.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Questions 
 

     5.1.What kind will be have a matrix of double errors. How it will change in 

comparison with a matrix of single errors (5.11)? 

Block synchronisation 

 

              Majority element 
 

Cyclic shift of a word 

Record of a word 

 

Input 

Output 

Figure 5.3 – Structure of the majority decoder of a code (7,3) 

 

1 

2 
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      5.2.How parametres of binary syndrome representation (table. 5.11 see) are 

connected with the general number of possible configurations variants which 

detected and corrected errors by syndrom decoding? 

      5.3.How the syndrome format will change if to apply a method of syndrome 

decoding to decoding double errors? 

      5.4.Result the generalised block diagramme of the syndrom decoder of a block 

code (n, k). What function is carried out by the syndrome analyzer? 

 

Tasks 

 
      5.1*.By the principles stated in the Example 5.1 represent structure a systematic 

block code intended for detection of double errors with the generating matrix 

(4.6). 

 

    5.2.The generator matrix of a code (7,4) is set: 

          



















=

1011000

1110100

1100010

0110001

G  

        Define the allowed code word of this code b if the word of a primary code on  

          a coder input a = (1110) is set. 

5.3.Define code distance of a code (7,4) with a generator matrix from the Task 5.2. 

 

5.4.Represent a encoder structure of a code (7,4) with the same generator matrix. 

 

Lecture 6 
 Boundaries of a parametres of the block codes 

 
Plan 

 

  6.1.Boundaries of a parametres of the block codes[ 2, Section 3.3] 

 

  6.2. Hamming upper bound[ 2, Section 3.3] 
 

  6.3.Varshamov-Gilbert lower bound[ 2, Section 3.3] 
 

  6.4. Complexity of encoding and decoding algorithms[ 2, Section 3.3] 

 

 

 

6.1. Boundaries of a parametres of the block codes 
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     One of problems of the coding theory is the search of codes which at the given 

block length n and rate Rcode provides a maximum of code distance dmin. Limits of 

these parametres are defined by the code boundaries which consideration is resulted 

more low. 

6.2. Hamming upper bound 

 

     The conclusion of the upper bound is based on reasons of spherical packing 

(bound of spherical packing). At the given minimum distance between the allowed 

code word dmin. the greatest rate can be reached, if the spheres surrounding each 

word will be most densely packed.  

      The volume of each sphere is equal ∑
−

=

1

0

mind

i

i

nC , the number of spheres (number of code 

words) is equal 2
k
. For the best code the total quantity of spheres and number of all 

possible words (2
n
) should coincide. Equality is reached for densely packed (perfect) 

codes. The area of each code word represents sphere with radius (dmin– 1)/2, and 

these areas of such codes not being crossed densely fill with themselves 

 all n-dimensional space of code words. The inequality from here follows: 

                           n
d

i

i

n

k C 22
1

0

min

≤∑
−

=

. 

      After simple transformations it is possible to receive obvious expression for rate 

of a perfect code: 

 

                      1–Rcode ∑
−

=

≥
1

0

2

min

log
1 d

i

i

nC
n

 .                                                (6.1) 

 

      The dependence of Hamming upper bound is shown on figure 6.1 (curve 

«Hamming upper bound»). Hamming bound is fair both for linear, and for nonlinear 

codes.  
 

6.3.Varshamov-Gilbert lower bound 
 

 

       For block codes it is possible to get the Varshamov-Gilbert lower bound which 

defines the possibility of codes existence with both parametres Rcode and dmin. The 

asymptotic form (for long codes) of this bound looks like: 

 

                                               Rcode ≥ 1–H(dmin /n),                         (6.2) 

 

 where H (x)– binary entropy. The dependence of Varshamov-Gilbert lower bound for 

binary codes is shown on figure 6.1 (Curve «Varshamov-Gilbert lower bound»). The 
bound guarantees existence of the codes which performances correspond to the points 

arranged at least on a curve (or above it).  

       Search of the codes ensuring the given minimum distance dmin and high 
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enough rate Rcode at n→∞, ensuring at the same time a possibility of algorithms 

decoding realisation with low complexity is one of the important problems of the 

theory of coding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4. Complexity of encoding and decoding algorithms 

 

      The using of correcting ability of a code depends on decoding algorithm. 

By full decoding use all possibilities to correct the errors following from properties of 

a code. According to Shannon fundamental theorem the error-correcting codes used 

 for correction of channel errors  should get out long enough. However with growth 

of a code word length n increases complexity of realisation of procedures of encoding 

and decoding that causes difficulty of practical realisation of codecs. 

 In the coding theory of along with estimations of error-correcting ability of codes 

can estimate complexity of realisation of encoding/decoding procedures  which can 

be realised by software or hardware. Thus as argument of complexity function the 

length of a codeword n should act. 

      Encoding complexity of a block codes Cencod. with use of a generator matrix 

 a (n, k) code with a size nk=n
2 

(1– Rcode ) usually estimate in the value wich is 

proportional to number of elements of the generator matrix 

0,2 

0,5 0 0,1 

1,0 

0,4 

0,8 

0,4 0,3 0,2 

0,6 

Rcode 

Hamming upper bound 

Varshamov-Gilbert lower bound 

Figure 6.1– Code boundaries of block codes  
 

dmin/2n 
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                               Ccoding=nk=n
2
(1–Rкод)                                    (6.3) 

       The decoding algorithms  appear more difficult. Among them it is considered to 

be the most difficult algorithm full- search algorithm according to which the decoder 

by the full searching compares the received code word with the set of all possible 

words and the decision on that transmited from the allowed word which appears on 

the minimum distance from the received word (decoding by a distance minimum) 

passes. It is considered to be complexity of algorithm of full-search decoding 

proportional to quantity of all possible code words to volume of full search: 

                     Cdecod.=m
n
                                                                    (6.4) 

It is said that complexity of full-search decoding increases «as an exponent » with 

growth of length of a code. Clearly, that full-search decoding algorithms are 

practically difficult for realising for long codes.  

 

Questions 

 
6.1. What is practical significance of use of Hamming upper bound and Varshamov-

Gilbert lower bound for an estimation of performances of block error- correcting 

codes? 

6.2. To what bound (upper or lower) it is necessary to aspire by elaborating of new    

block codes? 

Lecture 7 
Important classes of block error-correcting codes 

 
Plan 

         7.1. Hamming codes [1, Section 10.2] 

         7.2. Cyclic codes [1, Section 10.3] 

Instruction. In lecture materials it is widely used mathematic algebras of polynomials. 

It is necessary to study preliminary section 5 «Algebra of polynomials»  from the 

manual [3]. 

7.1. Hamming codes 

 

      The big number of codes, various on structure, construction principles and 

correcting ability is known. In this lecture the classes of effective block codes with 

simple decoding algorithms are considered. 

      

      Hamming codes(by R. Hamming)– Systematic block codes with parametres: 

– Length of the code word n=2
r
–1 

– Quantity of information symbols k=2
r
–r–1                                                 (7.1) 

– Number of additional symbols r=n–k,  

– Minimum distance dmin=3. 

           r=2, 3,4. 

Hamming codes – perfect codes which correct single errors. 
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      By the parametre choice r=2, 3,4 according to formulas (7.1) it is possible to set 

all known binary Hamming codes. For example, at r=3 the parametres of a code (7,4) 

will be the following: 

– Length of the code word n=3, 

– Quantity of information symbols k=4; 

– Minimum distance dmin=3; 

– Code rate Rcode=(2
r
–r–1)/(2

r
–1)=4/7. 

 

       Generator and parity check matrixes of this code have been considered earlier, in 

Section 4.1 (formulas (4.4) and (4.7)). As it has been noted earlier, this code allows to 

detect double errors also. Structures of the encoder and the syndrome decoder of a 

Hamming code have been considered earlier in Section 5.1 (figures 5.1, 5.2). 

According to the formula (3.5) transposed parity check matrix of this code looks like: 

 

                 H
Т
=

100

010

001

111

110

101

011

.                                                                  (7.2) 

 

7.2. Cyclic codes 

 

      The considerable part of block codes belongs to the class of cyclic codes. It 

defines a simplification of both encoding and decoding procedures on the basis of a 

cyclical properties of code words.If b = (b0, b1... bn) – the allowed code word of the 

cyclic code so its cyclical shift on arbitrary number of symbols also is the allowed 

code word. For example, a word  b 
(1) 

= (bn, b0, b1..., bn-1) corresponds to cyclical shift 

of a word b = (b0, b1... bn-1, bn) on one symbol to the right. Thus according to a rule of 

cyclical permutation combination symbols b are displaced on one numeral to the 

right, and the right numeral bn takes a place of a left numeral b0  Properties of the  of 

the cyclic code are convenient for studying, representing code words in the form of 

polynomials on degrees of a formal variable x which factors are symbol numerals in a 

code word b (x) =b0+b1x+b2x
2 

+... +bn x
n
. Mathematical operations (addition, 

multiplication and division of polynomials) make by rules of algebra of the 

polynomials stated in Section 5 of manual [3]. If addition and multiplication of 

polynomials is made by the modulo of a polynomial (x
n
– 1) so all possible 

polynomials of degree (n–1) and less organise an algebraic ring of polynomials Rn 

with the properties stated in the manual [3]. 
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       For construction of a cyclic code in a ring Rn choose a subset of polynomials   

an ideal I. The polynomial of the minimum degree g (x) in this subset is called as 

a generator polynomial of the cyclic code . As generator polynomials of the 

cyclic code choose the prime polynomials . 

      In algebra of polynomials of the whole degree prime polynomials play the same 

role what prime numbers play int he algebra of integers. The detailed table of 

generating polynomials of cyclical codes is reduced in Attachment А.1. Generator 

polynomials of short cyclic codes are given in table. 7.1. 
 

Table 7.1– Generator polynomials of short cyclic codes 

  

Maximum degree of a 

generator  

polynomial 

Generator polynomial g(x) 

3 x
3
+x

2
+1 x

3
+x+1  

4 x
4
+x+1 x

4
+x

3
+1  

5 x
5
+x

2
+1 x

5
+x

3
+1 x

5
+x

4
+x

2
+1 

6 x
6
+x+1 x

6
+x

5
+1 x

6
+x

5
+x

3
+x

2
+1 

 

      All polynomials of the ideal I corresponding to the allowed code words of the 

cyclic codes, are divided on the generator polynomial g(x) without remainder that 

allows to formulate a following encoding rule: 
 

The encoding rule of nonsystematic cyclic code looks like: 

  

                  b(x)=a(x)g(x)                                                                (7.3) 

      In practice often use systematic cyclic codes.  

    The coding  rule of systematic cyclic code (n, k) looks like: 

                  b(х)=a(х)х
n–k

+r(х),                                                       (7.4)  

where r (x)– remainder of division a (x)x 
n-k 

on g (x). 

       The coding rule (7.4) can be realised by such coding algorithm  

for a systematic cyclic code: 

 1.To the word of a primary code a an it finish on the right (п– k) zeros are added.  

It is equivalent to polynomial multiplication a on x
n-k

. 

2.Product a (x) x
n-k

 divides on the generator polynomial g (x). As a result of division  

       remainder r (x) is defined. 

3.The calculated remainder summarised with the displaced combination a x
n-k

. 

     Therefore the allowed code word is formed:  

                                      b(х)=a(х)х
n–k

+r(х)                                                                   (7.5) 
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Example 7.2 Forming of a code word of the cyclic code (10,5). 

      For the given primary code word a = (10110) we will generate a code word of a 

cyclic code (10,5). Polynomial representation of the primary code word will be 

a (x)=(x
4
+x

2
+x). At the given cyclic code are parametres п=10, k=5, r = (п-k) =5. 

From the table. 7.1 for example the generator polynomial g (x) = (x
5
+x

4
+x

2
+1) is 

chosen. Next we will fulfil mathematical operations according to algorithm (7.5): 

                 1) a(х)х
(n–

k)
=(x

4
+x

2
+ 

x)x
5
=x

9
+x

7
+x

6
; 

 

 

 

 

 

 

 

 

 

               3) Polynomial of the allowed code word is 

b(х)=a(х)х
n–k⊕r(х)=. х

9
+x

7
+x

6
+x

3
+х

2
+1. 

 

To polynomial b(x)=х
9
+x

7
+x

6
+x

3
+х

2
+1 there corresponds a word of binary symbols 

 b = (1011001101) in which first four symbols are informational and remaining –  

– additional. 

Property of divisibility of the allowed code words of cyclic codes on the generator 

polynomial is widely used for detection of errors in telecommunication systems. 
  

Property of divisibility of the cyclic code allowed code words on generating 

polynomial is widely used for detection of errors in telecommunication systems. 

     If b
)
(x)=b(x)+e(x)– the received code word containing the errors polynomial  

  e (x) =e0+e1x +... +en x
n
 as a result of division it is received: 

                               b
)
(x)/g(x)=q(x)+s(x).                                        (7.6) 

 Here: q (x) – an arbitrary polynomial ("whole"), s (x)– the polynomial of a syndrome 

equal to remainder of division b
)
(x) on g (x). It has degree not above (n– k– 1). 

 
      By absense of errors a syndrome s (x) =0. 

     On the syndrome form a it is possible to establish also a location of errors in 

2)a(х) х
(n–k)

/ g(x) 

 

=x
9
+х

7
+x

6
 

⊕ x
9
+х

8
+x

6
+x

4
 

х
5
+х

4
+ х

2
+1  

⊕ x
8
+х

7
+x

4
 х

4
+x

3
+1 

 ⊕ х
8
+x

7
+x

5
+x

3
 

х
5
+x

4
+x

3
 

⊕ 

 

⊕ х
5
+x

4
+x

2
+1 

х
3
+x

2
+1=r(x) 
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the received code word and to use this information for decoding with error-

correction.  

 

 

 

      Example 7.3. Syndrome decoding of words of a cyclic code (7,4). 

      The word of a binary primary code a = (1010) as subject to transmission via the 

channel with single errors is set. Let's choose the cyclic code ensuring errorless 

transmission this word in these conditions. From table А.1 we define, that the task 

can be solved by using of the cyclic code with a generatior polynomial 

 g (x) = (x
3
+x

2
+1) and parametres n=7, k=4, qcorr.=1. We will show, how the method 

of syndrome decoding for correction of single errors is realised. Using algorithm of 

encoding (7.5), we will generate the allowed word b (x) = (x
6
+x

4
+1). We will 

suppose, that in the channel the single error e (x) =x
6
 operates. In this case the 

received word looks likeb
)
(x)=b(x)+e(x)=x

6
+x

4
+1+x

6
=x

4
+1. We use a rule for 

determination of a syndrome (7.6). By a syndrome decoding on the syndrome form it 

is possible to establish an error location (i.e. to fulfil syndrome decoding). For this 

purpose it is necessary to make the table of syndromes and of errors polynomials 

corresponding to them. For compiling of such table it is necessary to take advantage 

of the equality implying from (7.6) by q (x) =0: 

 

s(x)= e(x)/g(x)                                                                               (7.7) 

 

       Outcomes of evaluations are presented to table 7.2 under this formula of 

syndrome polynomials s (x) for various polynomials of an errors. With a view of 

presentation a value of syndromes are presented in the form of binary words. 

 

Table 7.2– Correspondence between syndromes and error polynomials  

 

Error 

polynomial 

e(x) 

  x
6
   x

5
   x

4
   x

3
   x

2
   x   1 

Syndrome s(x) x
2
+x x+1 x

2
+x+1 x

2
+1 x

4
 x

2
   1 

Binary 

syndrome 

representation 

s 

110 011 111 101 100 010 001 

   Let the polynomial of the received from the channel word looks like b
)
(x)=x

4
+1. 

We will fulfil operation of division b
)
(x)/g(x): 
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  From table. 7.2 it is discovered, that to such syndrome there corresponds an error 

polynomial e (x) =x
6
. Error correction consists in addition of the received code word 

with an error polynomial b
)

(x)+e(x)=x
4
+1+x

6
=x

6
+x

4
+1 that coincides with the 

transmitted allowed word b (x) = x
6
+x

4
+1. To it there corresponds a binary word 

b = (1010101) in which first four symbols are errorless transmitted symbols of 

primary code a
)
=(1010) (as the used code is systematic). 

      In practice finds application such codes with cyclic properties: 
 

 1. Goley code (23, 12) – perfect cyclic code with a generator polynomial 

             g (x) =x
11 

+ x
10 

+ x
6 
+ x

5 
+ x

4
+x

2
+1 and minimal distance dmin=7. 

 2. Expanded Goley code (24, 12) with minimal distance dmin=8 which receive by 

addition of the general parity checking.  

 3. Bose, Ray-Chaudhuri, Hochuenghem codes (BCH codes) which form extensive    

class of a cyclic codes.Bynary BCH codes have parametres: n=2
m
– 1,  

(n– k)≤ mt, dmin=2t+1, where m (m ≥ 3) and t –  any positive integers. 

           Theoretical data on BCH codes are resulted in Section 10.4 of the textbook [1]. 

4. Reed-Solomon codes(RS codes) – a subclass of nonbinary BCH codes  with 

parametres: code symbols get out of field GF (q), q=2
m
, m – whole; length of 

the word N = (q– 1), quantity of information symbols K= (N– 2qcorr.), the 

minimum distance Dmin = (2qcorr.+1). Possible also extention of a code to N=q 

or to N = (q+1). 

      The effective using of cyclic properties allowed words of cyclic codes allows to 

realise enough simple decoding algorithms . It is considered, that complexity of 

realisation of decoding algorithms of cyclic codes is described by sedate function 

 Cdecod.=N
к
, where the k– small number which size depends on concrete algorithm 

realisation. Examples of  encoding/ decoding algorithms are more low resulted. Thus 

the mathematical apparatus of algebra of sedate polynomials and the description the 

discrete linear filters, presented in Sections 5 and 6 of the manual [3] is widely used. 

      Example 7.4. Encoder structure of the systenatic cyclic code. 
 

      Using algorithm (7.5) we will form the block diagramme of a cyclic encoder 

(15,11), with a generator polynomial g(x) =x
4
+x+1 which is chosen from table 7.1. 

The scheme of the encoder is resulted on figure 7.1. According to an algorithm (7.5) 

encoder works as follows. Originally switches S1 and S2 are in position 1. Eleven 

information symbols of a coded prime word a (x) are entered at the left into a chain of 

division into a polynomial g (x) =x
4
+x+1. Simultaneously they through consistently 

x
4
+1 х

3
+х

2
+1  

 ⊕ x
4
+х

3
+x х+1 

х
3
+x

 
+1

 
  

⊕х3
+x

2
+1  

  x
2
+x=s(x) – Syndrome  
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connected delay elements arrive on a encoder exit, forming an information part of the 

allowed code word a (x) x
n-k

. On first four steps in register cells the divider scheme on 

a generator polynomial the remainder of a division r (x) is formed. Then switches S1 

and S2 are established in position 2, division process stops, and the remainder is read 

out from an exit of a divider and finished in a checking part of a final code word 

b(x)=a(х)х
n–k

+r(х). 
 

 

 

 

 

 

 

 

 

      

     

 

 

 

 

 

 

      Example 7.5. Encoder structure of the nonsystenatic cyclic code 
 

     Using a coding rule (7.3) for nonsystematic cyclic code we will form the coder 

block diagramme for a generator polynomial g(x) =x
4
+x+1. The coding rule (7.3) 

provides multiplication of polynomials a (x) and g (x). Using structure of a multiplier 

for polynomials from section 6.1 of the manual [3] the encoder scheme we will 

present on figure 7.2.The importante element of schemes of coders and decoders for 

cyclic codes is the scheme of division  polynomial on a polynomial for an evaluation 

of a division remainder by coding of a systematic code by algorithm (7.5) and also 

for a syndrome evaluation by syndrom decoding on the algorithm (7.6). The structure 

of such divider schemes is considered in Section 6.1 from the manual [3]. 

 

 

 

      

 

 

 

 

 

 
               Figure7.2 – Encoder of the nonsystematic  cyclic code       

                                 (+) –Adder on the module 2 

 

+ 

b(x) 

a(x) 

1 

S1 

S2 

2 

1 

2 b(x) 

a(x) 
  +   + 

Figure 7.1 – Encoder of the syatematic  cyclic code(15,11)       

                         (+) –Adder on the module 2 
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Questions 
      7.1.What are the key parametres of Hamming codes? 

      7.2. What are the advantages of cyclic codes? 

      7.3. Whether it is possible to use Hamming codes and cyclical codes for correc   

tion of single errors? What will be parametres of these codes? 

 

Tasks 
 

     7.1. The generatior matrix of a code (7,4) is set: 

 

                  



















=

1011000

1110100

1100010

0110001

G . 

Define the allowed code word of this code b if the word of a simple code on a 

encoder input a = (1110) is set. 

      7.2. What aspect the parity check matrix of a code with a generator matrix from 

the Task 7.1 has? 

 

      7.3.The parity check matrix of a code (7,4) is set: 

 

                     
















=Η

1001110

0100111

0011101

. 

    Result a function chart of the decoder of this code. 

      7.4. Consider an example of formation of a allowed code word 

           if a word of a simple code is a = (10010). 

      7.5*. By analogy to an example of Section 7.1 make the table of Hamming codes 

parametres for values r =2,3,4. As these codes have identical minimum distance, 

compare them on suitability for realisation in practical systems. Formulate the 

recommendation and a substantiation of application of the best (in your opinion) 

a code from this list. 

      7.6*. For Hamming code recommended in the previous Section, form generator 

and parity check matrixes. 

       7.7. By the rules stated in Exercise 4.1 define value of the minimum distance by a 

generatior matrix of code from the Task 7.5. 

 

Lecture 8 
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Decoding noise immunityof the block codes 
 

Plan 

 

       8.1. Decoding noise immunityof the block codes [1, Section 10.7] 

        8.2.Energy coding gain 

 

      

 

 

 

8.1. Decoding noise immunityof the block codes 
 

      Let's define of an error probabilityby decoding of block codes in the binary 

symmetric channel. We will consider a code (n, k) with minimal distance dmin. In such 

channel an errors in sequentially transmitted code symbols (signals) occur 

independently with probability Perr.(decoding in the discrete channel without 

memory). Then the probability of that on length of the block n will occur a error 

brevity j, will be equal:  

Pj=Cn
j
Perr.

j
(1–Perr.)

n–j.
. 

 

     Here Cn
j 
– number of combinations from n elements on j. If the code corrects all 

errors of brevity qcorr.=(dmin-1)/2 (dmin– odd) and less then the probability of reception 

on an decoder exit the word with not corrected errors will be equal: 

                                               Perr. word= ∑
+=

n

1qj .corr

Pj.         

 

Hence, the probability of erroneous decoding of the block will satisfy to an 

inequality: 
 

             Perr.word
jn

.err

j

.err

n

1qj

j

n
)P1(PC

.corr

−

+=

−≤ ∑ .                                           (8.1) 

 

      In this expression equality takes place, if the perfect code is used. Parities 

between parametres n, k and qcorr. are defined by the concrete chosen code.  

Expression (8.1) allows to define the upper estimation of error probability of an code  

words by decoding of the block codes in the binary symmetric channel without 

memory. For calculation of probability of an error in concrete information (or 

additional) symbols it is necessary to know used decoding algorithm and structure of 

an  

error- correcting code( in particular, a set of distances from a transmitted code word 

to all allowed words). Such data for block codes are not published in a code tables 
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and for calculations of probability of error decoding of code symbols (information or 

additional) use the approximated formula[1]: 

                               p jn

.err

j

.err

n

1qj

j

n
)P1(PC

n

1

.corr

−

+=

−≈ ∑                                                       (8.2) 

       

       For channels with coherent receiving of signals with binary phase modulation 

(PhM-2) the probability of an signal error reception is defined by the formula: 
 

Perr.= )h2(Q2 ,                                                                             (8.3) 

where 
0

s2

N

E
h =  – the ratio of binary signal energy Es to power spectral density of 

noise N0 on a demodulator input; 

     Q(z =
dt)

2

t
exp(

2

1

z

2

∫
∞

−
π –  special mathematic Q-function (probability integral) 

which tables contain the handbooks on probability theory and statistical calculations. 

For practical calculations it is convenient to use enough exact approximation: 

  

                                       Q(z) ≈0.65 exp[– 0,44(z+0,75)
2
].                                  (8.4) 

 

      The introduction  of redundancy by using of error-correcting coding leads to 

expansion of a frequency band that occupied with a coded signal.If the frequency 

band in system without coding is F0 (Hz) the using of a code with a rate 

Rcode=
n

k
demands  

 expansions of a frequency band: 

                  Fcode=F0

code
R

1
( Hz).                                                                             (8.5) 

      I.e. there is an expansion of a frequency band in KF=
k

n
 time. For codes with low 

rate ( 1>
k

n
) such expansion can appear appreciable. Therefore the problem of a code 

choice by designing of telecommunication system consists in search of a compromise 

between desirable degree  of a noise immunity and expansion of a frequency band of 

the coded signal. Under formulas (8.2) and (8.3) taking into account expansion of a 

frequency band of coded signal according to the formula (8.4) following conclusions 

allow to draw on efficiency of application error-correcting coding : 

1.With growth of a code word length n the error probability of an decoding p goes 

down; 

2.Codes with the big redundancy (small code rate Rcode) provide considerable 

decreasing of a decoding probability error; 
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3. By using of error-correcting codes in telecommunication systems as a payment for 

noise immunity increasing is expansion of frequency band  of a transmitted signal, 

caused by the redundancy entered by coding on size: 

 

                                                KF=
k

n
                                                                 (8.6) 

 

8.2. Energy coding gain 

 

      For practice the question about expediency of application of error-correcting 

codes in telecommunications is important. This question decided taking into account 

the following. Introduction of redundancy by encoding changes not only expenses of 

a frequency band for transmitting of the coded signals, but also demands the account 

of a redundancy by energy calculations. Really, according to the formula (8.3) for 

probability of an error registration of channel signals (code symbols) is defined by 

their energy Es which taking into account redundancy of a code appears a little bit 

less energy Eb spent for transfer of one information symbol (bit). It follows from 

equality kEb=nEs, i.e. Es=EbRcode. Therefore in all power calculations of systems with  

coding using, as a rule, the value of the ratio of signal energy spent for transmitting of 

one information binary symbol (bit) to noise power spectral density Eb/N0. The 

probability of errorneous decoding of the block is defined by formulas (8.1) and (8.2) 

which in argument of function Q (z) include value Es – the energy of a signal spent 

for transmitting through the channel of one binary signal (a code symbol). Really, 

according to the formula (8.3) probability of an error of registration of channel 

signals (code symbols) is defined by their energy Es which taking into account 

redundancy of a code, appears a little bit less energy Eb spent for transmitting of one 

information symbol (bit). Then used in power calculations of systems with coding the 

relation of energy Ebto noise power spectral density N0 can be designated as 

0

b2

b
N

E
h = .Taking into account relation of signal energy Es and bit energy Eb(8.3) the 

value entering into the settlement formula will be 2

bcode

2 hRh = . Then taking into 

account expenses of energy for transmitting of additional symbols of a redundancy 

code (8.3) it is possible to present the formula as follows: 

                            Perror= )hR2(Q2
bcode

,                                                       (8.7)  

 

and the bit error probability by expression 

                                p jn

error

j

error

n

1qj

j

n
)P1(PC

n

1

corr

−

+=

−≈ ∑ ,                                                   (8.8) 

 

in which the probability of an channel signal error  is defined under the formula (8.3). 

If necessary to define probability of an error in the channel without coding it is 

enough to take advantage of the formula (8.3), having  put Rcode=1: 
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                          Perror= )h2(Q2
b

.                                                                          (8.9) 

 

      Exercise 8.1. Decoding noise immunity of a block code 

 

      Let's take advantage of the formula (8.9) for calculations of an error probability 

with optimum receiving of signals PhМ-2 in the channel without coding. Results of 

calculations are resulted in table 8.1. Initial parametre for calculations is the relation a 

signal/noise on demodulator input 
0

b2

b
N

E
h = .The used in practice value )dB(h

2

b
define 

by formula 
2

b

2

b
hlg10)dB(h = . In table 8.1 settlement data by definition of error 

probability by optimum receiving of signals PhM-2 (formula (8.8)) including 

argument z of the function Q (z). 

      The dependence curve p=f (hb
2
(dB)) constructed on these data (PhM-2) is resulted 

on figure 8.1. 

 

 

 

Table 8.1– Calculation of a receiving noise immunity of signals PhM-2 

 

 

 

 
 

 

 

 

 

 

 

 

 

       

 

 

      Under formulas (8.7), (8.8) we will define of an bit error probability by decoding 

in the channel with PhM-2 words of a cyclic code average length (31,26) with 

parametres Rcode=0,84, qcorr=1. The code is chosen from table А.1. 

 

Table 8.2– Calculation of a decoding noise immunity of the cyclic code 

 

Modulation method PM-2, Cyclic code (31,26) 

hb
2
, dB hb Rcode z C

2
31 p 

hb
2
,  

dB     

hb Rcode z p 

1 1,122 1       1,587      0,12 

2 1,259 1      1,178      8 10
-2

 

3 1,413 1       1,998    4,7 10
-2

 

4 1.585 1        2,241    2,5 10 
-2

 

5          1,778 1       2,515     1,2 10 
-2

 

6 1,995 1      2,822      4,7 10
-3

 

7 2,512 1       3,166         1 10
-3

 

8        2,818 1       3,986        7 10
-5

 

10         3,162 1 4,472 8 10
-6
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1 1,122 0,84      1,454     20 10
6
      3 10

-2
 

2 1,259 0,84       1,632      20 10
6
      3,1 10

-2 

3 1,413 0,84      1,831      20 10
6
       2 10

-2 

4 2,585 0,84      2,054      20 10
6
      1,0 10

-2 

5 1,778 0,84      3,305      20 10
6
       5 10

-3 

6 1,995 0,84      2,586      20 10
6
      4,2 10

-3 

7 2,239 0,84      2,902       20 10
6
     1,9 10

-3 

8 2,512 0,84      3,562       20 10
6
      2 10

-6 

9 2,818 0,84      3,653       20 10
6
    0,9 10

-6 

10 3,162 0,84      4,099      20 10
6
     2,6 10

-8 

 

      Results of calculations are presented on figure 8.1 ( curve «Code (31,26)»). 

In all energy calculations of systems with coding use as a rule value of the relation of 

energy of the signal spent for transmitting of one information binary symbol (bit) to 

power spectral density of noise 

0

b2

b
N

E
h = which is considered as a uniform criterion of 

power expenses for an information transfer through the channel with coding and 

without it. 
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       1 

        10-2 

       10-7 

        10-8 

         10-5 

        10-4 

    10-6 

          10-3 
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Code 

(31,26) 

g, dB 

   1    2    3    4    5    6    7    8    9    10  11   12  13  14                     

Figure 8.1– Decoding noise immunity of the cyclic code  
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       Size change hb
2
schows efficiency of application of a error-correcting code. The 

effect of errors decrease on a decoder exit can be used on a miscellaneous. 

Error-correcting coding provides reduction of the error probability in the received 

messages. It is well visible from comparison of curves p=f (Eb/N0) on figure. 8.1 for 

cases of an information transfer by method uncoded PhM-2 and with using of a cyclic 

code (31,26). It is visible, that by using of an error-corecting code it is possible to 

admit certain decrease in a channel signal/noise ratio and to receive, accordingly, a 

energy gain g (dB). The value of gain can be defined at various levels of bit error 

probability p on demodulator and decoder exits. Told it is illustrated by the curves of 

a noise immunity presented on figure 8.1. 

  

     In particular, for the data resulted on figure 8.1 value gain is g=2,0 dB (p=10
-6

). 

The gain values g is widely used for a choice of codes by designing of 

telecommunication systems. Values g received at use of cyclic codes in channels with 

PhM-2 are resulted in table. А.2 of Attachment А.1. 

 

      Example 8.1. Optimisation of a cyclic code parametres.  
 

      Let's consider the optimisation procedure of the cyclic codes parametres used in 

the binary symmetric channel with signals PhM-2 for the purpose of the maximum 

energy coding gain from error-control coding provided by factor of expanding of a 

signal spectrum band will not exceed KF=2 (double expansion of a signal frequency 

band in the channel). Preliminary, under table А.2 Attachment А.1 we will make 

selection of cyclic codes which can meet requirements on factor of expansion of a 

band (KF <2, Rcode> 0.5). Results of such selection are shown in table 8.3. In table 

columns values of a code rate are specified. In cells in the lines the gain values (in 

dB) for various lengths of the code word n are presented. Under table А.1 of 

Attachment А.1 we select the cyclic codes with block length n=255 with the rate 

which is close to optimum rate Rcode=0,8.  
 

Table 8.3– Parametres of a cyclic codes meeting requirements on a code rate 

 

Code rate Rcode Word length n 
0,5 0,6 0,7 0,8 

63 2,7 2,8 2,7 2,1 

127 3,4 3,5 3,3 2,8 

255 3,9 4,0 3,8 3,3 

The energy coding gain from error-control coding g is equal to a difference 

of values Eb/N0 necessary for maintenance of bit error probability in 

transmited data by both absence and using encoding. 
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    It is visible, that the greatest value of gain g =4,0dB is reached at using enough the 

long cyclic codes with length of the word n=255. In table 8.4 parametres of the 

optimum cyclic code are shown. 

               Table 

8.4 – 

Characteristics of an optimum cyclic code 

 

 

 

 

 

 

The selected code (255,207) provides a power gain 4,0 dB at rate Rcode=0,811. Factor 

band expansion KF=1,23 not exceeding preset value KF (max) =2. 
 

Questions 

 
      8.1.What parametres of block error-correcting codes define the error probability 

by decoding in the binary symmetric channel? 

      8.2. How the energy coding gain  is defined? 

      8.3. What is the reasons of signal frequency band expansion with coding ? 
 

Tasks 
 

      8.1. By a technique stated in the Example 8.1 define parametres and generator 

polynomial of the cyclic code providing the minimum expansion of a signal 

frequency band by energy coding gain g> 3,0 dB.  

      8.2*. By data from table А.2 Attachment А.2 construct dependence family of a 

energy coding gain g from code rate for various lengths of the code word for 

the cyclic code. Draw conclusions on influence of length of the block on the 

gain value. 

      8.3*. By data table А.2 Attachment А.2 construct dependences of a necessary 

code rate from a demanded energy coding gain g for various lengths of the 

code word for the cyclic code.. Draw conclusions on influence of a word 

length on the exchange parities between gain and factor of signal band 

expansion. 

 

Lecture 9 

n k Qcorr. Code rate 

Rcode 

Gain 

 g,dB 

255 

 

207 6 0,811 4,0 
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Structure and characteristics of the convolutional codes 

Plan 

 

      9.1. Description methods of the convolutional codes [1, Section10.12] 

                                                                                            [2, Section 3.4] 

      9.2. Key parametres and classification of the convolutional codes[2, Section 3.4] 

 

9.1. Description methods of the convolutional codes 

 

      Convolutional codes(CC) form a subclass of continuous codes. The name 

«сonvolutional code» occurs that the result of coding on a encoder exit is formed as 

convolution of coded information sequence with pulse responce of the encoder. 

Encoder of CC contains one or several registers from delay elements and the 

converter of information sequences into code 

sequences. Coding process is made 

continuously. The scheme of the simple 

encoder is shown on figure 9.1. 

      Information binary symbols a arrive on 

an input of the register with K delay 

elements D. On exits of adders on the 

Module-2 code symbols b 
(1)

 and b 
(2) 

are 

formed. Inputs of adders are connected to 

certain inputs of encoder register elements . 

The switch K on a encoder exit establishes 

the send sequence of a code symbols to the 

channel. During one input information symbol it is formed two output code 

symbols.  
 

 

      Code rate is Rkode=k/n, where k– number of the information symbols 

simultaneously arriving on inputs of the encoder, and n– number of code symbols 

corresponding to them on encoder exits. Code rate in this example is equal Rkode=1/2. 

Coding with other speeds is possible. The convolutiuonal encoder as the finite state 

machine with final number of states can be described by the state diagramme. It is 

considered to be the state as the symbol set on the inputs of register delay elements. 

For example, symbols (s1, s2) designate encoder state on figure 9.1. The state 

diagramme represents the directed graph who describes all possible transitions of the 

encoder from one state into another and also contains encoder output symbols of the 

which accompany these transitions. 

      The example of the encoder state diagramme is shown on figure 9.2. It contains 

four possible encoder states (S1S2) =00, 10, 11 and 01 and possible transitions.  

 

 

 

 

 

 

 

 

 

 

 

    

00 

10 01 
(00) 

(10) 

(11) 

(00) 

(11) 

b
(1)

 

b
(2)

 

K a(1) 

    Figure.9.1 – Encoder of CC 

 D  D 

s1 

s2 
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    Symbols about arrows designate symbols on a encoder output (b 
(1)

b 
(2)

), 

corresponding to the given transition. Continuous lines note the transitions made at 

receipt on an encoder input of the information symbol 0 and dotted – by the receipt of 

a symbol 1. Originally the encoder is in a state 00, and receipt on its input of an 

information symbol a=0 translates it also in a state 00. Thus on an encoder output 

there will be symbols (b 
(1) 

b 
(2)

)
 
=00. On the diagramme this transition is designated 

by a loop "00" leaving a state 00 and again coming back in this state. Further, at 

symbol receipt a=1 the encoder passes in a state 10 thus on an output there will be 

symbols b 
(1) 

b 
(2) 

=11. This transition is designated by a dashed line from a state 00 

into a state 10. Further, receipt on an input of the coder of information symbols 0 or 1 

is possible. Thus the coder passes into a state 01 or 11, and symbols on an output will 

be 10 or 01, accordingly. Process of a forming of the diagramme comes to an end, 

when all possible transitions from each state in all the others will be seen. The trellis 

diagramme (trellis) is development of the state diagramme in a time. On a trellis the 

states are shown by knots.The states are connecting by lines. After each transition 

from one state into another there is a displacement on one step to the right. The 

example of the trellis diagramme is shown on figure 9.3. The trellis diagramme gives 

evident representation of all allowed ways which are analogues of the allowed code 

words of a block codes. On them the encoder can move ahead by encoding. 

 

  

 

      To each information sequence on a encoder input there corresponds a unique 

way through a lattice. 

 

 

 

 

 
 

 

 

 

 

 

                                 Figure 9.3 – Trellis diagramme  

00 

10 

01 

11 

00 00 00 00 

11 11 

10 10 

01 01 

10 10 

01 
01 

00 00 
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11 
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11 

11 
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      In particular by a dotted line the way on a trellis …11100001… is shown 

corresponding to an input information sequence …1011.. . For the description of 

encoder work the sequence of input and output symbols it is convenient to 

representing with use of the delay operator D in the form of infinite series: 

      a(i)(D)=a(i)0D
0
+a(i)1D

1
+a(i)2D

2
+..., 

 

      b
(j)

(D)=b0
(j)

D
0
+b1

(j)
D

1
+b2

(j)
D

2
+... . 

  

   Here indexes in brackets designate: 

i– number of an encoder input, 1≤i≤k; 

          j– number of an coder output, 1≤j≤n.  

         Indexes without brackets (0, 1, 2...) designate the discrete time moments. 

      For exposition of convolution coding use concept of a generator polynomial. 

      The convolution code will be completely set, if the encoder scheme is known:  

– An amount of inputs of the encoder k; 

– An amount of outputs of the encoder n; 

–Length of each of registers Ki,  

– Connections of summators with register cells are specified. 

 For codes with rate R=1/n the connection of j-th summator (1≤j≤n) with cells of the 

shift register is described by the representation of a generator polynomial: 
 

            g
(j)

(D)=g0
(j)

+g1
(j)

(D)+g2
(j)

(D
2
)+...+gν

(j)
(D

ν
).                      (9.1) 

 

   Here gk 
(j) 

=1 if connection of j-th summator with k-th register cell exists,  

    and gk 
(j) 

=0 if such connection is absent. 

Coding process can be presented as multiplication of a generator polynomial  

g (i) 
(j) 

(D), on an input information sequence a (i) (D): 
 

                                      b
(j)

(D)=a(i)(D)g(i)
(j)

(D), 1≤i≤к; 1≤j≤n.                              (9.2) 

 

      For example, the encoder on fig. 9.1 is characterised by generator polynomials 

 g 
(1) 

(D) =1+D+D
2
 and g 

(2) 
(D) =1+D

2
 or, noting sequence of a factors gk in the form 

of binary combinations, we receive g 
(1) 

= (111) and g 
(2) 

= (101). For long codes often 

use the octal form.. In this case generator polynomials will be presented  

 so: g 
(1) 

= (7) and g 
(2) 

= (5), or G = (g 
(1)

, g 
(2)

) = (7,5). 

  Coding process can be described also with using of generator matrixes (accordingly, 

parity check matrixes). It is possible to familiarise with this material under the 

manual [2, Section 3.4, p. 114] more in detail. 

 

9.2. Key parametres and classification of the convolutional codes 
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       Code rate is defined as  

                         Rcode=
n

k
,                                                                    (9.3) 

 

where k – an amount of the information symbols simultaneously arriving on k 

encoder inputs , n – an amount of code symbols corresponding to them on n encoder 

outputs. 

      Use some parametres for definition of memory length by coding. The length of 

the encoder register (LCR) K is equal to an amount of delay elements containing in 

the encoder scheme. LCR often apply to memory definition by coding with rate 

Rcode=
n

1
, when the encoder contains one register. The encoder represented on figure 

9.1 has LCR K=3. If the encoder contains some inputs (k> 1) so lengths of the 

registers connected to each input, can be various. In this case define a code 

constrained length. 
 

      The code constrained length on each input is defined by the higher degree of 

corresponding generating polynomials  

                         νi=max [deg g (i) 
(j) 

(D)].  
 

The resultant code constrained length is defined by the sum: 

                 

ν ν=
=
∑ i
i

k

1                                                                                                   . (9.4)  

 

 

      For codes with one register(k=1) the values ν  and K are connected by a simple 

relation  

                                        ν =K.                                                                               (9.5) 
 

For comparison of a decoding algorithm complexity use complexity performance. As 

it was marked earlier, development of the trellis diagramme consists in a repetion of 

the same step (see figure 9.3). The diagramme complexity is accepted to define an 

amount of branches on a step of the trellis diagramme. The number of states of a 

lattice is defined by number of variables K=v on inputs of the. register elements. As a 

result complexity of one lattice step can be defined an amount of branches on this 

step: 
 

 

                                                         W=m
(v+k)

                                                        (9.6) 

 

      The decoding noise immunity depends on distance properties of code sequences 

on a encoder input . Thus for binary codes more often use distance between 

sequences estimate in Hamming metric. 



   53 

 

 
 

Free distance of a convolution code df – is a minimum distance between two 

arbitrary semi-infinite sequences on the encoder output which differing from the 

first branch. 

 

      For short codes the free distance can be defined under the state diagramme. If the 

binary code diagramme is set free code distance is equally to minimum Hamming 

weight of a way under the diagramme from a state 00 in the same state (excepting a 

loop at this state). On the diagramme figure 9.2 it is visible, that free distance df =5.  

On the value of free distance judge about correcting properties of convolution codes. 

In particular, if two ways on encoder output, going out from one state on the trellis 

diagramme, differ in Hamming metric on the value df, that by decoding on a 

minimum distance (with analogy to a case of block codes decoding (see Section 3.1)) 

 the breavity of corrected errors is defined by expression  

 

     .                               
2

1d
q f

.corr

−
≤ , (df– odd)                                                      (9.7) 

 

      The free distance is used for an estimation of a noise immunity of convolution 

codes decoding with decoding algorithms by a maximum aposteriory probability or 

close to them (Viterby algorithm etc.).  

In a systematic code on k (from n possible) encoder outputs there are information 

sequences of transmitted symbols, and on remaining (n–k) exits – the sequences of 

the additional symbols formed as linear combination of information symbols. By rate 

R=1/2 generator polynomials of a systematic code look like 
 

g
(1)

(D)=1 и g
(2)

(D)=g0
(2)

+g(1)
(2)

D+g(2)
(2)

D
2
+...+gν

(2)
D

ν
.  

 

      Systematic codes allow to receive on a receiving site an estimation of information 

symbols, without decoding or any other processing of received symbols. 

Nonsystematic codes do not possess such property. As well as in case of a block 

codes the using of convolution coding with rate Rcode=
n

k
leads to expansion of a 

signal frequency band in the channel. Thus the of band expansion factor  is defined 

by expression: 

. 

                               KF=
k

n
.                                                               (9.8) 

      By small code rates the considerable band expansion becomes unacceptable, 

therefore try to apply encoding with a high code rate. Practically, a choice of code 

parametres make on the basis of the compromise, proceeding from demanded level 

energy coding gain and admissible value of frequency band expansion factor.  

 

      Exercise 9.1. The analysis of code parametres correlations. 
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      Using consecutive modification of the structure of initial encoder (7,5) and 

corresponding to it state diagramme and a lattice (figures 9.1, 9.2 and 9.3) we will 

establish correlations of the encoder parametres k, n, Rcode , S, and generator 

polynomial with code free distance df. We will consider some variants of the codes: 

 

     1 .Initial code (7,5) 

 

 

 

 

 

 

 

 

 

    

              Code parametres:      k=1, 

                                                n=2, 

                                                K=2, 

                                                Rcode=1/2, 

   (for bynary code, m=2) → S=2
K
=4, 

                            Free distance df=5.       Code is nonsystematic. 

 

     2. Forming of a systematic code (1,5) 
 

      Let modify the first polynomial of an initial code, having left one connection, as 

shown more low in figure. The state diagramme will partially vary. The number of a 

states remains former as the structure of the encoder register has not varied. Nonzero 

branches vary: according to a modification of the first generator polynomial on a 

place of the first numeral of a branch it is necessary to write down the first numeral of 

a state to which this branch is directed. The code rate also has not varied. 

 

 

 

 

 

 

 
 

 

              Code parametres:      k=1, 

                                                 n=2, 

                                                 K=2, 

       State diagramme 

00 

10 01 

11 

(00) 

(10) 

(11) 

(00) 

(01) (01) 

(11) 

(10) 

 D  D 

        State diagramme 

00 

10 01 

11 

(10) 

(00) 

(01) 

(00) 

(01) (11) 

(11) 

(10) 

Encoder 

 D  D 
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                                                  Rcode=1/2, 

        (for bynary code, m=2) → S=2
K
=4, The free distance has decreased: df=3. 

  Code is systematic.This example illustrates the general conclusion of a coding 

theory: 

     On the free distance the systematic code appear worse of a nonsystematic codes 

from which they are organised. Therefore in practice prefer to use the nonsystematic 

codes. 

   3. Forming of a nonredundancy code (1,0). 
 

     This, apparently, the "exotic" example allows to reveal a role of the nonzero 

generator polynomials forming additional symbols. 

       

 

 

 

    

 

 

        Code parametres:            k=1, 

                                                n=1, 

                                                K=2, 

                                                Rcode=1, 

   (for bynary code, m=2)  → S=2
K
=4, 

   The free distance has considerably decreased → df=1. 

                Encoder is systematic without a additional symbols. 

      Actually, nonredundancy coding is present (memory of the encoder is not used). 

Therefore the code free distance is equally df=1, also corresponds to a rate of the 

nonredundancy code Rcode=1. All increment of free distance in the a code considered 

in variant 2 spoke presence of nonzero additional symbols. 

 In Attachment А.3 performances of binary convolution codes with maximum free 

Hamming distance for various code rates are given.    

 

 

 

 

Questions 

 
      9.1. Name key parametres of convolution codes. 

      9.2. What are construction rules of the state diagramme? 

     9.3. What connection between the state diagramme and the trellis diagramme? 

      9.4. How to define a free distance under the state diagramme?  
 

Tasks 

 

Encoder 

 D  D 

        State diagramme 

00 

10 01 

11 

(10) 

(00) 

(00) 

(00) 

(00) (10) 

(10) 

(10) 
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      9.1. Generator polynomials (g
(1)

,g
(2)

) = (1101,1111) are set. Define parametres 

such code. What octal and polynomial representations (g
(1) 

(D),
 
g

(2) 
(D)) this 

code? 

      9.2. Form a functional scheme of code with such set of the generator polynomials. 

      9.3*.Construct the state diagramme and the trellis diagramme of such code. 

Show, how on them to define the free distance of a code. Discover a line 

corresponding to this code in tables СК from Attachment А.3. By analogy with 

Exercise 9.1 analyse correlation of this code parametres with value of free 

distance. Make generalising conclusions. 

     9.4*.Prepare the trellis diagramme of a code (1,5) from the Exercise 9.1, necessary 

for a analyse of the Viterby algorithm.  

 

Lecture 10 

 

Decoding algorithms of the convolution codes 
 

Plan 

 
      10.1. Classification of the decoding algorithms [1, Section 10.12; 2, Section 3.6] 

      10.2. Viterbi algorithm for decoding of convolution codes [ 2, Section 3.6] 

 

10.1. Classification of the decoding algorithms 

 
      By the receiving for the purpose of optimum solution the received sequence of 

symbols accepted from the channel is necessary to compare with all possible 

transmitted sequences. As the number of possible sequences of length N by binary 

code is equally to 2
N
 by the big sequence lengths the decoder it becomes inadmissible 

complexity(exponential decoding complexity, see Section 6.3), and optimum 

decoding– practically difficultly realising. However by a big N substantial increasing 

of transmission fidelity as the noise averages on a long sequence is possible. 

Therefore the problem of a complexity decreasing of a decoding algorithms  is 

important. Two groups of decoding methods for convolution codes are known: 

      1. Algebraic decoding methods are based on the use of algebraic properties of 

code sequences. In some cases these methods lead to a simple realisations of the 

codec. Such algorithms are not optimal, as used algebraic decoding procedures are 

intended  for correction concrete (and not all) configurations of a channel errors. 

Algebraic methods identify with «element-by-element reception» of sequences which 

for codes with redundancy, as is known, yields the worst rezults, than «reception in a 

whole». Most simple of algebraic algorithms is the threshold decoding algorithm. 

This algorithm is so far from optimum and consequently is seldom used, first of all, in 

systems with a high information rate. More detailed description of threshold 

algorithm and its modification can be discovered in the manual [2, Section 3.6.3]. 
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      2. Probability decoding methods considerably is more near optimal to « reception 

in a whole» as in this case the decoder operates with the values wich proportional to 

aposteriory probabilities, estimates and compares probabilities of various hypotheses 

and on this basis carries out decision about transmitted symbols. 

      Algebraic algorithms operate with the limited alphabet of input data for which 

deriving on an exit of the continuous channel it is necessary to fulfil quantization of 

an received signal with noise. Processes of elaborating of the signals in an exit of the 

demodulator for antipodal signals are shown on figure10.1 where are presented: 

  a,c)– forms of antipodal signals in the sampling time on an input of decision device 

of the demodulator; 

b)– binary quantization and transition graph by a hard decision; 

d)– octal quantization and transition graph by a soft decision. 

      In the simple case make quantization of each channel symbol in a sample time on 

two levels (named in the literature as «a hard decision»). Thus the hard decision is 

presented by one binary symbol. It is shown on figure 10.1a,b. By a hard decision 

number of quantization levels is L=2).  

By a soft decision number of quantization levels is L>2(figure10.1d). By a soft 

decisiont the quantized output describes magnitude of decoded signal plus noise more 

precisely that raises a noise immunity. 

      Two basic probability algorithms for decoding of convolution codes, and also 

their various modifications are known . 

      Sequential decoding algorithm ensures arbitrarily small error probability by a 

nonzero transmission rate of messages through the channel. By sequential decoding 

the search of the way through the code lattice, corresponding to the transmitted 

informational sequence is made. Sequential decoding is used for decoding of long 

convolution codes. The detailed deskription of sequential coding algorithm has 

presented in the book [4, Section 13.18]. Other variety of probability algorithms is 

the algorithm based on a principle of a dynamic programming, and known as Viterby 

algorithm.  

Dynamic programming principle has been formulated in 1940 by R Bellman. 

It has wide application in the control theory. In 1970 the dynamic programming in the 

form of decoding algorithm for convolutional codes has been applied by A.Viterbi to 

solving of the telecommunication problems (Viterbi algorithm ). 
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      Viterbi algotithm finds wide application and realises search of maximum probable 

way through code lattice with rejection of a part of the least probable variants of 

decoded paths. Viterbi algorithm is characterised by a constant of computing work, 

however complexity of decoder Viterbi grows, as by all full search algorithms under 

the exponential law from code length. Therefore Viterby algorithm is used for 

decoding of short convolution codes.  

 

10.2. Viterbi algorithm for decoding of convolution codes 

 

      Let's considerViterbi algorithm on an example of a code with rate Rcode=1/n.  

Let, since a moment t=0, on a encoder input is the information sequence of length in 

L synbols aL = (a0a1 aL-1) moves. On a encoder output there will be a sequence of 

symbols bL = (b0b1... bL-1). An encoder states at the moment t define as a set of ν 

information symbols wt=(at at-1 ...aL-1).The trellis diagramme of a code univalently 

connects the information sequence aL, sequence of the encoder states wL and the 

sequence of the output symbols bL. To each branch bt in the channel there 

corresponds a signal, which can be presented a set of coordinates St = (St 
(0) 

St 
(1)

... St 
(N)

), where  

N– the dimension of a signal space. In the channel the additive noise operates. Then 

arriving on an decoder input the receiving signal sequence will be equal to  

 XL=SL+nL where SL = (S0 S1... SL-1) and nL = (n0n1. nL-1), nt = (nt 
(0) 

nt 
(1)

... nt 
(N)

)  

   is N-dimensional vector of a noise. 
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      Decoding consists in tracing through a code lattice of a way with a maximum 

aposteriory probability. It is possible to specify the decoded way to one of kinds: 

– by the set of estimations of code branches SL = (S0S1 … SL-1) which making a way;  

–by the sequence of estimations of the encoder states WL = (w0, w1 ….wL-1); 

– by the sequence of estimations of information symbols on the encoder input  

–        AL = (a1 … aL-1) which coincide with the first symbols of state estimations  

– S = (s1, … st - ν + 1). The sequence XL will be decoded with the minimum error 

probability if from all possible ways to choose estimation SL for which aposteriory 

probability P (SL/XL) is maximum. Transmission of all variants of sequences aL 

considers equiprobable. In this case decoding by criterion of a maximum aposteriory 

probability is equivalent to decoding by criterion of a maximum of a probability 

when estimation SL ensuring performance of condition P(SL/XL)=max gets out. In 

the channel without memory conditional probability P(SL/XL) is proportional to 

product of conditional densities of the sum of a signal and a noise: 

 

    P(XL/SL)= ∏∏
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       By the decoding choose sequence of signals SL = (S1, ….SL-1) and sequence of 

branches univalently connected with it SL =(S0 S1 … SL-1) which ensures a sum 

minimum: 

     
 

 

 

 

which is called as the metric of the decoded path(MP). The path metric contains the 

metric of branches(MB): 

  
 

 

 

      In Gauss channel the branch metric is proportional to quadrate Euclidean 

distances between a vector of the received sum of a signal plus noise Xt and a vector 

of signal St corresponding to a branch of a code At. In the discrete channel for an 

estimation of distances use Hamming metric. The periodic structure of the trellis 
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diagramme essentially simplifies comparison and a choice of paths according to 

decoding rules. The number of a states on a lattice is limited, and two by random 

chosen enough long paths have, as a rule, the common state. Segments of the paths 

entering into such states it is necessary to compare and choose a path with the least 

metric. Such path is called as survived. According to Viterbi algorithm such 

comparison and rejection of segments of path is made periodically, on each step of 

decoding. The simple considering of an example code (7,5) decoding see in manual 

[2,Section3.6.2, pp.124-127. fig.2.12). According to Viterbi algorithm on each 

decoding step in the each of trellis states the same type operations are made: 

1) Addition of metrics of the previous states with metrics of corresponding branches; 

2) Comparison of metrics of entering paths; 

3) Choice of paths with the least metrics which values are used as the metric of the 

states on the subsequent decoding step. If metrics of compared paths are identical, the 

choice of one of two path is made in a random way. 

Realisation complexity of an Viterbi algorithm can be estimated by an amount of 

branches of the code lattice treated by the decoder at length of decoding L, taking into 

account complexity of each step of a lattice (see formula (9.6)). Complexity of 

decoder Viterbi realisation can be estimated under the formula: 

                                     C=m(
v+k)

 L                                                               (10.1) 

  On figгure 10.2 the structure scheme of Viterbi decoder intended for work with the 

demodulator of signals PhМ-4 is shown. 

      

 

 

 

 

 

 

  
     The decoder consists from analog/discrete convertors(A/D C) in channels X and Y, 

the calculator of branch metrics , the processor in which operations of addition, 

comparison and a choice are made, memory device  of a survived paths, and majority 

element in which the path with the greatest metric gets out. The best value of a 

quantization levels depends on the ratio a signal/noise ont he input A/D C . By eight 

quantization levels of the losses minimum  is ensured at the ratio of a signal 

magnitude to the quantization step is equal to (4,5... 5,5). More detailed description of 

assigning and work algorithms of the decoder Viterbi block diagramme elements of 

are reduced in the manual [2, Section 3.8.2]. 
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      10.1. Whether realisation complexity of the Viterrbi algorithm depends on length 

of free distance ? 

  10.2. How will increase complexity of Viterbi decoder by increasing a code 

 costraint length twice? 

    10.3.* By the expense of what Viterbi decoder complexity raises at using of a soft 

decision on a demodulator exit? 

 

Tasks 
 10.1*. Prepare the trellis diagramme of a code (1,5) from Exercise 9.1 which 

necessary for a illustration of Viterbi algorithm. As free distance of this code 

df=3 (according to formula (9.7) the code corrects single errors) trace decoding 

process by Viterbi algorithm if in the channel is a single error and establish the 

fact of its correction by the decoder. 

      10.2*. Prepare the trellisdiagramme of a nonredundancy code (1,0) from the 

Exercise 9.1which necessary for a illustration of the Viterbi algorithm. Try to 

explain by the form the trellis diagramme impossibility of error-correction.  

      

Lecture 11
Noise immunity of convolution codes decoding  

Plan 

      11.1. Decoding error probability of a convolution codes [1, Section 10.12], 

                                                                                                      [2, Section 3.7] 

      11.2. Energy coding gain [2, Section 3.7] 

 

11.1. Decoding error probability of a convolution codes 

 

      The technique of a decoding noise immunity estimation by  the convolution codes 

does not differ from a technique stated in Section 8.1 for a case of block codes. Here 

too the main role is played code rate Rcode, code distance properties (in a case of the 

convolutional codes– the free distance df), and decoding algorithm .By using of a 

decoding algorithm on a probability maximum (Viterbi algorithm) the approximately 

expression for bit error probability looks like: 

                      p k

dk

P
f

∑
∞

=

≈  .                                                                 (11.1) 

    In this formula Pk – error probability of an way choice on a code lattice o which by 

transmission of code symbols through a channel with PhМ-2 with a white noise with 

a power spectral density N0/2 is defined so: 

                           Pk=2Q(
0

b

N

E

code
kR2 ),                                                       (11.2) 

 where Q(z)= dt)
2

t
exp(

2

1

z

2

∫
∞

−
π

– Gaussian Q-function (a probability integral) which 

tables of values contain manuals on probability theory and statistical calculations. For 

practical calculations it is convenient to use enough exact approximation:  
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                                               Q(z) ≈0.65 exp[– 0,44(z+0,75)
2
].                          (11.3) 

  Evaluations under formulas (11.1) and (11.2) show, that in the sum (11.1) by a big 

ratio signal/noise the first member (by k=df) has the greatest value, and remaining 

members of the sum with growth k fast decrease. Therefore in practice are limited to 

use of the simplified formula: 

                              p ≈2Q(
0

b

codef
N

E
Rd2 ),                                                     (11.4) 

    As well as by the block coding, comparison of a decoding noise immunity can be 

made with a noise immunity of coherent receiving of signals with binary phase 

modulation PhМ-2). Thus the calculation formula for bit error probability can be 

received from expression (11.2) having supposed k=1, Rcode=1: 

                                                     pPhМ-2=2Q(
0

b

N

E
2 ),                                           (11.5) 

where 
0

b2

N

E
h = – the ratio of the signal energy expended on transmission of bit Eb to a 

power spectral densityof a noise N0 on an input of the demodulator. 

 

 Exercise 11.1. The analysis of a decoding noise immunity 

 

      Let's make a calculations of a bit error probability on exits of the demodulator of 

signals PМ-2 and Viterbi decoder included after it, using formulas (11.5) and (11.4) 

for next codes : 

1. Code (5,7), Rcode=1/2, df=5, v=2; 

2. Code (133,171), Rcode=1/2, df=10, v=6. 

     The calculation results are given in table 11.1 and presented on figure 11.1. In the 

table given values of argument z are specified function Q (z), used in formulas. 

 

11.2.Energy coding gain 

 

      As well as by an estimation of a decoding noise immunity of the block codes 

(see Lecture 8) in a case of convolution codes use concept of an energy codihg 

gain. 

 

The energy coding gain g is equal to a difference between of values Eb/N0 

necessary to get the given error probability p. by the absence and by the coding 

use. 

      Values of error probability level at which the gain is defined depends from the 

requirements to fidelity of the transmitted digital information. For digital telephony 

systems a demanded level of a bit error probability usually makes p = (10
-5

... 10
-6

). In 

systems of digital TV transmission try to ensure p = (10
-10

... 10
-11

).  

 

Table 11.1– Calculation of a decoding noise immunity  
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Bit error probability on an decoder output  

 

Bit error probability 

on an demodulator 

PhМ-2 output       Code (5,7)      Code (133,171) 

      

     Eb/N0, 

 

        dB 

 z pPМ-2 z pсode z Pcode 

2 1,78     8 10
-2

 2,815 5 10
-3

 3,981 7 10
-5

 

3 1,998     5 10
-2

 3,159 1 10
-3

 4,467 8 10
-6

 

4 2,241    2,5 10
-2

 3,544 4 10
-4

 5,012 5 10
-7

 

5 2,515    1,2 10
-2

 3,976 8 10
-6

 6,31 2 10
-8

 

6 2,822    4,7 10
-3

 4,462 6 10
-7

 7,079 4 10
-10

 

7 3,552    4 10
-4

 5,617 2 10
-8

 7,943 4 10
-15

 

8 3,986    7 10
-5

 6,302 4 10
-10

 8,913 1 10
-18

 

11 5,018   8 10
-6

 7,071 2 10
-12

 10,0 1 10
-28

 

 

       1 

        10-2 

          10-1 

       10-7 

        10-8 

         10-5 

        10-4 

    10-6 

          10-3 

 p 

PМ-2 

 Eб/N0, dB 

Code(5,7) 

g, dB 

   1    2    3    4    5    6    7    8    9    10  11   12  13  14                     

Figure11.1– Decoding noise immunity 

Code(133,171) 
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      The value of coding gain at the given bit error probability p* can be defined 

bycomparing the arguments of function Q (z) in a formulas for error probability 

(11.4) and (1.5) for identical probabilities pcode=pPhМ-2=p*. Calculations show, that 

gain depends from level of error probability p * on which it is defined. It is well 

visible on the curves figure 11.1 representing calculation results from Exercise 11.1. 

Value of a gain with decreasing of a probability p* aspires to the limit which in the 

coding theory name as asymptotic coding gain: 

                                  A-gain=lim g(p*→0).                                                   (11.6) 

 

Comparing arguments in the expressions (11.5) and (11.4) we come to wide used in 

energy calculations of telecommunication systems to expression for A-gain in 

logarithmic units: 

                                              A-gain=10lg(Rcodedf)(dB).                                      (11.7) 

 

  As A-dain is upper bound of a gain g for fast comparison and a choice of codes use 

A-gain. Values of this A-gain often include in the code tables (see tables of 

Attachment А.3). In table 11.1 for an example data about convolution codes with 

various lengths of a code length ν and rate Rcode are cited. Values of a A-gain are 

shown. More detailed data are given in tables (А.3 … А.6) from the Attachment А.3. 

    
T

able 

11.1 –

Charact

erustics 

of a 

convolu

tional 

codes  

 

 

 

 

 

 

 

 

       Comparison of a gain values ensured by the cyclic coding (see table 8.3 and 

figure 8.1) with similar parametres for convolutional codes (see table 11.1 and figure 

11.1) shows, that convolution codes in a combination to Viterbi decoding algorithm 

ensure considerably more gain in comparison with block codes. It explains wide 

using of convolution codes in telecommunication systems for a noise immunity 

Code constraint length 

ν=4 

Code constraint length 

ν=6 
Code rate 

Rcode Code A-gain, dB Code A-gain, dB 

1/3 25,33,37 6,02 133,145,175 6,99 

1/2 31,33 5,44 133,171 6,99 

2/3 31,33,31 5,23 133,171,133 6,02 

3/4 25,37,37,37 4,78 135,163,163,163 6,73 
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increasing. Typical a using of the code (133,171) ensuring A-gain=6,99 dB by the 

rate Rcode=0,5 here is, i.e. at two-multiple expansion of a frequency band of the coded 

signal. The codecs of such code are developed in the form of the big chips are serially 

emitted. 

 

 

 

 

Qestions 
      11.1. How depends the gain from the code constraint length ? 

      11.2. How depends the gain from the code rate ? 

 

Tasks 
.  

      11.1. Using tables of a convolutional codes from the Attachment А.3 construct 

the dependence of a gain from a code rate by the fixed values a constraint 

code length. Explain tendencies of a gun of these dependences. 

      11.2. Using tables of the Attachment А.3 choose a codes, ensuring A-gain> 6dB 

and specify parametres of these codes. 

 

 

Lecture 12 
Increasing of the efficiency 

of a digital telecommunication systems 
 

Plan 

 
     12.1. The theory of efficiency byA. Zjuko. Information, energy and frequency 

                   efficiency of a telecommunication systems [1, Section13] 

    12.2.Limiting efficiency of a telecommunication systems and Shannon bound  

                                                                                                             [1, Section13] 

           12.3. Perspective ways the further increasing efficiency [1] 
 

12.1. The theory of efficiency byA. Zjuko. 

Information, energy and frequency 

effeciency of a telecommunication systems 

 

     Generally the result of work of a telecommunication systems is defined by an 

quantity and quality of the transmitted information. The quantity is estimated by an 

information transmitting rate through a channel Rchan (bit per second), and quality  

 – by the values of an error. According to Shannon theorems, the error with a 

corresponding choice of a transmission method (i.e. modulation/coding) can be made 
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arbitrarily small (see explicitly the materials of the Module 2). At the same time, the 

transmission rate cannot be above some informational resource named a channel 

capacity Cchan. . A.Zjuko has suggested to consider as one of indicators of a system 

effeciency the value of mean rate Rchan at which the given fidelity of an information 

transfering is ensured. Thus the information system effeciency as degree of use of a 

channel capacity of the channel is defined by relative value 
chan

chan

C

R
=η . In real 

conditions the indicator η always is less than unit. The more close η to unit, the more 

absolutely transmitting information system. 

      Reaching necessary for a transmission rate and fidelity is accompanied by certain 

expenditures of other major resources: signal power Ps and a channel frequency band 

Fchan. Such approach has allowed to introduce the indicators: power (
0s

chan

N/P

R
=β ) and 

frequency efficiency (
chan

chan

F

R
=γ ), uses of the mentioned resources characterising 

degree. Here Ps/N0  – the ratio of a signal power to a power spectral density of noise 

on a receiver input). Thus, efficiency indicators by G.Zjuko look like: 

 

– Information efficiency of a system which define the degree of a channel capacity 

using  

chan

chan

C

R
=η ;                                              (12.1) 

– Energy efficiency                                                  
0s

chan

N/P

R
=β ;                         (12.2) 

– Frequency efficiency                                 
chan

chan

F

R
=γ  .                                      (12.3) 

12.2. Limiting efficiency of telecommunication systems and Shannon 

bound 

 

Indicators β and γ make sense a specific rates, and inverse values β′ =1 / β 
and γ′ =1 / γ define specific expenses of corresponding resources on an information 

transfering with an unity rate (1 bit per second). For the Gaussian channel with 

frequrncy band Fchan, the ratio of a signal to noise ρ =Ps/Pn and channel capacity 

)1log(FC
chanchan

+ρ= it is possible to establish, that these efficiency indicators are 

connected by the relation: 

                 
)1log(

β

γ
+

γ
=η и γ ρβ=                                                    (12.4) 

      For ideal system (η =1) limiting equation can be defined. According to the  
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Shannon theorem by the corresponding transmission methods (coding and 

modulation) and receiving (demodulation and decoding),the value η can be as much 

as close to unit. Thus the error can be made as much as small. In this case by a 

condition η =1 it is received limiting equation between β and γ : 

        
12 −

γ
=β

γ
                                                                               (12.5) 

       This formula defines of energy efficiencyfrom the frequency efficiency for the 

ideal system ensuring equality of a information rate to a channel capacity. It is 

convenient to represent this equation  in the form of a curve on a plane β =f (γ) 

(figure 12.1, a curve « Shannon bound»). This curve is limiting and reflects the best 

interchanging between β and γ in the continuous channel (С-Chan.).  

      It is necessary to notice, that frequency efficiency γ varies in limits from 0 to ∞ 

energy efficiency is bounded above by magnitude: 

    443,1
2ln

1

12
limlim

00
max ≈=

−

γ
=β=β

γ→γ→γ

                                               (12.6) 

Differently, energy efficiency of any information transmitting system ina Gauss 

channel can not exceed the magnitude 

                                        443,1max =β                                                                       (12.7) 

    Similar limiting curves can be constructed and for any other channels if in 

formulas (12.2) and (12.3) instead of a rate Rchan to substitute expressions for a 

channel capacity of the corresponding channel. So, in particular, on fig. 12.1 the 

curve for limiting equation β =f (γ) the is discrete-continuous channel (D/C-Chan.) is 

shown. It "is enclosed" in a curve of the continuous channel (C-Chan.) that confirms 

knownresult of an information theory according to which DN channel capacityof 

D/C-Channel always is less a than channel capacity of the continuous Channel(C-

Chan.) which is a basis for construction of corresponding D/C-Channel. In real digital 

systems error probability p always has a final value and informational efficiency is 

less then a limiting value ηmax. In these cases for the fixed error probability p=const it 

is possible to define efficiency ratio β to γ and to construct curves β = f (γ). 
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      In coordinates (β, γ) to each variant of a telecommunication system there will 

corresponds a point on a plane. All these points (curves) should place below a 

limiting curve of «Shannon bound». The place of these curves depends on an aspect 

of signals (modulation), a codes (a coding method) and a method of the elaborating of 

a signals (demodulation/decoding). 

       

 

 About perfection of the digital telecommunication methods judge on a degree of 

placing of real efficiency of to the limiting values. 

 

      Concrete data about the efficiency of various modulation/ encoding methods and 

also their combinations are given in following section. 

 

12.3. Perspective ways of the further increasing efficiency 

 

      Using the various methods of the error-correcting coding considered in these 

Module the designer of telecommunication system owning art of optimisation can 

flexibly change of the efficiency indicators approaching them to the limiting, 

potentially possible values which are established in the previous section.  

     Efficiency of the digital telecommunication systems of transmission can be 

essentially increased by the application of multi-position signals and error-correcting 

codes, and also their combinations. The choice of signals and codes in these cases is 

defining for construction highly effective codems (the codecs matching among 

themselves and modems). Comparison of efficiency of systems with multi-position 

signals and error-correcting codes is convenient for making with using of  

The diagramme β =f (γ), presented on figure 12.1. Thus degree of perfection of a 

modulation/ coding methods and can be estimated, comparing efficiency with 

limiting values. Results of the efficiency analysis are presented on figure 12.2. At the 

same time, comparison various modulation/coding methods is convenient for making 

comparison taking for "reference point" the efficiency of telecommunication system 

with modulation PhМ-4 (without error correcting coding). From among simple 

methods it is the most effective and widely used method of modulation/coding with 

indicators γ = 2, β = −9,6dB, η≈ 0,47.  Conveniently as well that the point 

representing on figure 12.2 values of efficiency PhМ-4 is arranged in a central part of 

the diagramme. If an origin of coordinates to transfer to a point corresponding PhМ-
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4, in a new frame (∆β, ∆γ) on a vertical axis the power gain ∆β in comparison with 

PhМ-4, and on a horizontal axis a gain on a specific rate ∆∆∆∆γγγγ will be counted. Let's 

notice, that all possible modulation/coding methods can be divided into four groups 

corresponding to four quadrants on the diagramme β =f (γ):  

Quadrant III in which are arranged the low efficiency methods having rather PhМ-4 

loss on β and γ. 

 Quadrant II including methods with high energy efficiency, ensuring a gain on β in 

exchange for loss on γ (systems with error-correcting codes) 

 Quadrant IV including modulation methods ensuring a gain on γ in exchange for 

loss on β (systems with multi-position Ph-М and APh-М signals); 

Quadrant I including perspective modulation/coding methods  ensuring a 

simultaneous gain both energy and frequency efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Outcomes of calculations show (figure 12.2, Quadrant I), that application such 

Signal-to -Code structures allows to receive simultaneously a gain both in energy, 

and in frequency efficiency and, anyway, to get a gain on one indicator, not 

Figure 12.2 – Efficiency of multi-position signals and error-correcting codes 
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worsening another. So, system PhM8-CC by the using of a convolution code with 

Rcode=2/3 ensures a energy gain ∆β =2,8 dB without a decreasing of a specific rate γ, 

and system APhM16-CC by Rcode=1/2 and ν =3 a gain on a specific rate ∆γ =2 dB 

without a drop of energy efficiency β. Information efficiency of these systems  

  is η≈ (0,6 … 0,7). The detailed analysis such Signal-to -Code structures is reduced  

in manual [3 Section 9.2 ] . 

       Microelectronic reachings last decade initiated attempts to realise the potentially 

possible efficiency, despite of growth of decoding complexity. In 1993 turbo-codes 

have been offered. Turbo-codes has been in details in a manua[3, Section 11.1] 

described.  Intensive development of mobile telecommunication systems havs led to 

the invention of a time/space coding, in details described in the manual 

 [3, Section 11.2]. 
 

 

 

 

                                                                                                          Attachments 

 

А. PERFORMANCES OF ERROR-CORECTING CODES 
 

А.1. Performances and generator polynomials of cyclic codes  

for channels with opposite signals 

 

      In table А.1 the short table of performances and generator polynomials of binary 

cyclic codes is presented. Generatior polynomials of codes are given in the octal form 

where: 

 

n–word length; Rcode–code rate; 

k– amount of information 

symbols in the word; 

 qcorr.– breavity of corrected  

                 errors. 

 

      Example А.1. Octal representation of generatior polynomials. 

 

      The code with parametres n=7, k=4, qcorr=1 has a polynomial (13) ⇒  (001.011) 
⇒  (1011) ⇒ +x

3
+x+1. 

 

Table А.1 – Performances and generator polynomials of the cyclic codes 

 

n k qcorr     Rcode Generator 

polynomials 

7 

15 

 

 

4 

11 

7 

26 

1 

1 

2 

1 

0,57 

0,73 

0,47 

0,84 

13 

23 

721 

45 
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21 

16 

11 

57 

51 

45 

39 

36 

120 

113 

106 

99 

92 

239 

231 

223 

2 

3 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

2 

3 

4 

0,68 

0,52 

0,35 

0,9 

0,81 

0,71 

0,62 

0,57 

0,95 

0,89 

0,84 

0,78 

0,97 

0,94 

0,91 

0,87 

3551 

107657 

5423325 

103 

12471 

1701317 

166623567 

1033500423 

211 

41567 

11554743 

624730022327 

435 

267543 

156720665 

75626641375 

А.2. Energy coding gain by using of the cyclic codes 

   In table А.2 the values of energy coding gain g (dB) are given for using of cyclic 

codes in channels with PhM-2.  

TableА.2– Energy coding gain g (dB) by using of the cyclic odes 

Code rate Rcode Block 

length, n 0,3 0,4 0,5 0,6 0,7          0,8 

31 1,2 1,6 1,9 2,0 1,9 1,6 

63 2,0 2,4 2,7 2,8 2,7 2,1 

127 2,6 3,1 3,4 3,5 3,3 2,8 

255 3,2 3,6 3,9 4,0 3,8 3,3 

 

А.3. Performances of binary convolution codes 

      In tables (А.3 … А.6) performances of binary convolution codes with maximum 

free Hamming distance and rates (1/8 … 1/2) are given. Generator polynomials 

are given in the octal form. 

Labels: ν– code constraint length; df– free Hamming distance; A-gain– asymptotic 

coding gain (dB) by using code in a channels with Ph-М-2. 

      
 



   72 

 

 

 

 

         Table А.3 – Code rate Rcode=1/8  

 
 C

od
e 

nu
m

be
r 

 
 

 

   ν 

Generator 

polynomials 
 

 

 

     dfm 

 

 

 

    df 

 

 

 

A-gain, 

dB 

1     4 25,27,33,35, 

37,25,33,37 

32 32 6,02 

2     5 45,55,57,65, 

67,73,77,47 

36 36 6,53 

3     6 115,127,131, 

135,157,173, 

175,123 

40 40 6,99 

 

 

 

 

TableА.4– Code rate Rcode=1/4 

C
od

e 

nu
m

be
r 

 

 

 

   ν 

Generator 

polynomials 

 

 

 

dfm 

 

 

 

   df 

 

A-gain, 

dB 

4     2     5,7,7,7 10 10 3,98 

5     3      13,15,15,17 13 13 5,12 

6      4     25,27,33,37 16 16 6,02 

7      5       51,55,73,77 18 18 6,53 

8     5       53,67,71,75 18 18 6,53 

9     6   135,135,147,163 20 20 6,99 

10      7   235,275,313,357 22 22 7,40 

11      8 463,535,733,745 27 27 8,29 
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TableА.5 – Code rate Rcode=1/3 

Code 

number 
 

 

     ν    

Generator 

polynomials 
 

dfm 
 

    df 

 

A-gain, 

dB 

12           

2 

5,7,7 8 8   4,26 

13           

2 

5,6,7 8 7    3,68 

14     3 13,15,17 10 10    5,23 

15      3 11,15,17 10 9    4,77 

16      3 10,15,17 10 8    4,26 

17      4 25,33,37 12 12    6,02 

18      5 47,53,75 13 13     6,37 

19       5 47,55,75 13 13    6,37 

20      5 45,55,75 12 13   6,42 

21       6 133,145,175 15 15   6,99 

22       6 127,155,165 15 13   6,37 

23       7 255,331,367 16 16   7,27 

24       8 557,663,711 18 18    7,78 

 

 

 

 

 

Table А.6 – Code rate Rcode=1/2 

Code 

number 

 

 

 

     v 

Generator 

polynomials 
 

 

 

   dfm 

 

 

 

    df 

 

 

A-gain, 

dB 

25 2 5,7 5 5 3,98 

26 3 15.17 6 6 4,77 

27 3 13,15 6 6 4,77 

28 4 23,35 8 7 5,44 

29 4 31,33 8 7 5,44 

30 4 25,37 8 6 4,77 

31 5 53,75 8 8 6,02 

32 5 61,73 8 8 6,02 

33 5 43,75 8 8 6,02 

34 5 45,73 8 8 6,02 

35 5 71,73 8 8 6,02 

36 6 133,171 10 10 6,99 

37 6 135,163 10 10 6,99 

38 7 247,371 10 11 6,99 

 

 



   74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Methodical instructions and the input data 
for the course work  

 «OPTIMISATION METHODS OF A NOISE IMMUNITY CODING 

FOR TELECOMMUNICATION SYSTEM » 

 

Introduction 

 

     In Lecture 12 are shown, that noise immunity coding is an effective mean for the 

optimisation of telecommunication systems. In practice engineer-desiner should solve 

optimisation problems on the basis of numerical calculations and corresponding 

comparison of a coding methods and a choice of concrete coding methods and 

corresponding to them the codes. The solution of such problem is necessary in basis 

of the course work. 
  

    Input data are set in the table of variants (table B.2): 

1. The digital information is transmitted by a binary code. Kinds of the transmitted 

digital information are: 

          CD– Computer data 

          DT– Digital telephony 

          DTV – Digital TV 
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          DB – Digital sound broadcasting. 

      2. The telecommunication channel is the channel with constant parametres and   

the additive white noise 

       3.Ratio S/N on a demodulator input h
2
0=Eb/N0 

       4.Modulation methods: PhM-2, PhМ-4 

      5.Reception – coherent 

      6. Information source productivity Rsource (bit per second) 

      5. Channel frequency band Fch (kHz) 

      6. Bit error probability less p 

      7. Admissible complexity of a code lattice – no more W. 

It is necessary: 
1. To choose and justify a choice of a error-correcting code for projected system, 

ensuring demanded bit error probability level p under condition of a following 

restrictions: 
1.1.The frequency band of the coded signal Fcode.should not exceeds of a channel 

frequency band Fch (Fcode< Fch) 

1.2. By using of convolution codes the code lattice complexity should be no more 

magnitude W 

 2.To develop and give detailed exposition structural and function schemes of the  

       encoder and the decoder for the chosen code and to justify their parametres 

 3.  3.To analyse of energy and frequency efficiency of a projected telecommunication 

system and to compare them to limiting values of efficiency 

 4. To make a сonclusion on the done work. 
 

Content of a project explanatory note: 

      1. The introduction and input data 

      2. Exposition of the block diagramme of projected telecommunication system 

with instructions about places of inclusion of the error-correcting encoder, 

modulator, demodulator and the decoder with detailed explanations of 

functions fulfilled by them 

      3. Classification the error-correcting codes by structure. The comparative analysis 

of advantages and shortages of noise immunity block and convolution codes. 

An application substantiation in the project of convolution codes. 

      4. Classification and the comparative analysis of decoding algorithms for 

convolution codes. A substantiation of a Viterbi algorithm choice for decoding 

of a convolutional code 

        5. Calculation of a spectrum frequency band occupied with a coded digital signal 

     6. Calculation of values of a spectrum frequency band occupied with the coded 

digital signal Fcode depending from a code rate 

      7. Definition of an admissible code rate R*code by a condition 1.1 (Fcode< Fch) 

      8. Definition of the enumeration of codes with the rates which are not exceeding 

admissible rate R*code which can be used for a task in view solution 
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      9. Choice codes from this enumeration ensuring given bit error probability level by 

the Condition1.1 and restriction satisfying to the requirement on decoder 

complexity (by Condition1.2) 

      10. Checking calculation of a bit error probability for the decoding of the chosen 

code 

      11. Elaborating and exposition of a structural and function schemes of the 

encoder and the decoder chosen code. 

      12. An inference with summarising of the performed work 

      13. The list of the used literature. 

 

 

Methodical instructions 
 

       Calculation of a spectrum frequency band for a signals PhM-2 (PhM-4) should 

be made under recommendations from the Module 1. Using of an error-correcting 

codes with code rate Rrate leads to increasing of a occupied frequency band of the 

coded signal in KF =1/R code time (see Lecture 9). 

      On the other hand, a correcting ability of a code increases with a decreasing of a 

code rate. Therefore the problem of a code parametres optimisation consists in a 

choice of a code with a rate at which the frequency band of the coded signal does not 

exceed the given channel frequency band Fch.. If the demanded channel band for the 

transmission of a coded PhM-M signal with information rate Rsource is equal F(Ph-M), 

and the code rate is chosen equal Rcode the channel frequency band which is necessary 

for transmission a coded Ph-M signal will be equal 

                                        
code

)MPh(

)codePhM(ch
*R

F
F

−

−
= . 

 

 Then from a unequality (
ch)codePhM(сh

FF <
−

) it is received a simple condition for a 

choice of a code rate: 

                                                   Rcode  > R*code                                                    (B.1) 

 

      The told is illustrated by figure B.1. The expanding of a frequency band of a 

coded PhM signal is proportional to factor of a band expansion. By the process of a 

decreasing of a code rate (increasing of KF) the frequency band extends and reaches 

values of a given channel frequency band Fch. On the same figure the line  

A-gain=f(KF )) is shown. Intersection of a curve band with boundary given value 

Fk*defines the admissible factor of a channel frequency band expansion KF=1/Rcode 

and, accordingly, of code rate R*code.  

      The first stage of a choice of a error-correcting code is the choice of a class of 

codes (a class block or convolution codes). Using materials of Lecture s 8 and 11 it is 

recommended to justify with deep arguments for a choice of a convolution codes for 

using in the project. Among decoding algorithms on a latitude of practical application 

the in the lead place occupiesViterbi algorithm. It is recommended to apply Viterbi 
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algorithm in the project. In section of the project with a substantiation of application 

of this algorithm it is necessary to give information about realisation complexity of  

an algorithm. Among the codes selected by criterion of a rate according to the 

formula (B.1) there can be codes with various length of code constraint length (and, 

accordingly, with various decoder complexity). The noise immunity of decoding is 

characterised by A-gain. In code tables of a values A-gain are not reduced at certain 

level of error probability. At the same time, magnitude of A-gain is upper estimation 

of a real gain. Therefore at a choice of a codes it is recommended to use A-gain 

which values are available from the Attachment A. Among the selected candidates of 

codes it is necessary to apply a code ensuring maximum A-gain and meeting 

maximum requirements on a code rate and minimym complexity of the decoder.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Definitive data about error probability on a decoder exit it is necessary to get by 

the calculations the decoding bit error probability for the chosen code from the ratio a 

signal/noise. In case of representation failure to meet requirements it is recommended 

to apply a code with moore value of A-gain. 
 

Example of calculations and code optimisation procedure  
 

Input datas: 

1. Kind of transmitted digital information: 

    CD– Computer data 

2. Ratio S/N h
2

0=4 dB 

3. A modulation method  PhM-4 

4. Reception - coherent 

5. Information source productivity Rsource=64 kbit/s 

6. Channel frequency band Fch=100 kHz 

7. Admissible bit error probability less p=10
-5

; 

Here are arranged 
«сodes-candidates for a choice» 

Figure B.1– Procedure of a code optimisation  

 Factor of a channel frequency band 
increasing KF=1/Rcode 

    1    0 

 Frequency band of the coded PhM 
signal F(PhM) 

    A-gain 

 Given channel frequency band Fch 

 R*code 
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8. Admissible code lattice complexity no more W=150. 
 

1. Calculation of a necessary channel frequency band for transmission with the 

method PhM-4 is made under formula F(PhM-4) = [Rsource(1 + α)]/2, where α– spectrum 

roll- off factor. Being set by value α=0,4, we receive  

                            F (PhM-4) =[Rsource(1 + α)]/2 = [64 (1+0.4)]/2=44,8 kHz. 

2. According to the formula (B.1) it is defined limiting value of code rate 

                    448,0
100

8,44

F

F
R

ch

)MPh(*

)сode(
=== − . 

 3. Under code tables we select the codes, satisfying to the requirement on a rate. 

Data about these codes are shown in таble B.1. 

      From the table it is visible, that for the solving given task can be used codes with 

the rate Rcode=1/2 which ensure enough big A-gain. In the table data the code with 

generator polynomials (133,171) which at rate Rcode=0,5 ensures A-gain =6,99 dB is 

chosen for the project. 

Data of bit error probability calculation is given on figure B 1. It is visible, that the 

using of a such code ensures such performance:by the ratio signal/noise 

h
2
0=4 dB the bit error probability is less than 10

-5
. Comparison with curves for 

uncoded PhM- 4 shows that by p=10
-5

 this code ensures A-gain=6 dB. 
 

 

 

 

 

 

 

 

 

 

                 TableB.1– Performances for a code choice 

Code rate Rcode Generating 

polynomials 

Code 

length    

     v 

Lattice  

complexity 

       W 

A=gain 

      dB 

1/8     25,27,33,35, 

    37,25,33,37 

4 32      6,02 

1/8     115,127,131, 

    135,157,173, 

     175,123 

6 128      6,99 

1/4      25,27,33,37 4 32      6,02 

1/4      463,535,733,745 8 512      8,29 

1/3      47,53,75 5 64      6,42 

1/3      557,663,711 8 512      7,78 

1/2      53,75 5 64      6,02 
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1/2      61,73 5 64      6,02 

1/2      71,73 5 64      6,02 

1/2      133,171 6 128      6,99 

1/2      247,371 7 256      6,99 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TableB.2–Input data for the course work 

 

Variant number for an elaborating of course work should correspond to the number of 

a student surname in the of the academic group journal 
 

Variant 

number 

 

Transmitted 

digital 

information 

. Ratio S/N  

 

 

h
2

0 (dB) 

Modulation 

method 

Source 

productivity  

 

Rsource 

(kbit/s) 

Channel 

frequency 

band F ch 

(kHz) 
 

Bit error 

probability  
p 

 

Lattice 

Complexity 

W 
 

1 CD 4,0 PhM-4 64 80 10
-6

 150 

2 DT 5,0 PhM-4 16 25 10
-4

 160 

3 DB  6,0 PhM-2 256 800 10
-5

 170 

4 CD 6,5 PhM-2 64 200 10
-6

 180 

       1 

        10-2 

          10-1 

       10-7 

        10-8 

         10-5 

        10-4 

    10-6 

          10-3 

 p 
 Eb/N0, dB 

   1    2    3    4    5    6    7    8    9    10  11   12  13  14                     

Figure B.1– Decoding noise immunity of a code(133,171) 
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5 DT 4,0 PhM-4 16 25 10
-4

 250 

6 DB  7,0 PhM-4 128 200 10
-5

 350 

7 DTV 5,0 PhM-2 2400 7000 10
-8

 560 

8 CD 6,0 PhM-4 32 50 10
-6

 200 

9 DT  5,0 PhM-2 24 70 10
-4

 300 

10 DB  4,5 PhM-4 256 400 10
-5

 250 

11 DTV 5,5 PhM-2 3000 1200 10
-8

 550 

12 CD 4,0 PhM-4 48 70 10
-6

 150 

13 DT 4,0 PhM-4 32 50 10
-4

 250 

14 DB  5,0 PhM-2 256 800 10
-5

 300 

15 DTV 4,0 PhM-4 4500 1300 10
-9

 550 

16 CD 7,0 PhM-4 56 90 10
-6

 150 

17 DT 5,0 PhM-2 24 70 10
-4

 160 

18 DB 4,5 PhM-4 256 400 10
-5

 200 

19 DTV 5,5 PhM-4 5000 1400 10
-9

 550 

20 CD  6,0 ФМ-2 64 200 10
-6

 150 

21 DT 7,5 PhM-4 32 400 10
-4

 250 

23 DT  6,5 ФМ-4 16 50 10
-5

 150 

24 CD 6,0 ФМ-4 64 150 10
-6

 150 

25 DT 4,5 PhM-2 16 25 10
-4

 200 

26 DTV 5,0 PhM-2 6000 16000 10
-9

 550 

27 DB 6,0 PhM-4 384 600 10
-5

 250 

28 CD 4,5 PhM-4 56 100 10
-6

 150 

29 DT 5,0 PhM-2 16 50 10
-5

 250 

30 DTV 5,5 PhM-2 5500 32000 10
-9

 560 

31 DT 4,5 PhM-4 64 200 10
-5

 150 

32 CD 5,0 PhM-4 64 300 10
-5

 250 

 
 
 
 

References 

 
      1.Стеклов В.К., Беркман Л.Н. Теорія електричного зв’язку: Підручник для 

ВНЗ. Під редакцією В.К. Стеклова. – К.: Техніка, 2006.–550 с. 

      2.Банкет В.Л.,П.В.Иващенко,А.Э. Геер. Цифровые методы передачи инфор-

мации в спутниковых системах связи:Учебн. пособ. 

           – Одесса:УГАС,1996.–180 с. 

         3.Банкет В.Л.Дискретная математика в задачах теории цифровой связи: 

Учеб.пособие.– Одесса: ОНАС. 2008.–118 с. 

       4.Питерсон У.,Уэлдон Э.Коды, исправляющие ошибки./Пер. с англ.под 

ред.Р.Л. Добрушина.М.:Мир,1976.–594 с. 



   81 

 

 

       5.J.G.Proakis.Digital communications.–2nd ed.McGraw Hill Book 

Company.N.Y.1989 –905 p. 

       6.Скляр Б. Цифровая связь. Теоретические основы и практическое приме-

нение Изд. 2-е: Пер. с англ.–М.: Издательский дом «Вильямс»,2003. 

            – 1104 с. 


