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1 INTRODUCTION 

The branch of science “Theory of telecommunication” studies the common re-
lationships of information transfer on distance. The object of studying is telecommu-
nication system. 

Telecommunication system provides transfer of information on distance by 
electric signals. The problem of information transfer on distance is formulated as: 
there is a source of the information (a person, a computer, etc.), having some infor-
mation that is necessary to transfer to the remote recipient. This information should 
be transferred with the given level of fidelity and with an allowable delay. To discuss 
this problem we shall define the basic concepts: information, message, signal and 
communication channel. 

Information  is a collection of knowledge on any process, events, object. This 
knowledge reduces uncertainty for the recipient before he obtains knowledge. For 
transfer or to store information it is used different signs (or symbols), which allow to 
present it in some form.  

Message is a material form of representation of information. First of all it is a 
set of signs that represent information. Message transfer on a distance is carried out 
by a signal.  

Signal is a physical process in which message is represented and which is used 
to transfer information on distance. Signal can be electric, sound or light. In the tele-
communication theory (by default) signal is an electric current or a voltage that repre-
sented the transferred message.  

Information system is a system, which functions on the basis of information 
usage. Information takes place outside and/or inside considered system. Special case 
of information system is a telecommunication system.  

Telecommunication system provides message transfer with a certain quality 
from a message source to a message recipient. Telecommunication system can pro-
vide one-way message transfer (broadcasting) or two-way message transfer (commu-
nication). In the first case simplex transfer takes place, in the second case duplex 
transfer takes place: full duplex– when a system provides simultaneously reception 
and transfer of messages; half duplex – when a system provides reception and trans-
fer of messages one-by-one.  

The generalized block diagram of telecommunication system for one-way mes-

sage transfer is shown on figure 1. Here a(t) is transmitting message; ( )a t
∧

 is receiv-

ing message; b(t) is transmitting baseband signal; ( )b t
∧

 is receiving baseband signal. 
In the case of duplex transfer it is necessary two sets of the units shown on figure 1.  
 
 
 
 

 
A source of information gives out information by messages. The construction 

of the equipment is mainly defined by characteristics of transferred messages; there-

( )a t
∧

 

( )b t
∧

 

b(t) a(t) Message 
source 

Source  
encoder 

Communication 
channel 

Source  
decoder 

Message 
recipient 

Figure 1 – Generalized block diagram of telecommunication system  
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fore we speak about “message source”, instead of “information source”; in a similar 
way we speak about “message recipient”, instead of “information recipient”.  

All messages are divided into continuous and discrete messages.  
Discrete message consists of sequence of separate signs, which quantity is fi-

nite. These signs form an alphabet of a source. An example of a typical discrete 
message is the text. Transformation of discrete messages to electric signals consists in 
their encoding which is carried out by a source encoder. Encoding of a message is 

carried out on the basis of a code. Code is a rule or a table 
on the basis of which each sign of a message is converted 
into the code combination (a set of binary symbols) (fig-
ure 2). As a result of encoding we receive digital base-
band signal (figure 3, а). Inverse transformation of digi-
tal baseband signals to messages consists in decoding, 
which is carried out in the source decoder (figure 1). The 
basic characteristic of a digital signal is its rate R, bit per 
second (bit is the short name of binary symbols). On fig-
ure 3, a it is shown Тb = 1/R, Тb is bit duration. 

Continuous message represents a change of some 
time continuous magnitude (for example, sound pres-
sure). Transformation of continuous messages to electric 

signals is carried out by different transducers (for example, a microphone). As a re-
sult of transformation we receive a continuous baseband (analog) signal (figure 
3, b). The basic characteristic of a continuous baseband signal is the maximum fre-
quency of its spectrum Fmax that characterizes its speed of change. 
 
 
 
 
 
 
 
 

Communication channel is a set of devices for transfer of electric signals on 
distance.  

If a baseband signal is a digital one then communication channel must be digi-
tal. If a baseband signal is continuous then communication channel must be continu-
ous.  

A continuous baseband signal can be transformed into a digital signal for trans-
fer by a digital communication channel. In that case there will be analogue-digital 
conversion. So, in case of digital transfer of continuous messages a source encoder 
transforms messages into a baseband continuous signal, and then – in a digital signal. 
Digital transfer has a lot of advantages in comparison with analogue transfer. Digi-
talisation of transmission systems takes place during several last decades.  

Transformations discussed above are shown on figure 1. 
A communication channel can be simple or compound.  

Encoding 

А 111001 

B 110001 

C 000110 

. . . . . . . .  

Z 010110 

Decoding 

Figure 2 – Illustration of 
encoding and decoding 

b(t) 

t 

Figure 3 – Baseband signals: а – digital signal; b – continuous signal  

а b 

Тb 2Тb 

b(t) 

A 

0 3Тb 4Тb t 

1 1 1 0 0 



 7

We shall consider construction of compound channel as part of a telecommu-
nication network.  

Network is a set of nodes 
and links which provide informa-
tion exchange between users (users 
are sources and recipients).  

There are user nodes (UN) 
where a terminal equipment is used, 
and switch nodes (SN) where 
switching of channels or packages 
is carried out. On figure 4 the frag-
ment of logic topology of a network is shown. It takes part in transfer of information 
between the considered user nodes. In one UN there is a message source and a source 
encoder, and in other UN – a source decoder and a message recipient. User node is 
called also the terminal equipment. 

Links that form a communication channel are traced by dotted line. 
Links of network are called transmission systems. Transmission system that 

connects user node with the nearest switch node is called access system.  
On figure 5 block diagram of typical digital transmission system is shown.  
The transmission system is constructed on the basis of a transmission line. 

Transmission line is a physical circuit (cable) or a free space (radio communication), 
used for transfer of a signal on distance.  

The baseband digital signal is coded by the error control code allowing at de-
coding to find out or correct errors, arising at transmission.  

The modulator forms a signal, which can be well transferred by transmission 
line.  
 
 
 
 
 
 

Main characteristics of telecommunication system are accuracy of message 
transfer or quality of transfer and transmission rate or quantity of transferred informa-
tion per 1 second. 

In communication channel signal is distorted because of noise action. A noise 
is occasional influence on a signal that makes complicate signal transfer.  

Distortion of digital signals will consist of occurrence of errors – instead of ac-
tually transferred symbols to the recipient other symbols come. Such kind of distor-
tion is quantitatively characterized by probability of a symbol error. Distortion of 
continuous signals will consist of their form changing because of noise covering. Dis-
tortion of continuous signals can be characterized by an average square of difference 
between accepted and transmitted signals or the signal/noise ratio. 

UN 

UN 

SN 
SN 

SN 

Figure 4 – Fragment of network topology:  
SN – switch node;   UN – user node 

( )b t
∧

 b(t) s(t) Channel 
encoder 

Modulator Transmission 
line (channel) 

Demodulator Channel 
decoder 

Figure 5 – Block diagram of a typical digital transmission system  

z(t) bс(t) ( )cb t
∧
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For messages transfer on a telecommunication channel it is necessary to spend 
a band of frequencies and power of a signal (the basic resources of a telecommunica-
tion channel). So, the main tasks of telecommunication theory following:  

– how to provide necessary quality of message transfer on a telecommunica-
tion channel;  

– how to provide necessary transmission rate on a telecommunication channel 
at limited resources of a telecommunication channel.  
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2 ELEMENTS OF GENERAL THEORY OF SIGNALS 

2.1 Classification of signals 

Signal is rather wide concept. Signal is a process of change in time of the 
physical phenomenon or a state of any technical object.  Signals serve for mapping, 
registration and transmission of message.  The common for signals is that in them the 
information is assumed in it. We shall consider, that a signal is an electric voltage or 
a current. 

The most natural mathematical model of a signal is function of time b(t), s(t), 
z(t) and etc.  Such function of time establishes conformity between any moment of 
time t and size s(t). Considering mathematical models of signals, we abstract from the 
concrete physical nature of a signal (a voltage, a current, an intensity of an electro-
magnetic field, etc.), considering, that function s(t) completely reflects the important 
properties of a signal. 

Depending on what values of a signal s and values of a variable t are possible, 
distinguished following: 

1. A signal is continuous (figure 6, а) if a set of values t is continuous, i.e. the 
argument accepts any values on an interval of existence of a signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. A signal is discrete (figure 6, b) if a set of values t is finite.  Discrete signal 
is called also sequence, a time series.  Such signal appears as a result of sampling a 
continuous signal.  The step in time, through which discrete signal is given is called 
sampling interval Ts.  

3. A signal is quantized (figure 6, c) if value s accept final number of values.  
Such signal is a result of discretization on a level of a continuous signal. 

4. A signal is digital (figure 6, d) if it is also discrete, and quantized.  Digital 
signals appear as a result of coding discrete messages, and also as a result of coding 
continuous signals for their representation by digital signals. 

Signals are divided into: 

Figure 6 – Types of signals 

s(t) 

a t Ts 

s(t) 

si–1 

si 
si+1 

ti+1 ti ti-1 t 
b 

d 

si–1 
si 

si+1 

Ts 
ti+1 ti ti–1 

s(t) 

t 

s(t) 

c 
t 



 10 

1. Baseband signal is a representation of the message of not electric nature by 
an electric signal.  

2. Modulated signal is a result of transformation of a baseband telecommunica-
tion signal in a signal for transfer by transmission line.  

All signals are categorized as: 
1. Determined signals – mathematical expression of determined (completely 

known) signal is completely certain function of time set by a formula, a plot or the 
table of values.  For example, s(t) = A0cos(2πf0t + ϕ0), where A0, f0 and ϕ0 are defined 
numbers. All values s(t) are known at any moment. 

2. Stochastic signals – mathematical representation of a stochastic signal is sto-
chastic function of time, its values cannot be precisely predicted beforehand.  Sto-
chastic function of time (stochastic process) is described by statistical characteristics 
that characterize those or other properties of this function on the average.  Stochastic 
processes are more full mathematical models of communication signals, than the de-
termined functions of time.  But many transformations of signals can be studied, us-
ing the determined functions of time.  It can be simple function – harmonious wave-
form, a pulse, etc. 

Any real signal s(t) has final duration Тs.  In many cases it is convenient to 
count, that the signal is infinite on duration and exists on an interval (−∞, ∞). 

Signals are real and complex. It is clear, that a signal is the real function of 
time which represents a state of some object.  Sometimes for convenience of the 
mathematical analysis of signal transformations a complex signal is entered into con-
sideration 

 s(t) = s1(t) + j s2(t),  

where s1(t), s2(t) is the real functions of time; depending on a solved problem s2(t) is 
result of some transformations of function s1(t) or function, not dependent from s1(t). 

Widely used complex exponent is an example 

 ( ) tfjtfets tfj
00

2 2sin2cos0 π+π== π .  

Frequently in devices of signal transformation the auxiliary signals, which are 
not containing the information, are used.  Such signals are auxiliary and refer to as 
waveforms.  

2.2 Energy characteristics of determined signals 

The basic energy characteristics of a signal s(t) are its power and energy. In-
stant power of the real signal is defined as a square of instant value s(t): 

 p(t) = s2(t), V2. (2.1) 

Power of a signal characterizes signal intensity, its ability to influence on de-
vices, which register a signal. 

Average power of a signal of final duration is defined by averaging (2.1) on an 
interval of existence of a signal (0, Ts)  
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 ( )∫=
sT

s
s dtts

T
P

0

21
. (2.2) 

Energy of a signal of final duration is defined as 

 ( )∫==
sT

sss dttsTPE
0

2 . (2.3) 

From the last ratio it is clear, that energy of a signal takes into account both 
signal intensity, and time of its action. 

Power and energy of a complex signal s(t) are defined by ratios (2.1)...(2.3) in 
which instead of s2(t) it is necessary to substitute s(t)·s*(t) = |s(t)|2, where s*(t) is the 
function in a complex conjugate with s(t); |s(t)| is the module of a signal s(t). 

The signal refers to normalized, if its energy 

 Еs = 1. (2.4) 

In addition to function of time s(t), which completely defines a signal, other 
time characteristic – function of correlation of a signal in some cases is used.  For a 
real signal of final duration it is defined  

 ( ) ( ) ( )∫ τ+=τ
sT

s dttstsK
0

, (2.5) 

where τ – time shift which accepts both positive, and negative values. At τ = 0 

 Кs(0) = Еs. (2.6) 

For a periodic signal with period Т which energy indefinitely big, is used the 
following definition 

 ( ) ( ) ( )∫ τ+=τ
T

s dttsts
T

K
0

per
1

. (2.7) 

Function Ks per (τ) is periodic with period Т, and  

 Ks per(0) = Ps. (2.8) 

There are two signals s1(t) and s2(t). Concepts of mutual correlation function is 
introduced for them 

 ( ) ( ) ( )∫ τ+=τ
sT

ss dttstsK
0

2121 , (2.9) 

and scalar product are entered 

 ( ) ( ) ( )∫=
sT

dttstsss
0

2121, , (2.10) 

From last ratio it is clear, that ( ) ( )0, 2121 ssKss = . 
Signals are orthogonal if scalar product of signals is( ) 0, 21 =ss . 
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Let consider definition of energy characteristics for the rectangular video pulse 
(figure 7).  Analytically record of the rectangular video pulse is:  

 ( )




≥<
<≤

=
.,0,0

,0,

s

s

Ttt

TtA
ts  

Average power and energy are defined by ratio (2.1) and (2.3) 

 ∫ ==
sT

ss
s

s TAEdtA
T

P
0

22 ;
1

. 

The correlation function of a signal is defined by a ratio (2.5). Let 0 < τ < Ts. 
Then 

 ( ) ( )




τ−≥<
τ−<≤

=τ+
.,0,0

,0,2

s

s

Ttt

TtA
tsts  

and 

 ( ) ( )∫
−

−==
τ

ττ
sT

ss TAdtAK
0

22 . 

When τ ≥ Ts then Ks (τ) = 0.  In view of parity property of correlation function 
final expression is written as 

 ( ) ( )




≥τ
<ττ−

=τ
.,0

,,2

s

ss
s T

TTA
K  

The graph of correlation function of the rectangular video pulse is shown on 
figure 7. 
 
 
 
 
 
 
 
 

 

2.3 Representation of signals in orthogonal bases 

Among various mathematical methods, which are used while describing elec-
tric circuits and signals, representation of any function as the sum of more simple 
("elementary") functions is the most widely applied. Let s(t) is the determined signal 
of duration Ts. Let present its weighed sum of some basic functions as 

 ∑
∞

=
ψ=

1

)()(
n

nn tats ,    0 ≤ t ≤ Ts, (2.11) 

Figure 7 – Rectangular video pulse s(t) and its correlation function Ks(τ) 
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A 

s(t) 

0 Ts 

A2Ts 

Ks(τ) 
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where an – factors of decomposition,  
ψn(t) – basic functions.  

Basic functions are selected according to those or other reasons, and then factors 
of decomposition calculate. But factors of decomposition are calculated in more simple 
way if basic functions are orthogonal on an interval (0, Тs). Let multiply the left and 
right parts of equality (1) on ψk (t) also we make integration on an interval (0, Тs): 

 ∫∑∫∑∫ ψψ=ϕψ=ψ
∞

=

∞

=

sss T

kn
n

n

T

n
knn

T

k dtttadtttadttts
010 10

)()()()()()( . 

As functions ψn(t) and ψk(t) are orthogonal integrals in the right part are equal 
to zero except for a case n = k – in this case the integral is equal to energy of basic 
functions ψk(t).  Therefore last equality will be written down as 

 
k

s

Eadttts k

T

k ψ=ψ∫
0

)()( . 

Let return to an index n and we shall write down a rule of calculation of de-
composition factors  

 ∫ ψ=
ψ

sT

n
n

n dttts
E

a
0

)()(
1

;   n = 1, 2, 3, ... (2.12) 

If basic functions are orthonormal, so 

 ),,()()(
0

n

T

nn sdtttsa
s

ϕ=ψ= ∫    n = 1, 2, 3, ... (2.13) 

A series (2.11), in which decomposition factors are defined according to the 
formula (2.12), is called as generalized Fourier series.  

While practical using of decomposition (2.11) it is necessary to limit the num-
ber of terms 

 
1

( ) ( )
N

n n
n

s t a t
∧

=

= ψ∑ . (2.14) 

Thus the approximate representation of a signal s(t) is got, which satisfies to 
the certain measure of accuracy 

 2 2

10

[ ( ) ( )]
s

n

T N

s n
n

E s t s t dt E a E
∧

ε ψ
=

= − = −∑∫ . (2.15) 

It is usually considered, that the number N is selected in the way so that to sat-
isfy to the given measure of accuracy, and in writing of decomposition of a signal 
s(t), a sign of exact equality is used 

 ∑
=

ψ=
N

n
nn tats

1

)()( . (2.16) 
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Depending on properties of a signal s(t) different systems of orthogonal func-
tions are used: trigonometrical functions, exponent functions, functions of samples 
and Walsh functions. 

After series expansion of a signal s(t), decomposition factors completely set a 
signal s(t), i.e. according to factors it is possible to recover a signal. Factors of de-
composition also allow to define energy characteristics of signal s(t):  

 ∑∫ ∑
=

ψ
=

=







ψ=

N

n
n

T N

n
nns n

s

EadttaE
1

2

0

2

1

)(  (2.17) 

and scalar product of signals s1(t) and s2(t) 

 ∑∫ ∑∑
=

ψ
==

=







ψ








ψ=

N

n
nn

T N

n
nn

N

n
nn n

s

Eaadttata
1

21
0 1

2
1

1 )()(),( 21 ss , (2.18) 

where an1 and an2 – decomposition factors of signals s1(t) and s2(t) appropriately. 
Definition of decomposition factors can be made with hardware as shown on 

figure 8, a.  This procedure is called the signal analysis. Predicted decomposition fac-
tors completely describe a signal.  Knowing them, it is possible to synthesize a signal 
– to recover it according to decomposition factors (figure 8, b).  The circuits shown 
on figure 8 find application in communication techniques.  In a transmitter the analy-
sis of signals is performed, on a transmission channel the decomposition factors are 
transferred, in the receiver synthesis of a signal is performed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4 Geometrical representation of signals 

While mathematical describing signals are convenient to consider it as vectors 
or points in some space (figure 9).  Let remember, that a 
vector is a segment of a given direction and lengths.  Usu-
ally a vector is set by coordinates of its end. The system of 
coordinates should be set by unit vectors, angles between 

Figure 8 – Circuits of signal analysis (а) and synthesis (b)  
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∫
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∫
sT

0

          ψ1(t)   ψ2(t)  ...     ψN(t) 

Generator of basic functions 

 

 

 

M M 

а 
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Figure 9 – Vector s  in  
N-dimensional space 



 15 

which are equal 90°. So, to a signal s(t) the vector s is put in conformity.  
The basic ratios for N-dimensional linear metric space are: 
– length (norm) of a vectors 

 s = ∑
=

N

n
na

1

2 , (2.19) 

– distance between vectors1s  and 2s  

 ( ) ( )∑
=

−=
N

n
nn aad

1

2
2121,ss , (2.20) 

– scalar product of vectors1s  and 2s  

 ( ) ∑
=

⋅=
N

n
nn aa

1
2121,ss . (2.21) 

Total sum of all functions of time set on an interval (0, Ts) is called a functional 
space.  These functions are considered as vectors in functional space.  Coordinates of 
these vectors are values of functions of time.  It is clear, that N → 0, and ratios (2.19) 
– (2.21) are passing in the following 

– length (norm) of a vectors 

 s

T

Edtts
s

== ∫
0

2 )(s , (2.22) 

it is important to remember, that the length of a vector is equal to a root from energy 
of a signal; 

– distance between vectors1s  and 2s  

 ( ) ( ) ( )( )∫ −=
sT

dttstsd
0

2
2121,ss ; (2.23) 

– scalar product of vectors1s  and 2s  

 ( ) ( ) ( )∫=
sT

dttsts
0

2121,ss . (2.24) 

Let address to decomposition of signals in generalized Fourier series  

 ∑
=

ψ=
N

n
nn tats

1

)()( . (2.25) 

We take into consideration, that basic functions are orthonormal and are nor-
malized.  Let rewrite a ratio in the vector form 

 ∑
=

=
N

n
nna

1

шs . (2.26) 
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Hence, if a signal is decomposed into generalized Fourier series it can be pre-
sented in N-dimensional space. 
 

2.5 Spectral analysis of periodic signals 

In the theory and techniques of communication the trigonometrical basis is the 
most widely applied to the decomposition of signals in series.  Wide application of 
these functions in the theory and techniques of communication is caused by that 
while passing through linear circuits the form of each of them does not change – only 
their levels and phases change (there is a shift in time).  

For a periodic signal Fourier series: 

 ∑
∞

=
π+π+=

1
11

0 )2sin2cos(
2

)(
n

nn tnfbtnfa
a

ts . (2.27) 

where f1 = 1/T,  T is period of a signal s(t);  

 ...,2,1,2sin)(
2

...;,2,1,0,2cos)(
2 2/

2/
1

2/

2/
1 =π==π= ∫∫

−−
ndttnfts

T
bndttnfts

T
a

T

T
n

T

T
n  

If to enter definitions  

 22
nnn baA += , 

n

n
n a

b
arctg−=ϕ , 

that a series (1) will be transformed in: 

 ∑
∞

=
ϕ+π+=

1
1

0 )2cos(
2

)(
n

nn tnfA
a

ts . (2.27a) 

Decomposition of a signal (2.27) and (2.27а) are called Fourier series in a 
trigonometrical form. It is more convenient to use a series (2.27а) as it directly estab-
lishes, what harmonious components a signal will consist of – what values of their 
frequencies nf1, amplitudes Аn and initial phases ϕn. Series (2.27), defines a signal 
spectrum. 

Obvious representation of a spectrum is given by figure 10 which an amplitude 
spectrum is built on – dependence of amplitudes Аn on frequency and a phase spec-
trum – dependence of initial phases ϕn from frequency.  Frequency f1 is called a basic 
frequency of a signal, it is equal to number of the periods of a signal in a second.  
Harmonious fluctuations with frequencies nf1 (n = 2, 3, ...) are called harmonics of a 
signal s(t): 2f1 –second harmonic,  3f1 –third harmonic, etc.  

The amplitude spectrum allows to define bandwidth, as dimension of fre-
quency range where total energy of components equals the certain share of full en-
ergy.  If a considered signal spectrum adjoins to zero frequency its bandwidth is ex-
pressed by number Fmax. Using Fmax, assume that the signal does not contain frequen-
cies upper Fmax. 
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Spectral representation of a periodic signal can be made, using exponential ba-
sic functions 

 tnfj
n et 12)( π=ϕ ,  n = ..., –1, 0, 1, 2, ... 

Thus series is written as  

 ∑
∞

∞−=

π=
n

tnfj
nects 12)( . (2.28) 

Such decomposition of a signal is called Fourier series in a complex form. 
Coefficients of decomposition are defined as: 

 ∫
−

π−=
2/

2/

2 1)(
1 T

T

tnfj
n dtets

T
c , n = ..., −1, 0, 1, 2, ... 

Thus: 

 njnnn
n e

Ab
j

a
c ϕ=−=

222
. 

Feature of Fourier series in a complex form is a compact record of series and 
coefficients of decomposition.  Other feature is using of negative frequencies. 

The spectrum corresponding to series (2.28), refers to two-sided spectrum.  

2.6 Spectral analysis of nonperiodic signals 

Expressions: 

 ∫
∞

∞−

ω−=ω dtetsjS tj)()(   and  ∫
∞

∞−

ω ωω
π

= dejSts tj)(
2

1
)(  (2.29) 

make a pair of direct and inverse Fourier transforms. Function S(jω) refers to as spec-
tral density of a signal.  In general case spectral density S(jω) is a complex function.  
It is determined on an interval (−∞, ∞).  Let present it through a module and argu-
ment )()()( ωϕω=ω jeSjS . 

An 
A1 

A2 

A4 A3 

а0/2 A5 

A6 

f 6f1 5f1 4f1 3f1 2f1 f1 0 

Figure 10 – Amplitude spectrum  
of a periodic signal 

Fmax 
f 

S(f) 

Figure 11 – Amplitude spectrum  
of a nonperiodic signal 

Fmax 
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Function S(ω) refers to as an amplitude spectrum of a signal, and ϕ(ω) – a 
phase spectrum of a signal.  Function S(ω) – even function of frequency. 

Many signals possess even symmetry (it is achieved by a corresponding choice 
of a reference mark of time).  Spectral density of such signals is a real function 

 ∫
∞

ω=ω
0

cos)(2)( dtttsS . 

Because of evenness of function S(ω) inverse Fourier transform is  

 ∫
∞

ωωω
π

=
0

cos)(
1

)( dtSts . 

Last two integrals make a pair of Fourier cosine-transforms. 
Basic difference of spectrum is (figure 10 and 11), that a nonperiodic signal 

has a continuous spectrum, and periodic signal has a discrete spectrum, it contains 
harmonics of frequency f1 = 1/T. 

The apparatus of Fourier transforms is rather effective mathematical means to 
solve many problems of theory and techniques of communication.  Note only some 
properties of Fourier transforms. 

1. Product of two signals (a general case): 

∫∫
∞

∞

∞

∞
νν−ων

π
=νν−ων

π
=ω∗ω=ω

=

-
12

-
2121

21

))(()(
2

1
))(()(

2

1
)()()(

,)()()(

djSjSdjSjSjSjSjS

tststs
 

– multiplication of signals in time domain corresponds to convolution of their spec-
trum. 

2. Convolution of signals 

 

.)()()(

,)()()()()()()(

21

-
12

-
2121

ω⋅ω=ω

ττ−τ=ττ−τ=∗= ∫∫
∞

∞

∞

∞

jSjSjS

dtssdtsstststs
 

3. Calculation of signals energy 

 ∫∫
∞

∞−

∞

∞−
ωω

π
== djSdttsEs

22 |)(|
2

1
|)(|  

– this ratio is called Parseval relation. 
4. Scalar product of signals: 

 .)()(
2

1
),(;)()(),(

-
2121

-
2121 ∫∫

∞

∞

∗
∞

∞
ωωω

π
== djSjSssdttstsss  

Having equated last ratio to zero, we shall receive a condition of orthogonality 
of signals given by spectral density. 
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2.7 Kotelnikov theorem and series  

Kotelnikov theorem states: the signal s(t), not containing frequencies higher 
than Fmax, can be strictly recovered on the samples, taken through an interval 
Ts ≤ 1/(2Fmax), Ts – sampling interval,  fs = 1/Ts – sampling frequency. 

As for any real signal it is possible to specify a highest frequency of a spectrum 
it is possible to suppose, that Kotelnikov theorem can be applied to all real signals.  

It is possible to show, that a spectral density of a discrete signal is periodic 
repetition with the period fs of spectral density of a continuous signal from which the 
discrete signal is received.  It is illustrated by graph: on figure 12, a an amplitude 
spectrum of any continuous signal with the maximal frequency Fmax of a spectrum is 
shown; on figure 12, b its periodic repetition is shown (figure is constructed for a 
case Ts < 1/(2Fmax) or fs > 2Fmax.  From figure 12, b it is understand, that at fs ≥ 2Fmax 
on a discrete signal (samples) with LPF it is possible to recover an initial continuous 
signal (by dotted line it is shown AR of the recovering filter). At fs < 2Fmax there is an 
imposing periodic repetitions of a spectrum, and to recover without an error a con-
tinuous signal it is impossible. Thus Kotelnikov theorem is proved. 

In time domain connection between a continuous and discrete signal is de-
scribed by Kotelnikov series  

 ∑
∞

∞−= −π
−π=

n
s nTtF

nTtF
nTsts

)(2

)(2sin
)()(

smax

smax . 

Values s(nTs) are coefficients of decomposition of a signal s(t) on known sys-
tem of orthogonal basic functions known from mathematics  

 
)(2

)(2sin
)(

s

s

nTtF

nTtF
tn −π

−π=ϕ , n = ..., −1, 0, 1, 2, ... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

а 

Figure 12 – а– spectrum of a continuous signal;  
b – spectrum of a discrete signal and AR of a recovering filter 

S(f) 

–Fmax Fmax 0 2fs –2fs –fs f fs 

b 

S(f) 

 f –Fmax Fmax 

AR 
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The graphic illustration of Kotelnikov series is given on figure 13 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.8 Representation of bandpass signals 

A signal refers to bandpass if its spectrum does not adjoin to zero frequency.  
Their spectra are concentrated in a frequency band from fmin to fmax, and fmin > 0 (fig-
ure 14).  To describe bandpass signals such parameters are presented: a middle fre-
quency of a spectrum f0 = 0,5(fmin + fmax) and bandwidth of a spectrum ∆F = fmax –
 fmin.  As a rule, for bandpass signals the relation ∆F << f0 is carried out, and then they 
are refered to narrow-band signals.  Narrow-band signals look like quasi-harmonic 
oscillations with middle frequency  f0 (figure 15) in time domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

Figure 14 – Spectrum of low-frequency (а) and bandpass (b) signals 

S(f) 

f 
b 

S(f) 

          –f0                          0              fmin      f0     fmax  f 

∆F 

t 

A(t) 

Figure 15 – Time diagram of a bandpass signal 

Figure 13 – Signal s(t) and five components of Kotelnikov series 

 

s(t) 

t 

nTs (n+1)Ts (n–2)Ts (n+2)Ts (n–1)Ts 
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Any bandpass signal can be presented by following mathematical expression: 

 ( ) ( ) ( )[ ],cos ttAts ψ=  (2.30) 

where ( )tA  – an envelope of a bandpass signal;  
 ( )tψ  – a full phase of a bandpass signal. 

An envelope of a bandpass signal is positively certain function, i.e. ( ) 0≥tA , 
not being crossed with a signal, it has with it common points at moments, when in-
stant value of a signal is maximal.  A full phase of a bandpass signal will consist of 
three components: 

 ( ) ( ) ,00 ϕ+ϕ+ω=ψ ttt  (2.31) 

where ( )tϕ  – increment of a phase;  
 0ϕ  – initial phase.  

An increment of a phase causes changing of instant frequency of a signal.  By 
definition frequency of a signal is a speed of its phase changing, i.e.: 

 ( ) ( ) ( )
.0 t

t

t

t
t

∂
ϕ∂+ω=

∂
ψ∂=ω  (2.32) 

The integral of instant frequency gives a full phase of a signal: 

 ( ) ( ) .0
0

ϕ+ω=ψ ∫
t

dttt  (2.33) 

It is widely used quadrature representation of bandpass signals 

 

( ) ( ) ( )[ ]
( ) ( )[ ] [ ] ( ) ( )[ ] [ ]

( ) [ ] ( ) [ ],sincos

sinsincoscos

cos

00

0000

00

ttQttI

tttAtttA

tttAts

ω−ω=
=ωϕ+ϕ−ωϕ+ϕ=

=ϕ+ϕ+ω=
 (2.34) 

where ( ) ( ) ( )[ ]0cos ϕ+ϕ= ttAtI  – inphase or cosine component; 
 ( ) ( ) ( )[ ]0sin ϕ+ϕ= ttAtQ  – quadrature or sinus component. 

If quadrature components ( )tI  and ( )tQ  are known, then it is possible to find 
an envelope and full phase of a bandpass signal: 

 ( ) ( ) ( );22 tQtItA +=  

 ( ) ( )
( ) .arctg0 






+ω=ψ
tI

tQ
tt  

One more form of representation of bandpass signals is the complex form ( )ts& : 

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ].cosReRe ttAetAtsts tj ψ=== ψ
&  

While analysing of bandpass signals in the complex form a concept of complex 
envelope of a signal is entered: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ,00000 tjtjtjttjtj etAeetAetAetAts ωϕ+ϕωϕ+ϕ+ωψ ==== &&  (2.35) 
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( ) ( ) ( )txjtхtx ~+=



&  

Figure 16 – Production of analytical signal 

Hilbert Converter 
( )tx~  

where ( )tA&  – complex envelope of a bandpass signal.  
Complex envelope has the following form: 

 ( ) ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ).sincos 00
0 tjQtIttjAttAetAtA tj +=ϕ+ϕ+ϕ+ϕ== ϕ+ϕ&   

2.9 Analytical signal  

Complex signal ( ) ( ) ( )txjtхtх ~+=&  refers to an analytical one, if ( )tx~  is Hilbert 
transform from x(t). On figures a complex signal is represented as two circuits, as it is 
shown on figure 16. 
 
 
 
 
 
 
 
 

Hilbert converter is a linear circuit with the impulse response  

 ( ) ∞<<∞−
π

= t
t

tg ,
1

. 

Let take advantage of Duhamel integral 

 τ
τ−

τ
π

= ∫
∞

∞−
d

t

x
tх

)(1
)(~ . 

This relation refers to Hilbert transform of a signal x(t). Let we find transfer 
function of Hilbert converter like Fourier transformation from impulse response  

 ( ) ( )




<ω
>ω−

=
ππ

==ω ∫∫
∞

∞−

ω−
ω−

∞

∞−
.0at

,0at1
j

j
dt

t

e
dtetgjH

tj
tj . (2.36) 

or 

 ( ) ( ).sign ω−=ω jjH  

Let Sx(jω) is a spectral density of a signal x(t). Then spectral density of a signal 
( )tх~  is defined as  

 ( ) ( )
( )




<ωω
>ωω−

=ω
.0at

,0at
~

jSj

jSj
jS

x

x
x  (2.37) 

Let we find spectral density of an analytical signal 

 ( ) ( ) ( ) ( )




<ω
>ωω

=ω+ω=ω
.0at0

,0at2
~

jS
jjSjSjS x

xxx&  (2.38) 

x(t) 

x(t) 
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We have revealed the important property of an analytical signal – its spectrum 
on negative frequencies is equal to zero (figure 17). 
 
 
 
 
 
 
 
 
 
 
 

Inverse Hilbert transform is 

 ( ) ( ) τ
τ−

τ
π

−= ∫
∞

∞−
d

t

x
tx

~1
.  

The module of an analytical signal 

 ( ) ( ) ( )txtxtA 22 ~+=   

is an envelope of a signal x(t), and an argument 

 ( ) ( )
( )tx

tx
t

~
arctg=ϕ   

is a phase of a signal x(t). 
From last expressions follows that the analytical signal can be written down as: 

 ( ) ( ) ( )tjetAtx ϕ=&  (2.39) 

Thus, concepts of an envelope and a phase of a signal can be applied not only 
to bandpass signal, but also to baseband signals.  An envelope satisfies two condi-
tions: A(t) ≥ x(t) – function A(t) does not cross function x(t) anywhere and in 
points of contact of functions A(t) and x(t) their derivatives are equal: A′(t) = x′(t), 
that is functions have the common tangents. 

2.10 Sampling of bandpass signals  

Representation of bandpass signals by discrete signals is necessary, when 
transformation of signals (a filtration, detecting, etc.) is carried out by digital signal 
processors.  In case of bandpass signals, and especially narrow-band signals, a sam-
pling frequency can be essentially less 2fmax. 

The spectral density of a discrete signal writes down: 

 Ss(j2πf) = fs ∑
∞

∞−=
−π

n

nffjS ))(2( s ,       – ∞ < f < ∞,  (2.40) 

where S(j2πf) is spectral density of a continuous signal s(t). 

b 

Figure 17 – Spectral density: a – a signal x(t);  
b – an analytical signal corresponding to it ( )ωjSx&  

Sx(jω) 
Sx(0) 

0 ω 

a 

2Sx(0) 

ω 0 

( )ωjSx&  
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From this expression comes next: the spectrum of a discrete signal is an infi-
nite sum of periodic repetition of a spectrum S(j2πf) of a continuous signal s(t) with 
the period fs, and scale multiplier fs. 

On figure 18, a the amplitude spectrum of any form S(f) of bandpass signal is 
shown.  It is concentrated on an interval (fmin, fmax).  On figure 18, b the amplitude 
spectrum of a discrete signal which can take place at sampling of a signal with a 
spectrum shown on figure 18, a is represented. 

Components of a discrete signal spectrum, which are caused by periodic repeti-
tion of frequency bands (fmin, fmax) and (–fmax, –fmin) are designated with "filling" dif-
ferent density for descriptive reasons. For impossibility of spectrum components with 
different n aliasing, a choice of value fs is made on the basis of inequalities 

 ....,,2,1,0,
2

1

2
max

min
s

max kk
k

f
f

k

f =≤≤
+

 (2.41) 

In a case, when k = 0, a sampling frequency fs ≥ 2fmax, i.e. this condition of a 
sampling frequency choice for baseband signals, which satisfies Kotelnikov theorem. 
When k > 0, then representation of a bandpass signal by a discrete signal becomes 
more economical (smaller number of samples). The most economical representation 
of a signal will be, when k = kmax. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A bandpass filter carries out recovering of a continuous bandpass signal on 
samples.  Its lower cutoff frequency fl сut is no more than fmin, and upper cutoff fre-
quency fu сut is not less than fmax.  
 

 b 

 Ss(f) 

–fmax –fmin 

0  f 

–fmin+kfд    fmin   fmax  –fmax+(k+1)fs 

           

fs fs 

 a 

∆F 
S(f) 

–fmax –fmin 

0  f 

 fmin   fmax 

  

Figure 18 – Spectrum of continuous bandpass signal and discrete signal  
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3 DESCRIPTION OF RANDOM PROCESSES 

3.1 Classification of random processes 

Random (stochastic) process is random function of time. Main feature of ran-
dom process is that its values cannot be precisely predicted beforehand.  Random 
function of time is described by statistical characteristics that characterize those or 
other properties of this function on the average.  

Random processes are more full mathematical models of communication sig-
nals, than the determined functions of time.  Many tasks of the theory and techniques 
of communication can be solved only at the description of signals and noise by ran-
dom functions. For example, the voltage of a noise on an output of a transmission line 
or on an output of a microphone is random function of time. 

Let designate considered random process as X(t).  Separate supervisions of 
process give different functions x(t) – different realizations of random process.  Set 
all possible realizations of the given random process {xk(t)} is called ensemble (fig-
ure 19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19 – Ensemble of realizations 
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The description of random process gives possibility to define some average 
characteristics of ensemble {xk(t)} as a whole. Such characteristics refer to statistical.  

Random process refers to stationary if its statistical characteristics do not 
change with time.  

Stationary random process refers to ergodic if its statistical characteristics are 
found by averaging on ensemble, coincide with the characteristics found by averag-
ing  one realization in time. 

Let consider further, if it is not stipulated another, that considered random 
process is stationary and ergodic. 

3.2 Probabilistic characteristics of random processes 

Probabilistic characteristics are probability distribution function and probabil-
ity density function.  Probabilistic characteristics are the most used among statistical 
characteristics of random processes. 

By definition, the value of probability distribution function F(x) is equal to the 
probability of that in the arbitrary time moment process X(t) will take on the value 
that does not exceed x: 

 F(x) = P{ X(t) ≤ x}. (3.1) 

By definition, the value of probability density function p(x) is equal to the limit 
of ratio of probability of that in the arbitrary time moment process X(t) will take on 
the value on interval (x - ∆x/2, x + ∆x/2) to the interval length ∆x when ∆x → 0:  

 
{ }

x

xxtXxxP
xp

x ∆
∆+≤<∆−=

→∆

2/)(2/
lim)(

0
. (3.2) 

The properties of F(x) and p(x) functions shown on the table 1 are easy to 
prove using their definitional formulas (3.1) and (3.2). 

Table 1 – The properties of the functions F(x) and p(x) 
 р(x) F(x) 
1 { } dxxpdxxtXxP )()( =+≤<  { }xtXPxF ≤= )()(  

2 { } ∫=≤<
2

1

)()( 21

x

x

dxxpxtXxP  { } )()()( 1221 xFxFxtXxP −=≤<  

3 ∫
∞

∞−
= 1)( dxxp  0)(     ;1)( =−∞=∞ FF  

4 0)( ≥xp  1212       when  )()( xxxFxF >≥  

5 
dx

xdF
xp

)(
)( =  ∫

∞−
=

x

dxxpxF )()(  

 
The considered functions (3.1) and (3.2) are one-dimensional distributions of 

probabilities. They characterize process only during one moment of time.  Two-
dimensional distribution function and two-dimensional probability density function 
characterize process during two moments of time t and t +τ. 
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The two-dimensional probability distribution function of process X(t) is de-
fined as  

 })(;)({),,( 21212 xtXxtXPxxF ≤τ+≤=τ . (3.3) 

The two-dimensional probability density function of process X(t) is defined as 

 
21

212
2

212

),,(
),,(

xx

xxF
xxp

∂∂
τ∂=τ . (3.4) 

For n = 3, 4, ... moments of time by analogy with (3.3) and (3.4), n-
dimensional distributions of probability can be found. The more value n, the more 
full random process is described. But consideration of n-dimensional distributions 
demands complex process of realizations xk(t). Knowledge of one-dimensional and 
two-dimensional distributions of probabilities is used for solving of many problems. 

3.3 Numerical characteristics of processes 

Many problems can be solved, using more "rough" characteristics of processes, 
than using of probability distributions. 

Average value (or expectation) )(tX  of process is equal to value around of 
which process accepts the values. Knowing probability density of process, we can 
define 

 ∫
∞

∞−
= dxxxptX )()( . (3.5) 

Average value on time is designated by wavy line above dependence, which is 
averaged on time. So, average in time value of process X(t) is defined by averaging 
on time of realization x(t)  
 

  (3.6) 

 
 
Average power of process is average value of a square of process 

 ∫
∞

∞−
== dxxpxtXPX )()( 22 . (3.7) 

or 

 ∫
−∞→

=
2

2

2 )(
1

lim
T

T
T

X dttx
T

P . (3.8) 

Average value of a square of deviations from average value is a dispersion of 
process 

 ∫
∞

∞−
−=−= dxxptXxtXtXtXD )(])([])()([)}({ 22 . (3.9) 
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−∞→
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T
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dttx
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or 

 ( ){ } ( ) ( )[ ]∫
−∞→

−=
2

2

21
lim

T

T
T

dttXtx
T

tXD  (3.10) 

Positive root from dispersion is 

 ( ){ }tXDX =σ  (3.11) 

It is called a root-mean-square deviation of a process. 

3.4 Correlation function of random process 

Dependence between values X(t) and X(t + τ) (τ – any shift in time) is statisti-
cally estimated by correlation function (CF) of process X(t).  CF is calculated as aver-
age value of product 

 ∫ ∫
∞

∞−

∞

∞−
τ=τ+=τ 2121221 ),,()()()( dxdxxxpxxtXtXK X . (3.12) 

or 

 ∫
−∞→

τ+=τ
2/

2/

)()(
1

lim)(
T

T
T

X dttxtx
T

K . (3.13) 

CF properties of stationary process: 
1. If in the expression (3.13) put τ = 0 it passes to expression (3.8), therefore 

 XX PK =)0( . (3.14) 

2. As correlation function of stationary process does not depend on time t, av-
erage value of product is )()()()( tXtXtXtX τ−=τ+ , therefore 

 )()( τ=τ− XX KK   (3.15) 

correlation function of random process is even. 
3. Let consider an average square of a difference of process values which will 

be distant in time τ 

 
).(2)0(2

)()()(2)()]()([)( 2222

τ−=
=τ++τ+−=τ+−=τε

XX KK

tXtXtXtXtXtX
 (3.16) 

Average square is always non-negative. Therefore 

 )()0( τ≥ XX KK   (3.17) 

value of correlation function of any random process at argument τ = 0 maximal. 
4. Let answer a question: what are the difference in process values, which are 

distant on τ? The answer is in the ratio (3.21): 

 )]()0([2)(2 τ−=τε XX KK   (3.18) 
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the more difference between KX(τ) and KX(0), the more average difference between 
values of process, which are distant on τ.  Thus, correlation function of random proc-
ess KX(τ) characterizes a degree of statistical dependence between values of process, 
which are distant on τ.  

It is obvious, that with growth τ, statistical dependence between values X(t) 
and X(t + τ) decreases and at rather big τ dependence disappears. At τ → ∞ 
function KX(τ) tends to zero, decreasing monotonously or oscillating around of zero, 
as shown on figure 20, a. 
 
 
 
 
 
 
 
 
 
 
 

5. Definition of statistical dependence is convenient for carrying out the nor-
malized correlation function 

 )0()()( XXX KKR τ=τ . (3.19) 

From ratio (3.19) it follows, that −1 ≤ RX(τ) ≤ 1. The closer value RX(τ) to 1, the more 
strong correlated values of process, which are distant on τ.  

For the rough description of correlation dependence it is introduced the con-
cept of correlation interval (time) of process τc: values of process, which are distant 
on τ ≤ τc are essentially correlated among themselves, and values of process, which 
are distant on τ > τc are uncorrelated. Correlation interval is defined differently. One 
of the ways is the way, as duration of a pulse is estimated. So, it is possible to agree, 
that 

 ττ=τ ∫
∞

dRX
0

к )( . (3.20) 

Here τc is equaled to the basis of a rectangular with height RX(0) = 1, having the same 
area, as the area under a curve RX(τ) at τ > 0 and an axis absciss. It is possible to 
define time of correlation τc as duration of function RX(τ) at τ> 0 at a level, for ex-
ample, 0,1. 

Function of mutual correlation for the characteristic of dependence between 
values of two random processes X(t) and Y(t), which are distant on τ, is  defined in 
the similar way as correlation function of process 

Figure 20 – Correlation functions of random processes:  

а – at )(tX  = 0; b –  at )(tX  ≠ 0 

KX(τ) 

 0  a  τ 
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 0  b  τ 

2
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 ∫ ∫
∞

∞−

∞

∞−
τ=τ+=τ dxdyyxxyptYtXK XY ),,()()()( 2 , (3.21) 

where ),,(2 τyxp  – joint probability density of values of stationary processes X(t) and 

Y(t), which are distant on τ, or 

 ∫
−∞→

τ+=τ
2

2

)()(
1

lim)(
T

T
T

XY dttytx
T

K . (3.22) 

3.5 Power spectral density function of stationary random process 

Let find Fourier transformation from realization of process xk(t), i.e. its spectral 
density 
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But it will be the spectral characteristic only of realization xk(t), instead of 
process as a whole. It is possible to show, that 
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where the direct line means averaging on ensemble of realizations. As correlation 
function characterizes process as a whole, the left part in (3.24) is also the spectral 
characteristic of all process. It is designated as 
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Function Sk(jω)2 characterizes distribution of energy of process on fre-
quency. As a result of division of this function on T we shall receive distribution of 
power of process on frequency. 

The expression (3.24) can be rewritten as direct and inverse Fourier transfor-
mations  
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On the basis (3.26) it is possible to write down 
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But KX(0) = PX. It follows from (3.27), that function GX(ω) really characterizes 
distribution of power of process on frequency on an interval (−∞, ∞), and value of 
function GX(ω) or GX(f) is equal power of process in bands in 1 Hz near of frequen-
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cies +f  and −f. Therefore function GX(ω) refers to as power spectral density function 
of process. Thus, the power spectral density function and correlation function of sta-
tionary random process are connected by Fourier transformations. This statement is 
known as Khinchin-Wiener's theorem. Dimension of function GX(ω) is V2/Hz or 
Watt/Hz, coincides with dimension of energy and, probably, therefore sometimes 
function GX(ω) is called energy spectrum of process. 

As functions KX(τ) and GX(ω) are even instead of pair transformations (3.26) it 
is possible to write down a pair of Fourier cosine-transformations which are, as a 
rule, more simple in calculations, than ratio (3.26) 
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Knowing function GX(ω), it is possible to define width of a spectrum of proc-
ess from some condition, for example, length of area of positive frequencies, outside 
of which value of function is not exceeded with values 0,1max{GX(ω)}. If the spec-
trum adjoins to zero bandwidth of a spectrum is defined as Fmax (figure 21, а), and if 
a spectrum is bandpass, bandwidth of a spectrum is defined as ∆F (figure 21, b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As functions GX(ω) and KX(τ) are connected by Fourier transformation accord-
ing to property of change of scale, than the less correlation interval, the more wide a 
spectrum of process and on the contrary. In other words, the correlation interval and 
bandwidth of process are inversely proportional values.  

3.6 Gaussian random process 

Most frequently in the theory and techniques of communication meets so-
called gaussian (or normal) random process.  Random stationary process X(t) refers to 
gaussian process if its one-dimensional and two-dimensional probability density 
functions are described by the following expressions 

Figure 21 – Definition of bandwidth of process: а – the spectrum adjoins  
to zero frequency; b –  bandpass spectrum 
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where σ2 – dispersion of process X(t); 
а – average value of process X(t); 
RХ(τ) – value of the normalized correlation function of process X(t). 
To define two-dimensional probability density of normal random stationary 

process, it is enough to know only its correlation function.  Thus, normal stationary 
processes can differ one from another with kind of correlation function and power 
spectral density. 

The one-dimensional probability distribution function of normal process is de-
scribed  
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– Q-function or addition to probability distribution function. Graphs of functions 
(3.29) and (3.31) are shown on figure 22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Gaussian bandpass process is convenient to present through quadrature com-
ponents 

 )()(sin)(cos)())(cos()()( 000 tXtXttAttAtttAtX scsc +=ω+ω=Φ+ω= , (3.33) 

where Xc(t) and Xs(t) are quadrature components of process ; 
ω0 – some frequency belonging to a band of process X(t). 
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Figure 22 – Gaussian distribution:  
a – probability distribution function; b– probability density function 
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Quadrature components are uncorrelated processes having gaussian probability 
distribution. Their dispersions are identical and equal to half of dispersion of process 
X(t). 

Envelope A(t) and phase Φ(t) are also uncorrelated processes. Envelope A(t) 
has Reyleigh probability distribution (figure 23, а)  

In expressions (3.34) σ2 is the dispersion of process X(t). Average value of 

process σπ=
2

)(tA , dispersion 2)
2

2()]([ σπ−=tAD , average power PA = 2σ2.  
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The phase Φ(t) has uniform probability distribution on interval (0, 2π) (figure 
23, b) 
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3.7 White noise  

Random process refers to as white noise, if power spectral density function is a 
constant 

 ( ) ∞<ω<∞−=ω ,
2

0N
G ,  (3.36) 

where N0 is a power of process in a band equals 1 Hz. 
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Figure 23 – Reyleigh distribution: 
a – probability distribution function; b– probability density function 
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Линейная цепь  
X(t) Y(t) 

Linear circuit 
X (t) Y (t) 

Graphic dependences shown on figure 24 correspond to expression (3.36). 
The correlation function of a white noise is defined as inverse Fourier trans-

form from (3.36) 
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On figure 25 the graph of correlation function of white noise is represented. 

 
 
 
 
 
 
 
 
 
 
 

3.8 Transformation of random processes by linear electric circuits 

While studying of passage of random processes through linear circuits it is 
considered, that statistical characteristics of input random process X(t) are known; 

transfer function of a linear circuit H(jω) is known 
also. It is necessary to find characteristics of output  
process Y(t). 

 
Power spectral density function (PSDF) of process on output of a linear circuit 

is connected with PSDF of input process through square AR of a circuit 

 GY(ω) = GX(ω)H 2(ω). (3.38) 

In particular, if input process is white noise, then PSDF of output process re-
peats square AR of a linear circuit.  

Correlation function (CF) of process on output of a linear circuit is defined as 
Fourier transform from PSDF of process 
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Let X(t) is white noise with one-sided PSDF GX(f) = N0,   0 ≤ f < ∞, it acts on 
an input of ideal LPF with AR 
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where Fcut – cut off frequency of LPF. Then PSDF of process Y(t): 
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Figure 24 – Power spectral density function of white noise:  
a – two-sided spectrum; b– one-sided spectrum 
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 GY(f) = GX(f)⋅H2(f) = 

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 (3.41) 

PSDF of process Y(t) is shown on figure 26, a. 
Average power of process Y(t) is: 
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Correlation function of process Y(t) is: 
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On figure 26, b the normalized correlation function RY(τ) = KY(τ)/KY(0) is 
shown. Correlation interval of process Y(t)  τc = 1/(2Fсut). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The concept noise band of a linear circuit is entered. Noise band of a circuit is 

equal to integral from a square normalized АR of circuit  

 Fn = df
H

fH
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2
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2 )(
, (3.44) 

where Hmax is the maximal value of АR.  
An ideal LPF has noise band Fn = Fсut.  Noise band of a circuit allows easy to 

define power of process on an output of a circuit if on an input of a circuit white 
noise with one-sided PSDF N0 acts:  

 PY = N0⋅Fn⋅ 2
maxH   (3.45) 

Consider probability distribution of process on output of a linear circuit. If on 
an input of a linear circuit Gaussian process acts, then output process will be also 
Gaussian – a type of distribution is not changed, only its parameters are changed.  If 
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Figure 26 – Characteristics of process Y(t) at a filtering with ideal LPF: 
 a – PSDF; b – CF  
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on an input of a circuit process is not gaussian, then the distribution kind is changed, 
and output process has probability distribution closer to gaussian, then distribution of 
input process. 

The filtering is narrow-band if bandwidth of circuit is much less than width of 
a spectrum of input process.  At a narrow-band filtering the phenomenon of normali-
zation of process takes place, which consists in the following – irrespective of a kind 
of distribution of input process, probability distribution of process on an output of a 
circuit is Gaussian. 

3.9 Transformation of random processes by non-linear electric circuits  

While researching of random processes passing through non-linear inertial cir-
cuit it is considered, that statistical characteristics of input process X(t) and depend-
ence у=f(x) between instant values of input and output processes are known. It is nec-
essary to find characteristics of output process Y(t). 

The most widespread function f(x) 
for the description of non-linear transfor-
mations is the polynomial of degree n 

 f(x) = a0 + a1x + a2 x
2 + ... + an x

n, (3.46) 

where a0, a1, a2,..., an  are coefficients of  polynomial.  
Factors and degree of a polynomial are defined as a result of approximation of 

the characteristic of a real electric circuit or proceeding from some assumptions. 
There are other dependences also used, except polynomial dependence (3.46). 

Each of composed functions (3.46) brings the contribution to formation of val-
ues of reaction of a non-linear circuit on input action.  So, a0 describes occurrence of 
a constant component at х = 0; a1x  is linear composed element which provides pro-
portional mapping of values х in y; a2x

2  is square-law composed element, a3x
3 is cu-

bic composed, that are provided by the contributions proportional to х2, х3, etc. 
The elementary action is a harmonious fluctuation x(t) = A1cos2πf1t. In this 

case 

 у(t) = a0 + a1A1cos2πf1t + a2A1
2cos22πf1t + ... + an A1

ncosn2πf1t. (3.47) 

If to take advantage of formulas of multiple arguments we shall receive 

 y(t) = Y0 + Y1cos 2πf1t + Y2cos2π2f1t + ... + Yncos2πnf1t, (3.48) 

where Y0 is constant component of response; 
Y1, Y2, ..., Yn are amplitudes of the first, the second..., n-th harmonics of action. 
Thus, response to harmonious action contains a constant component and har-

monics of frequency of action – it essentially distinguishes non-linear circuits from 
linear in which new components do not arise. 

In the case of biharmonic action 

 x(t) = A1cos2πf1t + A2cos2πf2t. (3.49) 

The approach to definition of response is the same, as well as used above, ex-
pression for x(t) is substituted in a polynomial (3.46). While raising the sum (3.49) to 
such power as square, a cube, etc., degrees of cosine frequencies f1 and f2 will appear, 

Non-linear circuit  у = f(x) 
X(t) Y(t) 
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that after transformations it gives expression of such kind (3.48) for fluctuations of 
frequencies f1 and f2.  But products of cosines and their degrees are also appeared. 
Product of cosines gives components of summing and differential frequencies. 

Components of combinational frequencies generally will take place  

 fcomb =pf1 ± qf2, (3.50) 

where p, q are integers 0, 1, 2, ..., but such, that p + q ≤ n.  Their sum N = p + q is 
called the order of combinational frequency. 

So, if n = 3, that in a spectrum of response there can be components of fre-
quencies  f1, f2, 2f1, 2f2, f1±f2, 3f1, 3f2, 2f1 ± f2, f1 ± 2f2.  Amplitudes of compo-
nents depend on amplitudes А1 and A2 and coefficients of a polynomial (3.46). 

While passing of random process through a non-linear circuit the type of dis-
tribution of momentary values are significantly changed. 

On figure 27 non-linear dependence is 
shown as у = f(x).  All values of process X(t), 
got on the interval ∆x, are mapped in values of 
process Y(t), got on the interval ∆y. Therefore 
equality р(х)∆x ≈ p(y)∆y is correct. As for the 
infinitesimal increments dx and dy, we shall re-
ceive, that 

 p(y) = 
dxdy

xp

/

)(
 (3.51) 

It also is the general rule of calculation of 
probability density of output process. 

To define power spectral density function of output process GY(f) the next way 
is possible:  to define correlation function of output process KY(τ), and then to per-
form with it Fourier transform.  It follows from definition of correlation function  

 ∫ ∫
∞

∞−

∞

∞−
τ=τ ,),,()()()( 2121221 dxdxxxpxfxfKY  (3.52) 

where f(x) is the function describing a non-linear circuit; 
р2(х1, х2, τ) is two-dimensional probability density of input process. 
Methods of definition of characteristics of output process are stated. Certainly, 

in particular cases there can be mathematical difficulties. 

Figure 27 – The characteristic  
of nonlinearity 
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4 METHODS OF ANALOG MODULATION 

4.1 Classification of analog modulation types 

In most transmission systems, telecommunication baseband signals cannot be 
passed directly by communication channels without transformation into other signals. 
Transformations have as an object to co-ordinate signals characteristics with commu-
nication channels characteristics. One of such transformations is modulation.  

It is distinguished that if a modulating signal is continuous it belongs to analog 
modulation, and if modulating signal is digital it belongs to digital modulation. 

4.2 General information about analog modulation  

At analog modulation one of carrier parameters ucar(t) gets increases, that are 
proportional to the values of modulating signal b(t).  

Carrier is auxiliary harmonic oscillation, necessary for implementation of 
modulation process.  

 ucar(t) = A0cos(2πf0t + ϕ0),  

At such oscillation amplitude, frequency or initial phase can get increases 
Name of parameter which gets increases determines the name of type of modu-

lation (amplitude, phase, and frequency). 
While considering analog types of modulation we will consider that a modulat-

ing signal is a telecommunication baseband signal b(t) with such characteristics: 
-maximal frequency of signal spectrum Fmax is given; 
-a signal is normalized so, that maximal on the module value |b(t)|max = 1; 
-average value of signal 0)( =tb ; 
-the coefficient of amplitude KA, is given. It determines, in how many times the 

maximal on the module value of signal is exceeded its average quadratic value (root 
out of average power Pb): 

 
bP

tb
K max

A

)(
= . (4.1) 

If a signal is normalized by the method indicated above 

 2
A1 KPb = . (4.2) 

4.3 Amplitude modulation and its versions 

At amplitude modulation of amplitude increases of harmonious carrier are pro-
portional to the instantaneous values of modulating signal, i.e. amplitude of the 
modulated signal is 

 A(t) = A0 + ∆Ab(t), (4.3) 

where ∆A is a coefficient of proportionality, which is chosen so that amplitude A(t) 
does not take on negative values, i. e. ∆A ≤A0. As b(t)max = 1, then ∆A determines 
the most maximal  increase of carrier amplitude on the module. Frequency and initial 
phase of carrier remain constant. 
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It is comfortable to pass to the relative maximal increase of amplitude - ampli-
tude modulation factor 

 mАМ=∆A/A0. (4.4) 

It is clear, that 

 0 < mАМ ≤ 1.  (4.5) 

In the case of random modulating signal, analytical expression of AM signal 
looks like  

 sAM(t) = A0[1 + mAMb(t)]cos(2πf0t + ϕ0). (4.6) 

The time base diagram of AM signal is shown on figure 28. Envelope of the 
modulated signal repeats the form of modulating signal. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We will pass to determination of spectral characteristics of AM signal. Let the 

modulating signal b(t) be harmonious oscillation of frequency F < f0. We will write 
down expression for single-tone AM signal 

 sAM(t) = A0[1 + mAMcos(2πFt)]cos(2πf0t +ϕ0). (4.7) 

If to use the trigonometric formula of cosine product, we will get from a for-
mula (4.7) following 

 sAM(t) = A0cos(2πf0t) + 0,5A0mAMcos[2π(f0 + F)t] + 

 + 0,5A0mAMcos[2π(f0 – F)t]. (4.8) 

It follows from formula (4.8), that the 
spectrum of single-tone AM signal contains 
three harmonious oscillations: with frequency 
of carrier (carrier oscillation) f0; upper side-
band oscillation with frequency  f0 + F and 
lower sideband oscillation with frequency  f0 - 
F. Amplitude spectrum of single-tone AM 

f f0+F f0 f0–F 

A0 

0,5A0mAM 0,5A0mAM 

Figure 29 – Amplitude spectrum  
of single-tone AM signal 
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b(t) 

t 

Figure 28 - Modulating b(t)  
and modulated sАМ(t) signals 



 40 

signal is shown on figure 29. Amplitudes of sideband oscillations are identical and 
even  when mАМ = 1 does not exceed the half of amplitude of carrier A0. 

We will pass to consideration of spectrum of AM signal in a case of complex 
modulating signal which will to a great extent 
answer the real signals of telecommunication. 
The complex signal b(t) has finite or infinite 
sum of harmonious components. Every com-
ponent causes appearance in the spectrum of 
the modulated signal two components – 
summing and differential frequencies. Their 
total sums create accordingly upper and lower 
sidebands of frequencies. 

On figure 30 random amplitude spec-
trum of modulating signal and its proper am-
plitude spectrum of AM signal are shown. It 
consists of harmonious oscillation of carrier 
frequency, upper sideband of frequencies 

(USB) and lower sideband of frequencies (LSB). Thus USB is the scale copy of spec-
trum of modulating signal, which is shifted on frequency on the value f0. LSB is the 
mirror reflection of USB according to carrier frequency f0. Figure 30 gives an impor-
tant result: the width of spectrum of AM signal FАМ equals the doubled value of 
maximal frequency of spectrum of modulating signal Fmах, i.e. 

 FАМ = 2Fmax. (4.9) 

It is possible to show that average power of carrier
2
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A +
= . If to take on a maximally possible value mAM = 1, and value of 

amplitude modulating signal coefficient КА = 5 (voice signal), so part of sidebands 
power is РSB/РАМ = 0,04 or 4%.  

We see that while using of AM for transmission of telecommunication signals, 
prevailing part of power of AM signal is spent on oscillation of carrier frequency, 
although this oscillation does not carry information, as its level in the process of 
modulation remains constant – information is contained in the sidebands of frequen-
cies. Therefore it is efficient to form a signal with a spectrum, consisting only of two 
sidebands of frequencies (without oscillation of carrier frequency), – such signal is 
called the signal of double-sideband with suppressed carrier modulation. 

Such type of modulation, when the modulated signal is a product of modulat-
ing signal b(t) and carrier is called double-sideband with suppressed carrier modula-
tion. Analytical expression of signal double-sideband with suppressed carrier modu-
lation (DSB-SC) looks like 
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SАМ(f) 
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Sb(f) 
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Figure 30 – Spectrums  
modulating and AM signals 
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 sDSB-SC(t) = A0b(t)cos(2πf0t). (4.10) 

The time base diagrams of modulating and modulated signals are shown on fig. 
31. From figure 31 it is evident, that envelope of DSB-SC signal A(t) = A0b(t) (it is 
shown by dotted line) does not repeat  modulating signal.  

From comparison of mathematical expressions, describing AM and DSB-SC 
signals it is clear that the spectrum of DSB-SC signal differs from the spectrum of 
AM signal by absence of oscillation of carrier frequency.  

Random amplitude spectrum of modulating signal and its proper amplitude 
spectrum of DSB-SC signal are shown on figure 32. It consists of upper sideband of 
frequencies (USB) and lower sideband of frequencies (LSB). Thus USB is the scale 
copy of spectrum of modulating signal, shifted on frequency on the value f0. LSB is 
the mirror reflection of USB relatively to frequency of carrier oscillation f0. 

From fig. 5 it flows, that the width of spectrum of DSB-SC signal FDSB-SC 
equals the doubled value of maximal frequency of modulating signal spectrum Fmах, 
i.e. 

 FDSB-SC = 2Fmax. (4.11) 

The width of spectrum of DSB-SC signal is the same as width of spectrum of 
AM signal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Important advantage of DSB-SC signals in comparison with the AM signals is 
the advanced efficiency of the use of transmitter power, as considerable part of signal 
power is not spent on carrier oscillation, which is in the spectra of AM signals. 

Without the losses of information about the signal b(t) it is possible to take out 
one sideband (upper or lower) from the spectrum of DSB-SC signal.  Thus we will 
get single sideband modulation (SSB). 

In general case (for the random signal b(t)) SSB signal is written down as  

 )2sin()(
~

)2cos()()( 000000SSB ϕ+πϕ+π= tftbAtftbAts m , (4.12) 
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Figure 31 – Modulating b(t)  
and modulated sDSB-SC(t) signals 
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Figure 32 - Spectra of  
modulating and DSB-SC signals 
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where sign  “–” refers to description of signal with the upper sideband of frequencies, 
and sign “+” – with a lower sideband; )(

~
tb  is a signal, conjugated on Gilbert with a 

signal b(t):  
On figure 33 the time base diagrams of random modulating signal b(t), the con-

jugated on Gilbert signal )(
~

tb and SSB signal calculated for it are shown. From figure 

33 it is evident, that SSB signal envelope A(t) = A0 ( ) ( )tbtb 22 ~+  (shown by dotted 
line) does not repeat a modulating signal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On figure 34 amplitude spectrum of SSB signal, got from the spectrum of 

DSB-SC signal by the exception of lower sideband of frequencies (it is possible to 
eliminate the upper sideband of frequencies) is shown. So, such type of modulation, 
when the spectrum of the modulated signal coincides with the spectrum of modulat-
ing signal, shifted on carrier frequency, or is the inversion of the shifted spectrum re-
spectively carrier frequency is called single sideband.  

From figure 34 it flows, that spectrum width of SSB signal FSSB equals maxi-
mal frequency of spectrum of modulating signal 

 FSSB = Fmax. (4.13) 

Important advantage of SSB signal in comparison with DSB-SC and AM sig-
nals is twice decreased width of modulated signal spectrum, which allows the signals 
amount to increase twice in the set frequencies band. Therefore SSB is widely used in 
the systems of multichannel transmission with a frequency division. SSB is a single 
type of analog modulation, when the band of frequencies of signal is not broaden 
while modulation. Except of considered “clean” SSB in communication networks it 
was found the use of SSB signals with carrier (with pilot signal) and with partial sup-
pression of one sideband of frequencies. It creates certain comforts at forming and 
detection of the modulated signals.  

USB 

SSSB(f) 

f f0 f0+Fmax 

Fmax f 

Sb(f) 

Figure 34 - Spectra  
of modulating and SSB signals 
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b(t) 
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t 
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Figure 33 - Modulating b(t)  
and modulated sSSB(t) signals 
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4.4 Frequency and phase modulation 

These two methods of modulation are reffered to the angular types of modula-
tion (AnM) – amplitude of the modulated signal remains constant, and argument (an-
gle) of trigonometric function – carrier ucar(t) = A0cos(2πf0t + ϕ0) gets the increase 
∆ϕ(t), conditioned by the process of modulation. Therefore signal AnM can be writ-
ten down as  

 sAnM(t) = A0cos(2πf0t + ∆ϕ(t) + ϕ0) = A0cosΦ(t).  (4.14) 

The function Ф(t) is called an angle, complete phase, instantaneous phase or 
simply phase of signal, and ϕ0 is called the initial phase of signal. Instantaneous fre-
quency of signal at the set function Ф(t) is determined 

 ( ) ( ) ( )( ) ( )tff
dt

td
f

dt

td
tf ∆+=ϕ∆⋅

π
+=⋅

π
= 00 2

1Ф

2

1
, (4.15) 

where  ( ) ( )( )
dt

td
tf

ϕ∆⋅
π

=∆
2

1
 (4.16) 

is frequency increase.  
Carrier ucar(t) has instantaneous frequency f(t) = f0 which is a constant, and an 

instantaneous phase depends linearly on time: Φ(t) = 2πf0t + ϕ0.  
At the set function ω(t) the instantaneous phase of signal is determined 

 ( ) ( ) ( )( ) ( ) 00000 2222Ф ϕ+∆π+π=ϕ+∆+π=ϕ+π= ∫∫∫
∞−∞−∞−

ttt

dttftfdttffdttft , (4.17) 

i.e. increase of phase is ( ) ( )dttft
t

∫
∞−
∆π=ϕ∆ 2 . (4.18) 

The initial phase j0 can be considered as permanent integrations.  
At phase modulation the increase of phase is proportional to the instantaneous 

values of modulating signal 

 ∆ϕ(t) = ∆ϕd b(t), (4.19) 

where ∆ϕd is a coefficient of proportion, which is called phase deviation. As maximal 
on the module value b(t)max = 1, deviation of phase at PM is the most maximal de-
viation of phase from linear dependence in time.  

Mathematical description of PM signal  

 sPМ(t) = A0 cos(2πf0 t + ∆ϕd b(t) + ϕ0). (4.20) 

At phase modulation instantaneous frequency depends on a modulating signal 
by next way  

 ( ) ( )( ) ( )( )
dt

tbd

dt

tbd
tf ⋅

π
ϕ∆

=
ϕ∆

⋅
π

=∆
22

1 dd . (4.21) 

At frequency modulation the increase of frequency is proportional to the in-
stantaneous value of modulating signal 
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 ∆f(t) = ∆fd b(t), (4.22) 

where ∆fd is coefficient of proportionality, which is called frequency deviation and 
determines the maximal deviation of instantaneous frequency of the modulated signal 
from carrier frequency f0. 

The increase of phase is at frequency modulation 

 ( ) 2 ( ) 2 ( )
t t

dt f t dt f b t dt
−∞ −∞

∆φ = π ∆ = π∆∫ ∫ . (4.23) 

Will get mathematical description of FM signal by the substitution of expres-
sion (4.23) in formula (4.14): 

 ∫
∞−

ϕ+∆π+π=
t

dttbftfAts ))(22cos()( 0d00FM . (4.24) 

From the given above descriptions of signals it follows, that FM and PM have 
a lot in common. Both FM and PM have the increases of frequency and phase. The 
name of modulation type is determined by which of parameters gets increases, pro-
portional to modulating signal.  

At angular modulations connection between the spectra of modulating and 
modulated signals is considerably more difficult, than at AM and its varieties. There-
fore an analysis of spectra of angular modulations here is not given. We will discuss a 
final result. The analysis shows that theoretically the bandwidth of amplitude spec-
trum is infinite. However basic part of power of signal is concentrated in some lim-
ited frequency interval around f0, which is considered as the width of signal spectrum. 
The spectrum width of FM and PM signals is calculated on formulas: 

 FFM = 2 (mFM + 1) Fmax, (4.25) 

 FPМ = 2 (mPM + 1) Fmax. (4.26) 

where 

 mFМ = ∆fd /Fmax (4.27) 

– is an index of frequency modulation, which is determined by ratio of frequency de-
viation of FM signal to frequency of modulating signal; 

 mPМ = ∆ϕd (4.28) 

– is an index of phase modulation, which equals phase deviation of PM signal. 
Only frequency modulation has got wide distribution. It is distinguished nar-

rowband (in the case of mFM < 1) and broadband (in the case of mFM >> 1) modula-
tions. Narrowband FM signal spectrum width is comparable with the AM signal spec-
trum width. If FM is broadband, then signal spectrum width approximately equals 
doubled deviation of frequency. 

4.5 Forming of the modulated signals (modulators) 

Two features presently characterize construction of modulators diagrams: 
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1) modulators are performed on the processors of digital signals; thus dia-
grams work with samplings of signals, and frequency of sampling is chosen accord-
ing to the relation, considered in s. 2.10; 

2) the modulator diagram realize a forming algorithm which follows from 
mathematical description of the modulated signal. 

Let consider the construction of DSB-SC signal modulator diagram. Mathe-
matical description of signal looks like  

 sDSB-SC(t) = A0b(t)cos(2πf0t + ϕ0). (4.29) 

The diagram of DSB-SC signal modulator, constructed on the basis of this re-
lation, is shown on figure 35. It has a generator carrier oscillation G and multiplier. 

Modulator of AM signal is constructed on the basis of correlation (4.30): 

 sAM(t) = A0[1 + mAMb(t)]cos(2πf0t + ϕ0). (4.30) 

According to this relation modulator is realized by a diagram, represented on 
figure 36. 
 
 

 
 
 
 
 
 
 
 
Modulator of SSB signal can be performed by a filter method or phase method. 

On figure 37 the diagram of SSB signal by a filter method forming is shown. Neces-
sary (upper or lower) sideband of frequencies is selected from the double-sideband 
with suppressed carrier modulation signal spectrum by a bandpass filter. 

Phase method of forming of SSB signal is based on basic property of analytical 
signal: its spectrum is concentrated on positive frequencies. We will form an analyti-
cal signal ( ) ( ) ( ).~

tbjtbtb +=&  On figure 38, a the spectrum of random signal b(t) is 

shown, and on figure. 38, b it is shown spectrum of signal ( )tb
~

. Product of ( )tb
~

 and 
tfjeA 02

0
π  signals gives an analytical signal ( )tm& . Its spectrum is the spectrum shifted 

to the right on f0 of signal ( )tb&  (figure 38, c). To pass to the real signal it is necessary 
to take real part of signal( )tm& : 

 
( ) ( ){ } ( ) ( )( ) ( ){ }
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2sin2cos
~

ReRe

0000

000SSB

tftbAtftbA

tfjtfAtbjtbtmtS

π−π=

=π+π⋅+== &
 (4.31) 

that gives expression for SSB signal with USB. It is easy to make sure, that the in-
crease of the complex conjugated analytical signal product 

( ) ( ) ( ) tfjeAtbjtbtb 02
0and

~ π∗ −=&  and selection of real part give SSB signal with LSB: 

Figure 35 – Block diagram of 
DSB-SC modulator 

SDSB-SC(t) b(t) 

G 

A0cos2πf0t 

 

Figure 36 – Block diagram 
of amplitude modulator  
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 ( ) ( ) ( ) tftbAtftbAtS 0000SSB 2sin
~

2cos π+π= . (4.32) 

Diagram of SSB signal modulator (figure 39) is given from relation (4.31).  
The diagram of Gilbert converter can be synthesized on its impulse response or 

according to the necessity AR and PR (figure 40). Here Fmin and Fmax are boundary 
frequencies of modulating signal spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The diagrams of PM and FM signals modulators can be found in literature.  

4.6 Detecting of signals 

Device which output voltage is proportional to some parameter of input band-
pass signal is called detector. On the base of this determination, it is necessary to use 
definitions: amplitude, frequency and phase detectors.  

An amplitude detector can be performed on the diagram of synchronous detec-
tor or envelope detector.  

The diagram of synchronous detector is shown on figure 41. This detector is 
called also coherent. Both names are related with the fact that supporting oscillation 
must be coherent with carrier oscillation of the input modulated signal. Such oscilla-
tion is produced by the system of phase lock loop PLL (in the case of SSB it is neces-
sary to pass pilot signal). A synchronous detector is used for detection of AM, DSB-
SC and SSB signals. It is possible to check efficiency of the detection process analys-
ing signals passing of mentioned modulation types through the diagram of detector.  

  

Figure 37 - Forming  
of SSB signal by a filter method 
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Figure 38 - Amplitude spectrums  
of signals b(t), ( )tb&  and ( )tm&  
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Figure 39 - Forming of SSB signal  
by a phase method 
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A envelope detector is shown on a figure 42. Such detector does not require 
coherent supporting oscillation and PLL system. It explains the name of incoherent 
detector. Property of signal, that its spectrum is oscillation of carrier frequency of 
signal is used for detection of AM signal. The diagram of incoherent detector of AM 
signal is constructed on the basis of non-linear electric circuit (NEC), which is de-
scribed by polynomial, containing the element а⋅х2. Oscillation of differential fre-
quencies on the output of non-linear circuit: upper sideband and carrier, and also car-
rier and lower sideband of frequencies are conjugated in the signal spectrum. These 
differential frequencies are selected by LPF, which is provided by detection of AM 
signal. Such diagram was used for analogue realization of equipment. 

 
 
 
 
 
 
 
 
 
Detector on the basis of quadrature splitter (figure 43) is used during processor 

realization of detector envelope. Here ∆ϕ is a random initial phase of supporting os-
cillation. Detector is used and in those cases, when there is not carrier oscillation in 
the spectrum of detecting signal. Output voltage of detector ud(t) is proportional to 
bandpass signal envelope s(t), that explains the name of detector – detector of enve-
lope.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The diagrams of frequency and phase detectors can be found in literature.  
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Figure 43 - Diagram of incoherent detector  
on the basis of quadrature splitter 
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Figure 42 – Block diagram 
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Figure 41 – Block diagram of 
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5 METHODS OF DIGITAL MODULATION  

5.1 General information on digital modulation  

Modulation refers to digital if a modulating signal is the digital signal. 
Digital signal (DS) is a sequence of digital symbols, which belong to the cer-

tain alphabet.  As a rule, symbols are binary and designated 1 and 0, them name bits, 
and they act through interval Тb. DS appears as a result of coding signs on discrete 
messages or samples of continuous messages. DS is possible to present, writing down 
sequence, for example, 10110..., and specifying value Тb.  Basic characteristic of DS 
is rate of a signal or bit rate R = 1/Тb, bit/s. 

In the terminal equipment of trans-
mission systems, executed on logic micro-
circuits or processors, digital signals look 
like sequence of rectangular pulses.  The 
example of such signal is resulted on fig-
ure 44. Carrier of information is the rec-
tangular pulse, and the information is dis-

played in amplitude of a pulse which accepts values a and 0.  
For transfer of digital signals by communication channels methods of digital 

modulation, basically, with serial transfer are used. 
The modulated signal for transfer by a communication channel is formed from 

signals si(t) – elementary pulse signals belonging to ensemble {si(t)}, i = 0, 1..., M – 
1, where M – number of elementary signals (M ≥ 2). Elementary signals name also 
channel symbols.  

At formation of the modulated signal the sequence of binary symbols is broken 
into blocks from n = log2M bits. To each such block (the quantity of possible various 
blocks is M = 2n) is put in conformity an elementary signal si(t).  Duration n bits 
makes clock interval Т = Тb⋅log2M.  The received sequence of the elementary signals 
acting through time Т, forms the modulated signal 

 ∑
∞=

−∞=
−=

k

k

k
i kTtsts ),()( )(  (5.1) 

where )()( kTts k
i −  – i-th signal transmitting on a k-th clock interval.  

On figure 45 transition from DS to the modulated signal (n = 4, M = 16) is 
shown.  On the plot s(t) transmitting elementary signals s13(t), s1(t), s3(t), s6(t), ... are 
shown.  Digital modulation is a display of blocks of bits in pulses-carriers. 
 
 
 
 
 
 
 
 

Тb 2Тb 

b(t) 

А 

0 3Тb 4Тb t 

1 1 1 0 0 

Figure 44 – Digital signal 
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Figure 45 – Arrangement of transformation DS into the modulated signal 
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If  M = 2, a signal s(t) is binary; if M > 2, a signal s(t) is multilevel or M-ary. 
Serial transmission is considered. Also there is a parallel-serial transmission 

(OFDM). It will be considered later. 
Key parameter of the modulated signal is the bandwidth. It depends on rate R 

and ensemble of elementary signals {si(t)}. The problem of a choice of digital modu-
lation kind is reduced to a choice of ensemble of elementary signals. 

5.2 Choice elementary pulse forms 

The information is displayed in amplitudes of pulses, instead of in their form.  
Therefore the form of a pulse-carrier is necessary for choosing under spectral and 
other characteristics. 

Shown on figure 44 DS does not approach for direct transmission on commu-
nication channels because of its spectral properties. On figure 44 elementary signal is 
the rectangular pulse  

 ( )




>
≤≤

=
;2,0

,20,1

Tt

Tt
tА  (5.2) 

the symbol 1 is represented by a pulse аА(t), and a symbol 0 – a pulse with zero am-
plitude.  

Let's find spectral density of function А(t): 
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А ft

ft
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The amplitude spectrum of function А(t) is  

 ( ) ftftTfSA ππ= sin . (5.4) 

On figure 46 the plot of the normal-
ized amplitude spectrum SА(f)/Т is resulted.  
The spectrum of the rectangular pulse de-
creases extremely slowly – with a speed 1/f.  
With the purpose of economy of a band of 
frequencies of a communication channel it is 
necessary to use pulses of the smoothed 
form. 

The pulse А(t) should satisfy to a con-
dition 
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kkTt
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tА  (5.5) 

The condition (5.5) is a sampling condition or a condition of absence of inter-
symbol interference (ISI).  After sampling of a pulse А(t), satisfying a condition (5.5), 
the discrete signal is formed А(n) = ..., 0, 0, 1, 0, 0, ...   

It is possible to show, that the spectrum of a pulse А(t) should be skew sym-
metric 

TfSА )(  

0      1/Т      2/Т     3/Т      4/Т     5/Т    t 

1 

Figure 46 – Normalized spectrum  
of the rectangular pulse 
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 ( ) ( ) TТSS NANA π≤ω≤=ω+ω+ω−ω 20, , (5.6) 

where ωN = π/Т – Nyquist frequency. 

On figure 47 examples of functions SА(ω) with skew symmetry are resulted.  
 
 
 
 
 
 

 

 
 

 

The spectrum of pulse signals satisfying a sampling condition (5.5), refer to as 
Nyquist spectrum. Them designate as N(f). More often Nyquist spectrum describe by 
function 
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where  fN = 1/(2T) is Nyquist frequency. 
α – roll-off factor of a signal spectrum , 10 ≤α≤ . 
Dependence (5.7) refers to „raised cosine“. On figure 48 such dependences are 

resulted for α = 0; 0,2; 0,5 and 1.  From figure 48 it is visible, that bandwidth of a 
pulse F = (1 + α)fN. Minimal possible bandwidth minF = fN = 1/(2T).  
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Figure 47 –Examples of functions SА(ω) with skew symmetry  
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Typical values of factor α lay in limits from 0,2 up to 0,4. 
Function А(t) can be received as inverse Fourier transform from N(f)  

 А(t) = 
2)4(1

2cos

2

2sin

tf

tf

tf

tf

N

N

N

N

α−
πα⋅

π
π

. (5.8) 

Pulses А(t) name Nyquist pulses (figure 49). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The type of pulse at the transmission of a baseband signal is considered. If the 
spectrum should be bandpass radio impulses A(t)⋅cos(2πf0t) and A(t)⋅sin(2πf0t) are 
used.  Their amplitude spectrum have two side band which are copies of a spectrum 
of pulse A(t) (figure 50). If A(t) has Nyquist spectrum the bandwidth of a radio pulse 
is defined F = 2(1 + α)fN. 
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Figure 50 – Spectrum of radio pulses 
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5.3 Pulse-amplitude modulation 

Modulation is named pulse-amplitude, if by channel symbols, used for forming 
of the modulated signal, are low-frequency impulses, i.e. their spectrum joins to a 
zero frequency. Channel symbols are described as 

 1...,,1,0),()( −== MitAats ii , (5.9) 

where А(t) – impulse with certain time and spectral descriptions, the maximal value 
of which is equal 1; that intersymbol interference was not, impulse A(t) 
must be the Nyquist impulse; 

аі is a coefficient, representing information. 
The signals of pulse-amplitude modulation are designated as М-ary РАМ, 

where M is a number of channel symbols.  
Evident presentation of signals of digital modulation is signal constellation. On 

signal constellation each of channel symbols is represented a point, the co-ordinates 
of points are coefficients, which are, describe channel symbols. In the case of MPAM 
signals every channel symbol is described only one coefficient аі, therefore for pres-
entation of MPAM signals one-dimensional space is used. On a figure 51 signal con-
stellation of 2PAM or BPAM signal is shown. A mapping code, setting accordance 
between binary characters and coefficients, is specified also аі.  
  
 
 
 
 

On a figure 52 signal constellation of 4PAM or QPAM signal is shown. A 
mapping code for the QPAM signal sets accordance between the pair of binary sym-
bols (n = 2) and by the coefficients аі. These pair also determines the signal number - 
binary symbols are the record of signal number in the binary notation scale. A map-
ping code must be a Gray code blocks from n bits, which correspond nearby signals, 
must differ only in one bit. Gray code minimizes the amount of erroneous bits in the 
case of origin of error of decision about the passed channel symbol at demodulation.  
Both at BPAM and at QPAM number a determines energies each of channel symbols 
and middle power of the modulated signal.  

Like the considered examples it is possible to build signal constellations for 
M= 8, 16, ... 

The chart of MPAM signal forming is resulted on a figure 53. DS acts at the 
input. Mapper takes n = log2M is bits and gives out the coefficients of аі rectangular 
pulses duration T. From these impulses a forming filter produces the impulses аіА(t). 
This procedure repeats oneself on every clock interval.  
For different values M work of chart differs only a mapping code. 
 
 
 

 0                             1 
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Figure 51 – BPAM signal constellation  Figure 52 – QPAM signal constellation  
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Figure 53 – Modulator of MPAM signal 
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MPAM signals bandwidth is determined by the width of impulses spectrum 
A(t). As Т = Тblog2M, then 

 
( )
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MТ
F

22b
MPAM log2

1

log2

1 α+=α+= . (5.10) 

5.4 One-dimensional bandpass signals of digital modulation 

One-dimensional bandpass signals of digital modulation are MASK signals – 
M-ary amplitude shift keying (М ≥ 2) and BPSK signals – binary phase shift keying.  

At the MASK and BPSK signals channel symbols are radiopulses and they are 
written down:  

 ( ) 1 ..., ,1 ,0     ,2cos)(2)( 0 −=π= MitftAats ii , (5.11) 

where ai – number, representing n = log2M is bit, passed a signal si(t); 
A(t) – function, determining the form of radiopulses, its maximal value is equal 1; 
f0 – frequency of radiopulse.  

As channel symbols differs only the coefficient ai, signal constellations of 
these types of modulation appear in one-dimensional space, and the modulated sig-
nals are named one-dimensional. On a figure 54 signal constellations of BPSK sig-
nals, BASK and QASK with pointing of mapping codes are resulted. 
 
 
 
 
 
 

Energy of i-th channel symbol calculated  
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Comfortably to compare the different methods of modulation on the size of 
minimum distance between the signals d, characterizing the difference of signals is 
quantitative. The size d is determined on signal constellation. The size d must be ex-
pressed through the physical parameters of signals. Comfortably to consider Eb such 
parameter is energy, expended on the transmission of one bit: RPTPE sbsb == . 
The last sizes are set on the system of transmission. Energy Eb is expressed through 
middle energy of signals Eev and amount bit, passed one signal n 
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We will conduct calculations. For BASK:  

 d = a, Е0 = 0, Е1 = а2, Eev = 0,5а2, Eb = Eev = 0,5а2, bEd 2= . 

For BPSK:  

Figure 54 - Signal constellations of BPSK (a); BASK (b); QASK (c) signals  
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 d = 2a, Е0 = Е1 = а2, Eev = а2, Eb = Eev = а2, bEd 2= . 

For QASK:  

 d = 2a,  Е0 = Е2 = а2,  Е1 = Е3 = 9а2,  

 Eev = 0,5(а2 + 9а2) = 5а2,  Eb = 0,5Eev = 2,5а2,  bb EEd 25,15/22 =⋅= . 

Time diagrams of the examined channel symbols are resulted on a figure 55. 
For obviousness it is accepted at a construction, that A(t) – rectangular pulse of dura-
tion, equal to the clock interval. Like considered it is possible to build signal constel-
lations and time diagrams for the 8ASK, 16ASK signals etc. 
 
 

 
 

 
 
 
 
 
 
 

We will consider the spectrum of carrier pulse 2 A(t)⋅cos(2πf0t), which chan-
nel symbols are built on the basis of (5.11). This carrier pulse is the signal of ana-
logue DSB-SC, and that is why his spectrum consists of two sidebands, concentrated 
near frequency of radiopulse f0, which can be considered frequency of carrier oscilla-
tion. Frequencies sidebands is the reflection of spectrum of impulse A(t). So, spectral 
properties any of channel symbols si(t) wholly determined the function A(t).  

Frequencies sidebands are the copies of Nyquist spectrum (figure 56), and the 
spectrum width of MASK and BPSK signals is determined: 
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)1(
12

α+=α+= . (5.12) 

An important conclusion follows from expression (5.12) – the increase of lev-
els number of MASK signal at the 
fixed speed R allows decreasing the 
spectrum width of channel symbols. 

We will consider the chart of 
forming of MASK and BPSK sig-
nals. From comparison of expres-
sions (5.9) and (5.11) follows, that at 
the MPAM signals carrier pulse A(t), 
and at the bandpass signals carrier 
pulse 2 A(t)⋅cos(2πf0t). Thus, the 
chart of forming of one-dimensional 
bandpass signals (modulator) is built 

a 

t 

s1(t) s0(t) 

a 

t 

s1(t) s0(t) 

b 

a 

s2(t) 

t 

s0(t) s3(t) s1(t) 

–3а 

а 

3а 

–а 

c 

Figure 55 – Time diagrams of elementary signals: a – BASK; b – BPSK; c – QASK  

Figure 56 - Spectrums of MASK and BPSK 
channel symbols 
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on the basis of chart of figure 53 with addition the generator of carrying waveform G  
2 cos(2πf0t) and multiplier r (figure 57). 

 
 
 
 
 
 
 
 

 
 

So, on the basis of analysis of one-dimensional bandpass signals of digital 
modulation became obvious, that the name of modulation method specifies, what 
channel symbols parameter differs: MASK – M signals differ in amplitudes, BPSK – 
two signals differ in initial phases (0 and 180°).  

5.5 Two-dimensional bandpass digitally modulated signals  

For two-dimensional bandpass signals of digital modulation the signals M-ary 
PSK (M ≥ 4) and M-ary APSK (amplitude-phase shift keying) uses. At these types of 
modulation channel symbols are described the sum of cosine and sine radiopulses: 

 1 ..., ,1 ,0     ,2sin)(22cos)(2)( 00 −=π+π= MitftAbtftAats iii ,  (5.13) 

where ai, bi – pair of coefficients, which jointly represents a sequence from n = log2M 
bits, passed an channel symbol si(t); 

A(t) – function, determining the form of radiopulses, its maximal value is equal 1; 
f0 – radiopulses frequency.  

As every channel symbol is described two coefficients ai and bi, signal constel-
lations of these types of modulation appear in two-dimensional space, and the modu-
lated signals are named two-dimensional.  

Sum of cosine and sine radiopulses of monotonous forms in (5.13) can be 
transferable one radiopulse of the same form with the amplitude multiplier Ai and ini-
tial phase ji, determined:  

 ( ) 1...,,1,0,arctg,2 22 −=−=ϕ+= Mi
a

b
baA

i

i
iiii . (5.14) 

The identical amplitude multipliers Ai = a have elementary MPSK signals for 
all i, and their initial phases ϕi differ with the step 2π/M. On a figure 58 signal con-
stellations of MPSK signals are resulted with pointing of mapping codes. Evidently, 
that mapping codes are Gray codes. 
The elementary MAPSK signals of differ or by the amplitude multipliers Ai, or initial 
phases ϕi, or amplitude multipliers and initial phases simultaneously. On a figure 59 
constellations of 16-ary of quadrature amplitude modulation (16QAM) are resulted. 
Signals of MQAM are the separate cases of MAPSK signals. 

Mapper Shaping  
filter 

smod(t) b(t) 

Figure 57 - Modulator of one-dimensional bandpass signals  
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For signals MQAM attribute the signals of MAPSK, if points of signal constel-
lation are in the knots of square grate. Such structure of constellation gives certain 
comforts at demodulation.  
 
 
 
 
 
 
 
 
 
 
 
 

For QPSK:  

 d = а2 , Е0 = Е1 = Е2 = Е3 = а2, Eev = а2, Eb = 0,5Eev = 0,5а2,  а = bE2 , 

 bEd 2= ,  max d = 2a = bE22 . 

For 8PSK:  

 d/2 = a⋅sin22,5°,  d = 0,765a,   Еi = а2,   

 Eev = а2,  Eb = Eev/3 = а2/3,  bb EEd 36,13765,0 == . 

 
The followings MQAM signals of are used in 

practice: 4QAM (the same, that QPSK), 8QAM, 
16QAM, 64QAM, 256QAM, 1024QAM. 

Signals, described expression (5.13), are a sum 
two DSB-SC signals with identical amplitude spectra 
which are determined the signal A(t) spectrum. In case if 
A(t) – the Nyquist pulse, amplitude spectrum to each of 
constituents, and also their sum, looks like, resulted on a 
figure 56. Therefore the spectrum width of channel 
symbols in the case of MPSK and MAPSK is described 
expression (5.12). 

We will consider the chart of forming of MPSK and 
MAPSK signals. From comparison of expressions (5.13) and (5.11) flows out, that the 
chart of two-dimensional bandpass signals forming (modulator) is built on the basis of 
figure 57 chart with addition of second subchannel and summarizing (figure 60). Map-
ping code coder puts in accordance n = log2M to the entrance bits two rectangular im-
pulse with amplitudes ai and bi; rectangular impulse is filtered forming filters, to get the 
Nyquist impulses; the impulses aiA(t) and biA(t) act at the inputs of double sideband 
suppressed carrier modulator; the gotten modulated signals are added up. 
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Figure 58 - Signal constellations of QPSK (a); 8PSK (b); 16PSK (c) signals 
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Thus, made sure again, that the name of method of digital modulation specified 
what parameter (or by what parameters) channel symbols differ: MPSK – M signals 
differ in initial phases, MAPSK – M signals differ in amplitudes and/or initial phases.  
To the two-dimensional signals the signals of binary frequency modulation (BFSK) 
belong also. From the name of modulation follows that channel symbols are radio-
pulses, different frequencies:  

 
( )( )
( )( ),22cos)()(

,22cos)()(

101

000

ϕ+∆+π=
ϕ+∆−π=

tfftаAts

tfftaAts
  (5.15) 

where s0(t) – signal for the transmission of symbol 0;  
s1(t) – signal for the transmission of symbol 1;  
ƒ0 – middle frequency of radiopulses;  
∆ƒ – frequency spacing; 
A(t) – function, determining the form of radiopulses, its maximal value is equal 1;  
а – coefficient which determines energy of signals;  
ϕ0, ϕ1 – initial phases of impulses. 

The modulated signal is written down 

 ( ) ( )( )∑
∞

−∞=
−=

k

k
i kTtstsBFSK .  (5.16) 

In order that at demodulation radiopulses can it was be divided on condition 
that their phases j0 and j1 are arbitrary, the spectra of radiopulses s0(t) and s1(t) must 
not be recovered. If the spectrums of signals are not recovered, such signals orthogo-
nal. We will pass to vector representation of channel symbols 

 10 ψ+ψ= iii bas ,  (5.17) 

where 

 
( )( )
( )( ),22cos)()(
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tfftAt

tfftAt
  (5.18) 

and a mapping code which does equivalent records (5.17) and (5.15) is resulted in 
table 2. On the basis of expression (5.17) and table 2 BFSK signal constellation looks 
like, shown on a figure 61. Here the impulses y0(t) and y1(t) form the base of signals 
space.  
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Figure 60 – Modulator of two-dimensional bandpass signals  
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In order that a width of spectra of 
radiopulses was minimum and there was 
not intersymbol interference (ISI), an im-
pulse A(t) must be the Nyquist impulse. At 
that rate it is possible to consider that a 

spectrum of signal sBFSK(t) is the sum of spectra of two radiopulses of frequencies f0 – 
∆f/2 and f0 + ∆f/2. On a figure 62 the rationed spectrum of BFSK signal, from which 
follows, is presented, that frequency spacing of will be minimum, when the spectra of 
radiopulses join one to other, and evened: 

 
T

f
α+=∆ 1

min ,  (5.19) 

where Т – a clock interval is equal Тb. 
Then spectrum width of BFSK signal: 

 
ТТ

fF
)1(21

minBFSK
α+=α++∆= ,  (5.20) 

it is twice greater spectrum widths of BASK and BPSK signals. 
 
 
 
 
 
 
 
 
 
 
 
 

From expression (5.17) and table 2 the chart of BFSK modulator flows (figure 
63). Forming of BFSK signals differs from forming of MPSK signals work of map-
ping code coder  and that generators of carrying waveform frequencies in double 
sideband suppressed carrier modulators differ on the size ∆ƒ/2 from frequency of 
bearing oscillation.  

 
 
 
 
 
 
 
 
 
 Figure 63 – BFSK signal modulator, if channel symbols are Nyquist impulses  
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Figure 62 - Spectrum of BFSK signal, on the 
basis of Nyquist impulses  
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Figure 61 – BFSK signal constellation 
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If the function A(t) is rec-
tangular impulse, it is necessary 
to provide forming of BFSK sig-
nal the chart of modulator with-
out the «open-phase fault». It is 
possible, when frequency spac-
ing ∆f = k/(2T), where k = 1, 2, 3, 
...; Т = Тb. When k = 1, 
∆f = 0,5/T and modulation is 
named modulation of minimal 
shift keying (MSK). In the case 

of MSK the rationed spectrum of signal is described expression 
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Dependence (5.21) is resulted on a figure 64. With the increase f – f0 spec-
trum decreases at a speed 1/f 2.  If to define the FMSK spectrum width on the first zeros 
of dependence (5.21) then 

 FMSK = 1,5/Т.  (5.22) 

 

5.6 Signals with spread spectrum 

Broadband signals have been used in the systems of telecommunication, since 
50-s. The properties of these signals for the first time were used in the systems of ra-
dio communication for removal effect of radiowaves multipath propagation. 

The next stage of implementation of broadband signals in telecommunication 
systems was early 90-s, when these signals were used in mobile communication of 
second generation of standard of IS-95 networks for Code Division Multiple Access 
realization (CDMA). Code Division Multiple Access has appeared extraordinarily 
effective in mobile communication networks, therefore the systems of third genera-
tion of cdma2000 and UMTS also use broadband signals. 

Since middle of 90-s implementation of wireless ports of access, which allow 
to connect various devices, for example, mobile telephone and computer was begun. 
The example of such port is Bluetooth, which provides connection of various devices 
in a radius of 100 m. The known property of broadband signals is their high stability 
to the narrow-band hindrances which are made by other devices of radio contact. 
Broadband signals (BS) are called such signals, which spectrum width is more than 
minimum band of frequencies, necessary to pass a digital signal of the set rate: 

 ,minBS ff ∆>>∆  (5.23) 

where BSf∆  is a width of spectrum of broadband signal; 

minf∆  is a minimum band of frequencies, necessary for a transmission; that is 
equal to the limit of Nyquist, which for binary bandpass signals is equal to transmis-

 S(f) 

 f0–1,5/T  f0–1/T  f0–0,5/T  f0  f0+0,5/T  f0+1/T  f0+1,5/T 
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Figure 64 - MSK signal spectrum  
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sion rate, i.e. bmin Rf =∆ . 
One of widespread methods of broadband signals forming is Direct Sequence 

Spread Spectrum - DSSS. Signals, formed by such method, are used in mobile com-
munication of standards of IS-95 and UMTS networks. 

The principle of direct expansion is 
that information character is multiplied by a 
so called Pseudo-noise sequence (PNS) the 
period of which is equal to duration of char-
acter Tb (figure 65). Expansion of spectrum 
takes a place due to that duration of element 
of PNS, which is called a chip, is less then 
duration of information character, i.e. 

bchip TT << . 

PNS is a sequence of binary charac-
ters which values correspond a certain law. 
Such PNS are the function of Walsh, m-
sequence etc.  

After multiplying by PNS a signal is 
given on the input of standard modulator of 
BPSK, on the output of which a broadband 
signal appears with Direct Sequence Spread 

Spectrum: 

 ( ) ( ) ( ) ( ) ( )DSSS DS 02 cos 2 ,s t b t P t A t f t= π  (5.24) 

where ( )tbDS  is a digital signal; 
 ( )tP  is a PNS; 
 ( )tA  is a envelope signal with Direct Sequence Spread Spectrum; 
 0f  is a carrier frequency. 

The chart of signal modulator with Direct Sequence Spread Spectrum is pre-
sented on figure 66. Modulator contains forming LPF, which task is to form impulses 
for the transmission of chips with a compact spectrum. This filter forms envelope 
signal. It is chosen such AR LPF, that on his output a spectrum of chip (element of 
PNS) is the spectrum of Nyquist. In this case, the width of spectrum of signal with 
direct spread is calculated as: 

 ( ) ( )DSSS chip b1 1 ,f R NR∆ = + α = + α  (5.25) 

where chipchip 1 TR =  – chip rate, i.e. transmission rate of PNS elements; 

 bb 1 ТR =  – rate of digital signal; 
 N  is a number of chips on single informative symbol; 
 α  is a Nyquist spectrum roll-off factor 10 ≤α≤ . 
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Figure 65 – Direct spread of spectrum: 
bDS(t) – a digital signal; P(t) – PNS  



 61 
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SF × 

CG 

bDS(t) SDSSS(t) 

Figure 66 – Direct Sequence Spread Spectrum 
signal modulator: GPNS – PNS generator;  

CG – carrier generator  
From the expression (5.25) follows, that signal spectrum with direct expansion 

is exactly in N times wider, than signal without spreading of spectrum, therefore a 
number is often called the coefficient of spectrum spreading.  

Spreading of spectrum allows getting some useful properties. 
Figure 67 demonstrates spectral properties of broadband signals. From the fig-

ure follows, that under spreading of spectrum of a signal of value of his spectral den-
sity is reduced. Values of spectral density of a broadband signal under considerable 
spreading of a spectrum (hundreds and thousands times) become near to the value of 
spectral density of noise. In this case it is difficult to distinguish a signal from noise, 
if the parameters of signal are unknown, for example, bearing frequency is unknown. 
Broadband signals are in general called noise-like, as their properties are similar 
property of white noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Similarity of values of spectral density of broadband signals and value of spec-

tral density of noise means, that these signals do not create considerable hindrances to 
signals without spectrum spreading. On the other side figure 67 demonstrates another 
property of broadband signals, namely firmness to the narrow-band hindrances. On a 
figure it is possible to see, that the spectrum of narrow-band signal (2) destruct insig-
nificant part of spectrum of broadband signal (shaded part), that allows effectively to 
remove influencing of such hindrance. In fact both systems in which broadband sig-
nals are used and the systems in which signals are used without spreading of spec-
trum can work in one band of frequencies.  

f 

S(f) 

1 

2 

3 

Figure 67 – Spectrums of: 1 – broadband signals;  
2 – narrowband signal; 3 – white noise  
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At demodulation of signals with the spreading spectrum the so-called matched 
filters are used. Their properties are:  

– if on the input of a filter is given a signal which is matched with a filter, out-
put response repeats the function of correlation of this signal.  

– if on the input of a filter is given a signal which is not matched with a filter, 
output response repeats the function of mutual correlation of input signal and signal 
which a filter is matched with.  

On figure 68 and figure 69 correlation properties of broadband signals are 
demonstrated. The function of correlation of any signal s(t) is determined by expres-
sion:  

 ( ) ( ) ( ) ,∫
∞

∞−
τ−=τ dttstsK  (5.26) 

and function of mutual correlation of two signals  ( )ts1  and ( )ts2   is determined by 
expression: 

 ( ) ( ) ( ) .2112 ∫
∞

∞−
τ−=τ dttstsK  (5.27) 
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Figure 68 – Broadband signal correlation 
function 
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Figure 69 – Two PNS mutual correlation 
function  

As it follows from figure 68 a correlation function of broadband signal has 
main narrow signal spike and small on values sideband signal spikes. Duration of the 
main signal spike of correlation function 0τ  is inversely proportional the band of fre-
quencies of broadband signal, i.e.: 

 .
1

BS
0 f∆

≈τ  (5.28) 

A function of mutual correlation of two broadband signals has small on values 
signal spikes (figure 69). It allows realizing the code division of signals (wave-form 
separation). 

Multipath propagation of radiowaves is characteristic for systems of radio con-
tact and leads a few copies of a passed signal s(t), which appear as a result of reflec-
tion of electromagnetic wave from various objects, enter into the input of receiver. 
These copies of a passed signal enter into input of receiver with different delays lt : 

 ( ) ( ),
1

rec ∑
=

−=
L

l
lttsts  (5.29) 
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where  l  is a ray number; a way of distribution of electromagnetic wave is called ray; 
 L  is an amount of rays. 
There will be observed sum of functions of correlation on the output of a matched 
filter (figure 70). As a function of correlation of broadband signals has the narrow 
main bursts and small on values sideband bursts, signals of separate rays can be put 
together laid down – processed by Rake-receiver. Realization of Rake-receiver for 
processing of signals of two rays is represented on a figure 71. 

 

Figure 70 – MF output signal in a case of input 
sum of two PNS 
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Figure 71 – Rake-receiver 
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In communication networks with multiple access with code division on the in-

put of MF a few broadband signals of different subscribers which are transmitted si-
multaneously and in one band of frequencies, enter into input of matched filter: 

 ( ) ( ),
1

rec ∑
=

=
M

i
i tsts  (5.30) 

where M is an amount of active subscribers. 
For waveform separation of broadband signals property 2 of matched filters is 

used. As a value of function of mutual correlation of broadband signals tends to zero, 
signals, which are not matched with a filter, will not create considerable hindrances 
for a signal, which is matched with a filter. 

5.7 OFDM 

Orthogonal Frequency Division Multiplex (OFDM) realize a parallel-serial 
transmission (figure 72). A communication channel is simultaneously transmit L of 
modulated signals with a serial transfer which has been examined before. For this 
purpose sequence of binary characters is demultiplexed in L parallel sequences 
b(1)(t), b(2)(t), …, b(L)(t)...  On the basis of each of such sequences the modulated sig-
nals of s(1)(t) are formed, s(1)(t), s(2)(t), ..., s(L)(t)  as well as under a serial transfer. 
Sum of signals s(l)(t), l = 1, 2, ..., L forms the modulated signal of parallel-serial 
transmission, which is written down as  
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where ( ) )()( kTts k
il −  – i-th signal, passed by l-th subchannel on k-th clock interval. 

 
 
 
 
 
 
 
 

 
 

The feature of this method of transmission are:  
- rate of digital signals b(l)(t) lower, than signal b(t) in L times;  
- on the output of modulator L of the modulated signals s(l)(t) simultaneously 

present;  
- the modulated signals of separate subchannels s(l)(t) must be such, that they 

can be divided out of a sum (5.31) for separate demodulation; these signals occupy 
different bands of frequencies.  

In real systems the number L can make thousands. If AR and PR of communi-
cation channel are distorting, in the bands of frequencies for separate signals s(l)(t) a 
channel is practically nondistorted. At first glance complication of method of trans-
mission actually requires simple transformations: all L of modulators are realized by 
one procedure of inverse fast Fourier transform. For demodulation direct fast Fourier 
transform is used. OFDM is used in systems of radio contact and digital sound and 
television broadcasting.  
 

Figure 72 – Modulator of parallel-serial transfer: 
DMX – demultiplexer;  

ST mod  – serial transfer modulator 
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6 METHODICAL GUIDELINES FOR FULFILLING LABORATORY W ORKS 

LW 1.2 Researching of random processes probability distributions 

1. Objectives  

Studying and experimental investigation of one-dimensional probability distri-
bution functions and the probability density functions of random processes. 

2. Main principles 

2.1. It is considered that studied processes are stationary and ergodic. In such 
processes one-dimensional probability distribution function and one-dimensional 
probability density function do not depend on time.  

2.2. By definition the values of one-dimensional probability distribution func-
tion F(x) are equal to the probability of that in the arbitrary time moment process. 
X(t) will take on the value that does not exceed x: 

 F(x) = P{ X(t) ≤ x}. (1) 

The value of one-dimensional probability density function p(x) is equal to the 
limit of ratio of probability that in the arbitrary time moment, the process X(t) will 
take on the value on the interval (x – ∆x/2, x + ∆x/2) to the interval length ∆x when 
∆x → 0: 
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The properties of F(x) and p(x) functions shown on the table below are easy to 
prove using their definitional formulas (1) and (2). 

Table 1 – The properties of the functions F(x) and p(x) 
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1 { } dxxpdxxtXxP )()( =+≤<  { }xtXPxF ≤= )()(  

2 { } ∫=≤<
2

1

)()( 21

x

x

dxxpxtXxP  { } )()()( 1221 xFxFxtXxP −=≤<  

3 ∫
∞

∞−
= 1)( dxxp  0)(     ;1)( =−∞=∞ FF  

4 0)( ≥xp  1212       when  )()( xxxFxF >≥  

5 
dx

xdF
xp

)(
)( =  ∫

∞−
=

x

dxxpxF )()(  

 
The functions F(x) and р(x) are used to calculate the hit probabilities of the 

process values on the given interval (line 2, table 1), to perform statistical averaging 
while determination of process characteristics or of the result of certain operation 
with random process. 

2.3. For processes which are often used, analytical expressions of functions 
F(x) and р(x) are known.  
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For Gaussian (normal) process (for example, fluctuation noise): 
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where )(tXa =  is the average value or mathematical expectation of a random process  

 ∫
∞

∞−
= dxxpxa )( ; (4) 

σ – root-mean-square deviation of a random process, it is determined as 

σ = [ ])(tXD ;  

D[X (t)] – dispersion of a random process (an average value of a squared devia-
tion of a value of random process out of its average value) 
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The probability distribution function of normal process has following expres-
sions:  
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– Q-function or addition to Gaussian probability distribution function.  
On figure 1, a, the graphs of the probability distribution are given at а = 1 and 

σ = 0,5. 
Probability distribution of harmonic oscillation X (t) = A⋅cos (2πf t + ϕ), 

where A and f are constants, and ϕ is a random value, is described by the expressions: 
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The average value of harmonic oscillation is equal to zero, and root-mean-

square deviation is equal to 2/A . On figure 1 b, the graphs of probability distribu-
tion of harmonic oscillation are given at А = 2. If х = A, then the value of probability 
density tends towards infinity. 
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Functions F(x) and p(x) for the random process with a uniform distribution  
on the interval (xmin, xmax) are written down as: 
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The average value of the random process with a uniform distribution is equal 
to (xmin + xmax)/2 and root-mean-square deviation is equal to 12/)( minmax xx − . The 
graphs of a uniform probability distribution for xmin = 0 and xmax = 2 are given on fig-
ure 1, c.  

3. Questions 

3.1. What processes are called stationary and ergodic?  
3.2. Give the definition of the one-dimensional probability distribution func-

tion of random process and prove its properties. 
3.3. Give the definition of the one-dimensional probability density function of 

the random process and prove its properties. 
3.4. How can you find the hit probability of process values on defined interval, 

using the probability distribution function or the probability density function? 
3.5. Write down the expressions for the expectation and dispersion of a random 

process. What is their physical meaning? 
3.6. Write down expression for the normal probability distribution function and 

explain the meaning of values considered with it. 
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Figure 1 – The probability distributions: а –of the Gaussian random process;  
b– of the harmonic oscillation; c – random process with a uniform distribution 
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3.7. Explain the type of the graphs of probability distribution function of the 
harmonic oscillation with an accidental phase, fluctuation noise, and the random 
process with a uniform distribution. 

3.8. Describe the principle of operation of devices to measure the probability 
distribution function and probability density function of random process.  

4. Home task  

4.1. Learn chapter "Probabilistic characteristics of a random processes” from 
the compendium of lectures and literature. 

4.2. Perform calculations and build probability distribution function F(x) and 
probability density function p(x) graphs of the normal (Gaussian) random process, 
а = 0 and root-mean-square deviation σ = 1 + 0,1N( where N is a number of work-
group) for the values –3σ < x < 3σ. In the absence of the probability integral table it 
is possible to use the approximation formula:  

Q(z) ≅ 0,65 exp[–0,44(z + 0,75)2] under z > 0; 

Q(z) = 1 – Q(| z|) under z < 0, Q(0) = 0,5, Q(∞) = 0. 

Results of calculations should be presented in the form of tables and graphs. 
4.3 Be ready to discuss key questions. 

5 Laboratory task 

5.1 Acquaintance with a virtual model on a workplace  
Start the program 1.2, using the icon TT(English) on the desktop. It is neces-

sary to study the structure of a virtual model using its description in part 6 of this LW 
and to master entering of parameters. Specify with the teacher the laboratory task per-
formance plan.  

5.2 Research of the random process with a uniform distribution probabil-
ity 

Click in the menu “Choice of process“ item “With a uniform distribution”. 
Place in proper windows values xmin = –1 and xmax = 1. Ultimate values of argument at 
the analysis of distributions are xlow = – 2 and xup = 2. Write down measured average 
value, and root-mean-square deviation, graphs of probability distribution function and 
probability density function. On the instructions of the teacher repeat measurements 
for other values xmin and xmax.  

5.3 Research of a Gaussian process  
Click in the menu “Choice of process” item “Gaussian process”. Place in 

proper windows values а and σ, given in the hometask, and choose values xmin and 
xmax such that they cover a range of values х from а – 3σ up to а + 3σ. Write down 
measured average value, and root-mean-square deviation, graphs of probability dis-
tribution function, and the probability density function. By the instructions of the 
teacher repeat measurements for other values of average value а and root-mean-
square deviation σ. 

5.4 Research of statistical characteristics of a harmonic oscillation 
Click in the menu “Choice of process” item “Harmonic oscillation”. Place in 

proper windows value of amplitude A = 1, value of frequency f of the order 10...20 
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kHz and value of an accidental phase ϕ. Establish ultimate values of argument ana-
lysing of distributions so that they cover a range of values х from –A up to +A. Write 
down measured average value and root-mean-square deviation, graphs of probability 
distribution function, and the probability density function. By the instructions of the 
teacher repeat measurements for other values of  A, frequency f, phase ϕ. 

6 Description of laboratory model 

Laboratory work is performed on a computer in the HP VEE environment us-
ing a virtual model. The block diagram of virtual model is given on figure 2. The 
model enables to investigate characteristics of random process with a uniform prob-
ability distribution, Gaussian random process, and harmonic oscillation. 

This virtual model realizes two basic functions for each process: 
1. Generation of the N samples of researched random process X(t). Samples are 

displayed as “Realization of a process”; 
2. Calculations on the basis of the generated samples of values and displaying 

it: 
а) probability distribution function; 
b) probability density function; 
c) average value of process; 
d) root-mean-square deviation of process. 

For every researched random process different methods of generation of sam-
ples, different parameters of processes are used. 

The generation of samples of process with a uniform distribution is performed 
by the built-in function “randomize”. The values of xmin and xmax are preset in the 
model. 

The generation of samples of Gaussian process is performed by nonlinear 
transformation of two arrays of samples u(i) and v(i) of random process with a uni-
form distribution on an interval (0, 1).  

Transformation is given by 

 NiiviuaiX ,1)),(2cos())(ln(2)( =π⋅−⋅σ+= , (9) 

here i is the number of the sample in an array; а and σ are the average value and root-
mean-square deviation of researched random process, which a researcher sets on a 
model. 

A built-in functional generator performs the generating of samples of harmonic 
oscillation. A researcher sets the amplitude, the frequency, and the initial phase of 
oscillation.  

The calculation of values of probability distribution function and probability 
density function is made in the range of argument values from lower-range value xlow 
and to upper-range value xup. An interval (xlow, xup) is divided on М of identical subin-
tervals with the length ∆x = (xup – xlow)/M; the quantity of samples kj, that get on the j-
th subinterval is calculated (j takes on values from 1 to М). Hit frequency of sample 
values on the j-th subinterval qj = kj/N. In the case of sufficiently large values M and 
N (in the model M = 200, N = 10000) values of frequency qj give the probability of 
getting hit of the sample values on the j-th subinterval. Values hit probability on the j-



 70 

th subinterval is qj = р(хj)∆x, where хj = j∆x (according to line 1 in the table 1). 
Therefore 

 Mj
xxN
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k
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=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Arrays of values р(хj) and хj are displayed as “Probability density function”. 
Using property of probability distribution function F(x) (line 5 table 1), the ar-

ray of values is calculated as: 
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Arrays of values F(хj) and хj are displayed as “Probability distribution func-
tion”. 

The average value of the researched process is calculated by the formula 
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Figure 2 – Virtual model block diagram  
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where X(i), Ni ,1=  is i-th sample of the researched process. The value )(iX  is dis-
played. This display is called “Measured average value”. 

Root-mean-square deviation of the researched process is calculated as 

 ∑
=

−
−

=σ
N

i

iXiX
N 1

2))()((
1

1
. 

The value σ is displayed as “Measured root-mean-square deviation”. 

7 Requirements to a report 

7.1 Title of the laboratory work. 
7.2 Objectives of the laboratory work. 
7.3 Results of the homework performing.  
7.4 Block diagram of researches. 
7.5 Results of the execution of items 5.2–5.5 of laboratory task (graphs, oscil-

lograms, numerical values, etc.). 
7.6 Conclusions on every item of the laboratory task, with analysis of the got 

results: 
- coincidence of form of functions p(x) and F(x) each of researched proc-

ess to theoretical one;  
- implementation of properties p(x) and F(x),  
- coincidence of measured average value and root-mean-square deviation 

with calculated, on the given parameters of the researched process (xmin and xmax, А);  
- dependence of functions p(x) and F(x) on frequency and initial phase of 

harmonic oscillation. 
7.7 Signature of student about the laboratory work performing, teachers signa-

ture for the laboratory work defense with mark and date. 

Literature 

1. Баскаков С.И. Радиотехнические цепы и сигналы: Учебник для ву-
зов.– М.: Радио и связь, 1988 (1983). 

2 Теория передачи сигналов: Учебник для вузов / А.Г. Зюко и др. – М.: 
Радио и связь, 1986. 
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LW 1.3 Researching of correlation characteristics of random processes 
and deterministic signals 

1. Objectives  

1.1 Studying the method of experimental investigation of correlation character-
istics of random processes and deterministic signals.  

1.2 Research of the connection between correlation functions and spectra of 
random processes and deterministic signals.  

2. Main principles 

2.1 The correlation function (CF) of the random process X(t) is the mathemati-
cal expectation of the process values product, which they take on in the time mo-
ments t1 and t2: 

 )()(),( 2121 tXtXttK X ⋅= . (1) 

CF values KХ(t1, t2) determine the quantity of statistical dependence between 
the values of process in the time moments t1 and t2. For the stationary processes, the 
values of the CF do not depend on choice and t2. They depend on the distance be-
tween them τ = t2 – t1. CF is denoted as KX(τ). Further we will consider only station-
ary processes and suppose that they are ergodic. For the ergodic processes CF is de-
termined as:  

 ∫
−∞→

τ+=τ
2/

2/

)()(
1
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T

T
T

X dttxtx
T

K , (2) 

where x(t) is realization of the process X(t). 
2.2 Regardless of the form of the CF of different processes, correlation func-

tion has such properties as: 
– KX(0) = РХ,  where РХ is average power of process; 
– KX(0) ≥ KX(τ) – if τ = 0 the value of the function KX(τ)is maximal; 
– KX(τ) = KX(–τ) – KX(τ) is an even function; 

– KX(∞) → ( )2
tX , where ( )tX  is the average value of the process. 

2.3 The less value of KX(τ) in comparison with KX(0), the less statistical de-
pendence between the values of process, that are distant on τ from one another. If 
KX(τ) = 0, the values of process X(t), that are distant on such time interval as τ, are 
uncorrelated. It is easier to compare the values KX(τ) and KX(0), if to pass to the nor-
malized correlation function  
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R

τ=τ  (3) 

RX(0) = 1 and –1 ≤ RX(τ) ≤ 1.  
2.4 Often, for a description of correlation properties of random processes in-

stead of the CF a correlation time τc is used. The correlation time is used for "rough" 
description of correlation properties of process. Values of process, distant from one 
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another on τ > τc, are uncorrelated. Values of process, that are distant from one an-
other on τ ≤ τc, are correlated. Different methods of determination of correlation time 
are used: 

1) Correlation time τc is the base of rectangle in high KX(0), the area of this rec-
tangle is equal to the area under the curve of the CF module (figure 1, a): 

 ττ=τ ∫
∞

dK
K X

X 0
с )(

)0(

1
 (4) 

2) Such values of τc, should be such that under the τ > τc values of CF do not 
exceed some given level (figure 1, b). 

3) If the CF has an oscillating character, a value of τ under which CF first time 
takes on a zero value, may be taken as the correlation time τc, (figure 1, c).  

 
 
 
 
 
 
 
 
 

 
2.5 According to (2) it is impossible to measure CF precisely, because the re-

alization of process of infinite duration is needed. It is possible to measure CF in case 
of realization of the random process of finite duration. It is obvious that the longer the 
realization of the process Treal, the more precisely measured CF of realization repre-
sents CF of process. The device for measuring CF of realization is named a correla-
tion meter (figure 2). Here delay time τ defines the argument of the measured value 
of the CF. If correlation meter, shown on a figure 2, performed on a processor or on a 
computer, it is possible to get the array of the KХ(kТs) values, where Тs is sampling 
interval of the process realization x(t); the values of argument taken from the interval 
-Treal ≤ kТs≤ Treal. The got arrays of values kТs and KХ(kТs) are displayed.  
 
 
 
 
 
 
 
 
 
 

2.6 The power spectral density GX(f), which determines the distribution of 
power of the process on frequencies, is a main spectral description of random proc-

Figure 1 – Determination of correlation time 
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Figure 2 – Block diagram of correlation meter  
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esses. Quantitatively the function GX(f) determines power of process in bandwidth 1 
Hz near frequency f. Khinchin-Wiener theorem states that the functions KX(τ) and 
GX(ω) are connected by the Fourier transform 
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If the GX(f) function is known, it is possible to define average power of a proc-
ess 

 ( )dffGP XX ∫
∞

=
0

  (6) 

In particular, if a process is a quasi-white noise with the power spectral density 
N0 in band (0, Fmax), so 

 PX = N0⋅Fmax. (7) 

 
2.7 It is often enough to know the bandwidth 

of the process Fmax. The bandwidth of random 
process is determined by the function GX(f) by 
such methods as the bandwidth of the deterministic 
signal. On figure 3 it is shown, how to determine a 
bandwidth under given level y, i.e. Fmax is the 
bandwidth, beyond which the power spectral den-
sity of process does not exceed the value у. 

As KX(τ) and GX(f) functions are bound by 
the Fourier transform, there is connection between 

the bandwidth Fmax and correlation time  τc of the process:  

 τк⋅Fmax = 0,5. (8) 

In expression (8), equal sign “=” means that the product of correlation time and 
bandwidth of process is a value of magnitude 0,5 order.  

2.8 A correlation function is a description of a deterministic signal, but it does 
not have such interpretation, as for a random process. CF of a nonperiodic determi-
nistic signal is determined as 

 ( ) ( ) ( )dttstsK
sT

s τ+=τ ∫
0

,  (9) 

where Ts is duration of signal s(t).  
To measure the CF of a deterministic signal is possible with the correlation 

meter, the block diagram of which is given on figure 2. According to this diagram 
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Figure 3 - Determination  
of bandwidth 
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integration is performed on the interval (0, Ts) and a factor before this integral is 
missed. 

Let s(t) be rectangular video pulse of the amplitude A and duration Tp 
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After substitution of the expression (10) in expression (9) we will get 
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The CF of a rectangular video pulse is shown on figure 4, a. 
It follows from the expression (9) that Ks(0) = Es is the energy of the signal 

s(t). Fourier transform from Ks(t) gives the square of amplitude spectrum (energy 
spectral density) of the signal s(t). The Fourier transform from expression (11) gives 
the square of known expression for the amplitude spectrum of rectangular video pulse 
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2.9 Let consider rectangular radio pulse, duration Tp  
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where A,  f0 and ϕ0 are amplitude, frequency and initial phase of oscillation accord-
ingly. 

After substitution (13) in (9) we will get 
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From expression (14) follows, that CF of rectangular radio pulse is cosine 
curve with a zero initial phase and does not depend on the phase of rectangular radio 
pulse. Therefore, if the initial phase of rectangular radio pulse ϕ0 is random, CF of 
rectangular radio pulse is determined by formula (14). CF envelope of rectangular 
radio pulse coincides with CF of rectangular video pulse. The graph of CF of rectan-
gular radio pulse, built on a formula (14) for f0 = 4/Tp, is given on figure 4, b. 

Fourier transform from expression (14) gives the square of amplitude spectrum 
of signal (12) 
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3. Questions 

3.1 Give the definition of the СF of random process. 
3.2 How to determine CF of the process? 
3.3 Enumerate main properties of the CF of random process. 
3.4 What random process parameters are possible to define according to CF? 
3.5 What does Wiener-Khinchin theorem state? 
3.6 Enumerate methods of correlation time determination. 
3.7 How are bandwidth and correlation time of random process connected? 
3.8 What form has the CF of rectangular video pulse? 
3.9 What form has the CF of rectangular radio pulse? 
3.10 Why does the initial phase of rectangular radio pulse not influence on its 

CF? 

4. Home task  

4.1 Study the chapter "Correlation theory of random processes" from the com-
pendium of lectures and literature [1, p. 73...79, 149...164; 2, p. 67...72]. 

4.2 Build a block diagram of the correlation meter for the research of correla-
tion functions of random processes and deterministic signals. 

4.3 Perform calculations and build graphs for the CF of rectangular video pulse 
and rectangular radio pulse for such input data: Тp = 2 ms, frequency of oscillation of 
radio pulse signal f0 = 500(N + 1) Hz, where N is the number of workplace. Perform 
calculations and build graphs of spectra for the given pulses using expressions (12) 
and (15). 

4.4 Prepare for discussion on key questions. 

5 Laboratory task 

5.1 Acquaintance with a virtual model on a workplace  
Start the program 1.3, using the icon TT(English) on the desktop. It is neces-

sary to study the structure of a virtual model using its description in part 6 of this LW 
and master entering of parameters. Coordinate the plan of fulfilling of the laboratory 
task with the teacher.  
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radio pulse 

А
2
Тp 

Тp –Тp τ 

Ks(τ) 

0 

а 



 77 

5.2 Research of correlation and spectral characteristics of realization of 
noise  

Set in generator of the quasi-white noise Fmax = 1000 Hz. After program execu-
tion, analyse the experimental data and write down it. Check up implementation of 
properties of correlation function, determine maximal frequency on a spectrum, and 
determine correlation time on a correlation function, find their product, compare it 
with the theoretical value (8). Give the visual estimate of the average value of the 
power spectral density N0 on an interval (0, Fmax). Multiply the value of power spec-
tral density N0 on Fmax and compare the product with the value of the measured aver-
age power of realization – expression (7). 

By instructions of the teacher repeat measurements for other values Fmax.  
5.3 Research of correlation and spectral characteristics of rectangular video 

pulse 
Set in the generator of rectangular video pulse A = 2 V, Тp = 0,5 ms. After pro-

gram execution, complete the Ks(τ) and S2(f) graphs. Analyse the experimental data 
and write down it. Compare the experimental dependence S2(f) with the theoretical 
(12); compare the experimental dependence Ks(τ) with the theoretical one(11); com-
pare measured value of pulse energy with the value of Ks(0). 

By instructions of the teacher repeat research for other values А and Тp. 
5.4 Research of correlation and spectral characteristics of rectangular radio 

pulse  
Set in the generator of rectangular radio pulse A = 2 V, f0 = 1000 Hz. After 

program execution, complete the Ks(τ) and S2(f) graphs. Analyse the experimental 
data and write down it. Compare the experimental dependence S2(f) with theoretical 
(15), compare the experimental dependence Ks(τ) with theoretical one(14), and com-
pare the measured value of pulse energy with the value of Ks(0). Write down the 
value of the initial phase. Launch the program and make sure, that a correlation func-
tion does not depend on an initial phase.  

By instructions of the teacher repeat research for other values А and Тp. 

6 Description of laboratory model 

Laboratory work is performed on a computer in the HP VEE environment us-
ing of virtual model. The block diagram of virtual model is given on figure 5. A 
model contains the following generators: 

– generator of noise, which produce the realization of quasi-white noise with 
the band (0, Fmax), with duration 20 ms, in the form of 5000 samples; it is possible to 
set the Fmax value 1000, 2000 and 3000 Hz; 

– generator of single rectangular video pulse allows to set pulse duration 0,5, 1 
and 1,5 ms and arbitrary amplitude of pulse; 

– generator of rectangular radio pulse, with duration 2 ms, allows to set arbi-
trary amplitude of pulse and frequency of oscillation  f0 1000, 2000 and 3000 Hz. The 
initial phase of oscillation is a random value, this value is displayed on the indicator 
ϕ. 

The switch S allows to choose the researched process. 
If noise is chosen for research, on displays are represented: 
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– noise realization; 
– value of the measured average power of realization; 
– correlation function of realization, calculated using the algorithm which is 

given on figure 2; 
– power spectral density of noise realization, got as Fourier transform from the 

correlation function of realization. The program generates samples of quasi-white 
noise. However, because of few samples, the spectrum is far from white in the band 
(0, Fmax).  

If a rectangular video pulse or rectangular radio pulse is chosen, on displays 
are represented: 

– pulse oscillogramms; 
– measured pulse energy value; 
– correlation function of pulse, calculated by formula (9); 
– square of amplitude spectrum of pulse, got as Fourier transform from the cor-

relation function of pulse. 
In all cases for the calculation of CF the built-in function “Xcorrelate” is used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Requirements to the report 

7.1 Title of laboratory work. 
7.2 Objectives of laboratory work. 
7.3 Results of homework performing.   
7.4 Block diagram of researches, list of devices which are used in LW. 
7.5 Results of implementation of items 5.2-5.4 of laboratory task (graphs, os-

cillogramms, numerical values, etc.). 
7.6 Conclusions on every item of laboratory task, with analysis of the got re-

sults (review of implementation of correlation functions properties, coincidence of 
experimental and theoretical data, etc.). 
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Figure 5 - Block diagram of virtual model 
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7.7 Signature of student about the laboratory work implementation, signature 
of teacher about the laboratory work defence with mark, date. 
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LW 1.4 Researching of АМ, DSB-SC and SSB modulated signals  

1. Work objectives  

1.1 Research of time and spectral characteristics of analog modulated signals.  
1.2 Research of relation between characteristics of modulated and modulating 

signal. 

2 Main principles 

2.1 Carrier, in the case of amplitude (АМ), double-sideband-suppressed-carrier 
(DSB-SC) and single-sideband (SSB) modulations is harmonic oscillation 
ucar(t) = A0 cos(2πf0t + ϕ 0). Modulating signal is a telecommunication baseband con-
tinuous signal b(t) with such characteristics: 

– signal spectrum maximum frequency is Fmax; 
– signal is normalized such as module maximum values b(t)max = 1; 
– signal average value .0)( =tb  
2.2 In case of АМ the carrier amplitude changes are proportional to instant 

values of a modulating signal, i.e. amplitude of the modulated sig-
nal )()( 0 tAbAtA ∆+= , where ∆A – factor of proportionality which is chosen in such 

way that amplitude A(t) does not accept negative values. As b(t)max = 1, so ∆A de-
fines the greatest carrier amplitude change on the module. In order the amplitude A(t) 
does not accept negative values, it is necessary to provide ∆A ≤ A0. Frequency and 
initial phase of a carrier are invariable. It is convenient to pass to a relative maximum 
change of amplitude – the amplitude modulation factor mАМ = ∆A/A0. It is clear, that 
0 < mАМ ≤ 1. 

Analytical expression of АМ signal in case of any modulating signal looks like 

 )2cos()](1[)( 00АМ0АМ ϕ+π+= tftbmAts . (1) 

We see, that parameters of АМ signal are mАМ, A0, f0 and ϕ0. Time diagram of 
АМ signal is shown on figure 1. It is interesting  that envelope of the modulated sig-
nal repeats the form of a modulating signal – amplitude of АМ signal A(t) is envelope 
of high-frequency oscillations cos(2πf0t + ϕ0) (on figure 1 envelope is represented by 
a dashed-line curve). 

2.3 On figure 2 any amplitude spectrum of a modulating signal and amplitude 
spectrum of АМ signal corresponding to it are shown. Amplitude spectrum of АМ 
signal consists of carrier frequency harmonic oscillation, of upper sideband of fre-
quencies (USB) and lower sideband of frequencies (LSB). Thus USB is a copy of a 
spectrum of the modulating signal, which is shifted on frequency on f0. LSB is mirror 
reflection of USB relatively to carrier frequency f0.  

Figure 2 shows the important result: the АМ signal spectrum width FАМ is 
equal to the doubled value of modulating signal spectrum maximum frequency, i.e. 
FАМ = 2Fmax. 

2.4 Calculations show, if modulating signals are telecommunication baseband 
signals than sidebands power makes some percent out of modulated signal power. 
Therefore it is expedient to generate a signal with a spectrum, which consists only of 
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two frequencies sidebands (carrier frequency oscillation is absent), – such signal is 
the signal of double-sideband-suppressed-carrier modulation. 

Such kind of modulation when the modulated signal is a product of a modulat-
ing signal and a carrier is called double-sideband-suppressed-carrier. Analytical ex-
pression signal DSB-SC looks like 

 )2cos()()( 000SC-DSB ϕ+π= tftbAts . (2) 

Time diagrams of the modulating and modulated signals are shown on figure 3. 
As the modulating signal influences on amplitude of a carrier, DSB-SC considered as 
version of АМ. From figure 3 it is clear, that envelope of signal DSB-SC 
A(t) = A0b(t) (shown by a dashed line) does not repeat modulating signal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From comparison of the mathematical expressions describing АМ signal (1) 

and DSB-SC signal (2) we see, that spectrum DSB-SC signal differs from spectrum 
АМ signal with the absence of carrier frequency oscillation. On figure 4 any ampli-
tude spectrum of a modulating signal and DSB-SC signal amplitude spectrum corre-
sponding to it, which consists of USB and LSB, are shown. From figure 4 follows, 
that DSB-SC signal spectrum width FDSB-SC is the same, as АМ signal spectrum 
width: FDSB-SC = 2Fmax. 

2.5 Such kind of modulation whereby the modulated signal spectrum coincide 
with modulating signal spectrum shifted on carrier frequency or the modulated signal 
spectrum is an inversion of the shifted spectrum according to carrier frequency, is 
called single-sideband modulation. The SSB signal spectrum contains one sideband – 
upper or lower. The SSB signal can be written as 

 )sin()(
~

)cos()()( 000000SSB ϕ+ωϕ+ω= ttbAttbAts m , (3) 

where the sign “–” concerns the description of a signal with the upper sideband of 
frequencies, and a sign “+” – with the lower sideband; )(

~
tb  – conjugated on Hilbert 

signal with a signal b(t). The physical sense of Hilbert transform is simple enough: 

USB

sАМ(t) 

t 

b(t) 

t 

Figure 1 – Modulating b(t) and  
modulated sАМ(t) signals 

SАМ(f) 

f f0 f0+Fmax f0–Fmax 

 A0πδ(f–f0) 
Fmax f 

Sb(f) 

LSB 

Figure 2 – Modulating and АМ  
signals spectrum 
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signal )(
~

tb  differs from signal b(t) so that phases of all its components are shifted on 

a π/2 angle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time modulating signal diagrams b(t), conjugated on Hilbert )(
~

tb  and SSB 
signal are shown on figure 5. From figure 5 it is clear, that envelope SSB signal 

A(t) = A0
22 ~

bb +  (it is shown by a dashed line) does not repeat modulating signal.  
On figure 6 any amplitude spectrum of a modulating signal and an amplitude 

spectrum corresponding to it SSB USB signal are shown. From figure 6 follows, that 
the width of SSB signal spectrum FSSB is twice less than width of АМ and DSB-SC 
signals spectrum: FSSB = Fmax. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2.6 Mathematical models of АМ, DSB-SC and SSB signals as (1...3) are used 

for designing signal forming schemes and signals detecting. 
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Figure 6 – Modulating and the 
SSB signals spectrum 
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3 Questions 

3.1 What is the purpose of modulation usage in telecommunication systems? 
3.2 Give the definition of amplitude, double-sideband-suppressed-carrier and 

single-sideband modulations. 
3.3 What is the amplitude modulation factor? What values can it accept? 
3.4 What is Hilbert transform? What is its physical essence? 
3.5 Draw time diagrams АМ, DSB-SC and SSB signals if a modulating signal 

is harmonic oscillation. 
3.6 Represent АМ, DSB-SC and SSB signals spectra if a modulating signal is 

harmonic oscillation  . 
3.7 Represent АМ, DSB-SC and SSB signals spectra at a set modulating signal 

spectrum. 
3.8 Explain, why SSB signal envelope on figure 5 has such kind? 

4 Home task  

4.1 Study section “Amplitude modulation and its versions” on the compendium 
of lectures and the literature [1, pp. 53-60; 2, pp. 88-96] and on the description of a 
laboratory model in section 6 of these instructions. 

4.2 Carrier oscillation of frequency f0 are modulated by a baseband signal 
b(t) = A1sin(2πF1t) + A2sin(2πF2t) + A3sin(2πF3t). Represent baseband signal spec-
trum and АМ, DSB-SC and SSB signals spectra (put mАМ = 1). Initial data of the task 
according to your laboratory place number are given in table 1. 

4.3 Be ready to discuss the questions. 
 
 

Table 1 – Initial data for the home task 
Workplace 

number  
А1, V F1, Hz А2, V F2, Hz А3, V F3, Hz f0, Hz 

1 0,3 50 0,4 100 0,3 250 800 
2 0,3 100 0,3 200 0,4 300 900 
3 0,4 50 0,3 200 0,3 250 1000 
4 0,3 100 0,4 150 0,3 250 1100 
5 0,3 50 0,3 250 0,4 300 1200 
6 0,4 100 0,3 250 0,3 300 1000 
7 0,3 50 0,4 100 0,3 150 800 
8 0,3 100 0,3 200 0,4 300 900 

5 Laboratory task 

5.1 Acutance with a virtual model on a workplace.  
Start the program 1.4, using the icon TT(English) on the desktop. Study 

scheme model, using the description in section 6 of this LW. Specify with the teacher 
the laboratory task performance plan. 

5.2 Сarry out researches of the modulated signals in time and frequency do-
main. For this purpose: 
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– set values A1, F1, A2, F2, A3, F3, factor mАМ and frequency f 0 the same, as  in 
the homework; 

– set the АМ modulation kind and run the program; 
– draw in the report the signals oscillogram and the spectrogram on the modu-

lator input and output;  
– set sequentially DSB-SC, USB SSB, LSB SSB modulation kinds, run the 

program and draw  in the report the signals on the modulator output spectrogram; 
– compare calculated in a homework and the obtained on model spectrograms, 

compare results write down into report conclusions; 
– make the conclusions concerning correspondence of modulating signal forms 

and envelope of the modulated signal for modulation of different kinds. 
5.3 Сarry out modulated signals spectrum researches in case of changing 

carrier frequency. For this purpose at first increase on 200 Hz, and then reduce on 
200 Hz carrier frequency, draw in the report obtained signals spectrogram on the 
modulator output. Put in the report conclusions the changes in spectrograms in com-
parison with received in item 5.2. 

5.4 Сarry out research of АМ signal spectrum dependence on modulation 
factor. For this purpose: 

– set parameters A1, F1, A2, F2, A3, F3 and frequency f0 the same, as in the home 
task; 

– set a kind of АМ modulation and factor mАМ =0,7; 
– compare the obtained oscillograms and spectrograms on the output of the 

modulator with obtained in item 5.2, results of comparison put in report conclusions. 
5.5 Carry out research of the SSB signal in case of a single-tone modulat-

ing signal. For this purpose: 
– set values A1 = 1V, F1 = 100 Hz, A2 = A3 = 0, frequency f 0 the same, as  in 

the home task; 
– set a kind of SSB USB, and then SSB LSB modulation; 
– draw in the report b(t), )(

~
tb  and sSSB(t) signals oscillogram and spectrogram;  

– make conclusions concerning correspondence of b(t), )(
~

tb , sSSB(t) signals 

and envelope of the modulated signal A(t) = A0
22 ~

bb + .  

6 Laboratory model description  

Laboratory work is carried out on the computer in the environment of HP VEE 
with usage of the virtual model which block diagram is on figure 7. 

Virtual model consists of the modulating continuous signal generator 
b(t) = A1sin(2πF1t) + A2sin(2πF2t) + A3sin(2πF3t) and the modulator (the carrier gen-
erator is a part of the modulator). Harmonic oscillation frequencies and amplitudes 
values A1, F1, A2, F2, A3, F3, f0, factor mАМ and carrier frequency is possible to 
change. 

The virtual model scheme gives the chance to set modulation kinds: АМ, 
DSB-SC, SSB USB and SSB LSB. Time and spectral diagrams of signals can be ob-
served in two points of the virtual model scheme: on the modulator input and output. 
In a case of SSB  oscillograph on modulator input displays not only modulating sig-
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nal b(t) but a signal )(
~

tb  too. Together with modulated signal oscillogram, the sched-
ule of signal envelope is drawn by dotted line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7 Requirements to the report 

7.1 Laboratory work title. 
7.2 Work purpose. 
7.3 Results of home task performance. 
7.4 Block diagrams of researches and results of performance of item 5.2... 5.5 

in the laboratory tasks (oscillograms and spectrograms, each of it should have the 
caption). 

7.5 Conclusions on each item of the task in which you have to give the analysis 
of the obtained results (coincidence of theoretical and experimental data, displayed 
signals properties, etc.). 

7.6 Date, the student signature, the teacher visa with mark . 

Literature 

1. Панфілов І. П., Дирда В. Ю., Капацін А. В. Теорія електричного 
зв’язку: Підручник для студентів вузів 1-го та 2-го рівнів акредитації. – К.: Тех-
ніка, 1998. 

2. Баскаков С. И. Радиотехнические цепы и сигналы. Учебник для ву-
зов.– М.: Радио и связь, 1988 (1983). 
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Figure 7 – Virtual model block diagram 
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LW 1.5 Research of digital modulated signals 

1. Objectives  

1.1 Study of transmission methods of digital signals with modulated MASK, 
MPSK and BFSK signals. 

1.2 Research of time and spectral characteristics of MASK and MPSK signals 
for  M = 2 and 4 and BFSK signal. 

2. Main principles 

2.1 A baseband digital signal bd(t) is a sequence of binary symbols (bits) 1 and 
0, that follow in clock interval Тb. In digital devices  the rectangular pulse of high 
level corresponds to symbol 1, and the pulse of low level corresponds to symbol 0. 

2.2 A digital modulation signal s(t) is a sequence of radio pulses, that reflect a 
baseband signal and follow in clock interval T: 

 ( )∑
∞

−∞=
−=

k

k
i kTtsts )()( , (1) 

where si(t), i = 0, …, М – 1, are the elementary signals (radio pulses); 
M  is a number of elementary signals; 

( )kTts k
i −)(   is the i-y radio pulse, that is transmitted on k-y time interval;  

T is a clock interval. 
2.3 The general mathematical expression for radio pulse is:  

 ( ) ( ),2cos)( iiii tftAats ϕ+π=   і = 0, 1, …М – 1, (2) 

where ai, fi, ϕi – the parameters which are defined by a form of digital modulation;  
)(tA – a function, that determines the form of pulse. 

Radio pulses can differ in amplitudes, phases or frequencies. There are differ-
ent types of digital modulation, for example:  

– MASK is M-ary amplitude modulation (pulses differ in parameter ai);  
– MPSK is M-ary phase modulation;  
– MAPSK is M-ary amplitude-phase modulation;  
– MQAM is M-ary quadrature-amplitude modulation;  
– MFSK is M-ary frequency modulation.  
If M = 2, there is the binary s(t) signal: radio pulse )(0 ts  is used for transmis-

sion 0, and radio pulse )(1 ts  – for transmission 1. If M > 2, the multi-level signal s(t) 
takes place. As a rule, M = 4, 8, …, 2n, where n is an integer. Here every radio pulse 
si(t) is used for transmission of n = log2M bits of baseband digital signal bd(t). Map-
ping code sets the concrete bit sequence, that each radio pulse keeps. In the case of 
binary signals the clock interval Т = Тb, but in the case of multi-level signals, the 
clock interval increased: Т = Тb log2M. 

In the case of MASK and BPSK signals, elementary signals can be written as:  

 ( ) 1 ..., ,1 ,0     ,2cos)()( 0 −=π= MitftAats ii , (3) 

where ia  is a number which represents n bits, that  the )(tsi  signal keeps; 
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f0 is the carrier frequency.  
In the case of MPSK (M ≥ 4) and MAPSK, it is convenient to describe the 

elementary )(tsi  signals with cosine and sine components: 

 1 ..., ,1 ,0     ,2sin)(2cos)()( 00 −=π+π= MitftAbtftAats iii ,  (4) 

where ia , ib  are coefficients, representing a sequence of n bits, that is transfered by 
the elementary signal )(tsi . 

The following record is equivalent to expression (4): 

 ( ) 1 ..., ,1 ,0     ,2cos)()( 0 −=ϕ−π= MitftAАts iii , (5) 

( )iiiiii abbaA arctg,22 =ϕ+= , i.e. expression (4) maps radio pulse.  

2.4 It is accepted to represent the elementary signals )(tsi  as signal points in a 
certain space. Diagrams on which elementary signals are represented as signal points 
are called signal constellations. The purpose of such representation is to reflect the 
difference of signals.  

As it follows from the expression (3), elementary signals, in the case of MASK 
and BPSK signals, differ only in the coefficientsia . Therefore, the signal points of 
MASK and BPSK signals are located on a numerical axis, and the MASK and BPSK 
signals are named one-dimensional (figure1). On this figure the mapping codes are 
also reflected (the index i corresponds to a binary number, which is formed by trans-
mitting bits): 

– BASK signal: the transmission of 0 corresponds to 0a = 0, and the transmis-
sion of 1 corresponds to aa =1 .  

– BPSK signal: 0 aa −=→ 0 ; 1 → aa =1 . 

– QASK signal: 00 → aa −=0 ; 01 → aa 31 −= ; 10 → aa =2 ; 11 → aa 33 = . 
The number adetermines the energies of elementary signals. 

MAPSK and MPSK (M ≥ 4) signals are two-dimensional since elementary sig-
nals in expression (4) are described by two coefficients. Functions π2sin)(tA tf0  
and π2cos)(tA tf0 , that are presented in expression (4), are orthogonal, and they 
form two-dimensional space. Signal constellations of two-dimensional signals are 
reflected on a plane. For example, the signal constellation of QPSK signal is shown 
on figure 2. Here xsymbolizes π2cos tf0  oscillation, and y  symbolizes π2sin tf0  
oscillation. It is taken into account that for the MPSK signals expression (5) can be 
rewritten in that form: 

 ( ) 1 ..., ,1 ,0     ,2cos)()( 0 −=ϕ−π= MitftаAts ii .  (6) 

The mapping code of QPSK signal on figure 2, is:  
00 → 0ϕ  = 135° ( aa −=0 ; ab =0 ); 

01 → 1ϕ  = 45°  ( aa =1 ; ab =1 ); 

10 → 2ϕ  = 225° ( aa −=2 ; ab −=2 ); 

11 → 3ϕ  = 315°  ( aa =3 ; ab −=3 ). 
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2.5 As it follows from expression (2), elementary pulses are the signals of ana-
logue double-sideband-suppressed-carrier (DSB-SC) and, therefore, the spectrum of 
radio pulse si(t) consists of two side bands, concentrated near the carrier frequency0f . 
Spectral properties of si(t) radio pulse are determined by the A(t) function. 

If A(t) function is a rectangular pulse of T duration, a radio pulse spectrum is 
wide. But it is important for the transmission of digital signals to form a compact 
spectrum. In order, that the spectrum of si(t) radio pulse will be compact, and inter-
symbol interference would be absent, a function A(t) must be Nyquist pulse. Then 
side bands will be the copies of Nyquist spectrum (figure 3), and the width of spec-
trum of MASK and BPSK signals is determined by expression: 

 ( )
MTT

fF
b

N
2log

11
12

α+=α+=α+= ,  (7) 

where Tf N /5,0= is the Nyquist frequency;  

α is a roll-off factor (0 ≤ α ≤ 1). 
Signals, that are introduced by ex-

pression (4), are the sum of two DSB-SC 
signals with the identical amplitude spec-
tra that are determined by the spectrum of 

)(tA  signal. The amplitude spectra of 
DSB-SC signals add, and the spectrum of 
their sum has the shape, shown on figure 
3, if )(tA  is the Nyquist pulse. Therefore, 
the bandwidth of elementary signals of 
MPSK and MAPSK is described by ex-
pression (7). 

An important conclusion follows 
from expression (7) – increasing the number of signal positions courses decreasing 
the bandwidth of elementary signals (2). 

2.6 Process of forming one-dimensional and two-dimensional signals on the 
basis of expressions (3) and (4) is following: the mapper puts in accordance  
n = M2log of input bits to the two rectangular pulses with amplitudes ia and ib (in the 

Figure 1 – Signal constellations of signals:  
а – BASK; b – BPSK; c – QASK 
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case of one-dimensional signals only one pulse with amplitude ia  takes place; ib  =  ); 
rectangular pulses are filtered by shaping low-pass filters (LPF) to get Nyquist 
pulses; the pulses )(tAai  and )(tAbi enter DSB-SC modulator input; the got DSB-SC 
signals are summing up. 

2.7 The BFSK signal is formed on the basis of radio pulses, that are differ in 
frequencies: 

 
( )( )
( )( ),22cos)()(

,22cos)()(

01

00

tfftаAts

tfftaAts

∆+π=
∆−π=

  (8) 

where f∆  is the frequency deviation; 
a is the coefficient, that determines the energy of signals. 
If the )(tA  function is rectangular pulse, it is necessary to provide forming of 

signal without the “break” of phase in the BFSK modulator. It is possible, if fre-
quency separation equals )2/( Tkf =∆ , k = 1, 2, 3, ...; Т = Тb. If k = 1, so Tf /5,0=∆ , 
then modulation is called “minimum shift keying” (MSK). In the case of MSK the 
normalized spectrum of signal is described by expression: 

 
( )( )

( )( )( )2
0

0

412

4cos1
)(

Tff

Tff
fS

−−

−π+
= .  (9) 

The diagram of dependence (9) is shown on figure 4. With increasing of the 
difference 0ff − , the spectrum decreases with the speed equals 2/1 f . If to define 

the bandwidth FMSK on the first zeros of dependence (9), we have  

 FMSK = T/5,1 . (10) 

In order to get the BFSK signal with a narrow spectrum and without intersym-
bol interference, it is necessary, function )(tA  to be the Nyquist pulse. In this case it 
is possible to consider, that the spectrum of signal sBFSK(t) is the sum of spectra of 
two radio pulses with central frequencies 2/0 ff ∆−  and 2/0 ff ∆+ . The normalized 
spectrum of BFSK signal is shown on figure 5. It is shown, that frequency deviation 
is minimum, if the spectrums of radio pulses adjoin to each other, and this frequency 
deviation is equal: 

 
T

f
α+=∆ 1

min .  (11) 

Then bandwidth of BFSK signal is: 
 

 
ТТ

fF
)1(21

minBFSK
α+=α++∆= ,  (12) 

i.e. two times as large then bandwidth of signals BASK and BPSK. 
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The forming BFSK signals differs from forming MPSK signals by working of 
mapper and by that the reference frequencies of generators in DSB-SC modulators 
differ on the value ∆f/2 from carrier frequency. 
 
 
 
 
 
 
 
 
 
 
 

3. Questions 

3.1 What is the aim of using the modulation in the telecommunication sys-
tems? 

3.2 Give the definition of digital signal. 
3.3 Give the definitions of digital modulation signals:  MASK; MPSK; MFSK. 
3.4 Why are the radio-frequency pulses with rectangular envelope not used for 

transmitting digital signals through communication channels?  What form must pulse 
envelope have?  

3.5 What are the forms of the spectra of MASK; MPSK; MFSK signals? 
3.6 What are the multi-level signals for transmitting digital signals through 

communication channels used for? 
3.7 What signals of digital modulations are one-dimensional, and what signals 

are two-dimensional? 

4. Home task  

4.1 Study the section "Digital types of modulation" with the compendium of 
lectures and main positions of this work. while studing this theme you must use the 
literature [1, p. 196…204, 231…234]. 

4.2 Given clock period: T= 50 ms. It is necessary to build the time diagrams of 
elementary radio pulses of frequency 0f = 40 Hz for two cases: with rectangular en-
velope and with Nyquist pulse envelope. 

Note. It is necessary to take into account that elementary radio pulse is the 
product of rectangular pulse of duration T or Nyquist pulse, and harmonic wave. In a 
case of Nyquist pulse it is possible to take a function 

( )
Tt

Tt
tA

π
π= sin

)( . 

Draw diagram of this function on interval (–4T, 4T). 
4.3 Be ready to answer questions. 
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5 Laboratory task 

5.1 Acquaintance with a virtual model on a workplace.  
Start the program 1.5, using the icon TT(English) on the desktop. Study 

scheme model, using the description in section 6 of this LW. Specify with the teacher 
the laboratory task performance plan. 

5.2 Preparation of a virtual model. 
It is necessary to set a digital signal. For that give a decimal number 128 + 10N 

(N is a number of laboratory stand) by binary number. The roll-off factor is equal 
α = 1 – 0,1 N. 

5.3 Research of the form and spectrum of BASK and QASK signals as the 
functions of envelope form. 

For this purpose it is necessary to set: type of modulation – BASK; envelope 
form is a rectangular pulse. You should fix in protocol one under one the time dia-
grams of the following signals: the digital signal; the output signal of mapper; the 
modulated signal. Also fix the spectral diagram of the modulated signal. After that it 
is necessary to set the second envelope form – the Nyquist pulse. Fix in protocol the 
time and spectral diagrams of the modulated signal.  

The same research performs for the QASK signal. 
In conclusions, on the basis of comparison of spectral diagrams, you should in-

dicate the appropriateness of using the radio-frequency pulses with Nyquist pulse en-
velope and the appropriateness of using the multi-positional signals for decreasing the 
occupied frequency band. 

5.4 Research of the form and spectrum of BPSK and QPSK signals as the func-
tions of envelope form. 

Repeat the researches, performed in it. 5.3, for the BPSK and QPSK signals. 
Compare the spectra of MASK and MPSK signals. 

5.5 Research of the form and spectrum of BFSK signal as the functions of 
envelope form. 

Repeat researches, completed in it. 5.3 and 5.4, for the MSK and BFSK sig-
nals. Compare the spectra of BASK, MSK and BFSK signals. 

6 Description of laboratory model 

The laboratory work is performed on a computer program in the HP VEE envi-
ronment with using the virtual model. The structure scheme of model is shown on 
figure 6. 

A model is universal modulator of digital modulated signals. It includes the 
digital signal generator with duration equals 8Tb, signal symbols can be changed. 
Given bit duration is: Tb = 50 ms. Modulator consists of the followings blocks: map-
per; shaping filters; carrier generators; two multipliers and adder. The setting of 
modulation type affects on the mapping code of an encoder and carrier generators and 
permits to set the followings types of modulation: BASK, QASK, BPSK, QPSK, and 
QFSK. The signals from two encoder outputs enter the filter inputs, shaping the radio 
pulse envelopes in the form of the Nyquist pulse. The scheme contains a switch, al-
lowing to exclude the shaping filters from the scheme, so radio pulse have the rectan-
gular envelope. The formed pulses are multiplied with carriers. Given carrier fre-
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quency 0f  is equal 40 Hz. In the case of BFSK the frequency deviation f∆  is set in 
accordance with a formula (9), and in the case of MMS the frequency deviation 

./5,0 Tf =∆  Model has oscillographs and spectrum analyser.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Requirements to the report 

7.1 Title of laboratory work. 
7.2 Objectives of work. 
7.3 Results of the home task processing. 
7.4 The structure schemes of the every laboratory task processing. 
7.5 The results of performing of LW items (oscillograms and spectrograms, 

with captions). 
7.6 The conclusions on every item of task, in which it is necessary to make the 

analyses of the got results (coincidence of theoretical and experimental data, showing 
properties of signals, etc.). 

7.7 The date, signature of student, visa of the teacher with mark.  

Literature 

1. Скляр Б. Цифровая связь. Теоретические основы и практическое 
применение. 2-е издание.: Пер. с англ. – М.: Издательский дом «Вильямс», 
2003. – 1104 с.  
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7 METHODICAL GUIDELINES FOR FULFILLING INDIVIDUAL T ASKS 

IT № 1.1 Calculation of random process characteristics  

Initial data:  

The white Gaussian noise N(t) (Volts) with the one-sided spectral power den-
sity N0 on the input of low-pass filter (LPF) with given amplitude response (AR) H(f), 
0≤ f < ∞ is given. 

It is necessary to: 

1. Write input data of your variant.  
2. Find expression for the noise spectral power density X(t) on the LPF output 

GX(f) and build the graph of this function. 
3. Define average power of the noise X(t). 
4. Define the effective bandwidth ∆feff of noise X(t) and show it on the graph 

of the GX(f) function. 
5. Find expression for the correlation function of noise X(t) on the LPF output 

KX(τ) and build the graph of this function. 
6. Define the correlation time τc of noise X(t) and show it on the graph of the 

KX(τ) function. 
7. Calculate the product of ∆feffτc. 
8. Define probability that in the arbitrary time moment noise X(t) will take on 

the value on the given interval (x1,  x2). 
9. Give the list of used literature; there must be references on used literary 

source with pointing of subsections or numbers of pages in the text of the performed 
individual task.  
 

Table 1– Given types of filter (the number of variant is determined by the two 
last number of your student’s book number)  
№ variant Type of filter 

00...24 
Ideal LPF with AR H(f ) = 





>
≤≤

,,0

,0,1

cut

cut

Ff

Ff
 

where Fcut is the LPF cut off frequency  
25...49 

RC-filter with AR H(f )= 
2

f )2(1

1

τπ+ f
, 

where τf is the LPF time constant  
50…74 

Butterworth filter with AR H(f )= 
nFf 2

cut)(1

1

+
,  

where n is the filter order, let n = 2; Fcut is the filter cut off frequency  
75...99 Gaussian filter with AR H(f )= exp(–a2f 2), 

where а – the coefficient determining the LPF AR slope  
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Table 2 – Given numerical values (the number of variant is determined by the 
last number of your student’s book number)  

 
Methodical instructions to performance IT № 1.1 

Look through [1, p. 133...145; 2, p. 49...60].  Next sequence of the Individual 
task № 1.1 performance is recommended. 

1. Spectral power density of noise X(t) on the LPF output is determined by ex-
pression 

 GX(f ) = GN(f )H2(f ) = N0H
2(f ), 

it is necessary to build the graph of the GX(f ) function for the interval of frequency 
values from 0 to the value, at which GX(f ) <<GX(0). 

2. Average power of noise X(t) is determined by the integral 

 ∫
∞

=
0

)( dffGP XX . 

3. The effective bandwidth ∆feff of noise X(t) is determined 

 ( ) ∫
∞

=∆
0

eff )(
0

1
dffG

G
f X

X

   or    ∆feff  = ( )0X

X

G

P
, 

value ∆feff  must be shown on the graph of the GX(f ) function. 
4. The correlation function of the noise X(t) is determined 

 ( ) ∫
∞

τπ=τ
0

2cos)( dfffGK XX . 

It is necessary to build the graph of the KX(τ) function for the interval of values 
τ from 0 to the value, at which KX(τ)<<KX(0). It is useful to check implementation 
of main properties of correlation function:  

− KX(τ) – is even function; 
− KX(0) = PX, where РХ  is average power of process; 
− KX(0) ≥ KX(τ).  
5. Correlation time τc of the noise X(t) is possible to define by one of the fol-

lowing methods:  
– as a value of τ, when the KX(τ) function first time takes on a zero value (it is 

comfortable in the case of ideal LPF); 
– as a value of τ, when function KX(τ) = 0,1KX(0); 

№ variant 0 1 2 3 4 5 6 7 8 9 
N0, 10–6  V2/Hz 0,1 5 2 1 40 10 200 100 5000 1000 
Fcut, 105 Hz 100 4 20 40 1 6 0,3 0,8 0,02 0,1 
τf, 10–6  s 0,04 0,6 0,2 0,06 2 0,4 7 3 100 20 
а, 10–7  s 0,5 15 3 1,5 60 10 200 75 3000 600 
х1, V – ∞ – 0,5 0 0 1 2 – ∞ 2 4 0 
x2, V 1 0,5 ∞ 3 3 ∞ 0 4 ∞ 4 
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– as a result of calculation of integral 

 ( ) ( )∫
∞

ττ=τ
0

c 0

1
dK

K X
X

. 

The value of τc must be shown on the graph of the KX(τ) function; 
6. Calculate the product ∆feffτc. The result of this product is a value of order 

0,5. 
7. To determine probability that in the arbitrary time moment noise X(t) will 

take on the value on interval (x1, x2), it is necessary to use expression  

 P{ x1 < X(t) ≤ x2} = F(x2) – F(x1),  

where F(x) is probability distribution function of the noise X(t). If Gaussian process 
acts on the input of linear electric circuit, process on the output also has Gaussian 
probability distribution. For Gaussian processes the function of probability distribu-
tion is written down:  

 ( ) ( )
,1 








σ
−−=

X

tXx
QxF  

where ( ) ∫
∞









−

π
=

z

dt
t

zQ
2

exp
2

1 2

 is Q-function or addition to Gaussian probability 

distribution function;  
)(tX – is the average value or the expectation of a noise X(t) (in our task )(tX = 0); 

σX –root-mean-square deviation of a random process, it is determined as 

σX = [ ])(tXD ; 

D[X (t)] – variance of a noise X(t), as )(tX = 0, then  D[X(t)] = PX. 
In the absence Q-function table it is possible to take advantage of approximate 

formula: 

 Q(z) ≅ 0,65 exp[–0,44(z + 0,75)2]  when z > 0; 

 Q(z) = 1 – Q(| z|)  when  z < 0;  Q(0) = 0,5;  Q(∞) = 0. 

For the PX, KX(τ), and τc definition you can use following expressions: 
 

τπ
τπ=τπ∫

cut

cut
cut

0 2

2sin
2cos

cut

F

F
Fdff

F

;  
2222 4/

0

e
2

cose abxa

a
dxxb −

∞
− π=∫  when a > 0; 

( )mama
a

e
dx

ax

mx ma

cossin
84

cos

0
344

+π=
+∫

∞ −
; adx

x

ax −
∞ π=

+∫ e
21

cos

0
2

; 

∫ = axax e
a

dxe
1

. 
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IT № 1.2 Description and calculation of digital modulated signals charac-
teristics 

Initial data:  

– two types of digital modulation (table 1);  
– rate of modulating digital signal (table 2);  
– roll-off factor of spectrum of the modulated signal (table 2);  

It is necessary:  

1. Write down initial data of your variant.  
2. Draw on the same figure 2 time diagrams of:  
а) realization of digital modulating signal (8–9 binary symbols – two last num-

bers given by the teacher variant, written in the binary numeration);  
b) modulated signals of given modulation types; considering that, radio pulse 

envelop is rectangular.  
3. Build signal constellations of given modulation types, on signal constellation 

point out a mapping code.  
4. Write analytical expressions of channel symbols of given modulation types.  
5. Consider that average energy of signals, contained while the transmission of 

one binary symbol, Еb = const; calculate for given modulation types minimal distance 
between channel symbols, expressed through Еb.  

6 Calculate and draw the modulated signals amplitude spectrum for given 
modulation types; calculate bandwidth of signals of given modulation types and show 
it on the spectrogram.  

7. Draw the functional diagram of modulators for given types of digital modu-
lation and explain principles of their operation.  

8. Formulate conclusions of the performed task; point out the advantages (or 
disadvantages) of given multi-level modulation type , in comparison with binary 
modulation type.  

9. Give a list of the used literature; there must be references on used literary 
source with pointing of subsections or numbers of pages in the text of the performed 
individual task.  

Table 1– Given types of modulation (the number of variant is determined by 
the last number of your student’s book number)  
№ var. 0 1 2 3 4 5 6 7 8 9 
Digital 
mod. 

BASK, 
QPSK 

BASK, 
8PSK 

BASK, 
QASK 

BFSK, 
QPSK 

BFSK, 
8PSK 

BFSK, 
QASK 

BPSK, 
QPSK 

BPSK, 
QPSK 

BPSK, 
8PSK 

BPSK, 
QASK 

Table 2 – Given R and α (the number of variant is determined by the last but 
one number of your student’s book number)  
№ var. 0 1 2 3 4 5 6 7 8 9 

R, 
kbits/s 

9,6 19,2 24 32 64 128 256 384 512 2048 

α 0,20 0,25 0,30 0,35 0,20 0,25 0,30 0,35 0,20 0,25 
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Methodical instructions of performance IT № 2.2 

Data on signals of digital modulation see in methodical instructions to per-
formance of laboratory work 1.5 (p. 18) and [1, p. 196…204, 231…234]. 

The mapping code should be a Gray code. 
The amplitude spectrum of the modulated signal is described by Nyquist spec-

trum.  The baseband Nyquist spectrum is defined by an expression  

 N(f) = 

N

N N
N

N

, 0 (1 ) ,

0,5 1 sin 1 , (1 ) (1 ) ,
2

0, (1 ) ,

T f f

f
T f f f

f

f f

 ≤ ≤ − α


   π + − − α < < + α     α     
 ≥ + α

 

where fN = 1/T is Nyquist frequency;  
T is clock period;  
α is a roll-off factor of spectrum.  

Literature  

1. Скляр Б. Цифровая связь. Теоретические основы и практическое при-
менение. 2-е издание.: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 
1104 с. 
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8 DICTIONARIES 

English-Russian dictionary 

access system система доступа 

accidental phase случайная фаза 

amplitude modulation амплитудная модуляция 

amplitude modulation factor коэффициент амплитудной модуляции 

analog (амер.), analogue (англ.)  аналоговый, аналог  

average power (of a process) средняя мощность (процесса) 

average value среднее значение 

band полоса частот 

bandpass signals полосовые сигналы 

bandwidth (of signal, process) ширина спектра (сигнала, процесса) 

baseband signal  первичный сигнал  

bit rate of a signal  скорость цифрового сигнала  

block diagram структурная схема 

BPSK (binary phase shift keying)  ФМ-2 (двоичная фазовая модуляция) 

broadcasting вещание 

carrier  несущее колебание (несущая)  

carrier frequency частота несущего колебания (несущей) 

code block, codeword  кодовая комбинация (блок), кодовое 
слово  

continuous (time-continuous) signal непрерывный (непрерывный по време-
ни) сигнал 

correlation characteristics корреляционные характеристики 

correlation meter коррелометр 

correlation time интервал корреляции 

decomposition factors коэффициенты разложения 

delay, delay time задержка, время задержки 

determined signals детерминированные сигналы 

deterministic signal детерминированный сигнал 

deviation девиация 

digital signal цифровой сигнал 

discrete signal  дискретный сигнал  

distortion (of signal) искажение, изменение формы (сигнала) 

double-sideband-suppressed-carrier modu-
lation  

балансная модуляция 
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duplex двусторонняя передача сообщений 

duration (infinite/finite) длительность (бесконечная/конечная) 

duration of pulse длительность импульса 

energy spectral density спектральная плотность энергии 

ensemble  ансамбль, совокупность 

envelope огибающая 

ergodic эргодический 

error control code корректирующий код 

even function четная функция 

expectation математическое ожидание 

fluctuation noise флуктуационная помеха 

Fourier series ряд Фурье 

Fourier transformation преобразование Фурье 

full duplex полнодуплексный  

half duplex полудуплексный  

harmonic oscillation, harmonious wave-
form 

гармоническое колебание 

Hilbert transform преобразование Гильберта 

initial phase начальная фаза 

inphase or cosine component синфазная или косинусная составляю-
щая 

intersymbol interference межсимвольная интерференция 

joint probability density совместная плотность вероятности 

link соединение  

lower sideband of frequencies  нижняя полоса частот 

mapping code модуляционный код 

mapper  кодер модуляционного кода 

MAPSK – M-ary amplitude-phase modu-
lation;  

АФМ-М 

M-ary amplitude modulation  М-ичная амплитудная модуляция 

mean-square error  среднеквадратическая ошибка  

MFSK – M-ary frequency modulation  ЧМ-М 

middle frequency средняя частота 

modulating signal  модулирующий сигнал 

MPSK – M-ary phase modulation  ФМ-М – М-ичная фазовая модуляция 

MQAM – M-ary quadrature-amplitude 
modulation  

КАМ-М 
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MSK modulation – minimum shift keying 
modulation 

модуляция минимального сдвига 

mutual correlation взаимная корреляция 
narrow spectrum узкий спектр 

narrow-band signal узкополосный сигнал 

node  узел сети 

Nyquist pulse импульс Найквиста 

 one-dimensional одномерный  

one-way message transfer односторонняя передача сообщения 

periodic signal периодический сигнал 

power spectral density function спектральная плотность мощности 

probability density function плотность вероятности 

probability distribution function функция распределения вероятности 

pulse energy энергия импульса 

QPSK (quaternary phase shift keying)  ФМ-4 (четверичная фазовая модуляция) 

quadrature or sinus component квадратурная или синусная составляю-
щая 

quadrature splitter квадратурный расщепитель 

random process случайный процесс 

realization of a process  реализация процесса 

realizations of random process  реализации случайного процесса 

recipient  получатель 

rectangular radio pulse радиоимпульс с П-образной огибающей 

rectangular video pulse П-импульс 

reliability достоверность 

Rayleigh probability distribution Релеевское распределение вероятности 

roll-off factor  коэффициент ската  

root-mean-square deviation  среднеквадратическое отклонение  

sampling дискретизация 

sequence последовательность 

shaping filter формирующий фильтр 

shifted on frequency  сдвинут по частоте 

signalling alphabet сигнальный алфавит  

signal constellation сигнальное созвездие 

signal points точки сигнального созвездия 

simplex transfer только односторонняя передача сооб-
щения 
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single-sideband modulation (SSB) однополосная модуляция (ОМ)  

spectrum  спектр 

spectral spreading  расширение спектра  

stationary стационарный  

statistical dependence статистическая зависимость 

stochastic signals стохастические сигналы 

symbol interval  тактовый интервал 

symbol rate  символьная скорость, скорость модуля-
ции 

terminal equipment оконечное оборудование 

transducer датчик 

two-way message transfer двусторонняя передача сообщений 

ultimate values крайние значения аргумента 

uncorrelated некоррелированные 

uniform distributing равномерное распределение  

upper sideband of frequencies  верхняя боковая полоса частот 

variance дисперсия 

waveform  колебание  

Wiener-Khinchin theorem теорема Хинчина-Винера 
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Russian-English dictionary 

амплитудная модуляция amplitude modulation 

аналоговый, аналог  analog (амер.), analogue (англ.)  

аналоговый (непрерывный первичный) 
сигнал 

analogue signal  

ансамбль, совокупность ensemble  

АФМ-М (М-ичная амплитудно-фазовая 
модуляция) 

MAPSK – M-ary amplitude-phase modu-
lation;  

балансная модуляция double-sideband-suppressed-carrier modu-
lation  

верхняя боковая полоса частот upper sideband of frequencies  

вещание broadcasting 

взаимная корреляция mutual correlation 

гармоническое колебание harmonic oscillation, harmonious wave-
form 

датчик transducer 

двусторонняя передача сообщений duplex 

двусторонняя передача сообщений two-way message transfer 

девиация deviation 

детерминированные сигналы, детерми-
нированный сигнал 

determined signals, deterministic signal 

дискретизация sampling 

дискретный сигнал  discrete signal  

дисперсия variance 

длительность (бесконечная/конечная) duration (infinite/finite) 

длительность импульса duration of pulse 

достоверность reliability 

задержка, время задержки delay, delay time 

импульс Найквиста Nyquist pulse 

интервал корреляции correlation time 

искажение, изменение формы (сигнала) distortion (of signal) 

КАМ-М (М-ичная квадратурная ампли-
тудная модуляция) 

MQAM – M-ary quadrature-amplitude 
modulation  

квадратурная или синусная составляю-
щая 

quadrature or sinus component 

квадратурный расщепитель quadrature splitter 

кодовая комбинация (блок), кодовое 
слово  

code block, codeword  
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колебание  waveform  

корректирующий код error control code 

коррелометр correlation meter 

корреляционные характеристики correlation characteristics 

коэффициент амплитудной модуляции amplitude modulation factor 

коэффициент ската  roll-off factor  

коэффициенты разложения decomposition factors 

крайние значения аргумента ultimate values 

математическое ожидание expectation 

межсимвольная интерференция intersymbol interference 

М-ичная амплитудная модуляция M-ary amplitude modulation  

модулирующий сигнал modulating signal  

модуляционный код mapping code 

модуляция минимального сдвига MSK modulation – minimum shift keying 
modulation 

начальная фаза initial phase 

некоррелированные uncorrelated 

непрерывный (непрерывный по време-
ни) сигнал 

continuous (time-continuous) signal 

несущее колебание (несущая)  carrier  

нижняя полоса частот lower sideband of frequencies  

огибающая envelope 

одномерный   one-dimensional 

однополосная модуляция (ОМ)  single-sideband modulation (SSB) 

односторонняя передача сообщения one-way message transfer 

оконечное оборудование terminal equipment 

первичный сигнал  baseband signal  

периодический сигнал periodic signal 

П-импульс rectangular video pulse 

плотность вероятности probability density function 

полнодуплексный  full duplex 

полоса частот band 

полосовые сигналы bandpass signals 

полудуплексный  half duplex 

получатель recipient  

последовательность sequence 
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преобразование Гильберта Hilbert transform 

преобразование Фурье Fourier transformation 

равномерное распределение  uniform distributing 

радиоимпульс с П-образной огибающей rectangular radio pulse 

расширение спектра  spectral spreading  

реализация процесса realization of a process  

Релеевское распределение вероятности Rayleigh probability distribution 

ряд Фурье Fourier series 

сдвинут по частоте shifted on frequency  

сигнальное созвездие signal constellation 

сигнальный алфавит  signalling alphabet 

символьная скорость, скорость модуля-
ции 

symbol rate  

синфазная или косинусная составляю-
щая 

inphase or cosine component 

система доступа access system 

скорость цифрового сигнала  bit rate of a signal  

случайная фаза accidental phase 

случайный процесс random process 

совместная плотность вероятности joint probability density 

соединение  link 

спектр, спектры  spectrum, spectra 

спектральная плотность мощности power spectral density function 

спектральная плотность энергии energy spectral density 

среднее значение average value 

среднеквадратическая ошибка  mean-square error  

среднеквадратическое отклонение  root-mean-square deviation  

средняя мощность (процесса) average power (of a process) 

средняя частота middle frequency 

статистическая зависимость statistical dependence 

стационарный  stationary 

стохастические сигналы stochastic signals 

структурная схема block diagram 

тактовый интервал symbol interval  

теорема Хинчина-Винера Wiener-Khinchin theorem 

только односторонняя передача сооб-
щения 

simplex transfer 
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точки сигнального созвездия signal points 

узел сети node  

узкий спектр narrow spectrum 

узкополосный сигнал narrow-band signal 

флуктуационная помеха fluctuation noise 

ФМ-М – М-ичная фазовая модуляция MPSK – M-ary phase modulation  

формирующий фильтр shaping filter 

функция распределения вероятности probability distribution function 

цифровой сигнал digital signal 

частота несущего колебания (несущей) carrier frequency 

четная функция even function 

ЧМ-М MFSK – M-ary frequency modulation  

ширина спектра (сигнала, процесса) bandwidth (of signal, process) 

энергия импульса pulse energy 

эргодический ergodic 
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