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1 INTRODUCTION

The branch of science “Theory of telecommunicatistnidies the common re-
lationships of information transfer on distanceeTbject of studying is telecommu-
nication system.

Telecommunication system provides transfer of mi@iion on distance by
electric signals. The problem of information trarsbn distance is formulated as:
there is a source of the information (a persompraputer, etc.), having some infor-
mation that is necessary to transfer to the rematgient. This information should
be transferred with the given level of fidelity awth an allowable delay. To discuss
this problem we shall define the basic conceptirimation, message, signal and
communication channel.

Information is a collection of knowledge on any process, eyanibject. This
knowledge reduces uncertainty for the recipienbieefhe obtains knowledge. For
transfer or to store information it is used diff@rsigns (or symbols), which allow to
present it in some form.

Messageis a material form of representation of informati&irst of all it is a
set of signs that represent information. Messaaester on a distance is carried out
by a signal.

Signalis a physical process in which message is reptegemd which is used
to transfer information on distance. Signal careleetric, sound or light. In the tele-
communication theory (by default) signal is an #lecurrent or a voltage that repre-
sented the transferred message.

Information system is a system, which functions on the basis of imfation
usage. Information takes place outside and/or ens@hsidered system. Special case
of information system is a telecommunication system

Telecommunication systemprovides message transfer with a certain quality
from a message source to a message recipient.ohabegnication system can pro-
vide one-way message transfer (broadcasting) omtayp message transfer (commu-
nication). In the first case simplex transfer takésce, in the second case duplex
transfer takes place: full duplex— when a systeavipges simultaneously reception
and transfer of messages; half duplex — when &syptrovides reception and trans-
fer of messages one-by-one.

The generalized block diagram of telecommunicasigstem for one-way mes-

O
sage transfer is shown on figure 1. Haf® is transmitting messagejt) is receiv-

O
ing messageh(t) is transmitting baseband signalit) is receiving baseband signal.
In the case of duplex transfer it is necessarydets of the units shown on figure 1.

D D
Message|2(!) | Source |b(t)| Communication b(t)| Source | a(t)| Message
source encoder channel | decoder | recipient

Figure 1 — Generalized block diagram of telecommunicatistem

A source of information gives out information by ssages. The construction
of the equipment is mainly defined by characterssbf transferred messages; there-
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fore we speak about “message source”, insteadn@drination source”; in a similar
way we speak about “message recipient”, insteduohfdfrmation recipient”.

All messages are divided into continuous and disareessages.

Discrete messageonsists of sequence of separate signs, whichtityuanfi-
nite. These signs form aaphabet of a source An example of a typical discrete
message is the text. Transformation of discretesages to electric signals consists in
their encoding which is carried out by a sourceodec. Encoding of a message is

Encoding carried out on the basis atode Codeis a rule or a table
on the basis of which each sign of a message ettt
into the code combination (a set of binary symbdig)

A 111001 ure 2). As a result of encoding we recedligital base-

B 110001 band signal (figure 3,a). Inverse transformation of digi-

C 000110 tal baseband signals to messages consists in aggodi

........ which is carried out in the source decoder (figlixeThe

7 010110 basic characteristic of a digital signal is itserBf bit per
M second (bit is the short name of binary symbols$).fig-

ure 3,ait is shown?, = 1/R, 7} is bit duration.

Continuous messageepresents a change of some
Figure 2 — lllustration of  tjme continuous magnitude (for example, sound pres-
encoding and decoding - gyre). Transformation of continuous messages trie

signals is carried out by different transducers égample, a microphone). As a re-
sult of transformation we receiv@ continuous baseband (analog) signdfigure
3,b). The basic characteristic of a continuous basgkamnal is the maximum fre-
guency of its spectrura,,., that characterizes its speed of change.

bi(t)
A

Decoding

>

b(t)

1 0 1 1 0 /
0 & 2n, 3% 4Tt _

a b

Figure 3 —Baseband signals:— digital signalp — continuous signal

Communication channelis a set of devices for transfer of electric sigran
distance.

If a baseband signal is a digital one then comnaimmo channel must be digi-
tal. If a baseband signal is continuous then comecation channel must be continu-
ous.

A continuous baseband signal can be transformedainligital signal for trans-
fer by a digital communication channel. In thatecdisere will be analogue-digital
conversion. So, in case of digital transfer of cwus messages a source encoder
transforms messages into a baseband continuous,sagnal then — in a digital signal.
Digital transfer has a lot of advantages in congmariwith analogue transfer. Digi-
talisation of transmission systems takes placendwseveral last decades.

Transformations discussed above are shown on fijure

A communication channel can be simple or compound.
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We shall consider construction of compound chaasgbart of a telecommu-
nication network.

Network is a set of nodes
and links which provide informa-
tion exchange between users (users
are sources and recipients).

There are user nodes (UN) - /
where a terminal equipment is use UN
and switch nodes (SN) where Figure 4— Fragment of network topology:
switching of channels or packages SN — switch node; UN — user node

Is carried out. On figure 4 the frag-

ment of logic topology of a network is shown. lkéa part in transfer of information
between the considered user nodes. In one UN tharenessage source and a source
encoder, and in other UN — a source decoder andssage recipient. User node is
called also the terminal equipment.

Links that form a communication channel are tramgdotted line.

Links of network are called transmission system@n¥mission system that
connects user node with the nearest switch noclled access system.

On figure 5 block diagram of typical digital transsion system is shown.

The transmission system is constructed on the lmdse transmission line.
Transmission line is a physical circuit (cable)adiree space (radio communication),
used for transfer of a signal on distance.

The baseband digital signal is coded by the emotrol code allowing at de-
coding to find out or correct errors, arising angmission.

The modulator forms a signal, which can be welhgfarred by transmission

line.
t?() h
— t b(t)
bo(t . t t
(| Channel |b(t) Modulator s(t) Transmissiof Z(): Demodulator Channel |
encoder line (channel decoder

Figure 5— Block diagram of a typical digital transmiss&ystem

Main characteristics of telecommunication systenare accuracy of message
transfer or quality of transfer and transmisside @& quantity of transferred informa-
tion per 1 second.

In communication channel signal is distorted beeaafsnoise action. A noise
Is occasional influence on a signal that makes dicatp signal transfer.

Distortion of digital signals will consist of ocaence of errors — instead of ac-
tually transferred symbols to the recipient othanisols come. Such kind of distor-
tion is quantitatively characterized by probabildf a symbol error. Distortion of
continuous signals will consist of their form chamggbecause of noise covering. Dis-
tortion of continuous signals can be characterlaedn average square of difference
between accepted and transmitted signals or tinalgmpise ratio.



For messages transfer on a telecommunication chanseecessary to spend
a band of frequencies and power of a signal (tlseclrasources of a telecommunica-
tion channel). So, the main tasks of telecommuignaheory following:

— how to provide necessary quality of message tramsfea telecommunica-
tion channel,

— how to provide necessary transmission mtea telecommunication channel
at limited resources of a telecommunication channel



2 ELEMENTS OF GENERAL THEORY OF SIGNALS

2.1 Classification of signals

Signal is rather wide concept. Signal is a proad@sshange in time of the
physical phenomenon or a state of any technicaobbjSignals serve for mapping,
registration and transmission of message. The amnfor signals is that in them the
information is assumed in it. We shall consideat th signal is an electric voltage or
a current.

The most natural mathematical model of a sign&lingtion of timeb(t), (t),
Z(t) and etc. Such function of time establishes aonity between any moment of
time t and sizes(t). Considering mathematical models of signals, sract from the
concrete physical nature of a signal (a voltageyraent, an intensity of an electro-
magnetic field, etc.), considering, that funct&t) completely reflects the important
properties of a signal.

Depending on what values of a sigsand values of a variabteare possible,
distinguished following:

1. A signal is continuous (figure 6) if a set of values is continuous, i.e. the
argument accepts any values on an interval ofentst of a signal.

s(t) (t)

Figure 6 —Types of signals

2. A signal is discrete (figure 6) if a set of values is finite. Discrete signal
Is called also sequence, a time series. Suchlsigpp@ars as a result of sampling a
continuous signal. The step in time, through whd@trete signal is given is called
sampling intervall,,

3. A signal is quantized (figure 6) if value s accept final number of values.
Such signal is a result of discretization on alle¥e continuous signal.

4. A signal is digital (figure 6ql) if it is also discrete, and quantized. Digital
signals appear as a result of coding discrete rgessand also as a result of coding
continuous signals for their representation bytdlgignals.

Signals are divided into:
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1. Baseband signal is a representation of the messianot electric nature by
an electric signal.

2. Modulated signal is a result of transformatida tbaseband telecommunica-
tion signal in a signal for transfer by transmissiioe.

All signals are categorized as:

1. Determined signals — mathematical expressiodedérmined (completely
known) signal is completely certain function of &mset by a formula, a plot or the
table of values. For exampk&t) = Ajcos(2tot + ¢o), whereA,, fo andd, are defined
numbers. All values(t) are known at any moment.

2. Stochastic signals — mathematical representafianstochastic signal is sto-
chastic function of time, its values cannot be sy predicted beforehand. Sto-
chastic function of time (stochastic process) iscdéed by statistical characteristics
that characterize those or other properties offtmstion on the average. Stochastic
processes are more full mathematical models of aomzation signals, than the de-
termined functions of time. But many transformasi®f signals can be studied, us-
ing the determined functions of time. It can be@e function — harmonious wave-
form, a pulse, etc.

Any real signalg(t) has final duratiorfs. In many cases it is convenient to
count, that the signal is infinite on duration axkts on an intervatfo, o).

Signals are real and complex. It is clear, thaigaat is the real function of
time which represents a state of some object. 8ome for convenience of the
mathematical analysis of signal transformationsrapiex signal is entered into con-
sideration

S(t) = su(t) +] (1),
wheres(t), sy(t) is the real functions of time; depending on asedlproblems,(t) is
result of some transformations of functg(t) or function, not dependent frosx(t).
Widely used complex exponent is an example

s(t) = /2™ = cos2rfyt + j sin2nft .

Frequently in devices of signal transformation &oeiliary signals, which are
not containing the information, are used. Suclmag are auxiliary and refer to as
waveforms.

2.2 Energy characteristics of determined signals

The basic energy characteristics of a siggfiglare its power and energy. In-
stant power of the real signal is defined as amsgaginstant valusg(t):

p(t) = $(t), V. (2.1)

Power of a signal characterizes signal intensisyability to influence on de-
vices, which register a signal.

Average power of a signal of final duration is defil by averaging (2.1) on an
interval of existence of a signal, (1)
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P, =1 [&(t)at 22)
) Ts 0 . .
Energy of a signal of final duration is defined as
TS
E, =P, = [?(t)at. (2.3)
0

From the last ratio it is clear, that energy ofignal takes into account both
signal intensity, and time of its action.

Power and energy of a complex sigad) are defined by ratios (2.1)...(2.3) in
which instead of(t) it is necessary to substitus)-s*(t) = |s(t)[, wheres(t) is the
function in a complex conjugate wigt); |S(t)| is the module of a signa(t).

The signal refers to normalized, if its energy

Es=1. (2.4)

In addition to function of timest), which completely defines a signal, other
time characteristic — function of correlation o$ignal in some cases is used. For a
real signal of final duration it is defined

K, ()= ]’; {t)s(t +1)dt, (2.5)

wheret — time shift which accepts both positive, and iggasalues. Att = 0
K{(0) =E. (2.6)

For a periodic signal with periofl which energy indefinitely big, is used the
following definition

Kepalt) =22 [ 08( + ) @.7)
0

FunctionKs e (T) is periodic with period’, and
Ksped0) =Ps (2.8)

There are two sighak(t) andsy(t). Concepts of mutual correlation function is
introduced for them

Ts

K gs2 (T) = J-Sl(t)sz(t + T)dt ’ (2.9)

0

and scalar product are entered

(sl,sz)=}:sl(t)sz<t)dt, 2.10)

From last ratio it is clear, thds;,s,) =K 4,(0).
Signals are orthogonal if scalar product of signi&(lq,sz) =0.
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Let consider definition of energy characteristiosthe rectangular video pulse
(figure 7). Analytically record of the rectanguladeo pulse is:

q=[A 0st<Te
1o, t<o0 t=2T..

Average power and energy are defined by ratio @ntl) (2.3)

1% _ A2
P ==[A%dt E ,=AT,.

s 0

The correlation function of a signal is defined dyatio (2.5). Let 0 € <T..
Then

2 —
[ 0T
0 t<0, t=T,-T.

and
Ts—T
Ko(r)= [Adt=A(T,~1).
0

Whent = T thenKg (1) = 0. In view of parity property of correlatioarfction
final expression is written as

AT, —t)), [<T,,
K — S S
() {o, 1>T..

The graph of correlation function of the rectangwaeo pulse is shown on
figure 7.

S(t) K«(T)
O Ts t _TS O TS '[

Figure 7 —Rectangular video pulsg) and its correlation functioks(T)

2.3 Representation of signals in orthogonal bases

Among various mathematical methods, which are wgaite describing elec-
tric circuits and signals, representation of angcfion as the sum of more simple
("elementary") functions is the most widely appliéeét s(t) is the determined signal
of durationTs. Let present its weighed sum of some basic funstas

st)=Ya.y, (), 0stsT, (2.11)
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wherea, — factors of decomposition,
Wn(t) — basic functions.

Basic functions are selected according to thosehmr reasons, and then factors
of decomposition calculate. But factors of decontmwsare calculated in more simple
way if basic functions are orthogonal on an inte(@a7y). Let multiply the left and
right parts of equality (1) ogy (t) also we make integration on an intervalZy,

TS TS (o) (o) TS
[sOw O)dt=[3 a,p, (00, (O)dt= 3 a, [y, Ow, (t)dt.
0 on=1 n=L o

As functionsy,(t) andy,(t) are orthogonal integrals in the right part araatq
to zero except for a case= k — in this case the integral is equal to energpasdic
functionsy(t). Therefore last equality will be written down as

TS
[sw, (t)dt=aE,, .
0

Let return to an index and we shall write down a rule of calculation ef d
composition factors

TS
a, = [s)y,@Odt; n=1,2,3, .. (2.12)
Etpn 0
If basic functions are orthonormal, so
T.

a, = [sOW,O)dt=(s,9,), N=1,2,3, .. (2.13)
0
A series (2.11), in which decomposition factors deéined according to the
formula (2.12), is called as generalized Fourielese
While practical using of decomposition (2.11) itniscessary to limit the num-
ber of terms

(0= aw,(0. (214)

Thus the approximate representation of a sig(ialis got, which satisfies to
the certain measure of accuracy

TS 0 N
E=[[49-¢)°d= E-Y 4 . (2.15)
0 n=1
It is usually considered, that the numbekis selected in the waso that to sat-

isfy to the given measure of accuracy, and in agitof decomposition of a signal
s(t), a sign of exact equality is used

()= -2 ). (2.16)



14

Depending on properties of a sigrsét) different systems of orthogonal func-
tions are used: trigonometrical functions, exporfenctions, functions of samples
and Walsh functions.

After series expansion of a sigrsfl), decomposition factors completely set a
signal §t), i.e. according to factors it is possible to nemoa signal. Factors of de-
composition also allow to define energy charadiiessof signals(t):

Ts( N 2 N
E. = j[zanq;n(t)J dt=>a’E, (2.17)
o\ n=1 n=1
and scalar product of signagt) ands;(t)

(50.5) = | [z amwn(t)j@l anzmn(t)Jdt - z a8k, | (2.18)

wherea,; anda,, — decomposition factors of signaigt) ands,(t) appropriately.

Definition of decomposition factors can be madenwiardware as shown on
figure 8,a. This procedure is called the signal analysiedRted decomposition fac-
tors completely describe a signal. Knowing thensg possible to synthesize a signal
— to recover it according to decomposition factdigure 8,b). The circuits shown
on figure 8 find application in communication teaues. In a transmitter the analy-
sis of signals is performed, on a transmission elhthe decomposition factors are
transferred, in the receiver synthesis of a siggperformed.

T a
— X 110 X .
S(t) T a a2 O
> x > J'OS L, > x > Z §£t)

T an an
> x > J-Os —> —> x —>
GO W) - ) O ) - [n®

Generator of basic functions Generator of basic functions|
a b

Figure 8 —Circuits of signal analysi&) and synthesig)

2.4 Geometrical representation of signals

While mathematical describing signals are convdrtemonsider it as vectors
s(a,, a,,..a,) O Points in some space (figure 9). Let rememte a
vector is a segment of a given direction and lesngtbisu-
/ ally a vector is set by coordinates of its end. $y&tem of

Figure 9 Vectors in coordinates should be set by unit vectors, angitwden

N-dimensional space ,
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which are equal 90 So, to a signad(t) the vectors is put in conformity.
The basic ratios faN-dimensional linear metric space are:
— length (norm) of a vectar

9= il a2, (2.19)

— distance between vectgysands,

N

d(s,éz)=JZ(a1n ~ay,)", (2.20)

n=1

— scalar product of vectogsands,

N
(50%,)= 2 a0, (B (2:21)
=
Total sum of all functions of time set on an in&dr{0, T) is called a functional
space. These functions are considered as veatéusdtional space. Coordinates of
these vectors are values of functions of timds dlear, thalN — 0, and ratios (2.19)
— (2.21) are passing in the following
— length (norm) of a vectar

Is|=./[$@)dt = JE, (2.22)

0

it is important to remember, that the length ofeater is equal to a root from energy
of a signal;
— distance between vectgsands,

Ts

d(s,s)=J f(s0)- s, (07t .23

0
— scalar product of vectossands,

Ts

(5.5,)= [s:(D)s,(t)at. (2.24)

0

Let address to decomposition of signals in gerezdlFourier series
N
S(t) =Y a.W (1) (2.25)
n=1

We take into consideration, that basic functiores aithonormal and are nor-
malized. Let rewrite a ratio in the vector form

N
s=Ya,m,. (2.26)
n=1
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Hence, if a signal is decomposed into generalizmatiEr series it can be pre-
sented inlN-dimensional space.

2.5 Spectral analysis of periodic signals

In the theory and techniques of communication tigomometrical basis is the
most widely applied to the decomposition of signalseries. Wide application of
these functions in the theory and techniques ofnsomcation is caused by that
while passing through linear circuits the form atke of them does not change — only
their levels and phases change (there is a shifhm).

For a periodic signal Fourier series:

s(t) = % +3 (a, cos2mft + b, sin2mfyt). (2.27)

n=1

wheref, = 1/T, T is period of a signai(t);

2 T/2 2 T/2
a, == [s(t)co2mfitdt, n=0,12,..; b, == [st)sin2mfytdt, n=12,...
T—T/2 T—T/2

If to enter definitions
b
A, =.a2+b?, ¢, =-arctg™,
a‘l’l

that a series (1) will be transformed in:

s(t) = % + i‘i,&h cosRmfit+¢,). (2.27a)

Decomposition of a signal (2.27) and (2R%are called Fourier series in a
trigonometrical form. It is more convenient to @sseries (2.2 as it directly estab-
lishes, what harmonious components a signal wilisi of — what values of their
frequenciesnf;, amplitudes4, and initial phase#,. Series (2.27), defines a signal
spectrum.

Obvious representation of a spectrum is given gyré 10 which an amplitude
spectrum is built on — dependence of amplitudiesen frequency and a phase spec-
trum — dependence of initial phasigsfrom frequency. Frequendyis called a basic
frequency of a signal, it is equal to number of gegiods of a signal in a second.
Harmonious fluctuations with frequenciet (n = 2, 3, ...) are called harmonics of a
signals(t): 2f; —second harmonic,f3-third harmonic, etc.

The amplitude spectrum allows to define bandwidth, dimension of fre-
guency range where total energy of components gdbal certain share of full en-
ergy. If a considered signal spectrum adjoinseim Zrequency its bandwidth is ex-
pressed by numbéi,.. UsingFn., assume that the signal does not contain frequen-
cies uppeFmax



17

o A
1
f
A S4)
A A
610/2 A5
| As
0 f]_ 2f1 3f1 4f1 5f1 6f1 f Fmax f
Fmax
Figure 10— Amplitude spectrum Figure 11— Amplitude spectrum
of a periodic signal of a nonperiodic signal

Spectral representation of a periodic signal cambde, using exponential ba-
sic functions

o ()=e?™ n=.,-1,01,2, ..

Thus series is written as

s(t)= Y. c,e!*™, (2.28)

n=-co

Such decomposition of a signal is called Fourigilesan a complex form.
Coefficients of decomposition are defined as:

1 T/2 )
Cn =1 [ (e ?™idt, n=".,-1,0, 1,2, ..

-T/2

Thus:
C :%— J&:ﬁej‘bﬂ
"2 2 2
Feature of Fourier series in a complex form is mmact record of series and

coefficients of decomposition. Other feature img®of negative frequencies.
The spectrum corresponding to series (2.28), rédetso-sided spectrum.

2.6 Spectral analysis of nonperiodic signals
Expressions:

S(jw) = Ts(t)e‘j“dt and s(t) =%1 °fs( jw)e!®dw (2.29)

make a pair of direct and inverse Fourier transtorRunctionSjw) refers to as spec-
tral density of a signal. In general case spedealkitySjw) is a complex function.
It is determined on an intervate, ). Let present it through a module and argu-

mentS(jw) = S(w)e'*®
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Function Jw) refers to as an amplitude spectrum of a signad, gw) — a
phase spectrum of a signal. Funct®m) — even function of frequency.

Many signals possess even symmetry (it is achibyeal corresponding choice
of a reference mark of time). Spectral densitgwth signals is a real function

S(w) = 2 s(t) coswtdt.
0
Because of evenness of functifuw) inverse Fourier transform is
1 (o]
s(t) == [ S(w) coswtdw.
o

Last two integrals make a pair of Fourier cosira$forms.

Basic difference of spectrum is (figure 10 and it a nonperiodic signal
has a continuous spectrum, and periodic signalahdscrete spectrum, it contains
harmonics of frequendy = 1/T.

The apparatus of Fourier transforms is rather gffeanathematical means to
solve many problems of theory and techniques ofrcomcation. Note only some
properties of Fourier transforms.

1. Product of two signals (a general case):

s(t) = s, (9s, (1),
S(6) = S0 08, (69 = - [S(MS,((@-v))dv =~ [S,(MS (j(@-v)a
— multiplication of signals in time domain corresgs to convolution of their spec-

trum.
2. Convolution of signals

S(t) = 5.(t) 05, (1) = [ 5,(1)s, (t - 1)t = [s,(T)sy(t ~ 1),
S(j) = S,(j6) IS, (o)

3. Calculation of signals energy
2 1%,
E, = [Ist) dt:ﬁ J1S(jw) de

— this ratio is called Parseval relation.
4. Scalar product of signals:

(5.5 = [308,00  (5.5)=" [S(0S(d

Having equated last ratio to zero, we shall recaiv®ndition of orthogonality
of signals given by spectral density.
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2.7 Kotelnikov theorem and series

Kotelnikov theorem states: the sigrsél), not containing frequencies higher
than F.., can be strictly recovered on the samples, takeaugh an interval
Ts< 1(2Fmay), Ts— sampling intervalfs = 1/Tg — sampling frequency.

As for any real signal it is possible to specifiyighest frequency of a spectrum
it is possible to suppose, that Kotelnikov theorzam be applied to all real signals.

It is possible to show, that a spectral densityaafiscrete signal is periodic
repetition with the period of spectral density of a continuous signal fromachithe
discrete signal is received. It is illustrated dnaph: on figure 12a an amplitude
spectrum of any continuous signal with the maxifmadjuencyF,.x of a spectrum is
shown; on figure 12b its periodic repetition is shown (figure is comsted for a
caseTs < 1/(ZFnay orfs > 2Fa From figure 12pit is understand, that &> 2F .,
on a discrete signal (samples) with LPF it is dassio recover an initial continuous
signal (by dotted line it is shown AR of the recong filter). At fy < 2F .« there is an
Imposing periodic repetitions of a spectrum, andewover without an error a con-
tinuous signal it is impossible. Thus Kotelnikoednem is proved.

In time domain connection between a continuous @sdrete signal is de-
scribed by Kotelnikov series

st)=3 s(nTs)SmZHFmaX(t —nTS).
et 21F, . (t —NnTY)

Valuess(nTy) are coefficients of decomposition of a siga@ on known sys-
tem of orthogonal basic functions known from mathgos

sin2nF(t-nTy)  _

f) = ,h=..-1,0,1, 2, ..
on (V) 2TF (t - nT,)

Sf)

a

_Fmax Fmax f
g(f
S M AR
: | |
_éf S _fS ;Fmax O I‘:max f; 2.l;S f

Figure 12— a— spectrum of a continuous signal,
b — spectrum of a discrete signal and AR of a regogdilter
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The graphic illustration of Kotelnikov series ivgn on figure 13

(=2)Ts (n=1)Ts nTs (n+1)Ts (n+2)Ts

Figure 13 —Signalg(t) and five components of Kotelnikov series

2.8 Representation of bandpass signals

A signal refers to bandpass Iif its spectrum dodsadin to zero frequency.
Their spectra are concentrated in a frequency lr@mal f,, to fa, andfyi, > 0 (fig-
ure 14). To describe bandpass signals such pazesrate presented: a middle fre-
guency of a spectrurfy = 0,5€min + fmay and bandwidth of a spectrufiF = f.—
fmin- AsS a rule, for bandpass signals the relafibr< f; is carried out, and then they
are refered to narrow-band signals. Narrow-bagdass look like quasi-harmonic
oscillations with middle frequencfp (figure 15) in time domain.

) . ) AF

<€ N
< P

M T

f ‘fO 0 fmin fO fmax f
b

Figure 14 —Spectrum of low-frequency and bandpas®) signals

o1 e
(LA 111 LA

|

Figure 15 —Time diagram of a bandpass signal

a
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Any bandpass signal can be presented by followiathematical expression:
s(t) = Alt)codu(t)] (2.30)
where Alt) — an envelope of a bandpass signal;
W(t) — a full phase of a bandpass signal.

An envelope of a bandpass signal is positivelyapertunction, i.e.A(t)Z 0,
not being crossed with a signal, it has with it coom points at moments, when in-
stant value of a signal is maximal. A full phaseadandpass signal will consist of
three components:

P(t) = ot + (1) + 9o, (2.31)
where¢(t) — increment of a phase;
¢, — initial phase.

An increment of a phase causes changing of inftegquiency of a signal. By
definition frequency of a signal is a speed ophase changing, i.e.:

ow(t) 00 (t)
t)=— =, + —~. 2.32
Wft)==2 =0 + =2 (2.32)
The integral of instant frequency gives a full pha$a signal:

t):jw(t)dt+¢0. (2.33)

It is widely used quadrature representation of pasd signals
s{t) = 'A‘(J[)COS[(’COt +o(t)+ ¢o] =
= Alt)codo(t) + ¢, |codunt] - Alt)sino(t) + b, sinfwt] = (2.34)
= 1 (t)codwqt] - Q(t)sin[w,t],
wherel (t) = At)codd(t) + ¢,,] — inphase or cosine component;
Q(t) = Alt)sin[¢(t) + ¢,] — quadrature or sinus component.

If quadrature componentst) and Q(t) are known, then it is possible to find
an envelope and full phase of a bandpass signal:

=1%(t)+Q(t
= wyt +arc Q)
0lt) =t tg{l(t)j.

One more form of representation of bandpass siga#e complex form;(t):

sft) = Rst)] = Ry D = Al)codu(t]

While analysing of bandpass signals in the comfdex a concept of complex
envelope of a signal is entered:

( ) A(t)eJlIJ A(t)el (ot +(t)+do) A(t)el(ﬂotel t)+do) — A(t)elwot (2.35)
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where A(t) — complex envelope of a bandpass signal.
Complex envelope has the following form:

Alt) = Altje’®0e) = Alt)codo(t) + 6]+ jAt)sinfo(t) + do] = 1(1) + iQ().
2.9 Analytical signal
Complex signat(t)=x(t)+ jX(t) refers to an analytical one, #t) is Hilbert
transform fronmx(t). On figures a complex signal is represented asciveuits, as it is
shown on figure 16.
X1

) XO=a0+ )

Hilbert Converter |7,

X(t)

—>

Figure 16 —Production of analytical signal

Hilbert converter is a linear circuit with the inlpa response
1
t)=—, —oo<t<oo,
ot)=—

Let take advantage of Duhamel integral
T X(1)

This relation refers to Hilbert transform of a sagmi(t). Let we find transfer
function of Hilbert converter like Fourier transhoation from impulse response

2 , g jot -j at w>0,
{ . (2.36)

(= Tolporo a7 2070

or
H(jw) = -] sign(c).

Let S(jw) is a spectral density of a signd). Then spectral density of a signal
x(t) is defined as

s (jw)=1” jS.(jw) at w>0, (2.37)
W= iS(jw) at w<O. '
Let we find spectral density of an analytical signa
. N e 2S,(jw) at w>0,
S. =S S. = 2.38
6= (i) ise(je) = 50 2 €70 238
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We have revealed the important property of an dicalysignal — its spectrum
on negative frequencies is equal to zero (figuhe 17

S(0) 25(0)
/ \ \

0 ® 0 ®
a b
Figure 17— Spectral densitya— a signak(t);
b — an analytical signal corresponding ¢S (j)

Inverse Hilbert transform is

)= -1 T X W

- -1

—00

The module of an analytical signal
Alt) = /x2(t) + X2(t)

is an envelope of a signglt), and an argument
X(t)
t)= t
o(t) = arc g_x(t)

is a phase of a signa(t).
From last expressions follows that the analytichal can be written down as:

x(t) = At)elel) (2.39)

Thus, concepts of an envelope and a phase of alsign be applied not only
to bandpass signal, but also to baseband sigratsenvelope satisfies two condi-
tions: A(t) = [X(t)J — function A(t) does not cross functior(t) anywhere and in
points of contact of function(t) and x(t) their derivatives are equak (t) = x'(t),
that is functions have the common tangents.

2.10 Sampling of bandpass signals

Representation of bandpass signals by discretealsigas necessary, when
transformation of signals (a filtration, detectirgj¢.) is carried out by digital signal
processors. In case of bandpass signals, andiagbpearrow-band signals, a sam-
pling frequency can be essentially le§s.2

The spectral density of a discrete signal writesrdo

s@2rf) =f, S S(j2n(f - nf), —o<f<ow, (2.40)

n=-o

whereS§j2rt) is spectral density of a continuous sigs(8l.
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From this expression comes next: the spectrumdiseaete signal is an infi-
nite sum of periodic repetition of a spectr&j2rf) of a continuous signalt) with
the periods, and scale multiplief.

On figure 18,a the amplitude spectrum of any foif) of bandpass signal is
shown. It is concentrated on an intervi@gln(fra). On figure 18pb the amplitude
spectrum of a discrete signal which can take pktceampling of a signal with a
spectrum shown on figure 18js represented.

Components of a discrete signal spectrum, whicltawsed by periodic repeti-
tion of frequency bands.{,, fmay and (fnax —fmin) are designated with "filling" dif-
ferent density for descriptive reasons. For imgmbtsi of spectrum components with
differentn aliasing, a choice of valdgis made on the basis of inequalities

2lmax fssh, k=1012,.
k+1 Kk

In a case, whek = 0, a sampling frequendy> 2f.o i.€. this condition of a
sampling frequency choice for baseband signals;hwvbatisfies Kotelnikov theorem.
Whenk > 0, then representation of a bandpass signaldiscaete signal becomes
more economical (smaller number of samples). Thst moonomical representation
of a signal will be, whek = Kyax.

(2.41)

ko

S A [

—Frmax —fmin a fmin  fmax

S(f)a

ALK |

04—1:5 —¥ \f

—fmax—fmin b _fmin+kfn fmin 1max —fmax+(k+1)fs

Figure 18 —Spectrum of continuous bandpass signal and dessrghal

A bandpass filter carries out recovering of a cundius bandpass signal on
samples. Its lower cutoff frequengy,: is no more that,,, and upper cutoff fre-
guencyf, .t is not less thafyay
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3 DESCRIPTION OF RANDOM PROCESSES
3.1 Classification of random processes

Random (stochastic) process is random functionnoé.tMain feature of ran-
dom process is that its values cannot be precigadicted beforehand. Random
function of time is described by statistical chaeastics that characterize those or
other properties of this function on the average.

Random processes are more full mathematical madetsmmunication sig-
nals, than the determined functions of time. M#&asks of the theory and techniques
of communication can be solved only at the desonpbf signals and noise by ran-
dom functions. For example, the voltage of a nois@n output of a transmission line
or on an output of a microphone is random functibnme.

Let designate considered random procesX(8s Separate supervisions of
process give different functiongt) — differentrealizations of random process. Set
all possible realizations of the given random psscg(t)} is called ensemble(fig-

ure 19).
)):'(At))( ’/\ N\ ,/\ /\
S\ \V/ \ o
VAR

Xo(t)
X+AX

X3(t)
X+AX ,/\\

X4(t)
X+AX ,/\\ o~

\

/o \ A\
VN

Figure 19 —Ensemble of realizations
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The description of random process gives possibibtydefine some average
characteristics of ensemblgft)} as a whole. Such characteristics refer to dtasik

Random process refers to stationary if its stastcharacteristics do not
change with time.

Stationary random process refers to ergodic istggistical characteristics are
found by averaging on ensemble, coincide with tharacteristics found by averag-
ing one realization in time.

Let consider further, if it is not stipulated aneththat considered random
process is stationary and ergodic.

3.2 Probabilistic characteristics of random processs

Probabilistic characteristics are probability dmition function and probabil-
ity density function. Probabilistic characteristiare the most used among statistical
characteristics of random processes.

By definition, the value of probability distribuicfunctionF(x) is equal to the
probability of that in the arbitrary time momenbpessX(t) will take on the value
that does not exceed

F(x) = P{X(t) < x}. (3.1)

By definition, the value of probability density fetron p(x) is equal to the limit
of ratio of probability of that in the arbitrarymie moment process(t) will take on
the value on intervak(- Ax/2, x + Ax/2) to the interval lengthx whenAx - O:

o(x) = lim P{x—Ax/2< X(t) < x+Ax/2}_
Ax-0 X

The properties of(x) and p(x) functions shown on the table 1 are easy to
prove using their definitional formulas (3.1) ard?).
Table 1— The properties of the functioR$x) andp(X)

(3.2)

1 P{x < X(t) sp><()J(r)dx} = p(x)dx F(x) = E?g (t) < x}

2 P{x, < X(t) € %,} = Xfp(x)dx P{x, < X(t) < X,} = F(xX,) = F (%)
3 Tp(x)dle F(o)=1 F(-)=0

4 TR FOG) = F(x) when x, >x
5 p() = £ 9= [ pd

The considered functions (3.1) and (3.2) are onedsional distributions of
probabilities. They characterize process only durime moment of time. Two-
dimensional distribution function and two-dimensbiprobability density function
characterize process during two moments of tiauedt +1.



27

The two-dimensional probability distribution furai of processX(t) is de-
fined as

Fo (X, X, T) = P{X(t) < X3 X(t+T1) < X,}. (3.3)
The two-dimensional probability density functionprbcessX(t) is defined as
2
0°F,(x, XZ,T). (3.4)
0%,0%,

For n = 3, 4, ... moments of time by analogy with (3&)d (3.4),n-
dimensional distributions of probability can be idu The more valu@, the more
full random process is described. But consideratbm-dimensional distributions

demands complex process of realizatiog(s). Knowledge of one-dimensional and
two-dimensional distributions of probabilities isad for solving of many problems.

P, (X, X5, T) =

3.3 Numerical characteristics of processes

Many problems can be solved, using more "roughtaattaristics of processes,
than using of probability distributions.

Average value (or expectatior¥ (t) of process is equal to value around of

which process accepts the values. Knowing proligldensity of process, we can
define

X(t) = Txp(x)dx. (3.5)

Average value on time is designated by wavy linevebdependence, which is
averaged on time. So, average in time value ofqa®X(t) is defined by averaging
on time of realizatiorx(t)

X0 =1im L Tt (3.6)
=im T Tj/z | |

Average power of process is average value of areqpfgprocess

00

P = X2(t) = [x*p(x)dx. (3.7)
or
1 T2
P =lim = [x*(t)dt. (3.8)
R VP

Average value of a square of deviations from avenzgjue is a dispersion of
process

D{X(1)} =[X () - X(D)]? = T[X-lep(x)dx- (3.9)



28
or

p{x (1) = tim £ [ [xt)- Xt (3.10)

T-oT 1

Positive root from dispersion is

Oy = /D{X(t} (3.11)
It is called a root-mean-square deviation of a ssc

3.4 Correlation function of random process

Dependence between valué@) and X(t + 1) (t — any shift in time) is statisti-
cally estimated by correlation function (CF) of peesX(t). CF is calculated as aver-
age value of product

Ky (= XOXAFD = | %% a0, %, x % (3.12)
or
1 T/2
Ky (1) = lim = [x(t) x(t + 1) dt. (3.13)
T-=T 7

CF properties of stationary process:
1. If in the expression (3.13) put O it passes to expression (3.8), therefore

Ky (0)=Py. (3.14)

2. As correlation function of stationary procesgsloot depend on tinteav-
erage value of product B (t) X (t +1) = X(t - 1) X(t), therefore

Kx (-1) = Kx (1) (3.15)

correlation function of random process is even.
3. Let consider an average square of a differehgeazess values which will

be distant in time
e2(1) =[X(t) = X(t+1)]* = X2(t) - 2X ()X (t + 1) + X?(t + 1) =
= 2K, (0) - 2K (7).
Average square is always non-negative. Therefore
Ky (0) = Ky (1) (3.17)

(3.16)

value of correlation function of any random procasargument = 0 maximal.
4. Let answer a question: what are the differencgrocess values, which are
distant ort? The answer is in the ratio (3.21):

e(1) =2K (0) - K (1)] (3.18)
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the more difference betwed€y(t) andKx(0), the more average difference between
values of process, which are distanttonThus, correlation function of random proc-
essKx(T) characterizes a degree of statistical dependeeivecen values of process,
which are distant on.

It is obvious, that with growtht, statistical dependence between valgs
and X(t + 1) decreases and at rather big] dependence disappears. |Af] - o
function Ky(1) tends to zero, decreasing monotonously or osiadjaaround of zero,
as shown on figure 2@,

Kx(T) Kx(T)

x_(t)2 P et

/'—\!-\ N

0 \_/a T 0 b T

Figure 20— Correlation functions of random processes:
a—atX(t) =0;b- atX(t) 20

5. Definition of statistical dependence is convehi®r carrying out the nor-
malized correlation function

Ry (1) = K (1)/K (0). (3.19)

From ratio (3.19) it follows, thatl < Ry(1) < 1. The closer valuBy(t) to 1, the more
strong correlated values of process, which areudlisint.

For the rough description of correlation dependahcg introduced the con-
cept of correlation interval (time) of process values of process, which are distant
on T < 1. are essentially correlated among themselves, ahoky of process, which
are distant ot > 1. are uncorrelated. Correlation interval is defingferently. One
of the ways is the way, as duration of a pulsesisr@ated. So, it is possible to agree,
that

T, = T\Rx (1) d. (3.20)
0

Heret. is equaled to the basis of a rectangular withtitd®gy(0) = 1, having the same
area, as the area under a cuigT)0 atT > 0 and an axis absciss. It is possible to
define time of correlation, as duration of functioth(r)D att> 0 at a level, for ex-
ample, 0,1.

Function of mutual correlation for the charactécisif dependence between
values of two random process¥g) and Y(t), which are distant om, is defined in
the similar way as correlation function of process
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00 0

Ky (D) =XO)Y(t+1)= | [xyp, (x,y,T)dxdy, (3.21)
where p, (x, y,T) — joint probability density of values of statiopgrocesse¥X(t) and
Y(t), which are distant on, or

T/2

Ky (1) = lim % [X(®)y(t + ). (3.22)

-T/2
3.5 Power spectral density function of stationary andom process
Let find Fourier transformation from realizationocess(t), i.e. its spectral

density
T/2 .
lim S, (jw) = lim jxk(t)e“‘*"dt. (3.23)
Toe T=®_1p2
But it will be the spectral characteristic only @&alization x(t), instead of
process as a whole. It is possible to show, that

im Z1S (@ = [Ky (e dr, (3.24)

where the direct line means averaging on ensenibleadizations. As correlation
function characterizes process as a whole, thephattin (3.24) is also the spectral
characteristic of all process. It is designated as

G ()= lim =[S, (J) . (325)

Function OS(jw)[¥ characterizes distribution of energy of processfren
guency. As a result of division of this function drwe shall receive distribution of
power of process on frequency.

The expression (3.24) can be rewritten as diredtiaverse Fourier transfor-
mations

Gy (w) = TKX (t)e “dr,
o0 ! (3.26)

1% -
Ky (1) =— |Gy (w)e' dw.
<=5 [6x(@
On the basis (3.26) it is possible to write down
Kx(0)=2i [Gx (Wdw= [G, (f)df . (3.27)
T[—oo —00
But Kx(0) =Py. It follows from (3.27), that functio®yx(w) really characterizes

distribution of power of process on frequency onirgrrval oo, ), and value of
function Gy(w) or Gx(f) is equal power of process in bands in 1 Hz nédireguen-
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cies+f and—f. Therefore functiorGGy(w) refers to as power spectral density function
of process. Thus, the power spectral density fanaiind correlation function of sta-
tionary random process are connected by Fouriasfibamations. This statement is
known as Khinchin-Wiener's theorem. Dimension afictibn Gy(w) is V¥Hz or
Watt/Hz, coincides with dimension of energy andphably, therefore sometimes
function Gy(w) is called energy spectrum of process.

As functionsKy(t) andGy(w) are even instead of pair transformations (3.26) i
Is possible to write down a pair of Fourier cosireisformations which are, as a
rule, more simple in calculations, than ratio (3.26

Gy (w) = 2]3 K« (T) coswr dr,
0 (3.28)

K (T) =%J’GX (w) coswr dea
0

Knowing functionGy(w), it is possible to define width of a spectrumpobdc-
ess from some condition, for example, length odakpositive frequencies, outside
of which value of function is not exceeded withued 0,1maxGy(w)}. If the spec-
trum adjoins to zero bandwidth of a spectrum isreef ask.,. (figure 21,q), and if
a spectrum is bandpass, bandwidth of a spectrai@fised ag\F (figure 21,b).

G () Gy ()

maxGy () maxGy ()
1 1
0,1
~_ 0,1
Frmax f ’ AF f
a b

Figure 21— Definition of bandwidth of process:— the spectrum adjoins
to zero frequencyh — bandpass spectrum

As functionsGy(w) andKy(7) are connected by Fourier transformation accord-
ing to property of change of scale, than the lessetation interval, the more wide a
spectrum of process and on the contrary. In otledsy the correlation interval and
bandwidth of process are inversely proportionaligal

3.6 Gaussian random process

Most frequently in the theory and techniques of samication meets so-
called gaussian (or normal) random process. Rarsfationary process(t) refers to
gaussian process if its one-dimensional and twcedsional probability density
functions are described by the following expression
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1 _(x-a)?
p(x)_ ZT[O_eX[{ 202 J, (329)
_r [0’ 2R (000~ A0, ~8) + 06 =) (350
P2 (%, %, T) 2ot - R (0 XF{ 202[1- R2 ()] ] 350

whereo” — dispersion of proces§t);

a — average value of procexf);

Ry(1) — value of the normalized correlation functiorpobcessX(t).

To define two-dimensional probability density ofrm@l random stationary
process, it is enough to know only its correlationction. Thus, normal stationary
processes can differ one from another with kincafrelation function and power
spectral density.

The one-dimensional probability distribution fumetiof normal process is de-
scribed

F(x) =1~ Q(—X — a], (3.31)
(0)
where Q(2) = ifexp(—ﬁ)dt (3.32)
N21ms 2

— Q-function or addition to probability distributioruriction. Graphs of functions
(3.29) and (3.31) are shown on figure 22.

1,0 7
F(x 0,4
( ) a=C a=1 o=1
P(x) :
a=_C a=
0,5 0,2 / \/
0=2 o=1 \
/\
0 /4.- / 0 _/ \
-4 -2 0 2Xx 4 —4 -2 0 2X 4
a b

Figure 22— Gaussian distribution:
a — probability distribution functiorty— probability density function

Gaussian bandpass process is convenient to présengh quadrature com-
ponents

X(t) = A(t) cos(u,t + D(t)) = AL (t)cosw,t + A t)sinwt = X (1) + X (1), (3.33)

whereX(t) andX4(t) are quadrature components of process ;
Wy — some frequency belonging to a band of pro¥égs
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Quadrature components are uncorrelated processeg) lglmussian probability
distribution. Their dispersions are identical andia to half of dispersion of process
X(t).

EnvelopeA(t) and phaseb(t) are also uncorrelated processes. Envelse
has Reyleigh probability distribution (figure 23,

In expressions (3.34)° is the dispersion of proce3qt). Average value of

processA(t) = \/go, dispersionD[ A(t)] = (2—2)02, average powdp, = 20°.

iex _a_2 a>0
p(a) =1 g2 20° | ’
0, as<o
b (3.34)

a’ 0
l-exp—~| a>0

F(a) = F{ ZGZJ
0, a< 0./

The phaseb(t) has uniform probability distribution on interv@, 2m) (figure
23,b)

1
p(6) ={§f O<¢<am (3.35)
0, <0 ¢=2m

1
B /j | 06
F(a) 0—/ o= @) /\0:1
05 . 0,4 \
0,2/ )\\9:2

N

a b

Figure 23— Reyleigh distribution:
a — probability distribution functiorty— probability density function

3.7 White noise

Random process refers to as white noise, if popectsal density function is a
constant

_No
2 )
whereN, is a power of process in a band equals 1 Hz.

G(w) — 00 < W< 00, (3.36)
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Graphic dependences shown on figure 24 corresmoexigression (3.36).
The correlation function of a white noise is defires inverse Fourier trans-
form from (3.36)

e dw= %6&) (3.37)

On figure 25 the graph of correlation function dfite noise is represented.

G(w) G(f). K(t
N
No/2 ° No 5(¢)
2
w 0 f 0 T
a b

Figure 24— Power spectral density function of white noise:  Figure 25— Correlation
a — two-sided spectruni— one-sided spectrum function of white noise

3.8 Transformation of random processes by linear ettric circuits

While studying of passage of random processes giwrdmear circuits it is
considered, that statistical characteristics outn@andom procesX(t) are known;

X (1) v () transfer function of a linear circul(jw) is known
Linear circuit —> also. It is necessary to find characteristics dpot
processy(t).

Power spectral density function (PSDF) of processutput of a linear circuit
is connected with PSDF of input process througlasgjAR of a circuit

Gy(w) = Gx(w)H A(w). (3.38)

In particular, if input process is white noise, rti@SDF of output process re-
peats square AR of a linear circuit.

Correlation function (CF) of process on output din@ar circuit is defined as
Fourier transform from PSDF of process

K, (1) = 1—11 [Gy () TBosr)do (3.39)
0

Let X(t) is white noise with one-sided PS[@x(f) = Ny, 0<f <o, it acts on
an input of ideal LPF with AR

H,, 0<f<F
Hf) =1 e 3.40

cut?

whereF.,; — cut off frequency of LPF. Then PSDF of procéds
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2 <f<
Guf) = Gx(EP() = { or0e O T <Fan (3.41)
0 f=F,.
PSDF of proces¥(t) is shown on figure 2.
Average power of proce¥4t) is:
© Feut
Py=[G,(f)df = [NoHgdf =NoH¢ Feu. (3.42)
0 0
Correlation function of proce4t) is:
sin2nF,
Ky(T) =Ng H2 Fey———C4t, (3.43)
0 2T[FCU'[

On figure 26,b the normalized correlation functioR(t) = Ky(1)/K\(0) is
shown. Correlation interval of procesd) 1. = 1/(ZF ).

Gul) !
NogHo? Rv(1)
For T 0 -
-0,3 ¢
a I:cut I:cut b Fcut Fcut

Figure 26— Characteristics of proce¥t) at a filtering with ideal LPF:
a— PSDFpb-CF

The concept noise band of a linear circuit is esteNoise band of a circuit is
equal to integral from a square normalize of circuit

2H2(f
Fn:!; 2()df, (3.44)

whereH ., 1S the maximal value AR.

An ideal LPF has noise barg = F... Noise band of a circuit allows easy to
define power of process on an output of a cirdudn an input of a circuit white
noise with one-sided PSINg acts:

Py = NoF,[H r%]ax (3.45)

Consider probability distribution of process onputof a linear circuit. If on
an input of a linear circuit Gaussian process aben output process will be also
Gaussian — a type of distribution is not changedly ds parameters are changed. If
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on an input of a circuit process is not gaussiaen the distribution kind is changed,
and output process has probability distributiorsetato gaussian, then distribution of
input process.

The filtering is narrow-band if bandwidth of circis much less than width of
a spectrum of input process. At a narrow-bandrfiliy the phenomenon of normali-
zation of process takes place, which consistsarfahowing — irrespective of a kind
of distribution of input process, probability dibution of process on an output of a
circuit is Gaussian.

3.9 Transformation of random processes by non-linegalectric circuits

While researching of random processes passingdhraon-linear inertial cir-
cuit it is considered, that statistical charact@ssof input procesX(t) and depend-
encey=f(x) between instant values of input and output preegsre known. It is nec-
essary to find characteristics of output proc4$s

X(t) Y(t) The most widesprea(_j functidix)
—>| Non-linear circuity =f(x) ——> for the description of non-linear transfor-
mations is the polynomial of degrae

f(X) =@+ aX + @)X+ ... +a, X", (3.46)

whereay, &, ay,...,a, are coefficients of polynomial.

Factors and degree of a polynomial are definedrasudt of approximation of
the characteristic of a real electric circuit ooggeding from some assumptions.
There are other dependences also used, excepppubldependence (3.46).

Each of composed functions (3.46) brings the coation to formation of val-
ues of reaction of a non-linear circuit on inputi@t. So,a, describes occurrence of
a constant component at= 0; a;x is linear composed element which provides pro-
portional mapping of valuesin y; a,x* is square-law composed elemenk’ is cu-
bic composed, that are provided by the contribstipoportional ta?, x°, etc.

The elementary action is a harmonious fluctuat{h = A,;cos2tit. In this

case
P(t) = ag+ aiACOSAT 1t + @A °cOS 21t + ... +a, A"coS'2rT;t. (3.47)

If to take advantage of formulas of multiple argusewe shall receive
y(t) = Yo+ Y cos 2Tt + Y,cosAfit + ... +Y,cosAmfyt, (3.48)

whereY, is constant component of response,;

Y1, Yo, ..., Y, are amplitudes of the first, the seconah-th harmonics of action.

Thus, response to harmonious action contains atamneomponent and har-
monics of frequency of action — it essentially idigtiishes non-linear circuits from
linear in which new components do not arise.

In the case of biharmonic action

X(t) = Ajcosatht + A,coSAT,t. (3.49)

The approach to definition of response is the sawayell as used above, ex-
pression fox(t) is substituted in a polynomial (3.46). While nagsthe sum (3.49) to
such power as square, a cube, etc., degrees akdosguencie§ andf, will appear,
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that after transformations it gives expression wafhskind (3.48) for fluctuations of

frequencied; andf,. But products of cosines and their degrees @@ appeared.

Product of cosines gives components of summingd#fetential frequencies.
Components of combinational frequencies generallytake place

fcomb =Dpf1 + szlj, (350)

wherep, g are integers 0, 1, 2, ..., but such, thatq<n. TheirsumN=p+qis
called the order of combinational frequency.

So, if n = 3, that in a spectrum of response there canobganents of fre-
qguenciesfy, f,, 2f;, 26, Uf 600, 3fy, 3f,, [2f; £ f,00, f; £ 2f,01. Amplitudes of compo-
nents depend on amplitudésandA, and coefficients of a polynomial (3.46).

While passing of random process through a nonic&auit the type of dis-
tribution of momentary values are significantly ogad.

y On figure 27 non-linear dependence is
shown asy = f(x). All values of procesx(t),
got on the interval\x, are mapped in values of
processY(t), got on the intervally. Therefore
equality p(x)Ax = p(y)Ay is correct As for the
Infinitesimal incrementsix anddy, we shall re-

; ceive, that
|

X
Ax X p(y) = (X (3.51)
Figure 27 — The characteristic ‘dy/ d)4
of nonlinearity

Ay

It also is the general rule of calculation of
probability density of output process.

To define power spectral density function of outprdces<(f) the next way
is possible: to define correlation function of puit processK(t), and then to per-
form with it Fourier transform. It follows from @aition of correlation function

Ky (@ =] [0 (%) P, (%, %, T)dxdx,, (3.52)
wheref(x) is the function describing a non-linear circuit;
pa(x1, x2, T) Is two-dimensional probability density of inpubpess.
Methods of definition of characteristics of outpubcess are stated. Certainly,
in particular cases there can be mathematicatdiffes.
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4 METHODS OF ANALOG MODULATION
4.1 Classification of analog modulation types

In most transmission systems, telecommunicatiorleasd signals cannot be
passed directly by communication channels withmaridformation into other signals.
Transformations have as an object to co-ordingieass characteristics with commu-
nication channels characteristics. One of suclstoeamations is modulation.

It is distinguished that if a modulating signat@ntinuous it belongs to analog
modulation, and if modulating signal is digitab&longs to digital modulation.

4.2 General information about analog modulation

At analog modulation one of carrier parametgrgt) gets increases, that are
proportional to the values of modulating sigbé).

Carrier is auxiliary harmonic oscillation, necegsd&or implementation of
modulation process.

Uca(t) = Aocos(athot + §o),

At such oscillation amplitude, frequency or inigddase can get increases

Name of parameter which gets increases deterntwasame of type of modu-
lation (amplitude, phase, and frequency).

While considering analog types of modulation wd wdinsider that a modulat-
ing signal is a telecommunication baseband sigftalvith such characteristics:

-maximal frequency of signal spectrifp..is given;

-a signal is normalized so, that maximal on the n®dalue p(t)[max = 1;

-average value of signalt) =0;

-the coefficient of amplitud&,, is given. It determines, in how many times the
maximal on the module value of signal is exceettedverage quadratic value (root
out of average powéty):

K — ‘b(t)‘max
A \/Eb -
If a signal is normalized by the method indicatbd\ee
R, =1/K3. 4.2)

4.3 Amplitude modulation and its versions

(4.1)

At amplitude modulation of amplitude increases afmhonious carrier are pro-
portional to the instantaneous values of modulasmgnal, i.e. amplitude of the
modulated signal is

At) = Ay + AAD(D), (4.3)

whereAA is a coefficient of proportionality, which is clesso that amplitudA(t)
does not take on negative values, iAA.<A,. As |b(t)|max = 1, thenAA determines
the most maximal increase of carrier amplitudeh@nmodule. Frequency and initial
phase of carrier remain constant.
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It is comfortable to pass to the relative maxinmeirease of amplitude - ampli-
tude modulation factor

Mam=AA/A,. (4.4)
It is clear, that
O0<muy < 1. (4.5)

In the case of random modulating signal, analytegiression of AM signal
looks like

Sam(t) = Ao[1 + manb(t)]cos(2ot + §o). (4.6)

The time base diagram of AM signal is shown onrigg@8. Envelope of the
modulated signal repeats the form of modulatingalig

b(t) A

| ~ N/
su() ﬂ M .
V

v h“wﬂ |
Ay

Figure 28- Modulatingb(t)
and modulateda(t) signals

We will pass to determination of spectral charasties of AM signal. Let the
modulating signab(t) be harmonious oscillation of frequenEy f,. We will write
down expression for single-tone AM signal

Sam(t) = Ao[1 + maucos(at-t)Jcos(2fet +bo). (4.7)

If to use the trigonometric formula of cosine proguwe will get from a for-
mula (4.7) following

Sam(t) = Agcos(2Tet) + 0,580mavcos[2(fo + F)t] +

+ 0,580muw cos[2(fy — F)t]. (4.8)
Ao It follows from formula (4.8), that the
spectrum of single-tone AM signal contains
0,5A0mam 0,5A;man  three harmonious oscillations: with frequency

of carrier (carrier oscillationjy; upper side-
~ band oscillation with frequencyf, + F and
fo—F fo fotF f  lower sideband oscillation with frequendy-

Figure 29— Amplitude spectrum F. Amplitude spectrum of single-tone AM
of single-tone AM signal
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signal is shown on figure 29. Amplitudes of sidabascillations are identical and

even whemy,, = 1 does not exceed the half of amplitude of caier

We will pass to consideration of spectrum of AMr&gin a case of complex
modulating signal which will to a great extent

S(f) I answer the real signals of telecommunication.
The complex signab(t) has finite or infinite
\ sum of harmonious components. Every com-
Foo T ponent causes appearance in the spectrum of
A AoT(f—fo) the modulated signal two components —
Sam(f) summing and differential frequencies. Their
total sums create accordingly upper and lower
/LSB USB\ sidebands of frequencies. |
i . P On figure _30 rgndom arr_lplltude spec-
ma> 0 07T max trum of modulating signal and its proper am-
Figure 30— Spectrums plitude spectrum of AM signal are shown. It
modulating and AM signals consists of harmonious oscillation of carrier

frequency, upper sideband of frequencies
(USB) and lower sideband of frequencies (LSB). TH&S is the scale copy of spec-
trum of modulating signal, which is shifted on foeqcy on the valu&. LSB is the
mirror reflection of USB according to carrier freqcyf,. Figure 30 gives an impor-
tant result: the width of spectrum of AM signély; equals the doubled value of
maximal frequency of spectrum of modulating sigaal, i.e.

I:AM = 2Fmax- (49)
42
It is possible to show that average power of caP@'§,=7°, and side-
A2m? . . .
bandPgg = OKQM . Then ratio of sideband power to total power of Abnal is
A
Psg _ Maw

. If to take on a maximally possible valogy, = 1, and value of
Py Kz +mgy,
amplitude modulating signal coefficieRt, = 5 (voice signal), so part of sidebands
power iSPsg/Pay = 0,04 or 4%.

We see that while using of AM for transmission @etommunication signals,
prevailing part of power of AM signal is spent oscilation of carrier frequency,
although this oscillation does not carry informati@s its level in the process of
modulation remains constant — information is cargdiin the sidebands of frequen-
cies. Therefore it is efficient to form a signakhva spectrum, consisting only of two
sidebands of frequencies (without oscillation offries frequency), — such signal is
called the signal of double-sideband with supprésserier modulation.

Such type of modulation, when the modulated signal product of modulat-
ing signalb(t) and carrier is called double-sideband with sugged carrier modula-
tion. Analytical expression of signal double-sidethavith suppressed carrier modu-
lation (DSB-SC) looks like
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Sose-sdt) = Adb(t)cos(2ot). (4.10)

The time base diagrams of modulating and modulsitgthls are shown on fig.
31. From figure 31 it is evident, that envelopd&B-SC signaA(t) = Aslb(t) (it is
shown by dotted line) does not repeat modulatigiges.

From comparison of mathematical expressions, daagriAM and DSB-SC
signals it is clear that the spectrum of DSB-SQalgliffers from the spectrum of
AM signal by absence of oscillation of carrier fuegcy.

Random amplitude spectrum of modulating signal asdproper amplitude
spectrum of DSB-SC signal are shown on figure B2okhsists of upper sideband of
frequencies (USB) and lower sideband of frequen(i&8). Thus USB is the scale
copy of spectrum of modulating signal, shifted cegliency on the valug. LSB is
the mirror reflection of USB relatively to frequsnaf carrier oscillatior.

From fig. 5 it flows, that the width of spectrum DBISB-SC signalFpsg.sc
equals the doubled value of maximal frequency oflufating signal spectruy,.,
le.

Foss-sc= 2Fmax (4.11)

The width of spectrum of DSB-SC signal is the sa®seavidth of spectrum of
AM signal.

A

bit)

SDSB—S({t‘ ’ n

\ / LSB| USB\ .
“ fO_Fma). fo f0+FmaX f
Figure 31— Modulatingb(t) Figure 32- Spectra of
and modulatedpsg-sdt) signals modulating and DSB-SC signals

Important advantage of DSB-SC signals in compansih the AM signals is
the advanced efficiency of the use of transmittexgr, as considerable part of signal
power is not spent on carrier oscillation, whicimishe spectra of AM signals.

Without the losses of information about the sidn(@) it is possible to take out
one sideband (upper or lower) from the spectrurD8B-SC signal. Thus we will
get single sideband modulation (SSB).

In general case (for the random sign@)) SSBsignal is written down as

Sssa(t) = Agb(t) COS@TT ot + o) T Ab (1) SIN@TT ot + ), (4.12)
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where sign “~" refers to description of signalhlvihe upper sideband of frequencies,
and sign “+” — with a lower sidebandj(t) is a signal, conjugated on Gilbert with a

signalb(t):
On figure 33 the time base diagrams of random nadohgj signab(t), the con-
jugated on Gilbert signdl (t) and SSB signal calculated for it are shown. Frayurg

33 it is evident, that SSB signal envelof@) = Ay, /b?(t)+b?(t) (shown by dotted
line) does not repeat a modulating signal.

L b ‘
b(t) / S(f)

Fmax f
Ssse(t)
USB
f:) fO'H:max Vf
Figure 33- Modulatingb(t) Figure 34 - Spectra
and modulatedssgt) signals of modulating and SSB signals

On figure 34 amplitude spectrum of SSB signal, fyjom the spectrum of
DSB-SC signal by the exception of lower sidebandrefuencies (it is possible to
eliminate the upper sideband of frequencies) isveh@&o, such type of modulation,
when the spectrum of the modulated signal coincwiés the spectrum of modulat-
ing signal, shifted on carrier frequency, or is itnersion of the shifted spectrum re-
spectively carrier frequency is called single sateh

From figure 34 it flows, that spectrum width of SSignalFssg equals maxi-
mal frequency of spectrum of modulating signal

I:SSB = I:max- (413)

Important advantage of SSB signal in comparisom WEB-SC and AM sig-
nals is twice decreased width of modulated sigpatsum, which allows the signals
amount to increase twice in the set frequenciesd.bBinerefore SSB is widely used in
the systems of multichannel transmission with guency division. SSB is a single
type of analog modulation, when the band of fregie=nof signal is not broaden
while modulation. Except of considered “clean” S®8Bcommunication networks it
was found the use of SSB signals with carrier (yitht signal) and with partial sup-
pression of one sideband of frequencies. It creegemin comforts at forming and
detection of the modulated signals.
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4.4 Frequency and phase modulation

These two methods of modulation are reffered toathgular types of modula-
tion (AnM) — amplitude of the modulated signal rémsaconstant, and argument (an-
gle) of trigonometric function — carrier,(t) = Ajcos(2dt + ¢o) gets the increase

Ad(t), conditioned by the process of modulation. Thenekignal AnM can be writ-
ten down as

Sanm(t) = Aocos(aot + Ad(t) + ho) = AocoIP(t). (4.14)
The function®d(t) is called an angle, complete phase, instantanpbase or

simply phase of signal, anfg is called the initial phase of signal. Instantaretre-
guency of signal at the set functi@r@t) is determined

_1 Gd— A¢( ) _ f, +Af (t), (4.15)

on
where Af(t) = E‘[ (Adq:(t)) (4.16)

Is frequency increase.

Carrieruc,(t) has instantaneous frequerf@y = f, whichis a constant, and an
instantaneous phase depends linearly on tibig:= 2rdqt + ¢o.

At the set functioru(t) the instantaneous phase of signal is determined

= jznf(t)dt+¢o =2nj(fo +Af (1))t + ¢, =2nfot+2njm(t)dt+¢o, (4.17)

t
.e. increase of phase is  A(t) = 2m [ Af(t)dt. (4.18)

The initial phasepjcan be considered as permanent integrations.
At phase modulation the increase of phase is ptigpad to the instantaneous
values of modulating signal

Ap(t) = Adq b(t), (4.19)

wherelAdy is a coefficient of proportion, which is calledgde deviation. As maximal
on the module valuéb(t) | max = 1, deviation of phase at PM is the most maxideal
viation of phase from linear dependence in time.

Mathematical description of PM signal

Sem(t) = Ao cos(Athot + Adg b(t) + o). (4.20)
At phase modulation instantaneous frequency depends modulating signal

by next way
_ 1 d(aogb(t)) _ 20, A(blt)) (4.21)
2T[ dt 21 dt

At frequency modulation the increase of frequersytioportional to the in-
stantaneous value of modulating signal
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Af(t) = Afy b(b), (4.22)

whereAfy is coefficient of proportionality, which is callddequency deviation and
determines the maximal deviation of instantaneoeguiency of the modulated signal
from carrier frequenci.

The increase of phase is at frequency modulation

Ag(t) = 2nj A f (t)dt = 2mAf, j b(t)dt. (4.23)

Will get mathematical description of FM signal hetsubstitution of expres-
sion (4.23) in formula (4.14):

Sem (1) = Ay cos@rtf 5t + 2TAf j’b(t)dt +¢,). (4.24)

From the given above descriptions of signals ibfes, that FM and PM have
a lot in common. Both FM and PM have the increadefsequency and phase. The
name of modulation type is determined by which afgmeters gets increases, pro-
portional to modulating signal.

At angular modulations connection between the spect modulating and
modulated signals is considerably more difficdiart at AM and its varieties. There-
fore an analysis of spectra of angular modulatiere is not given. We will discuss a
final result. The analysis shows that theoreticély bandwidth of amplitude spec-
trum is infinite. However basic part of power ofiisal is concentrated in some lim-
ited frequency interval arourfgl which is considered as the width of signal spauotr
The spectrum width of FM and PM signals is cal@dadn formulas:

Fem = 2(Mew + 1) Froax (4.25)
Fev = 2(Mpw + 1) Fraxe (4.26)

where
My = Afg/Frnax (4.27)

— is an index of frequency modulation, which isedetined by ratio of frequency de-
viation of FM signal to frequency of modulating rsad;

Me = Ay (4.28)

—is an index of phase modulation, which equalselieviation of PM signal.

Only frequency modulation has got wide distributitinis distinguished nar-
rowband (in the case ofiry, < 1) and broadband (in the casengf, >> 1) modula-
tions. Narrowband FM signal spectrum width is comapé with the AM signal spec-
trum width. If FM is broadband, then signal speetrwidth approximately equals
doubled deviation of frequency.

4.5 Forming of the modulated signals (modulators)
Two features presently characterize constructiomadulators diagrams:
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1) modulators are performed on the processorsgifatlisignals; thus dia-
grams work with samplings of signals, and frequensicgampling is chosen accord-
ing to the relation, considered in s. 2.10;

2) the modulator diagram realize a forming algonittvhich follows from
mathematical description of the modulated signal.

Let consider the construction of DSB-SC signal ntaidu diagram. Mathe-
matical description of signal looks like

Sose-sdt) = Adb(t)cos(Aot + o). (4.29)

The diagram of DSB-SC signal modulator, constructedhe basis of this re-
lation, is shown on figure 35. It has a generagorier oscillationG and multiplier.
Modulator of AM signal is constructed on the badisorrelation (4.30):

Sam(t) = Ao[1 + manb(t)]cos(2ot + §o). (4.30)

According to this relation modulator is realized dyiagram, represented on
figure 36.

b(t) Sse-sdt) b(t) Sam(t)
—_ x —_— x > + > x >
Agcos Aot I Mam I 1 Agcos2fot
G G
Figure 35— Block diagram of Figure 36— Block diagram
DSB-SC modulator of amplitude modulator

Modulator of SSB signal can be performed by arfitbethod or phase method.
On figure 37 the diagram of SSB signal by a filtexthod forming is shown. Neces-
sary (upper or lower) sideband of frequencies lscsed from the double-sideband
with suppressed carrier modulation signal spectyra bandpass filter.

Phase method of forming of SSB signal is basedasiciproperty of analytical
signal: its spectrum is concentrated on positiegudencies. We will form an analyti-

cal signalb(t) =b(t)+ jb(t). On figure 38,a the spectrum of random signia(t) is
shown, and on figure. 38,it is shown spectrum of signal(t). Product ofb(t) and
Ae!?™ signals gives an analytical sigrm(t). Its spectrum is the spectrum shifted

to the right orf, of signal b(t) (figure 38,c). To pass to the real signal it is necessary
to take real part of signe(t):

Ssss() Re{m } Re{( +Jb )D%(cosanonsinZT[fot)}z
= Agb(t)cos2rft — Ajo(t)sin2rtt,

that gives expression for SSB signal with USBsleasy to make sure, that the in-
crease of the complex conjugated analytical signaproduct

b™(t)=b(t) - jb(t) andAe'?™et and selection of real part give SSB signal wittBLS

(4.31)
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Seaa(t) = Agbl(t)cos2rft + Agb(t)sin2mft . (4.32)

Diagram of SSB signal modulator (figure 39) is gifeom relation (4.31).

The diagram of Gilbert converter can be synthesmeds impulse response or
according to the necessity AR and PR (figure 4@retf i, and F,. are boundary
frequencies of modulating signal spectrum.

Sose-sdt)

0 I'x ~ | Sssel) S0 5() ] s,(1)
[ Agcos Aot / \ \ \
0 f 0 f fo f
G a b C

Figure 38- Amplitude spectrums

Figure 37- Formin )
: ° of signalsh(t), b(t) and rit)

of SSB signal by a filter method

H(f)
b(t) 1]
> x » . : :
Subtraction : |
v AgcosZfet | (for forming £ = f
Gilbert USB) Ssse(t) min max
converter G or o(f)
_ addition (for
6( ) AoSin27iol forming Fmin Fmax f
: LSB ; ;
| X ) . .
—or| e

Figure 40- Gilbert converter ARH(f)
and PRy (f)

Figure 39- Forming of SSB signal
by a phase method

The diagrams of PM and FM signals modulators cafobied in literature.
4.6 Detecting of signals

Device which output voltage is proportional to sopa@ameter of input band-
pass signal is called detector. On the base ofttisrmination, it is necessary to use
definitions: amplitude, frequency and phase detscto

An amplitude detector can be performed on the diagof synchronous detec-
tor or envelope detector.

The diagram of synchronous detector is shown omrdigll. This detector is
called also coherent. Both names are related Wwahfact that supporting oscillation
must be coherent with carrier oscillation of thpuhmodulated signal. Such oscilla-
tion is produced by the system of phase lock loop h the case of SSB it is neces-
sary to pass pilot signal). A synchronous deteistarsed for detection of AM, DSB-
SC and SSB signals. It is possible to check efiiyeof the detection process analys-
ing signals passing of mentioned modulation typesugh the diagram of detector.
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A envelope detector is shown on a figure 42. Susfleador does not require
coherent supporting oscillation and PLL systenexplains the name of incoherent
detector. Property of signal, that its spectrunossillation of carrier frequency of
signal is used for detection of AM signal. The dayg of incoherent detector of AM
signal is constructed on the basis of non-lineactat circuit (NEC), which is de-
scribed by polynomial, containing the elemef¥. Oscillation of differential fre-
guencies on the output of non-linear circuit: upgideband and carrier, and also car-
rier and lower sideband of frequencies are congyat the signal spectrum. These
differential frequencies are selected by LPF, whgcprovided by detection of AM
signal. Such diagram was used for analogue remiizat equipment.

Ug(t)

Smod(t ~
> 7 —> Ud(t)
)‘( ~ SO ecl . x|
2cos Aot
PLL . .
Figure 42— Block diagram

of incoherent detector on the basis
Figure 41 - Block diagram of of nonlinear circuit

synchronous detector

Detector on the basis of quadrature splitter (Bgdi8) is used during processor
realization of detector envelope. H&¢ is a random initial phase of supporting os-
cillation. Detector is used and in those cases,wthere is not carrier oscillation in
the spectrum of detecting signal. Output voltageletectoruy(t) is proportional to
bandpass signal envelop), that explains the name of detector — detect@noke-
lope. T :

LPF1 glt

X o 2 ® )2 |—

“2005(21f0t+A¢) !
«w | L© g B 000

1| e :
2sin(2nfot+Ad) |

x . :{‘: ;Q(t) (.)2 [
LPF2 |

Figure 43- Diagram of incoherent detector
on the basis of quadrature splitter

The diagrams of frequency and phase detectorse&muind in literature.
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5 METHODS OF DIGITAL MODULATION
5.1 General information on digital modulation

Modulation refers to digital if a modulating signsithe digital signal.

Digital signal (DS) is a sequence of digital syn#hathich belong to the cer-
tain alphabet. As a rule, symbols are binary agglgthated 1 and 0, them name bits,
and they act through intervdl. DS appears as a result of coding signs on discrete
messages or samples of continuous messages. [BSsiblp to present, writing down
sequence, for example, 10110..., and specifyingevB). Basic characteristic of DS
Is rate of a signal or bit rate= 1/T}, bit/s.

b(t) In the terminal equipment of trans-

mission systems, executed on logic micro-
A circuits or processors, digital signals look
. like sequence of rectangular pulses. The
0 Ty 2T, 3T 4Ty t example of such signal is resulted on fig-
ure 44. Carrier of information is the rec-
tangular pulse, and the information is dis-
played in amplitude of a pulse which accepts vatuasd 0.

For transfer of digital signals by communicatiorachels methods of digital
modulation, basically, with serial transfer aredise

The modulated signal for transfer by a communicatbannel is formed from
signalss(t) — elementary pulse signals belonging to ensefd(®}, i =0, 1....M —

1, whereM — number of elementary signalg & 2). Elementary signals name also
channel symbols.

At formation of the modulated signal the sequerfdarmary symbols is broken
into blocks fromn = logM bits. To each such block (the quantity of possualgous
blocks isM = 2") is put in conformity an elementary sigrsgt). Durationn bits
makes clock interval’ = Tpllbg,M. The received sequence of the elementary signals
acting through timd", forms the modulated signal

Z

Figure 44— Digital signal

k=00
s(t) = s (t-kT), (5.1)
k=-00
wheres® t-kT) —i-th signal transmitting oa k-th clock interval.

On figure 45 transition from DS to the modulategnal o = 4, M = 16) is
shown. On the plad(t) transmitting elementary signadg(t), si(t), s:(t), s(t), ... are
shown. Digital modulation is a display of blocksbds in pulses-carriers.

b(t)+ . n bits
> Thi<e —— , :
1,140 1 00O |1 O[O0 1 Of 1 1 O 0
N B VN A )
o oot
sy s ;0 os() P os() st
' T ’ Lt

Figure 45 —Arrangement of transformation DS into the moduagignal
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If M =2, a signa$(t) is binary; ifM > 2, a signal(t) is multilevel orM-ary.

Serial transmission is considered. Also there magrllel-serial transmission
(OFDM). It will be considered later.

Key parameter of the modulated signal is the badthwit depends on rate
and ensemble of elementary signaét)}. The problem of a choice of digital modu-
lation kind is reduced to a choice of ensembld@mentary signals.

5.2 Choice elementary pulse forms

The information is displayed in amplitudes of pslsestead of in their form.
Therefore the form of a pulse-carrier is necessarychoosing under spectral and
other characteristics.

Shown on figure 44 DS does not approach for ditractsmission on commu-
nication channels because of its spectral propei@a figure 44 elementary signal is
the rectangular pulse

o<sit|<T/2
Alt)= L O=[=T/ (5.2)
o [t[>T/2
the symbol 1 is represented by a pulgét), and a symbol O — a pulse with zero am-
plitude.
Let's find spectral density of functiof(t):
T/2 _ -
s,(if)= [ A(eizttar=7S"" (5.3)
—T/2 T[ft

The amplitude spectrum of functiett) is
Sa(f)=T|sinmit/mt] . (5.4)

On figure 46 the plot of the normal-

Sy(f)/T ized amplitude spectrurg,(f)/T is resulted.
1 The spectrum of the rectangular pulse de-
creases extremely slowly — with a spdéd
With the purpose of economy of a band of
frequencies of a communication channel it is
necessary to use pulses of the smoothed
form.

The pulseA(t) should satisfy to a con-

0,5t

O 1r 2 3/t 4 5 t dition

of the rectangular pulse 55
JHarp 0 t=kT k=x12. O

The condition (5.5) is a sampling condition or adition of absence of inter-
symbol interference (ISI). After sampling of a geu(t), satisfying a condition (5.5),
the discrete signal is formet{in) =...,0,0, 1,0, 0, ...

It is possible to show, that the spectrum of a @ui&) should be skew sym-
metric

Figure 4€ — Normalized spectrum ( ) {1, t=0,
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Salwn —w)+ Salan +w) =T,

O<w<2nT,
wherewy = TVT — Nyquist frequency.

(5.6)

On figure 47 examples of functioBgw) with skew symmetry are resulted.

Si(w)
T

TI2 4------

WN (0)) ) w
b

Figure 47 -Examples of functionS,(w) with skew symmetry

The spectrum of pulse signals satisfying a sampmgdition (5.5), refer to as
Nyquist spectrum. Them designateN(f). More often Nyquist spectrum describe by
function

-

T, o<|fls@-a)fy,

N(f)= O,H{l+sin[£(l—mJﬂ, A-a)fy <|fl<@+a)fy,  (5.7)
20 fn

0, |2 @+ a)fy.

where fy = 1/(2T) is Nyquist frequency.
a — roll-off factor of a signal spectrun0<a <1.

Dependence (5.7) refers to ,raised cosine“. OnrégiB such dependences are

resulted fora = 0; 0,2; 0,5 and 1. From figure 48 it is visibleat bandwidth of a
pulseF = (1 +a)fy. Minimal possible bandwidth min=fy = 1/(2T).
T

N(f) —\\\\\

—
112

0 0,5 1 15 fliy 2
Figure 48 —Nyquist spectrum
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Typical values of facton lay in limits from 0,2 up to 0,4.
FunctionA(t) can be received as inverse Fourier transform fxgin

sin 2nf t oS 2rof t
2mf\t 11— (dafyt)?
Pulses4(t) name Nyquist pulses (figure 49).

At) =

(5.8)

1
A®D)

-0,25
—A4T -3 -4 + 0 T 4 3 t 4

Figure 49 —Nyquist pulses

The type of pulse at the transmission of a basebamdl is considered. If the
spectrum should be bandpass radio impuls@idos(2tt) and A(t)Sin(2rft) are
used. Their amplitude spectrum have two side lveimdh are copies of a spectrum

of pulseA(t) (figure 50). IfA(t) has Nyquist spectrum the bandwidth of a radieeul
is definedF = 2(1 +a)fy.

()

f

Figure 50 —Spectrum of radio pulses
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5.3 Pulse-amplitude modulation

Modulation is named pulse-amplitude, if by charsyrhbols, used for forming
of the modulated signal, are low-frequenoypulses, i.e. their spectrum joins to a
zero frequency. Channel symbols are described as

s =aAt), i=01..,M-1, (5.9)

whereA(t) — impulse with certain time and spectral deswis, the maximal value
of which is equal 1; that intersymbol interfereneas not, impulsé\(t)
must be the Nyquist impulse;
a; is a coefficient, representing information.

The signals of pulse-amplitude modulation are desgd asM-ary PAM,
whereM is a number of channel symbols.

Evident presentation of signals of digital modwatis signal constellation. On
signal constellation each of channel symbols isesgnted a point, the co-ordinates
of points are coefficients, which are, describencigh symbols. In the case of MPAM
signals every channel symbol is described only avedficientq;, therefore for pres-
entation of MPAM signals one-dimensional spacesesdu On a figure 51 signal con-
stellation of 2PAM or BPAM signal is shown. A mapgicode, setting accordance
between binary characters and coefficients, isiipd@lsoa;.

0 1 01 00 10 11

o | o -0 o | o— o—>

—a 0 a — « 0 a 3
Figure 51 —BPAM signal constellation Figure 52 —QPAM signal constellation

On a figure 52 signal constellation of 4PAM or QPAsWgnal is shown. A
mapping code for the QPAM signal sets accordantedsn the pair of binary sym-
bols ( = 2) and by the coefficients. These pair also determines the signal number -
binary symbols are the record of signal numbeh@linary notation scale. A map-
ping code must be a Gray code blocks fromits, which correspond nearby signals,
must differ only in one bit. Gray code minimizeg thimount of erroneous bits in the
case of origin of error of decision about the pdsdennel symbol at demodulation.
Both at BPAM and at QPAM numbardetermines energies each of channel symbols
and middle power of the modulated signal.

Like the considered examples it is possible todosignal constellations for
M= 8, 16, ...

The chart of MPAM signal forming is resulted onigufe 53. DS acts at the
input. Mapper takea = logpM is bits and gives out the coefficientsa@gfrectangular
pulses duratio. Fromthese impulses a forming filter produces the imgsudsA(t).

This procedure repeats oneself on every clockvater
For different value$! work of chart differs only a mapping code.

t
&. Mapper Shaping filter SMP—AM(),

Figure 53 —Modulator of MPAM signal
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MPAM signals bandwidth is determined by the widthimpulses spectrum
A(t). As T = Tylog,M, then
l+a  _ R{i+a)
2T, log,M  2log, M

5.4 One-dimensional bandpass signals of digital mathtion

One-dimensional bandpass signals of digital motraare MASK signals —
M-ary amplitude shift keyingW{ = 2) and BPSK signals — binary phase shift keying.

At the MASK and BPSK signals channel symbols adiopulses and they are
written down:

Fvpam = (5.10)

s (t) = a+/2A(t)cod2mft), i= 01..,M -1, (5.11)

wherea, — number, representing= logM is bit, passed a signs(t);
A(t) — function, determining the form of radiopulsgs maximal value is equal 1;
fo — frequency of radiopulse.

As channel symbols differs only the coefficiemt signal constellations of
these types of modulation appear in one-dimensispate, and the modulated sig-
nals are named one-dimensional. On a figure 54abkigonstellations of BPSK sig-
nals, BASK and QASK with pointing of mapping codes resulted.

0 1 0 1 01 00 10 11
—o | o o o—> -o o | o— o>
—a 0 a 0 a - -a 0 a 3
a b c

Figure 54 -Signal constellations of BPSK (a); BASK (b); QASH &ignals

Energy ofi-th channel symbol calculated
E = [s°(tdt=a".

Comfortably to compare the different methods of mlation on the size of
minimum distance between the signd]scharacterizing the difference of signals is
guantitative. The sizd is determined on signal constellation. The sizaust be ex-
pressed through the physical parameters of sig@afortably to conside, such
parameter is energy, expended on the transmisdiame bit: E, = P.,T, = P,/R.

The last sizes are set on the system of transmisEioergyE, is expressed through
middle energy of signals.,and amount bit, passed one sigmal

E -Ee. E —iMilE' n=log, M
b N ) ev M ~ i gZ .

We will conduct calculations. For BASK:
d=a, E;=0,E; = d’, Eo, = 0,5° E, = Ee, = 0,5, d =./2E, .
For BPSK:
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d=2a Eg=FE1 =d* Eey=d% By =Eey =4, d =2,[E, .
For QASK:
d=2a, Eg=E,=d° E,=FE;=%"
Eev= 0,5¢° + %% = 5°, Ep=0,Fe =2,5%° d=2,/2/5[(E, =125/E, .

Time diagrams of the examined channel symbols esalted on a figure 55.
For obviousness it is accepted at a constructiat A(t) — rectangular pulse of dura-
tion, equal to the clock interval. Like consideres possible to build signal constel-
lations and time diagrams for the 8ASK, 16ASK sigrec.

su(t) so(t) si(t) s(h) 3, 20 =0 s | so(t)

A MRS MM M
VY YWYy e UVVU WV

b c

Figure 55 —Time diagrams of elementary signas: BASK; b — BPSK;c — QASK

We will consider the spectrum of carrier puléeA(t)[Gos(2tt), which chan-
nel symbols are built on the basis of (5.11). Tdasrier pulse is the signal of ana-
logue DSB-SC, and that is why his spectrum consista/o sidebands, concentrated
near frequency of radiopul$g which can be considered frequency of carrierliasci
tion. Frequencies sidebands is the reflection eEspm of impulseé\(t). So, spectral
properties any of channel symbsi&) wholly determined the functioA(t).

Frequencies sidebands are the copies of Nyquistrsipe (figure 56), and the
spectrum width of MASK and BPSK signals is detereain

F =2fN(1+a)=M.
log, M

An important conclusion follows from expressionl®). — the increase of lev-

els number of MASK signal at the

(5.12)

2S(f)IT’ fixed speedR allows decreasing the
1 spectrum width of channel symbols.
We will consider the chart of
0,5 forming of MASK and BPSK sig-
nals. From comparison of expres-
sions (5.9) and (5.11) follows, that at

Cfo—fu fo fo+fy f the MPAM signals carrier pulsi(t),
fy —fu(1+a) f, +fy(l+a) and at the bandpass signals carrier
Figure 56 - Spectrums of MASK and BPSK pulse JEA(t)EOS(Z‘[fd). T_hus' _the
channel symbols chart of forming of one-dimensional
bandpass signals (modulator) is built
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on the basis of chart of figure 53 with additioe tenerator of carrying wavefor@
J2 cos(2ft) and multiplierx (figure 57).

b(t)

7 Mapper ___,| Shaping Smod(1)

filter 1T X
T
G

Figure 57 -Modulator of one-dimensional bandpass signals

So, on the basis of analysis of one-dimensionadpass signals of digital
modulation became obvious, that the name of modulanethod specifies, what
channel symbols parameter differs: MASKHWsignals differ in amplitudes, BPSK —
two signals differ in initial phases (0 and 180°).

5.5 Two-dimensional bandpass digitally modulated ghals

For two-dimensional bandpass signals of digital ataiton the signald/-ary
PSK M = 4) andM-ary APSK (amplitude-phase shift keying) uses.h&se types of
modulation channel symbols are described the surnosihe and sine radiopulses:

s (t) = a ~2A(t) cos2Ti t + b /2A¢)sin2rft, i= 0 1., M -1, (5.13)

wherea;, bj — pair of coefficients, which jointly representsejuence from = logpM
bits, passed an channel symig@);
A(t) — function, determining the form of radiopulsgs maximal value is equal 1;
fo — radiopulses frequency.

As every channel symbol is described two coeffig@nandb;, signal constel-
lations of these types of modulation appear in tdvoensional space, and the modu-
lated signals are named two-dimensional.

Sum of cosine and sine radiopulses of monotonoussfidn (5.13) can be
transferable one radiopulse of the same form viighamplitude multiplie”A; and ini-
tial phase;j determined:

A =22 +p2), ¢, =—arctg%, i=01..,M-1. (5.14)

The identical amplitude multiplierd; = a have elementary MPSK signals for
all i, and their initial phaseg; differ with the step @M. On a figure 58 signal con-
stellations of MPSK signals are resulted with poigtof mapping codes. Evidently,
that mapping codes are Gray codes.

The elementary MAPSK signals of differ or by thepdimde multipliersA;, or initial
phasesp;, or amplitude multipliers and initial phases sitaokously. On a figure 59
constellations of 16-ary of quadrature amplitudedoiation (16QAM) are resulted.
Signals of MQAM are the separate cases of MAPSKag)
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For signals MQAM attribute the signals of MAPSKpibints of signal constel-
lation are in the knots of square grate. Such &tracof constellation gives certain
comforts at demodulation.

o - 101 Mt 1119
10’// \\°\ 11 10(E°," ‘\.\111 100c..- \\‘\1110
K \\\ /, \\ 100] \\\
\ ° @1100
+ 000¢ + o11c 9%0% + 01101
\ / \ / oooc,\ /,101 o]
00%. o0 001®.. ®01c oo1ce. %100
““““ ’ R s 0011 "0 %11c
011 0111
a b Cc
Figure 58 -Signal constellations of QPSI)( 8PSK p); 16PSK ¢) signals
For QPSK:
d=+2a,Ey=E,=E, = E3=d% Eey=d? Ep = 0,5, = 0,5 a = ./2E, ,
d=2,E,, maxd=2a=2,/2E, .
For 8PSK:
d2 =a8in22,3, d=0,76%, E =d’,
Ee = a% Ep=E./3=4d%3, d=0,765/3E, = 136,/E, .
0010 0110 1110 1010 The followings MQAM signals of are used in

practice: 4QAM (the same, that QPSK), 8QAM,
5 § 5 16QAM, 64QAM, 256QAM, 1024QAM.
0(1_1_;_______0&;;_ ..... 41&.1.1. ..... {;1( Signals, described expression (5.13), are a sum
4+ . two DSB-SC signals with identical amplitude spectra
0001 0101 1101 ‘1001Which are determined the sign(l) spectrumin case if
| S S MG ®  A(t) — the Nyquist pulse, amplitude spectrum to edch o
5 ; 5 . constituents, and also their sum, looks like, tesubn a
oqQ_(_)_______()éqq ______ % 100 ‘i’looofigure 56. Therefore the spectrum width of channel
symbols in the case of MPSK and MAPSK is described

Figure 59— 16QAM signal _
constellation expression (5.12).

We will consider the chart of forming of MPSK and
MAPSK signals. From comparison of expressions {5atigl (5.11) flows out, that the
chart of two-dimensional bandpass signals formmgdulator) is built on the basis of
figure 57 chart with addition of second subcharamel summarizing (figure 60). Map-
ping code coder puts in accordamce lopM to the entrance bits two rectangular im-
pulse with amplitudes; andb;; rectangular impulse is filtered forming filtete, get the
Nyquist impulses; the impulsegA(t) and bA(t) act at the inputs of double sideband
suppressed carrier modulator; the gotten modutaggls are added up.
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& | Shaping | &A()
! filter ! x

| V2 cosatt Smod(t)

o - ( ) ] \/E sin2rfqt
i | Shaping Al
. filter ! x

b(t) Mapper G

Figure 60 —Modulator of two-dimensional bandpass signals

Thus, made sure again, that the name of methowjibdldnodulation specified
what parameter (or by what parameters) channel gigntbffer: MPSK —M signals
differ in initial phases, MAPSK M signals differ in amplitudes and/or initial phases.
To the two-dimensional signals the signals of hinfaequency modulation (BFSK)
belong also. From the name of modulation followat tthannel symbols are radio-
pulses, different frequencies:

So(t) =aAt) cod2n(f, - Af /2)t+¢,),
s1(t) = aA(t) cod2m( f, +Af /2)t +¢,),

wheresy(t) — signal for the transmission of symbol O;
s(t) — signal for the transmission of symbol 1;
fo— middle frequency of radiopulses;
Af — frequency spacing;
A(t) — function, determining the form of radiopulsgs maximal value is equal 1;
a — coefficient which determines energy of signals;
do, §1 — initial phases of impulses.
The modulated signal is written down

Sersk (t) = is,(k)(t —KkT). (5.16)

k=—00

(5.15)

In order that at demodulation radiopulses can i wa divided on condition
that their phaseg pnd j are arbitrary, the spectra of radiopulsg$) ands,(t) must
not be recovered. If the spectrums of signals ateatovered, such signals orthogo-
nal. We will pass to vector representation of clehsgmbols

5 =a,J, +b Py, (5.17)

where
W (t) = A(t)cod2n(f, —Af /2)t+6,),
W, (t) = Att) cod2m( fy +Af /2)t + ¢, ),

and a mapping code which does equivalent records ) and (5.15) is resulted in
table 2. On the basis of expression (5.17) aneétalBFSK signal constellation looks
like, shown on a figure 61. Here the impulgg$) andy;(t) form the base of signals
space.

(5.18)
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Table 2— BFSK mapping code

1 a; h
0 a 0
1 0 a

Af

min —

whereT — a clock interval is equdl.
Then spectrum width of BFSK signal:

Fersk = Of in +

In order that a width of spectra of
radiopulses was minimum and there was
not intersymbol interference (ISI), an im-
pulseA(t) must be the Nyquist impulse. At
that rate it is possible to consider that a
spectrum of signadsrsk(t) is the sum of spectra of two radiopulses of freguest, —
Af/2 andfy + Af/2. On a figure 62 the rationed spectrum of BFSkhal, from which
follows, is presented, that frequency spacing diflve minimum, when the spectra of
radiopulses join one to other, and evened:

_1+a

T

1+a _2(1+a)

T

T

it is twice greater spectrum widths of BASK and BPstgnals.

a o

A

> So

N

Yo

'S

[V

-

Figure 61 —BFSK signal constellation

1]

(5.19)

(5.20)

fo—Af/Z fo f0+Af/2 f
Figure 62- Spectrum of BFSK signal, on the
basis of Nyquist impulses

From expression (5.17) and table 2 the chart ofilBR®dulator flows (figure
63). Forming of BFSK signals differs from forming§ MPSK signals work of map-
ping code coder
sideband suppressed carrier modulators differ enstkeAf/2 from frequency of
bearing oscillation.

b(t)

—

Mapper

& | Shaping | &A()
filter ! x
e T
cos2n(fo+AfI2)t
by Shaping | biA(t)
| filter X
o1 1
cos2n(fo—Af/2)t

and that generators of carryingefeam frequencies in double

Smod(t)

Figure 63 —BFSK signal modulator, if channel symbols are Nggunpulses
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1 If the functionA(t) is rec-
0 tangular impulse, it is necessary
to provide forming of BFSK sig-
0.5 nal the chart of modulator with-
/ \ out the «open-phase fault». It is

possible, when frequency spac-
0 ~—~ |ngAf—k/(2T) wherek =1, 2, 3,
fe-1,5M fo-1T 05T f, f#05M f+lT f#15m ... T = T,. When k = 1,
Af=0,5T and modulation is
Figure 64 -MSK signal spectrum named modulation of minimal

shift keying (MSK). In the case
of MSK the rationed spectrum of signal is describggdression

1+ cos(4r( f - f

S(f)= yi+cosdntf - f)T) (5.21)
J20-(4(f - 1,)TP)

Dependence (5.21) is resulted on a figure 64. \Wiéhincreasdf — fo| spec-

trum decreases at a speeff'1if to define theFysk spectrum width on the first zeros
of dependence (5.21) then

Fmsk = 1,51 (5.22)

5.6 Signals with spread spectrum

Broadband signals have been used in the systemeteabmmunication, since
50-s. The properties of these signals for the finsé were used in the systems of ra
dio communication for removal effect of radiowawesltipath propagation.

The next stage of implementation of broadband $sgimatelecommunication
systems was early 90-s, when these signals werkinos@obile communication of
second generation of standard of 1S-95 network<faale Division Multiple Access
realization (CDMA). Code Division Multiple Accessa$ appeared extraordinarily
effective in mobile communication networks, therefthe systems of third genera-
tion of cdma2000 and UMTS also use broadband sgnal

Since middle of 90-s implementation of wirelesstpaf access, which allow
to connect various devices, for example, mobilepglebne and computer was begun.
The example of such port is Bluetooth, which pregi¢onnection of various devices
in a radius of 100 m. The known property of broadbaignals is their high stability
to the narrow-band hindrances which are made lgratévices of radio contact.
Broadband signals (BS) are called such signalsghlwlpectrum width is more than
minimum band of frequencies, necessary to pasgitldsignal of the set rate:

AfBS >> Afmin J (5-23)
whereAf. is a width of spectrum of broadband signal;

Af . is @ minimum band of frequencies, necessary fma@smission; that is
equal to the limit of Nyquist, which for binary ldpass signals is equal to transmis-
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sion rate, i.eAf ,, = R,.

One of widespread methods of broadband signalsirigriis Direct Sequence
Spread Spectrum - DSSS. Signals, formed by suchaadgeare used in mobile com-
munication of standards of 1S-95 and UMTS networks.

Doell) , , The principle of direct expansion is

' ' that information character is multiplied by a
so called Pseudo-noise sequence (PNS) the
period of which is equal to duration of char-

! ! acterT, (figure 65). Expansion of spectrum
AP | | takes a place due to that duration of element
] |_| of PNS, which is called a chip, is less then

‘ duration of information character, i.e.

Tepip <<Tj.

| PNS is a sequence of binary charac-
— ' ters which values correspond a certain law.
_I Such PNS are the function of Walsim-

sequencetc.
T T 7 After multiplying by PNS a signal is

b b . .
: : _given on the input of standard modulator of
Figure 65— Direct spread of spectrum: .

bos(t) — a digital signalP(f) — PNS BPSK, on the output of which a broadband

signal appears with Direct Sequence Spread

v

u
|
u
|

Abps(D)P(t)

v

Spectrum:
Shess( 1) = bod ) P()+/2 A Y coq atf ) (5.24)
wherebp(t) is a digital signal;
P(t) is a PNS;

At) is a envelope signal with Direct Sequence SpreadtBum;

f, Is a carrier frequency.

The chart of signal modulator with Direct Seque&q@ead Spectrum is pre-
sented on figure 66. Modulator contains forming L®Rich task is to form impulses
for the transmission of chips with a compact spewotrThis filter forms envelope
signal. It is chosen such AR LPF, that on his ougpgpectrum of chip (element of
PNS) is the spectrum of Nyquist. In this case,width of spectrum of signal with
direct spread is calculated as:

Afpses=(1+a) Ry, =(1+a) NR,, (5.25)

chip™
whereRchip =1 Tenip — Chip rate, i.e. transmission rate of PNS elesjent
R, =1/T, - rate of digital signal;

N is a number of chips on single informative symbol,
a is a Nyquist spectrum roll-off fact@r< a <1.
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bps(t) 1? : o SE ,? E 5 Sosst)

Figure 6€ — Direct Sequence Spread Spectrum
signal modulator: GPNS — PNS generator;
CG — carrier generator

From the expression (5.25) follows, that signalctpen with direct expansion
Is exactly inN times wider, than signal without spreading of $pen, therefore a
number is often called the coefficient of spectgpreading.

Spreading of spectrum allows getting some usefypgnties.

Figure 67 demonstrates spectral properties of lvaadl signals. From the fig-
ure follows, that under spreading of spectrum sigaal of value of his spectral den-
sity is reduced. Values of spectral density of @aldband signal under considerable
spreading of a spectrum (hundreds and thousaneés)tioecome near to the value of
spectral density of noise. In this case it is diffi to distinguish a signal from noise,
if the parameters of signal are unknown, for exampéaring frequency is unknown.
Broadband signals are in general called noise-ldse their properties are similar
property of white noise.

4 Sf)

~.

7 2 <

v

Figure 67 — Spectrums of: 1 — broadband signals;
2 — narrowband signal; 3 — white noise

Similarity of values of spectral density of broadfaignals and value of spec-
tral density of noise means, that these signalsod@reate considerable hindrances to
signals without spectrum spreading. On the otlter igure 67 demonstrates another
property of broadband signals, namely firmnes$iértarrow-band hindrances. On a
figure it is possible to see, that the spectrumafow-band signal (2) destruct insig-
nificant part of spectrum of broadband signal (g€ubpart), that allows effectively to
remove influencing of such hindrance. In fact bgystems in which broadband sig-
nals are used and the systems in which signalsisae without spreading of spec-
trum can work in one band of frequencies.
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At demodulation of signals with the spreading speuntthe so-called matched
filters are used. Their properties are:

— if on the input of a filter is given a signal whiis matched with a filter, out-
put response repeats the function of correlatiaiisfsignal.

— if on the input of a filter is given a signal whiis not matched with a filter,
output response repeats the function of mutuaketatron of input signal and signal
which a filter is matched with.

On figure 68 and figure 69 correlation propertigsboadband signals are
demonstrated. The function of correlation of argnal s(t) is determined by expres-
sion:

K@y5i¢k@-am, (5.26)

and function of mutual correlation of two signass(t) ands,(t) is determined by
expression:

Figure 6€ — Broadband signal correlation Figure 6 — Two PNS mutual correlation
function function

As it follows from figure 68 a correlation functioof broadband signal has
main narrow signal spike and small on values sidélsgnal spikes. Duration of the
main signal spike of correlation functiag is inversely proportional the band of fre-

guencies of broadband signal, i.e.:
1
Afgg

~
~

T, (5.28)

A function of mutual correlation of two broadbandrals has small on values
signal spikes (figure 69). It allows realizing tbede division of signals (wave-form
separation).

Multipath propagation of radiowaves is charactarifir systems of radio con-
tact and leads a few copies of a passed sgbalwhich appear as a result of reflec-
tion of electromagnetic wave from various objeester into the input of receiver.
These copies of a passed signal enter into inprgagfiver with different delays:

L

Sreolt) = 28t -t;), (5.29)

=1
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wherel is a ray number; a way of distribution of electegnetic wave is called ray;

L is an amount of rays.
There will be observed sum of functions of coriielaton the output of a matched
filter (figure 70). As a function of correlation @froadband signals has the narrow
main bursts and small on values sideband burgjsalsi of separate rays can be put
together laid down — processed by Rake-receivealiRd¢ion of Rake-receiver for
processing of signals of two rays is represented figure 71.

Figure 7C — MF output signal in a case of input
sum of two PNS

Sedt)
Ly MF > At P 7{ Sout(t2)
* t
2

Figure 71— Rake-receiver

In communication networks with multiple access witide division on the in-
put of MF a few broadband signals of different swibers which are transmitted si-
multaneously and in one band of frequencies, entennput of matched filter:

Seclt) = Zs (t), (5.30)

whereM is an amount of active subscribers.

For waveform separation of broadband signals ptg@eof matched filters is
used. As a value of function of mutual correlatadrbroadband signals tends to zero,
signals, which are not matched with a filter, wibt create considerable hindrances
for a signal, which is matched with a filter.

5.7 OFDM

Orthogonal Frequency Division Multiplex (OFDM) reed a parallel-serial
transmission (figure 72). A communication chanmsesimultaneously transmit of
modulated signals with a serial transfer which hasn examined before. For this
purpose sequence of binary characters is demwuéglan L parallel sequences
bay(t), bey(t), ..., by(t)... On the basis of each of such sequences the moddafe
nals of s(1)(t)are formed,su)(t), o)1), ....su(t) as well as under a serial transfer.
Sum of signalssy(t),1 =1, 2, ...L forms the modulated signal of parallel-serial
transmission, which is written down as
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L L k=o
s(t) =Y s)t) =X X sff -k, (5.31)
1=1 |=1 k=—o0
wheresff) (t - kT) —i-th signal, passed Wyth subchannel ok-th clock interval.
bay(t t
T b(l)() STmog s(®) :
t t
b(t) 2 ST moa- 2. s [
— 1 DMX .
b(t .
L ) » ST mod sl >

Figure 72— Modulator of parallel-serial transfer:
DMX — demultiplexer;
ST mod - serial transfer modulator

The feature of this method of transmission are:

- rate of digital signals(t) lower, than signab(t) in L times;

- on the output of modulatdr of the modulated signakg(t) simultaneously
present;

- the modulated signals of separate subcharggtys must be such, that they
can be divided out of a sum (5.31) for separateadiehation; these signals occupy
different bands of frequencies.

In real systems the numbercan make thousands. If AR and PR of communi-
cation channel are distorting, in the bands ofdssgpies for separate signalg(t) a
channel is practically nondistorted. At first glancomplication of method of trans-
mission actually requires simple transformatioisLaf modulators are realized by
one procedure of inverse fast Fourier transform.deémodulation direct fast Fourier
transform is used. OFDM is used in systems of radistact and digital sound and
television broadcasting.
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6 METHODICAL GUIDELINES FOR FULFILLING LABORATORY W  ORKS
LW 1.2 Researching of random processes probabilitglistributions

1. Objectives

Studying and experimental investigation of one-disienal probability distri-
bution functions and the probability density funas of random processes.

2. Main principles

2.1. It is considered that studied processes atmisary and ergodic. In such
processes one-dimensional probability distributfonction and one-dimensional
probability density function do not depend on time.

2.2. By definition the values of one-dimensional@bility distribution func-

tion F(x) are equal to the probability of that in the adny time moment process.
X(t) will take on the value that does not exceed

F(X) = P{X(t) < x}. (1)

The value of one-dimensional probability densitpdtion p(x) is equal to the
limit of ratio of probability that in the arbitrafyme moment, the proce3§t) will
take on the value on the interval{ Ax/2, x + Ax/2) to the interval lengtihx when

AX - 0:

o(x) = lim P{x-Ax/2< X(t) < x+Ax/2}.
Ax-0 AX
The properties ofF(x) andp(x) functions shown on the table below are easy to

prove using their definitional formulas (1) and.(2)
Table 1— The properties of the functioR$x) andp(x)

(2)

P F(X)
1 P{x < X(t) < x+dx = p(x)dx F(x) = P{X(t) < x}
2| Pha<X®Sx)=[p0dx | Pl < X(1) S X} = F(x,) - F(x)
3 ofp(x)dx=1 F(o)=1 F(-0)=0
4 p(x)=0 F(x,) =2 F(x) when x,>x
dF(x) N
5 p(x) = dx F(x) = [ p(x)dx

The functionsF(x) andp(x) are used to calculate the hit probabilities & th
process values on the given interval (line 2, tdY|eo perform statistical averaging
while determination of process characteristics othe result of certain operation
with random process.

2.3. For processes which are often used, analyéixpftessions of functions
F(X) andp(x) are known.
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For Gaussian (normal) procesgfor example, fluctuation noise):

(x-a)?
1 7 g2
p(x)= N 2 3)

wherea = X(t) is the average value or mathematical expectati@random process
a= [ xp(x)dx; (4)

0 — root-mean-square deviation of a random procisis determined as

0:1/D|X(t)|;

D[ X (t)] — dispersion of a random process (an averageeva a squared devia-
tion of a value of random process out of its avenzgjue)

D[X (1] = | (x-8)? p(ax. (5)

The probability distribution function of normal mess has following expres-
sions:

F(x)=1—Q[—), (6)

where

— Q-function or addition to Gaussian probability distition function.

On figure 1,a, the graphs of the probability distribution argegi ata = 1 and
o=0,5.

Probability distribution ofharmonic oscillation X (t) = ALbs (att + ¢),
whereA andf are constants, ardis a random value, is described by the expressions

1 1 . X
—! SA! — _A
o= SR pg= 0Bt arsin, <A
0, x> A 0, X > A

The average value of harmonic oscillation is edoakero, and root-mean-

square deviation is equal #®//2. On figure 1b, the graphs of probability distribu-
tion of harmonic oscillation are given at= 2. If x = A, then the value of probability
density tends towards infinity.
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a b C

Figure 1— The probability distributions: —of the Gaussian random process;

b— of the harmonic oscillatiorr;— random process with a uniform distribution

FunctionsF(x) andp(x) for the random process withuamiform distribution
on the intervalXyin, Xmay are written down as:

P01 K= Xy S o

O’ ab(S)gnin y X= X‘nax )

0 at  X<Xy,; (8)
) X7 X :
F(x) ={—_ at x_ <X<X ]
(=) At X SxSx,
1 at X>X

The average value of the random process with aumitistribution is equal
to (Xmin *+ Xma)/2 and root-mean-square deviation is equéktg, — x. )/~/12. The

graphs of a uniform probability distribution fagi, = 0 andx,.x = 2 are given on fig-
ure 1,c.

3. Questions

3.1. What processes are called stationary and ergod

3.2. Give the definition of the one-dimensional ability distribution func-
tion of random process and prove its properties.

3.3. Give the definition of the one-dimensionallability density function of
the random process and prove its properties.

3.4. How can you find the hit probability of proseslues on defined interval,
using the probability distribution function or tpeobability density function?

3.5. Write down the expressions for the expectadio dispersion of a random
process. What is their physical meaning?

3.6. Write down expression for the normal probapiiistribution function and
explain the meaning of values considered with it.
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3.7. Explain the type of the graphs of probabitiigtribution function of the
harmonic oscillation with an accidental phase, tllation noise, and the random
process with a uniform distribution.

3.8. Describe the principle of operation of devite@sneasure the probability
distribution function and probability density furat of random process.

4. Home task

4.1. Learn chapter "Probabilistic characteristitsa dandom processes” from
the compendium of lectures and literature.

4.2. Perform calculations and build probabilitytdimition functionF(x) and
probability density functiorp(x) graphs of the normal (Gaussian) random process,
a = 0 and root-mean-square deviator 1 + 0,N( whereN is a number of work-
group) for the values -€8< x < 30. In the absence of the probability integral table
Is possible to use the approximation formula:

Q(2) 00,65 exp[-0,44(+ 0,755] underz > 0;

Q2 =1 -Q(|2)) underz < 0,Q(0) = 0,5,Q() = 0.

Results of calculations should be presented irfidim of tables and graphs.
4.3 Be ready to discuss key questions.

5 Laboratory task

5.1 Acquaintance with a virtual model on a workplae

Start the program 1.2, using the icon TT(English)tioe desktop. It is neces-
sary to study the structure of a virtual model gsta description in part 6 of this LW
and to master entering of parameters. Specify thighteacher the laboratory task per-
formance plan.

5.2 Research of the random process with a uniformistribution probabil-
ity

Click in the menu “Choice of process” item “Withuaiform distribution”.
Place in proper windows valugsg, = —1 andX,.x = 1. Ultimate values of argument at
the analysis of distributions axg,, = — 2 andx,, = 2. Write down measured average
value, and root-mean-square deviation, graphsaifghility distribution function and
probability density function. On the instructioniStbe teacher repeat measurements
for other values,i; andXmay.

5.3 Research of a Gaussian process

Click in the menu “Choice of process” item “Gaussiprocess”. Place in
proper windows valueg anda, given in the hometask, and choose valkgsand
Xmax SUCh that they cover a range of valudsom a — 30 up toa + 30. Write down
measured average value, and root-mean-square idayigtaphs of probability dis-
tribution function, and the probability density fition. By the instructions of the
teacher repeat measurements for other values ohgwevaluea and root-mean-
square deviation.

5.4 Research of statistical characteristics of a haonic oscillation

Click in the menu “Choice of process” item “Harmorascillation”. Place in
proper windows value of amplitude = 1, value of frequencl of the order 10...20
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kHz and value of an accidental phaseEstablish ultimate values of argument ana-
lysing of distributions so that they cover a ranf@aluesx from -A up to +A. Write
down measured average value and root-mean-squaigdide, graphs of probability
distribution function, and the probability densitynction. By the instructions of the
teacher repeat measurements for other values bkquency, phasep.

6 Description of laboratory model

Laboratory work is performed on a computer in tHe YEE environment us-
ing a virtual model. The block diagram of virtuabdel is given on figure 2. The
model enables to investigate characteristics aflaamprocess with a uniform prob-
ability distribution, Gaussian random process, laaanonic oscillation.

This virtual model realizes two basic functions éaich process:

1. Generation of thisl samples of researched random proe&€gs Samples are
displayed as “Realization of a process”;

2. Calculations on the basis of the generated sssgdl values and displaying
It:

a) probability distribution function;

b) probability density function;

c) average value of process;

d) root-mean-square deviation of process.

For every researched random process different rdstbhbgeneration of sam-
ples, different parameters of processes are used.

The generation of samples of process with a unifdistribution is performed
by the built-in function “randomize”. The values xfi, andx,.x are preset in the
model.

The generation of samples of Gaussian process risrped by nonlinear
transformation of two arrays of samplg$) andv(i) of random process with a uni-
form distribution on an interval (0, 1).

Transformation is given by

X (i) = a+ oG/~ 2In(u()) Eos@rv(i)), i =L N, (9)

herei is the number of the sample in an arkagndo are the average value and root-
mean-square deviation of researched random proedgssh a researcher sets on a
model.

A built-in functional generator performs the genieigof samples of harmonic
oscillation. A researcher sets the amplitude, teguency, and the initial phase of
oscillation.

The calculation of values of probability distribari function and probability
density function is made in the range of argumetiies from lower-range valug,,
and to upper-range valug,. An interval &ow, X,p) is divided onM/ of identical subin-
tervals with the lengthx = (X,, —Xiow)/M; the quantity of sampldg, that get on the
th subinterval is calculateg fakes on values from 1 ). Hit frequency of sample
values on thg-th subintervab; = k/N. In the case of sufficiently large valukksand
N (in the modeM = 200,N = 10000) values of frequency give the probability of
getting hit of the sample values on jkié subinterval. Values hit probability on the
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th subinterval isg; = p(xj)A%, wherex; = jAx (according to line 1 in the table 1).
Therefore

)= b k;M IW
p )(j = = , =
NAX  N(X,, = Xiow)
Settinga, 0 Oscillograph
>| "Realization of the
Generator of samplgs process”
with Gaussian
distrioution Calculator of “Mealgl?rlggtg/era €
™| average value ¢ 9
value
SettingA, f, ¢ | S
Generator of Calculator of Indicator
harmonic oscillation| _ 5| root-mean-square “Measured root-mearf-
samples deviation square deviation”
Calculator of the der}- Display
> sity histogram “Probability density
i function”
SettingXmin, Xmax Settingxiow, Xup
Generator of samplgs
with a uniform [ : —
distribution Display “Probability
Integrator distribution

function”

Figure 2 — Virtual model block diagram

Arrays of valueg(x;) andyx; are displayed as “Probability density function”.
Using property of probability distribution functidf(x) (line 5 table 1), the ar-
ray of values is calculated as:

j R
F(x;)=8x3 p(x), j=1LM.
k=1
Arrays of valued-(x;) andx; are displayed as “Probability distribution func-

tion”.
The average value of the researched process idai@d by the formula

Y@=§ixm,
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whereX(i), i =L N is i-th sample of the researched process. The vAi(i is dis-

played. This display is called “Measured averagae/a
Root-mean-square deviation of the researched poseslculated as

JN - Z(X(u) X(@)?.

The valueo is displayed as “Measured root-mean-square dewati

7 Requirements to a report

7.1 Title of the laboratory work.

7.2 Objectives of the laboratory work.

7.3 Results of the homework performing.

7.4 Block diagram of researches.

7.5 Results of the execution of items 5.2-5.5 bbtatory task (graphs, oscil-
lograms, numerical values, etc.).

7.6 Conclusions on every item of the laboratork tagth analysis of the got
results:

- coincidence of form of functionyx) andF(x) each of researched proc-
ess to theoretical one;

- implementation of propertiggx) andF(x),

- coincidence of measured average value and roatiraguare deviation
with calculated, on the given parameters of theaeshed process.{, andXmay 4);

- dependence of functioqgx) andF(x) on frequency and initial phase of
harmonic oscillation.

7.7 Signature of student about the laboratory wikorming, teachers signa-
ture for the laboratory work defense with mark date.

Literature

1. backakoB C.U. PamuorexHudeckue Ienbl U CUTHAIBL. YUYEOHUK IS BY-
30B.— M.: Paauo u cBsa3p, 1988 (1983).

2 Teopus nepenaun curHajioB. YueOHuk s By3oB / A.I'. 3i0ko u ap. — M.:
Panuo u cBs13p, 1986.
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LW 1.3 Researching of correlation characteristics brandom processes
and deterministic signals

1. Objectives

1.1 Studying the method of experimental investagabf correlation character-
istics of random processes and deterministic ssgnal

1.2 Research of the connection between correldtiontions and spectra of
random processes and deterministic signals.

2. Main principles

2.1 The correlation function (CF) of the randomgassX(t) is the mathemati-
cal expectation of the process values product, ey take on in the time mo-
mentst; andt,:

Ky (1) = X(t) IX(t,) - (1)

CF valuesk(ty, t,) determine the quantity of statistical dependenesveen
the values of process in the time momentsndt,. For the stationary processes, the
values of the CF do not depend on chacelt,. They depend on the distance be-
tween thent =t, —t;. CF is denoted asx(1). Further we will consider only station-
ary processes and suppose that they are ergodith&ergodic processes CF is de-
termined as:

1 T/2
Ky (1) = lim = [x(t)x(t +7)dt, (2)
T-oT 1
wherex(t) is realization of the proce3%t).

2.2 Regardless of the form of the CF of differerdgesses, correlation func-
tion has such properties as:

— Kx(0) =Py, wherePy is average power of process;

— Kx(0) = K(t) — if T = O the value of the functidfk(t)is maximal;

— Kx(1) = Kx(-T) —Kx(1) Is an even function;

— Ky(e0) — X[t)°, whereX[t) is the average value of the process.

2.3 The less value dfx(t) in comparison withKy(0), the less statistical de-
pendence between the values of process, that st@ntdont from one another. If
Kx(t) = 0, the values of proce3%t), that are distant on such time intervaltaare
uncorrelated. It is easier to compare the vakigs) andKy(0), if to pass to the nor-
malized correlation function

Ry (1) = 2tV ©
Kx (0)
Rx(0) =1 and -k Ry(1) < 1.
2.4 Often, for a description of correlation propstof random processes in-
stead of the CF a correlation timeis used. The correlation time is used for "rough
description of correlation properties of procesalués of process, distant from one
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another ort > 1, are uncorrelated. Values of process, that atardisrom one an-
other ont < 1., are correlated. Different methods of determimabd correlation time
are used:
1) Correlation timea. is the base of rectangle in higk(0), the area of this rec-
tangle is equal to the area under the curve o€thenodule (figure 13):
1 e
= 4
T, KX(O)J(;‘KX(T)‘dT (4)
2) Such values af,, should be such that under the 1. values of CF do not
exceed some given level (figureld,
3) If the CF has an oscillating character, a valtre under which CF first time
takes on a zero value, may be taken as the caorelanert,, (figure 1,c).

Kx(D) Kx(T)

Figure 1 —Determination of correlation time

2.5 According to (2) it is impossible to measure [@Ecisely, because the re-
alization of process of infinite duration is needids possible to measure CF in case
of realization of the random process of finite diara It is obvious that the longer the
realization of the procesE.,, the more precisely measured CF of realizatiomerep
sents CF of process. The device for measuring QEadization is named a correla-
tion meter (figure 2). Here delay timedefines the argument of the measured value
of the CF. If correlation meter, shown on a figlrgerformed on a processor or on a
computer, it is possible to get the array of Kygk7y) values, wherd’s is sampling
interval of the process realizatia(t); the values of argument taken from the interval
-Trea < KT Trear The got arrays of valuéds andK(k7s) are displayed.

Realization of the proce3{t)
with durationT,.

1 Treal Indicator of
N I values
Delayer, X Treal 5 Kx(T)
delay timet

Figure 2 —Block diagram of correlation meter

2.6 The power spectral densiGy(f), which determines the distribution of
power of the process on frequencies, is a maintigdetescription of random proc-
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esses. Quantitatively the functi@y(f) determines power of process in bandwidth 1
Hz near frequency. Khinchin-Wiener theorem states that the functi&gér) and
Gx(w) are connected by the Fourier transform

Gy (w) = 2]0 K (1) Leos(ur)dT,;
. (5)

Ky (T) =%TGX (w) LEeos(r)dw.
0

If the Gx(f) function is known, it is possible to define avgFgower of a proc-
ess

P =[Gy (f)df (6)

In particular, if a process is a quasi-white naist the power spectral density
No in band (0Fay), SO

I:)X = NO[E:max- (7)

Gx(f) 2.7 It is often enough to know the bandwidth
of the process .. The bandwidth of random
process is determined by the functi@y(f) by
such methods as the bandwidth of the deterministic
signal. On figure 3 it is shown, how to determine a
bandwidth under given leve}, i.e. Fa is the

0 Fmax f bandwidth, beyond which the power spectral den-
Figure 3 - Determination sity of process does not exceed the value
of bandwidth As Ky(t) and Gx(f) functions are bound by

the Fourier transform, there is connection between
the bandwidth~,.x and correlation timer. of the process:

TK[E:maxz 0’5' (8)

In expression (8), equal sign “=" means that thedpct of correlation time and
bandwidth of process is a value of magnitude O¢eior

2.8 A correlation function is a description of aedeninistic signal, but it does
not have such interpretation, as for a random @®c€F of a nonperiodic determi-
nistic signal is determined as

K,(1)= [ o8t + et ©)

whereT is duration of signad(t).
To measure the CF of a deterministic signal is iptssvith the correlation
meter, the block diagram of which is given on fg@. According to this diagram
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integration is performed on the interval 1@, and a factor before this integral is
missed.
Let S(t) be rectangular video pulse of the amplitédand duratior,

(t)— A 0<t<T, 10
™0, t<o t=T,. (10)
After substitution of the expression (10) in exgries (9) we will get
Ks(T): AZTP(]'_‘T‘/TIO)’ ‘T‘STIO’ (11)
0, T>T,.

The CF of a rectangular video pulse is shown omrédt,a.

It follows from the expression (9) th&t(0) = E; is the energy of the signal
s(t). Fourier transform fronKy(t) gives the square of amplitude spectrum (energy
spectral density) of the signsg(k). The Fourier transform from expression (11) gives
the square of known expression for the amplitusespm of rectangular video pulse

2

in(ref T

sz(f)=[ATp$Tp)J —w<f<m. (12)
p

2.9 Let consider rectangular radio pulse, durafipn

_ [Asin(2rfot +¢,), 0<t<T,
s(t)—{ 0’ <o ot 13)

whereA, f, and¢o are amplitude, frequency and initial phase of l@mn accord-

ingly.
After substitution (13) in (9) we will get

KS(T):{0,5A2Tp(1—\r\/Tp)coszm‘o, q<T, (14
0, T >T,.

From expression (14) follows, that CF of rectangutdio pulse is cosine
curve with a zero initial phase and does not dementhe phase of rectangular radio
pulse. Therefore, if the initial phase of rectamaguiadio pulsep, is random, CF of
rectangular radio pulse is determined by formuld).(CF envelope of rectangular
radio pulse coincides with CF of rectangular vigeedse. The graph of CF of rectan-
gular radio pulse, built on a formula (14) fe= 4/T,, is given on figure 4.

Fourier transform from expression (14) gives theasq of amplitude spectrum
of signal (12)

S?(f)= O,25£ATp Si:E(T;( f_;of)‘}):p)] , —o<f<w. (15)
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K<(1) 2KS(T)
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Figure 4 — Correlation functions otz — rectangular video pulsk - rectangular
radio puls

3. Questions

3.1 Give the definition of th€F of random process.

3.2 How to determine CF of the process?

3.3 Enumerate main properties of the CF of randmugss.

3.4 What random process parameters are possiblkfitee according to CF?

3.5 What does Wiener-Khinchin theorem state?

3.6 Enumerate methods of correlation time deternuna

3.7 How are bandwidth and correlation time of rangwocess connected?

3.8 What form has the CF of rectangular video pulse

3.9 What form has the CF of rectangular radio gulse

3.10 Why does the initial phase of rectangularaaalilse not influence on its
CF?

4. Home task

4.1 Study the chapter "Correlation theory of randoocesses"” from the com-
pendium of lectures and literature [1, p. 73..149...164; 2, p. 67...72].

4.2 Build a block diagram of the correlation mdtarthe research of correla-
tion functions of random processes and determinssgjnals.

4.3 Perform calculations and build graphs for titeo€rectangular video pulse
and rectangular radio pulse for such input d&ta 2 ms, frequency of oscillation of
radio pulse signdh = 500N + 1) Hz, whereN is the number of workplace. Perform
calculations and build graphs of spectra for theegipulses using expressions (12)
and (15).

4.4 Prepare for discussion on key questions.

5 Laboratory task

5.1 Acquaintance with a virtual model on a workplae

Start the program.3, using the icon T(English) on the desktop. It is neces-
sary to study the structure of a virtual model gsta description in part 6 of this LW
and master entering of parameters. Coordinate lreqs fulfilling of the laboratory
task with the teacher.
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5.2 Research of correlation and spectral charactestics of realization of
noise
Set in generator of the quasi-white ndisg, = 1000 Hz. After program execu-
tion, analyse the experimental data and write ddaw@heck up implementation of
properties of correlation function, determine maadirfftequency on a spectrum, and
determine correlation time on a correlation functiind their product, compare it
with the theoretical value (8). Give the visualireste of the average value of the
power spectral densityy on an interval (OFa). Multiply the value of power spec-
tral densityN, on Fax and compare the product with the value of the nregkaver-
age power of realization — expression (7).
By instructions of the teacher repeat measurenientgher value$
5.3 Research of correlation and spectral charactestics of rectangular video
pulse
Set in the generator of rectangular video pse2 V, T, = 0,5 ms. After pro-
gram execution, complete the(t) and S(f) graphs. Analyse the experimental data
and write down it. Compare the experimental depecel&(f) with the theoretical
(12); compare the experimental dependafge) with the theoretical one(11); com-
pare measured value of pulse energy with the \a@ikg(0).
By instructions of the teacher repeat researcottogr valuest and7,,.
5.4 Research of correlation and spectral charactestics of rectangular radio
pulse
Set in the generator of rectangular radio p#ise 2 V, f, = 1000 Hz. After
program execution, complete theg(t) and S(f) graphs. Analyse the experimental
data and write down it. Compare the experimentpkeddences’(f) with theoretical
(15), compare the experimental dependdfe) with theoretical one(14), and com-
pare the measured value of pulse energy with theevaf Ky(0). Write down the
value of the initial phase. Launch the program iemadgke sure, that a correlation func-
tion does not depend on an initial phase.
By instructions of the teacher repeat researcbottogr valuest and7,,.

6 Description of laboratory model

Laboratory work is performed on a computer in tHe YEE environment us-
ing of virtual model. The block diagram of virtualodel is given on figure 5. A
model contains the following generators:

— generator of noise, which produce the realizatibquasi-white noise with
the band (0OF,sy, with duration 20 ms, in the form of 5000 samples possible to
set theF . value 1000, 2000 and 3000 Hz;

— generator of single rectangular video pulse altovset pulse duration 0,5, 1
and 1,5 ms and arbitrary amplitude of pulse;

— generator of rectangular radio pulse, with dora ms, allows to set arbi-
trary amplitude of pulse and frequency of oscitlatify 1000, 2000 and 3000 Hz. The
initial phase of oscillation is a random valuestkalue is displayed on the indicator
.

The switch S allows to choose the researched poces

If noise is chosen for research, on displays greesented:



78

— noise realization;

— value of the measured average power of realizatio

— correlation function of realization, calculatesing the algorithm which is
given on figure 2;

— power spectral density of noise realization,goFourier transform from the
correlation function of realization. The programngeates samples of quasi-white
noise. However, because of few samples, the spadrdar from white in the band
(0, Fmay.

If a rectangular video pulse or rectangular radits@ is chosen, on displays
are represented:

— pulse oscillogramms;

— measured pulse energy value;

— correlation function of pulse, calculated by faften(9);

— square of amplitude spectrum of pulse, got asi€otmansform from the cor-
relation function of pulse.

In all cases for the calculation of CF the builfumction “Xcorrelate” is used.

SettingFmax Oscillograph
Generator of quasi >| “Realization of the
white noise process
S Spectrum analyzer qf
SettingA, 7T, »>| realization or pulse
Generator of rectan
ular video pulse -
J P Calculator of average Indicator of average
: »>| power of realizatioorf— | power of realizatiorr
Settingd, fo pulse energy pulse energy
Generator of rectang
lar radio pulse '
7 Calculator of the corrd- |, C(I)Drlrse?:tli{)n und
_9 - - % =
Indicatord lation function tion”

Figure 5 - Block diagram of virtual model

7 Requirements to the report

7.1 Title of laboratory work.

7.2 Objectives of laboratory work.

7.3 Results of homework performing.

7.4 Block diagram of researches, list of devicegwiare used in LW.

7.5 Results of implementation of items 5.2-5.4afdratory task (graphs, os-
cillogramms, numerical values, etc.).

7.6 Conclusions on every item of laboratory tasithwanalysis of the got re-
sults (review of implementation of correlation ftinas properties, coincidence of
experimental and theoretical data, etc.).
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7.7 Signature of student about the laboratory wonklementation, signature
of teacher about the laboratory work defence wisttkndate.

Literature

1. backakoB C.M. PaguoTexHUYECKHE 1Tl U CUTHAJbI. YUYEOHUK ISl BY-
30B.— M.: Paauo u cBs3p, 1988 (1983).

2.T'onopoBckmnii U.C. PagunoTexHu4ecKkue IENbl U CUTHAJBLI: YUEOHUK IS
BY30B. —M.: Paguno u cBsi3b, 1986 (1977).
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LW 1.4 Researching ofAM, DSB-SC and SSB modulated signals
1. Work objectives

1.1 Research of time and spectral characteristias@log modulated signals.
1.2 Research of relation between characteristianafulated and modulating
signal.

2 Main principles

2.1 Carrier, in the case of amplitudeM), double-sideband-suppressed-carrier
(DSB-SC) and single-sideband (SSB) modulations &srmionic oscillation
Ucalt) = Agcos(atot + ¢ o). Modulating signal is a telecommunication basebeon-
tinuous signab(t) with such characteristics:

— signal spectrum maximum frequencyHg.y

— signal is normalized such as module maximum va|b€t$| max = 1;

— signal average valulg(t) = 0.

2.2 In case ofAM the carrier amplitude changes are proportionahstant
values of a modulating signal, i.e. amplitude ofe thmodulated sig-
nal A(t) = A, + AAb(t), whereAA — factor of proportionality which is chosen in Buc

way that amplitudé\(t) does not accept negative values. |A&) | max= 1, SOAA de-
fines the greatest carrier amplitude change omib@ule. In order the amplitud&t)
does not accept negative values, it is necessapyavide AA< A,. Frequency and
initial phase of a carrier are invariable. It i;igenient to pass to a relative maximum
change of amplitude — the amplitude modulationdiant,,; = AA/A,. It is clear, that
O<mu<1.

Analytical expression oAM signal in case of any modulating signal looks like

Sam (1) = Ap[L+ m,,b(t)] cos@nfyt + ¢y). (1)

We see, that parametersAM signal aremyy, Ag, fo andd,. Time diagram of
AM signal is shown on figure 1. It is interestingattienvelope of the modulated sig-
nal repeats the form of a modulating signal — atugé ofAM signalA(t) is envelope
of high-frequency oscillations cosffgt + ¢) (on figure 1 envelope is represented by
a dashed-line curve).

2.3 On figure 2 any amplitude spectrum of a modhdasignal and amplitude
spectrum ofAM signal corresponding to it are shown. Amplitudecpum of AM
signal consists of carrier frequency harmonic teooin, of upper sideband of fre-
guencies (USB) and lower sideband of frequenci&B{L Thus USB is a copy of a
spectrum of the modulating signal, which is shiftedfrequency offy. LSB is mirror
reflection of USB relatively to carrier frequenigy

Figure 2 shows the important result: tA® signal spectrum widthr,y is
equal to the doubled value of modulating signakcspen maximum frequency, i.e.
I:AM = 2Fmax-

2.4 Calculations show, if modulating signals aledemmunication baseband
signals than sidebands power makes some percerdf gubdulated signal power.
Therefore it is expedient to generate a signal @ipectrum, which consists only of
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two frequencies sidebands (carrier frequency @d@h is absent), — such signal is
the signal of double-sideband-suppressed-carrieiufaton.

Such kind of modulation when the modulated sigsal product of a modulat-
ing signal and a carrier is called double-sidebsunglpressed-carrier. Analytical ex-
pression signal DSB-SC looks like

Spsesc(t) = Agb(t) cos@mfot + ¢,). (2)

Time diagrams of the modulating and modulated $gyage shown on figure 3.
As the modulating signal influences on amplitude afrrier, DSB-SC considered as
version of AM. From figure 3 it is clear, that envelope of sigiaSB-SC
A(t) = A)lb(t)[ (shown by a dashed line) does not repeat modglatgnal.

b(t) A

s |
Qv@vgw% __\

swi® [ /]| A . Fo AGT(Fo)
=
el

—hy

fO—Fma> fO f0"'|:max f
Figure 1— Modulatingb(t) and Figure 2— Modulating andAM
modulateds,y(t) signals signals spectrum

From comparison of the mathematical expressionsrit@sg AM signal (1)
and DSB-SC signal (2) we see, that spectrum DSBsig§fal differs from spectrum
AM signal with the absence of carrier frequency @®in. On figure 4 any ampli-
tude spectrum of a modulating signal and DSB-S@aigmplitude spectrum corre-
sponding to it, which consists of USB and LSB, sinewn. From figure 4 follows,
that DSB-SC signal spectrum wid#psg.sc is the same, adM signal spectrum
width: FDSB-SC= 2Fmax-

2.5 Such kind of modulation whereby the modulatgda spectrum coincide
with modulating signal spectrum shifted on carfrequency or the modulated signal
spectrum is an inversion of the shifted spectruoaling to carrier frequency, is
called single-sideband modulation. The SSB sigpatsum contains one sideband —
upper or lower. The SSB signal can be written as

Sssg(t) = Agb(t) cos@ot + ) F Ab(t) sin(wot +¢y) (3)
where the sign “=” concerns the description of gnal with the upper sideband of
frequencies, and a sign “+” — with the lower sidmiuag(t) — conjugated on Hilbert
signal with a signab(t). The physical sense of Hilbert transform is sinphough:
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signal b (t) differs from signab(t) so that phases of all its components are shifted
aTt'2 angle.

\

s |

\/ Fmax f
A

Sose-sdf)

wsesd)) AN _
Vl\f RM\;M\ TYV‘%MJ;, . =l
U l] JV U U fFro o fotFrnax 1

Figure 3 — Modulatingb(t) and Figure 4 — Modulating and DSB-
modulatedspsg.sdt) signals SC signals spectrum

b(t) |

Time modulating signal diagranixt), conjugated on Hilberb(t) and SSB
signal are shown on figure 5. From figure 5 it Isat, that envelope SSB signal
A(t) = Ag\/b? +b? (it is shown by a dashed line) does not repeatutatidg signal.

On figure 6 any amplitude spectrum of a modulasmgnal and an amplitude
spectrum corresponding to it SSB USB signal arevshé-rom figure 6 follows, that
the width of SSB signal spectruRisg is twice less than width oAM and DSB-SC
signals spectruntssg = Frax

A (t)

b(t)

SssH(t)

fo fO+Fmax f
Figure 5 — Modulatingb(t) and Figure 6 — Modulating and the
modulatedsssgt) signals SSB signals spectrum

2.6 Mathematical models &M, DSB-SC and SSB signals as (1...3) are used
for designing signal forming schemes and signalsatieg.
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3 Questions

3.1 What is the purpose of modulation usage irctegtenunication systems?

3.2 Give the definition of amplitude, double-sidetdessuppressed-carrier and
single-sideband modulations.

3.3 What is the amplitude modulation factor? Whatigs can it accept?

3.4 What is Hilbert transform? What is its physieasence?

3.5 Draw time diagramaM, DSB-SC and SSB signals if a modulating signal
Is harmonic oscillation.

3.6 RepresenAM, DSB-SC and SSB signals spectra if a modulatiggadiis
harmonic oscillation .

3.7 RepresemaM, DSB-SC and SSB signals spectra at a set modylsigmal
spectrum.

3.8 Explain, why SSB signal envelope on figure § siach kind?

4 Home task

4.1 Study section “Amplitude modulation and itsstens” on the compendium
of lectures and the literature [1, pp. 53-60; 2, §-96] and on the description of a
laboratory model in section 6 of these instructions

4.2 Carrier oscillation of frequendy are modulated by a baseband signal
b(t) = Aisin(2rtF1t) + Asin(2r-,t) + Agsin(2ri=st). Represent baseband signal spec-
trum andAM, DSB-SC and SSB signals spectra (pwi; = 1). Initial data of the task
according to your laboratory place number are gingable 1.

4.3 Be ready to discuss the questions.

Table 1— Initial data for the home task

Wnourr';pggfe ALV | FLHzZ| AoV | Fo Hz | 43V | Fa Hz | fo, Hz
1 03 | 50 0,4 100 0,3 250 800
2 03 | 100| 03] 200 0,4 300 900
3 04 | 50 03| 200 0,3 250 1000
4 03 | 100| 04 150 0,3 250 1100
5 03 | 50 03| 250 0,4 300 1200
6 04 | 100| 03] 250 0,3 300 1000
7 03 | 50 0,4 100 0,3 150 800
8 03 | 100| 03] 200 0,4 300 900

5 Laboratory task

5.1 Acutance with a virtual model on a workplace.

Start the programi.4, using the iconTT(English) on the desktop. Study
scheme model, using the description in sectiont®iefLW. Specify with the teacher
the laboratory task performance plan.

5.2Carry out researches of the modulated signals ie @md frequency do-
main. For this purpose:
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— set valueg\, F1, Ay, F»,, As, F3, factorm,y, and frequency, the same, as in
the homework;

— set theAM modulation kind and run the program;

— draw in the report the signals oscillogram areldpectrogram on the modu-
lator input and output;

— set sequentially DSB-SC, USB SSB, LSB SSB modaulakinds, run the
program and draw in the report the signals omitbdulator output spectrogram;

— compare calculated in a homework and the obtammechodel spectrograms,
compare results write down into report conclusions;

— make the conclusions concerning correspondeno®dtlating signal forms
and envelope of the modulated signal for modulatibdifferent kinds.

5.3 Carry out modulated signals spectrum researches inase of changing
carrier frequency. For this purpose at first increase on 200 Hz, & reduce on
200 Hz carrier frequency, draw in the report oladirsignals spectrogram on the
modulator output. Put in the report conclusionsdhanges in spectrograms in com-
parison with received in item 5.2.

5.4 Carry out research of AM signal spectrum dependence on modulation
factor. For this purpose:

— set parametes,, F, Ay, F», As, F3 and frequencyy the same, as in the home
task;

— set a kind oAM modulation and factan,y,; =0,7;

— compare the obtained oscillograms and spectray@mthe output of the
modulator with obtained in item 5.2, results of gamson put in report conclusions.

5.5 Carry out research of the SSB signal in case afsingle-tone modulat-
ing signal. For this purpose:

— set valueg\, = 1V, F; = 100 Hz,A, = A3 = 0, frequency o the same, as in
the home task;

— set a kind of SSB USB, and then SSB LSB modulatio

— draw in the repoft(t), b(t) andsssgt) signals oscillogram and spectrogram;
— make conclusions concerning correspondence(tpf b (t), sssgt) signals

and envelope of the modulated sigAé) = Ajb2 +b? .
6 Laboratory model description

Laboratory work is carried out on the computerhia énvironment of HP VEE
with usage of the virtual model which block diagresnon figure 7.

Virtual model consists of the modulating continuosgnal generator
b(t) = Aisin(2rtF1t) + A2sin(2,t) + A3sin(2t-3t) and the modulator (the carrier gen-
erator is a part of the modulator). Harmonic oatihn frequencies and amplitudes
values A, Fi, Ay, Fy, As, F3, fo, factor myy, and carrier frequency is possible to
change.

The virtual model scheme gives the chance to setufabon kinds:AM,
DSB-SC, SSB USB and SSB LSB. Time and spectralrdmg of signals can be ob-
served in two points of the virtual model schemetlte modulator input and output.
In a case of SSB oscillograph on modulator inpspldys not only modulating sig-
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nal b(t) but a signaﬁ(t) too. Together with modulated signal oscillograng sched-
ule of signal envelope is drawn by dotted line.

Oscillograph : Oscillograph
Setting of
B0, modulation kind
. . b(t
Modulating signal ®) Smod(t)
generator Modulator
Setting of Setting of
A1, F1, Ao, F2, As, F3 fo, Mam

Spectrum Spectrum
analyser analyser

Figure 7 — Virtual model block diagram

7 Requirements to the report

7.1 Laboratory work title.

7.2 Work purpose.

7.3 Results of home task performance.

7.4 Block diagrams of researches and results dopeance of item 5.2... 5.5
in the laboratory tasks (oscillograms and spectnog; each of it should have the
caption).

7.5 Conclusions on each item of the task in whiah lyave to give the analysis
of the obtained results (coincidence of theoretamad experimental data, displayed
signals properties, etc.).

7.6 Date, the student signature, the teacher vitharmark .

Literature

1. MMandinos I.II., [lupga B.1O., Kanamin A.B. Teopis enexTpuyHOro
3B’ 3Ky [ligpydnuk ams ctyneHTiB By3iB 1-ro ta 2-ro piBHiB akpenutanii. —K.: Tex-
Hika, 1998.

2. backakoB C. U. PagnorexHuueckue 1enbl U CUTHAIBI. YYEOHUK IJIs BY-
30B.— M.: Paauo u cBs3p, 1988 (1983).
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LW 1.5 Research of digital modulated signals
1. Objectives

1.1 Study of transmission methods of digital signalth modulated MASK,
MPSK and BFSK signals.

1.2 Research of time and spectral characterisfid4ASK and MPSK signals
for M =2 and 4 and BFSK signal.

2. Main principles

2.1 A baseband digital signlal(t) is a sequence of binary symbols (bits) 1 and
0, that follow in clock intervally. In digital devices the rectangular pulse of high
level corresponds to symbol 1, and the pulse ofléx&l corresponds to symbol 0.

2.2 A digital modulation signal(t) is a sequence of radio pulses, that reflect a
baseband signal and follow in clock interial

st) = X5 (t-kT), (1)
k=—00
wheres(t), 1 =0, ...,M — 1, are the elementary signals (radio pulses);
M is a number of elementary signals;

s®(t —KkT) is thei-y radio pulse, that is transmitted iy time interval;

T is a clock interval.
2.3 The general mathematical expression for radisepis:

s (t)=aAt)cod2nft+¢,), i=0,1,.M-1, (2)

wherea, f, ¢; — the parameters which are defined by a form gtalimodulation;
A(t)— a function, that determines the form of pulse.

Radio pulses can differ in amplitudes, phasesexquencies. There are differ-
ent types of digital modulation, for example:

— MASK is M-ary amplitude modulation (pulses differ in paraeney);

— MPSK isM-ary phase modulation;

— MAPSK isM-ary amplitude-phase modulation;

— MQAM is M-ary quadrature-amplitude modulation;

— MFSKis M-ary frequency modulation.

If M = 2, there is the binarg(t) signal: radio pulses, t( )s used for transmis-

sion 0, and radio pulsg t (9 for transmission 1. ¥ > 2, the multi-level signad(t)

takes place. As a rul®) = 4, 8, ..., 2, wheren is an integer. Here every radio pulse
s(t) is used for transmission of= loggM bits of baseband digital signial(t). Map-
ping code sets the concrete bit sequence, thatreaah pulse keeps. In the case of
binary signals the clock intervdl = T;, but in the case of multi-level signals, the
clock interval increased: = T}, log,M.

In the case of MASK and BPS¥gnals, elementary signals can be written as:

s(t) =aAt)cod2nft), i=01..,M -1, (3)

wherea is a number which represemtbits, that thes t( signal keeps;
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fo Is the carrier frequency.
In the case of MPSKM = 4) and MAPSK, itis convenient to describe the
elementarys (t) signals with cosine and sine components:

5 (t) = a A(t)cos2nfst + b Att)sin2nfgt, =0, 1., M -1, (4)

where a, b are coefficients, representing a sequence lots, that is transfered by

the elementary signaj(t) .
The following record is equivalent to expressioj (4

s (t) = 4 At)cos(2nf,t —¢,), i=01.., M -1, (5)
A=.,a?+b? ¢ =arctdh/a ), i.e. expression (4) maps radio pulse.

2.4 It is accepted to represent the elementaryagn ¢ ) as signal points in a
certain space. Diagrams on which elementary sigar@lsepresented as signal points
are called signal constellations. The purpose ohsepresentation is to reflect the
difference of signals.

As it follows from the expression (3), elementaignsls, in the case of MASK
and BPSK signals, differ only in the coefficieats Therefore, the signal points of

MASK and BPSK signals are located on a numerica, and the MASK and BPSK
signals are named one-dimensional (figurel). Os figure the mapping codes are
also reflected (the indexcorresponds to a binary number, which is formedramgs-
mitting bits):

— BASK signal: the transmission of O correspondsg®s 0, and the transmis-
sion of 1corresponds t@, =a.

— BPSK signal: 0- a; =-a; 1 - a =a.

— QASK signal: 00- a,=-a;01 - a,=-3a;10- a,=a; 11 - a;=3a.
The numberadetermines the energies of elementary signals.

MAPSK and MPSK M = 4) signals are two-dimensional since elementayy si
nals in expression (4) are described by two caefiits. FunctionsA(t)sin2n f,t

andA(t)cos2n fyt, that are presented in expression (4), are ortmagand they

form two-dimensional space. Signal constellatiohdwm-dimensional signals are
reflected on a plane. For example, the signal etlabn of QPSK signal is shown
on figure 2. Herexsymbolizescos2n f,t oscillation, andy symbolizessin2n fgt

oscillation. It is taken into account that for th°SK signals expression (5) can be
rewritten in that form:

s (t) =aA(t)cos(2nft —¢;), i=01.., M -1 (6)
The mapping code of QPSK signal on figure 2, is:
00 - ¢, =133 (8, =-a;b, =a);
01- ¢, =43 (a =ajb =a);
10 - ¢, =225 (a; =—a;b, =-a);
11 - ¢5 =313 (a3 =a;by=-a).
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Figure 1 — Signal constellations of signals: Figure 2 — Signal constellation of
a — BASK; b - BPSK;c — QASK QPSK signal

2.5 As it follows from expression (2), elementanjges are the signals of ana-
logue double-sideband-suppressed-carrier (DSB-8@) therefore, the spectrum of
radio pulses(t) consists of two side bands, concentrated neasétveer frequency, .

Spectral properties @f(t) radio pulse are determined by #) function.

If A(t) functionis a rectangular pulse dfduration, a radio pulse spectrum is
wide. But it is important for the transmission agithl signals to form a compact
spectrum. In order, that the spectruns@ radio pulse willoe compact, and inter-
symbol interference would be absent, a functgt) must be Nyquist pulse. Then
side bands will be the copies of Nyquist spectriigufe 3), and the width of spec-
trum of MASK and BPSK signals is determined by @ssion:

_ 1+a _ 1+a
T T,log,M’
where f, = 05/T is the Nyquist frequency;

a is a roll-off factor (o < 1).

A Signals, that are introduced by ex-
pression (4), are the sum of two DSB-SC
signals with the identical amplitude spec-
tra that are determined by the spectrum of
051~ ————————f————- A(t) signal The amplitude spectra of

DSB-SC signals add, and the spectrum of
their sum has the shape, shown on figure
I . 3, if A(t) is the Nyquist pulse. Therefore,
fo—fi To fo+f the bandwidth of elementary signals of
Figure 3 — Spectrum of elementary signal MPSK and MAPSK is described by ex-
M-ASK and PMM (a = 0,6) pression (7).

An important conclusion follows
from expression (7) — increasing the number of aigiositions courses decreasing
the bandwidth of elementary signals (2).

2.6 Process of forming one-dimensional and two-dsi@al signals on the
basis of expressions (3) and (4) is following: thmapper puts in accordance
n = log, M of input bits to the two rectangular pulses vathplitudesa, andb (in the

F=2f,1+a) 7)

-~ ¥
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case of one-dimensional signals only one pulse antplitudea; takes placeb = );

rectangular pulses are filtered by shaping low-plsss (LPF) to get Nyquist
pulses; the pulses A(t) and b A € )enter DSB-SC modulator input; the got DSB-SC

signals are summing up.
2.7 The BFSK signal is formed on the basis of raulitses, that are differ in
frequencies:

s, (t) = aA(t) cod2n( f, — Af /2)t),
s,(t) = aA(t) cod 2 f, + Af /2)t),
whereAf is the frequency deviation;

a is the coefficient, that determines the energgigihals.

If the A(t) functionis rectangular pulse, it is necessary to providenfiog of
signal without the “break” of phase in the BFSK mlador. It is possible, if fre-
guency separation equal =k/(2T),k=1,2,3, .. =T, If k=1, soAf =05/T,
then modulation is called “minimum shift keying” @K). In the case of MSK the
normalized spectrum of signal is described by esgiom:

J1+cos(an(f - f,)T) ©
J2-(a(f - £)T?)
The diagram of dependence (9) is shown on figuré&/dh increasing of the

difference\f - fo\, the spectrum decreases with the speed equdls. If to define
the bandwidthysk on the first zeros of dependence (9), we have
Fmsk = 15/T . (20)
In order to get the BFSK signal with a narrow spgatand without intersym-

bol interference, it is necessary, functigt) to be the Nyquist pulse. In this case it

Is possible to consider, that the spectrum of diggax(t) is the sum of spectra of
two radio pulses with central frequencigs—Af  did f, + Af /2 The normalized
spectrum of BFSK signal is shown on figure 5. Isl®wn, that frequency deviation

IS minimum, if the spectrums of radio pulses adjoireach other, and this frequency
deviation is equal:

(8)

S(f) =

1+a

Af . =—. 11
min T ( )
Then bandwidth of BFSK signal is:
1+a _ 2(1+a)
F =Af o+ = : 12
BFSK min T T ( )

l.e. two times as large then bandwidth of signaASR and BPSK.
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The forming BFSK signals differs from forming MPS&kgnals by working of
mapper and by that the reference frequencies oérgiars in DSB-SC modulators
differ on the valué\f/2 from carrier frequency.

1 - T Y A
| |
St S0 | |
| |
| |

0.5 / \ o5~ ~~"~""~""1~1~ Y] 1~

SN

O 1 T T
f—1,5mM fo—1T  §—0,5 fo fot0,5m  fotl/T  f+1,5T fo—Af/2 fo fo+Afl2 f

Figure 4 — Spectrum of MSK signal Figure 5 — Spectrum of BFSK signal
with o = 0,6, Af = 2(L4a0)f

3. Questions

3.1 What is the aim of using the modulation in teEecommunication sys-
tems?

3.2 Give the definition of digital signal.

3.3 Give the definitions of digital modulation sas:. MASK; MPSK; MFSK.

3.4 Why are the radio-frequency pulses with reatérgenvelope not used for
transmitting digital signals through communicaterannels? What form must pulse
envelope have?

3.5 What are the forms of the spectra of MASK; MP&KSK signals?

3.6 What are the multi-level signals for transmgtidigital signals through
communication channels used for?

3.7 What signals of digital modulations are oneghsional, and what signals
are two-dimensional?

4. Home task

4.1 Study the section "Digital types of modulatiomith the compendium of
lectures and main positions of this work. whiledstig this theme you must use the
literature [1, p. 196...204, 231...234].

4.2 Given clock periodl= 50 ms. It is necessary to build the time diagraims
elementary radio pulses of frequen&y= 40 Hz for two cases: with rectangular en-

velope and with Nyquist pulse envelope.

Note. It is necessary to take into account thatelgary radio pulse is the
product of rectangular pulse of duratidror Nyquist pulse, and harmonic wave. In a
case of Nyquist pulse it is possible to take a fionc

A = SII’](TII/T).
/T
Draw diagram of this function on interval (F4T).
4.3 Be ready to answer questions.
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5 Laboratory task

5.1 Acquaintance with a virtual model on a workplac

Start the progranl.5 using the iconTT(English) on the desktop. Study
scheme model, using the description in sectiont®iefLW. Specify with the teacher
the laboratory task performance plan.

5.2 Preparation of a virtual model.

It is necessary to set a digital signal. For tha¢ @ decimal number 128 + NO
(N is a number of laboratory stand) by binary num@ére roll-off factor is equal
a=1-0,IN.

5.3 Research of the form and spectrum of BASK and 5K signals as the
functions of envelope form.

For this purpose it is necessary to set: type afutadion — BASK; envelope
form is a rectangular pulse. You should fix in pal one under one the time dia-
grams of the following signals: the digital signt#ig output signal of mapper; the
modulated signal. Also fix the spectral diagranthed modulated signal. After that it
IS necessary to set the second envelope form NyhQaist pulse. Fix in protocol the
time and spectral diagrams of the modulated signal.

The same research performs for the QASK signal.

In conclusions, on the basis of comparison of spedtagrams, you should in-
dicate the appropriateness of using the radio-&eqy pulses with Nyquist pulse en-
velope and the appropriateness of using the ma#itional signals for decreasing the
occupied frequency band.

5.4 Research of the form and spectrum of BPSK a8kQsignals as the func-
tions of envelope form.

Repeat the researches, performed in it. 5.3, ®rBRSK and QPSK signals.
Compare the spectra of MASK and MPSK signals.

5.5 Research of the form and spectrum of BFSK sighas the functions of
envelope form.

Repeat researches, completed in it. 5.3 and 5r4h&oMSK and BFSK sig-
nals. Compare the spectra of BASK, MSK and BFSKag)

6 Description of laboratory model

The laboratory work is performed on a computer paogin the HP VEE envi-
ronment with using the virtual model. The structsoheme of model is shown on
figure 6.

A modelis universal modulator of digital modulated signdtsincludes the
digital signal generator with duration equalg,,8signal symbols can be changed.
Given bit duration isT, = 50 ms. Modulator consists of the followings Iksicmap-
per; shaping filters; carrier generators; two nmlikirs and adder. The setting of
modulation type affects on the mapping code ofreooder and carrier generators and
permits to set the followings types of modulatiBA&SK, QASK, BPSK, QPSK, and
QFSK. The signals from two encoder outputs entefitter inputs, shaping the radio
pulse envelopes in the form of the Nyquist puldee $cheme contains a switch, al-
lowing to exclude the shaping filters from the solee so radio pulse have the rectan-
gular envelope. The formed pulses are multipliethwiarriers. Given carrier fre-
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quency f, is equal 40 Hz. In the case of BFSK the frequatheyiation Af is set in

accordance with a formula (9), and in the case ®™Svithe frequency deviation
Af =0,5/T. Modelhas oscillographs and spectrum analyser.

Generator
Setting of ' cos a1t (M-ASK, M-PSK)
modulation type ’ cos (Afo+Af/2)t) (BFSK)
—>
a Shaping| L
1 fiter [ X _
Setting | Oscnlograpiv
a i a'A(t) y
Digital signal | pmapper g!  |Oscillograph| = s
generator g B L
- : biA(t) Y
b?ettlng of s K | Spectrum
It sequence Shapingl _Ik 4 analyzer
b "| filter ! g
Y | Setting
Oscillograp“\ a
Generator
sin 2ot (QPSK)
cos (auf—Af/2)t) (BFSK)

Figure 6 —Virtual model block diagram

7 Requirements to the report

7.1 Title of laboratory work.

7.2 Objectives of work.

7.3 Results of the home task processing.

7.4 The structure schemes of the every labora&shy processing.

7.5 The results of performing of LW items (oscilams and spectrograms,
with captions).

7.6 The conclusions on every item of task, in whiagh necessary to make the
analyses of the got results (coincidence of thezaledind experimental data, showing
properties of signals, etc.).

7.7 The date, signature of student, visa of thehteawith mark.

Literature

1. Ckasp b. udposas cs3p. Teoperuueckue OCHOBBI M IMPAKTUUYECKOE

npumeHenue. 2-€ m3ganue.. [lep. ¢ anmn. — M.: M3gatenbckuii joM «Bumibsmc»,
2003. — 1104.
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7 METHODICAL GUIDELINES FOR FULFILLING INDIVIDUAL T  ASKS
IT Ne 1.1 Calculation of random process characteristics
Initial data:

The white Gaussian noiddt) (Volts) with the one-sided spectral power den-
sity No on the input of low-pass filter (LPF) with givemplitude response (ARJ(f),
O<f <o is given.

It is necessary to:

1. Write input data of your variant.

2. Find expression for the noise spectral power dgixgt) on the LPF output
Gx(f) and build the graph of this function.

3. Define average power of the noisé).

4. Define the effective bandwidifife; of noiseX(t) and show it on the graph
of the Gx(f) function.

5. Find expression for the correlation function ofgedX(t) on the LPF output
Kx(t) and build the graph of this function.

6. Define the correlation time, of noiseX(t) and show it on the graph of the
Kx(1) function.

7. Calculate the product dffest..

8. Define probability that in the arbitrary time monemiseX(t) will take on
the value on the given intervad,{ x,).

9. Give the list of used literature; there must besmerices on used literary
source with pointing of subsections or numbersagfgs in the text of the performed
individual task.

Table 1- Given types of filter (the number of variant is@®ined by the two
last number of your student’s book number)

Ne variant Type of filter
00...24 O<f<F,,,
ldeal LPF with ARH(f) = - out
O! f > I:cut!
whereF is the LPF cut off frequency

2549 | pGilter with AR H(f)= t
J1+ (@mfr,)?

wheret; is the LPF time constant

°0...74 Butterworth filter with ARH(f)= ! =,
L+ (/P

wheren is the filter order, leh = 2; F is the filter cut off frequency
75..99 | Gaussian filter with AR(f)= exp(-a’f 9,
wherea — the coefficient determining the LPF AR slope
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Table 2— Given numerical values (the number of variardagermined by the
last number of your student’s book number)

Ne variant 0 1 2 3 4 5 5] 7 8 9
No, 10° V4Hz | 0,1 5 2 1 40| 10| 200 100 5000000
Fou, 10° Hz 100| 4 20| 40 1 6 03 08 0,02 o0l1

T, 10° s 0,04/ 06| 02| 0,06 2| 04 7 3 100 20
a,10"s 05| 15 3| 15/ 60/ 10 20p 75 300800
x1, V —o |—0/5| O 0 1 2 | —0 | 2 4 0

Xo, V 1 0,5 0 3 3 0 0 4 0 4

Methodical instructions to performance IT Ne 1.1
Look through [1, p. 133...145; 2, p. 49...60]. Ns&quence of the Individual
taskNe 1.1 performance is recommended.
1. Spectral power density of noi¥é&) on the LPF output is determined by ex-
pression

Gu(f) = Gn(f)HA(F) = NoH(f),

it is necessary to build the graph of Bg(f) function for the interval of frequency
values from O to the value, at whi€y(f) <<Gx(0).
2. Average power of nois¥(t) is determined by the integral

P =[Gy (f)df .
0

3. The effective bandwidihf.s of noiseX(t) is determined

1 % P
N =—— |G, (f)df N = X
ot =5, (@) S (Dl or Al =0

valueAfes must be shown on the graph of tagf) function.
4. The correlation function of the noi¥&) is determined

Kx(r):TGx(f)COSZT[def.
0

It is necessary to build the graph of #gt) function for the interval of values
T from 0 to the value, at whichKx(T)l <<Kx(0). It is useful to check implementation
of main properties of correlation function:

— Kx(1) —is even function;

— Kx(0) =Py, wherePy is average power of process;

— Kx(0) =2 Kx(1).

5. Correlation time. of the noiseX(t) is possible to define by one of the fol-
lowing methods:

— as a value af, when theKy(1) function first time takes on a zero value (it is
comfortable in the case of ideal LPF);

— as a value df, when functiorKy(t) = 0,1Kx(0);



95
— as a result of calculation of integral

:%@)Z‘KX(T)&

The value oft, must be shown on the graph of #gt) function;

6. Calculate the produdifest.. The result of this product is a value of order
0,5.

7. To determine probability that in the arbitranpé moment nois&(t) will
take on the value on intervad,(x,), it is necessary to use expression

P{ X1 < X(t) < X2} = F(Xz) - F(Xl),

whereF(X) is probability distribution function of the noig€t). If Gaussian process
acts on the input of linear electric circuit, preseon the output also has Gaussian
probability distribution. For Gaussian processes ftmction of probability distribu-

tion is written down:
F(x)=1—Q[X_Y®}

Ox

2
where Q(z) = \/_jex;{—%Jdt is Q-function or addition to Gaussian probability

distribution function;
X(t)—is the average value or the expectation of ax¢i(in our taskX (t) = 0);
Ox —root-mean-square deviation of a random procdsss determined as
=/D[X®];
D[X (t)] — variance of a nois¥(t), as X (t) = 0, then D[X(t)] = P

In the absenc®-function table it is possible to take advantagembroximate
formula:

Q(2) 00,65 exp[-0,44(+ 0,75f] whenz> 0;
Q2 =1-Q(2) whenz<0; Q@0)=0,5Q(x)=0

For thePy, Ky(1), andt. definition you can use following expressions:

Feut : 0 \/.’__[ 2
[ coserftdf = FcutW- [ cosbxlx=-"e b*1%2" whena > 0;
’ 2a
0 21, T 0
T Ccosmx e T cosax -
——dx=———(sinma+cosma); jgzdx eld:
X" +4a 8a o1+ X 2

[e*dx= P
a
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IT Ne 1.2 Description and calculation of digital modulag¢d signals charac-
teristics

Initial data:

— two types of digital modulation (table 1);
— rate of modulating digital signal (table 2);
— roll-off factor of spectrum of the modulated sig(ialble 2);

It is necessary:

1. Write down initial data of your variant.

2. Draw on the same figure 2 time diagrams of:

a) realization of digital modulating signal (8—9 a&my symbols — two last num-
bers given by the teacher variant, written in timaity numeration);

b) modulated signals of given modulation types;stdering that, radio pulse
envelop is rectangular.

3. Build signal constellations of given modulatiypes, on signal constellation
point out a mapping code.

4. Write analytical expressions of channel symiobigiven modulation types.

5. Consider that average energy of signals, comdawhile the transmission of
one binary symbol£}, = const; calculate for given modulation types miai distance
between channel symbols, expressed thrdiggh

6 Calculate and draw the modulated signals ammitsectrum for given
modulation types; calculate bandwidth of signalgigén modulation types and show
it on the spectrogram.

7. Draw the functional diagram of modulators foregi types of digital modu-
lation and explain principles of their operation.

8. Formulate conclusions of the performed tasknipout the advantages (or
disadvantages) of given multi-level modulation typen comparison with binary
modulation type.

9. Give a list of the used literature; there mustréferences on used literary
source with pointing of subsections or numbersagfgs in the text of the performed
individual task.

Table 1- Given types of modulation (the number of variantdétermined by
the last number of your student’s book number)

Nevar| O 1 2 3 4 3 6 7 8 9

Digital | BASK,| BASK | BASK, BFSK,|BFSK,| BFSK,|BPSK,|BPSK, BPSK,|BPSK,
mod. | QPSK| 8PSK| QASK| QPSK| 8PSK|QASK | QPSK| QPSK| 8PSK|QASK

Table 2 —GivenR anda (the number of variant is determined by the |lagt b
one number of your student’s book number)

Noevar| O 1 2 3 4 5 6 7 8 9

R’ 9,6 19,2 24 32 64 128 256 384 512 2048
kbits/s

a 0,20 0,25, 0,30, 033 0,20 0,25 0,30 O,85 0j20 Q,25
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Methodical instructions of performance IT Ne 2.2

Data on signals of digital modulation see in metbaldinstructions to per-
formance of laboratory work 1.5 (p. 18) and [1196...204, 231...234].

The mapping code should be a Gray code.

The amplitude spectrum of the modulated signakscdbed by Nyquist spec-
trum. The baseband Nyquist spectrum is definedrogxpression

T, O<|f|< (L-a)fy,
N(f)=<0,5|[1+ sir{££ 1—MJH , Fa X <|fl< @a ¥,

20 fy

0, |2 @+ a)fy,,

wherefy = 1/T is Nyquist frequency;
T is clock period;
a is a roll-off factor of spectrum.

Literature

1. Cxasp b. Hudponas cBsa3p. TeopeTndeckue 0CHOBBI U MPAKTHUECKOE MPH-
MeHeHue. 2-¢ uznanue.. [lep. ¢ aurn. — M.: Uznarenbckuii qom «Bunbsimce», 2003. —
1104c.
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8 DICTIONARIES

English-Russian dictionary
access system
accidental phase
amplitude modulation
amplitude modulation factor
analog gmep.), analoguearr.)
average power (of a process)
average value
band
bandpass signals
bandwidth (of signal, process)
baseband signal
bit rate of a signal
block diagram
BPSK (binary phase shift keying)
broadcasting
carrier
carrier frequency
code block, codeword

continuous (time-continuous) signal

correlation characteristics
correlation meter
correlation time
decomposition factors
delay, delay time
determined signals
deterministic signal
deviation

digital signal

discrete signal
distortion (of signal)

cucTeMa JI0CTyIa

ciy4aiiHas (aza

AMILTUTYIHAS MO ISIIHSI

KO3 UIIUEHT aMILTUTYTHOM MOAYJISIUH
AHAJIOTOBBIH, aHAJIOT

CpeIHss MOIIHOCTD (IIpolecca)

CpeaHee 3HaYCHUE

110JI0Ca YaCTOT

TIOJIOCOBBIE CHTHAJIBI

HIMPUHA CHIeKTpa (CUrHaJIa, MpoIecca)
IIEPBUYHBINA CUTHAJI

CKOPOCTh LIU(PPOBOTO CUTHANA
CTPYKTYpHasl cXxeMa

®OM-2 (nBowuHas (ha3oBas MOTYJISIINSA)
BEIIIaHUE

Hecymiee Kojiebanue (Hecymias)

4acTOTa Hecyllero kojaeoanus (Hecyiei)

KO/10Bast KoMOMHarus (0JI0K), KOJI0OBOE
CIIOBO

HENpepbIBHBIN (HEMPEPHIBHBIN 110 BpeMe-
HU) CUTHAJI

KOPPEISAIUOHHBIC XapaKTEPUCTUKH

KOppeIoMeTp

WHTEPBAJl KOPPENSAIUU

K02 (PHUITMEHTHI Pa3I0KEeHUS
3aJIepiKKa, BpeMs 3aJepIKKH
JETePMUHUPOBAHHBIE CUTHAJIBI
JETePMUHUPOBAHHBIN CUTHAIT
JIeBUAITUS

1 pOBOI CUTHAT
JTUCKPETHBIN CHTHA

UCKaXeHHE, n3MeHeHne (hopMbI (CUTHAIIA)

double-sideband-suppressed-carrier ma@duancHas MOTyJISLIHS

lation
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duplex

duration (infinite/finite)
duration of pulse
energy spectral density
ensemble

envelope

ergodic

error control code
even function
expectation
fluctuation noise
Fourier series

Fourier transformation
full duplex

half duplex

JIBYCTOPOHHSIA Iepeiadya COOOIEeHMIT
JUTMTEIIBHOCTD (OeCKOHEUHAas1/KOHSYHAS)
JUTUTEIIbHOCTh UMITYJIbCA
CIIEKTpajbHas TIIOTHOCTh YHEPTUHU
aHcamO0J1b, COBOKYITHOCTb
orubaromias

ProANYECKUI

KOPPEKTUPYIOLIUNA KO

yeTHast PyHKIUS

MaTEeMaTUYeCKOe OKUJIaHne
¢dykTyaloHHas momexa

psan Oypee

npeoOpazoBanue Oypbe
MOJTHOAYTIIIEKCHBIN

NOJTYAYTIIIEKCHBIN

harmonic oscillation, harmonious wave-rapmonndeckoe KojicbaHue

form
Hilbert transform

initial phase
inphase or cosine component

intersymbol interference

joint probability density

link

lower sideband of frequencies
mapping code

mapper

npeobpaszoBanue [ napbepra
HavajgbHas ¢aza

CI/IH(I)a?:Ha}I HJIKM KOCUHYCHAasA COCTABJIAIO-

nias
MEXCUMBOJIbHASI UHTEPPEPEHITUS

COBMECTHAS IIJIOTHOCTh BEPOSTHOCTH
COCINHCHHE

HIDKHSS II0JIOCA YacTOT
MOJTYJISILIMOHHBIN KOJI

KOJIep MOAYJISILIMOHHOTO KOja

MAPSK —M-ary amplitude-phase moduA®M-M

lation;
M-ary amplitude modulation

mean-square error

MFSK —M-ary frequency modulation
middle frequency

modulating signal

MPSK —M-ary phase modulation

MQAM — M-ary quadrature-amplitude
modulation

M-r4dHas aMIIUTyAHAS MOAYJIALUA
CpeIHEKBaApaTHIECKas OnoKa
UM-M

CpEeaHss 4acTOTa

MOJIYJIUPYIOIIUI CUTHAI

OM-M — M-nunas $azoBast MOTYISIUS
KAM-M
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MSK modulation — minimum shift keyingroaynsius MuHUMaIEHOTO ClIBHTA

modulation
mutual correlation
narrow spectrum

narrow-band signal

node

Nyquist pulse

one-dimensional

one-way message transfer
periodic signal

power spectral density function
probability density function
probability distribution function
pulse energy

QPSK (quaternary phase shift keying)
guadrature or sinus component

guadrature splitter

random process

realization of a process
realizations of random process
recipient

rectangular radio pulse
rectangular video pulse
reliability

Rayleigh probability distribution
roll-off factor
root-mean-square deviation
sampling

sequence

shaping filter

shifted on frequency

signalling alphabet

signal constellation

signal points

simplex transfer

B3aMMHas KOPPESIus
Y3KUU CIIEKTP

Y3KOITOJIOCHBIW CUTHAII

y3€J CETH

nMItyasc HaiikBucra

OJTHOMEPHBIN

OJIHOCTOPOHHSIS Ilepeiada COOOIIEHMSI
NEPUOANYECKUM CUTHAIT

CIIEKTpaJbHas IIJIOTHOCTh MOIIIHOCTH
IJIOTHOCTBH BEPOSITHOCTH

(YHKIMS pacnpeieleHNsl BEPOSITHOCTH
DHEPrUs UMITYJIbCA

®OM-4 (ueTBepuyHas (HazoBasi MOMYIISIINSA)

KBaapaTypHasda Wi CUHYCHasd COCTaBJIATO-

nias
KBaIpaTypHbIN pacIlIeUTETh

CIIy4alHBbIN IpoLece

peani3anus mnpoiecca

peanu3aluu ciay4yaiiHoro mpoiecca
NOJTy4YaTelb

panuouMityisc ¢ [1-o6pa3Hoit orubdaromei
[T-ummyibe

JIOCTOBEPHOCTh

PeneeBckoe pacnpenenenne BEpOSITHOCTH
K02 duULIMEeHT cKaTa
CpeIHEKBaIpaTHUECKOE OTKIIOHEHHE
JUCKpPETU3ALIMS

MOCIIEI0BATEIHHOCTh

dbopmMupyrouit GuIbTP

CABUHYT I10 YacCTOTE

CUTHAJbHBIN andaBut

CUTHAJIbHOE CO3BE3/HE

TOUYKH CUTHAJIBHOTO CO3BE3/TUS

TOJILKO OJHOCTOPOHHSS TIepeada cooo-
ICHUS
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single-sideband modulation (SSB)
spectrum

spectral spreading

stationary

statistical dependence

stochastic signals

symbol interval

symbol rate

terminal equipment
transducer

two-way message transfer
ultimate values

uncorrelated

uniform distributing

upper sideband of frequencies
variance

waveform

Wiener-Khinchin theorem

onxHomo0cHas MoyJisius (OM)
CIEKTpP

pacUIMpeHHe CIIEKTpa
CTallMOHAPHBIN

CTaTUCTUYECKAsl 3aBUCUMOCTh
CTOXaCTUYECKHE CUTHAJIBI
TaKTOBBI UHTEPBAJI

CUMBOJIbHAsI CKOPOCTb, CKOPOCTH MOJTYJISA-
002078
OKOHE4YHOE 000pyJ0BaHUE

aT4YnK
JIBYCTOPOHHSIS TIepeaya coO0IIeHui
KpaiiHhe 3Ha4YeHHUs apryMeHTa
HEKOPPEIUPOBAHHbBIE

paBHOMEpPHOE pacrpeeeHne
BEpXHsAA OOKOBas 1MOJIOCA YaCTOT
JHCTIepCUs

Kose0aHue

TeopeMa XruHYMHa-BuHepa
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Russian-English dictionary

aAMILTATYIHAS. MOTYJISILIHS amplitude modulation

aHAJIOTOBBIN, aHAJIOT analog g§mep.), analogueagrr.)

aHaJIOrOBbIM (HEMpephIBHBIM TepBUYHBIN) analogue signal

CUTHAJ

aHcamOJIb, COBOKYITHOCTh ensemble

AOM-M (M-vunas amrmumutyaHo-(dazoBas MAPSK —M-ary amplitude-phase modu-

MOTYJISILIHS) lation;

OamaHCHasT MOIYJISIUS double-sideband-suppressed-carrier modu-
lation

BEPXHsisE OOKOBas IOJIOCA YaCTOT upper sideband of frequencies

BeIaHHE broadcasting

B3aMMHast KOPPEJIAIUs mutual correlation

rapMOHHYECKOE KoJIeOaHHe harmonic oscillation, harmonious wave-
form

JaT4InK transducer

JABYCTOPOHHSIS TIepeiada COOOIIEeHU duplex

JIBYCTOPOHHSIS TIepeiada COOOIIESHUM two-way message transfer

JEBHAITUS deviation

JIeTepMUHUPOBaHHBIE CHUTHAIBI, feTepmu- determined signals, deterministic signal
HHUPOBAaHHBIA CUTHAJI

JTUCKPETU3AIIHS sampling

JUCKPETHBIN CHTHAI discrete signal
JHCTICPCHUS variance
mtenbHoCcTh (beckoneunas/koneunas) — duration (infinite/finite)
JUTATEIBHOCTh UMITYJIbCa duration of pulse
JIOCTOBEPHOCTh reliability

3aJIepiKKa, BpeMs 3aJCPIKKU delay, delay time
ummyisc HaiikBrcra Nyquist pulse
HUHTEPBAJ KOPPEIIALUN correlation time

uckaxenue, m3menenne Gopmel (curnana) distortion (of signal)

KAM-M (M-wunas kBaapatypHas amium- MQAM — M-ary quadrature-amplitude
TyJTHAsT MOJTYJISIIIFSI) modulation

KBaJIpaTypHas WJIM CHHYCHAsl CocTaBlisito- quadrature or sinus component

iast

KBaJIpaTypHBIN pacIICITUTENhb quadrature splitter

KO/0Bast KoMOMHarus (0JI0K), KOJI0OBOE code block, codeword

CJIOBO
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KoseOaHue waveform

KOPPEKTHPYIOIIUH KO error control code

KOppEIOMET]P correlation meter

KOPPEISIIUOHHBIC XaPaKTEPUCTHKH correlation characteristics

K03 uIHeHT aMIUIUTy THOM Moy siuu - amplitude modulation factor

kod(urmeHT ckara roll-off factor

KO3 GHUIUCHTBI Pa3JI0KEHHUS decomposition factors

KpaifHue 3HA4YeHUS apryMeHTa ultimate values

MaTeMaTUUECKOE OKUJaHuE expectation

MEKCHUMBOJIbHASI HHTEP(EPEHIINS intersymbol interference

M-vuHast aMIUTATYTHAS MOTY TSNS M-ary amplitude modulation

MOTyJIUPYIOIINI CUTHAJ modulating signal

MOTYJISIIIAOHHBIA KOJI mapping code

MOTYJISLHS MUHUMAJIBHOI'O C/IBHTa MSK modulation — minimum shift keying
modulation

HavajgbHas ¢asa initial phase

HEKOPPEITUPOBAHHEIE uncorrelated

HempepbIBHBIN (HEepephIBHBIN 110 BpeMe- continuous (time-continuous) signal
HU) CUTHAJT

Hecylee Kojiebanue (Hecymas) carrier

HIDKHSISL TT0JIOCa YacTOT lower sideband of frequencies
oruodaromas envelope

OJTHOMEPHBIH one-dimensional
onHOMO0cHas Moy sinust (OM) single-sideband modulation (SSB)
OJTHOCTOPOHHSISI TIepe/aua COOOICHHUS one-way message transfer
OKOHEYHOE 000pyI0BaHHE terminal equipment
NIEPBUYHBIN CUTHAI baseband signal
HEPUOANYECKUN CUTHAI periodic signal

[T-ummysse rectangular video pulse
IUIOTHOCTh BEPOSTHOCTH probability density function
HOJIHOTYTIEKCHBIN full duplex

M0JI0Ca YaCTOT band

I0JIOCOBBIC CUTHAJIBI bandpass signals

MOJTy Iy TIEKCHBIN half duplex

OJTy4aTellb recipient

IIoCIacCaA0BAaTCIIbHOCTD sequence



npeoOpa3oBanue ['unpbepra
npeodpazoBanre Oypoe

paBHOMEpHOE pacrpesiesieHue
paguoummyJkc ¢ [1-o6pa3noit orubarormeit
paciMpeHue CreKkTpa

peanuzaius npoiecca

PeneeBckoe pacnpeneneHrne BEpOATHOCTH
psan Oypoe

CABHHYT 10 4acTOTE

CUTHAJIbHOE CO3BE3/I1e

CUTHAJIbHBIN an(aBuT

CHUMBOJIbHAs! CKOPOCTh, CKOPOCTh MOIYJISI-
1805051
cuH(a3zHas WM KOCUHYCHAsI COCTABJISIO-

1as
cUcCTeMa JIocTyma

CKOpPOCTh LIM(PPOBOTO CUTHATIA
cinyuaiiHas ¢aza

CIIyYaWHBIN MPOLECC

COBMECTHAsI IJIOTHOCTh BEPOSITHOCTHU
COEIMHEHNUE

CIIEKTp, CIIEKTPhI

CIIEKTpaJIbHAs IIJIOTHOCTh MOIIIHOCTH
CIIEKTpaJIbHAs IJIOTHOCTh YHEPTUH
cpeaHee 3HAYCHUE
CpelHeKBaJpaTHiecKas ommoka
CPEAHEKBAAPATHYECKOE OTKIIOHEHHE
CpeHss MOIIHOCTD (IIporiecca)
CpenHsis yacToTa

CTAaTUCTUYECKAsA 3aBUCUMOCTh
CTAllMOHAPHBIN

CTOXACTUYECKHE CUTHAJIBI
CTPYKTypHas cxema

TAKTOBBIN UHTEPBAJ

TeopeMa XruHYMHA-BuHepa

TOJILKO OJTHOCTOPOHHSIA Mepeiada coo0-
IEHHS
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Hilbert transform
Fourier transformation
uniform distributing
rectangular radio pulse
spectral spreading
realization of a process
Rayleigh probability distribution
Fourier series
shifted on frequency
signal constellation
signalling alphabet
symbol rate

inphase or cosine component

access system

bit rate of a signal
accidental phase

random process

joint probability density

link

spectrum, spectra

power spectral density function
energy spectral density
average value
mean-square error
root-mean-square deviation
average power (of a process)
middle frequency

statistical dependence
stationary

stochastic signals

block diagram

symbol interval
Wiener-Khinchin theorem
simplex transfer
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TOYKH CUTHAIBHOTO CO3BE3/IUS

y3€J1 CETU

Y3KHH CHEKTP

Y3KOIOJIOCHBIA CUTHAI
(bayKTyalMoHHas moMexa

OM-M — M-nunas (azoBas MOy
dbopmupyronuii GUILTP

(GyHKLMS pacripeesieHnsl BEpOSITHOCTH

1 pOBOM CUTHAT

4acToTa HECYIIEero Kojacoanus (HecyIeit)

yeTHas pyHKUUS

UM-M

IIMpHUHA criekTpa (CHrHaa, mpoiecca)
SHEPTUs UMITYJIbCa

3ProguveCcCKum

signal points

node

narrow spectrum

narrow-band signal

fluctuation noise

MPSK —M-ary phase modulation
shaping filter

probability distribution function
digital signal

carrier frequency

even function

MFSK —M-ary frequency modulation
bandwidth (of signal, process)
pulse energy

ergodic
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