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MODULE STRUCTURE  
 

  
Module № 2. „ Electromagnetic  oscillations and waves” – 72 hours total. 

Lectures – 16 hrs, practical trainings – 0 hrs, labs – 16 hrs, self-studies – 33 hrs. 
 

 
 
 
 
 

LIST OF LABORATORY WORKS 
 

Number 
of   

lessons 
Denomination of  laboratory work, code of the work Hours 

Module № 1 

1 4-1. Investigation of harmonic oscillations of mechanical systems. 2 

2 Calculation of parameters of harmonic electrical oscillations. 2 

3 4-3. Investigation of damped oscillations of mathematical pendulum. 2 

4 Calculation of parameters of damping electrical oscillations. 2 

5 4-6. Investigation of driven oscillations in oscillation circuit. 2 

6 Calculation of current and voltage in RLC-circuit.  2 

7 5-1. Finding of frequency of oscillations of vibrator by Meldje method. 2 

8 Calculation of parameters of electromagnetic waves. 2 
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INTRODUCTION 
 

 All laboratory works are provided in a frontal way, i.e. all group makes 

the same laboratory work at the same time. 

 Appropriate homework must forego to work in a lab. The homework 

contains self-studying of theory and methodology of work accomplishment, 

preparation of protocol which includes experimental facility’s schematic drawing, 

equipment table's drawing, measurement table's drawing, a list of working formulae 

with description of all quantities which are in, list of control questions' answering. 

 The allowance to performing of laboratory work will be had only those 

of students who have fulfilled homework and have positive result on express mini-

quiz in a lab. 

 

Content of the reports for all laboratory works has to be the following: 

1) Title and number of laboratory work. 

2) Goal of the work. 

3) Laboratory research facility's scheme. 

4) Equipment table. 

5) Equations for calculation with decryption of all quantities in. 

6) Standard table of measurements for each measured quantity. It has to be 

checked and verified by an instructor. 

7) Experimental data processing (write one for many similar) 

8) Standard form of result (confidence interval and relative error or a graphic 

result) 

9) Conclusion 

10)  Date, name of a student. 

 

Besides this guide is recommended to use literature from bibliography given at 

the end of this guide. 
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WORK 4-1 
EXPLORING of HARMONIC OSCILLATIONS  

 
1 Goal of the work: 
 

1. Studying physical pendulum undamped oscillations description method.  
2. Studying a moment of inertia and equivalent length of physical pendulum 
determination method. 

 
2 Main concepts 
 

Oscillations (including vibrations and variations) are processes changes of 
state that are repeated more or less regularly with time. There are many kinds of 
oscillations, not only mechanical. Any physical quantity makes oscillations if it 
repetitively varies in opposite directions near some of its value. 

A motion of a mechanical system near its equilibrium position, during which 
the system passes through an equilibrium position over and over in opposite 
directions is being termed mechanical oscillations. 

A state of a system, left by its own, in which it can stay indefinitely long 
without any motion, is called equilibrium state. 

Free oscillations (simple harmonic and dumped oscillations) are ones that 
occur in absence of externally applied variable action on the system. Forced 
oscillations are ones set up in system as a result of variable external effects (periodic 
external force in mechanical systems or generator’s alternating emf in 
electromagnetic systems). 

Simplest model of oscillatory system is called a harmonic oscillator. When the 
oscillatory system not looses energy, it is being described by homogeneous second 
order differential equation that is termed equation of harmonic oscillator in 
differential view: 

02
02

2
 x

dt
xd           or            02

0  xx .                           (1) 

A motion of such system is termed simple harmonic and the oscillating 
physical quantity x varies under sine or cosine law. Thus general solution for this 
differential equation (1) will be equation of simple harmonic oscillations: 

 

x(t)=Acos(ω0t+φ0)        or         x(t)=Asin(ω0t+φ0+ π/2),                   (2) 
 

where x(t)=f(t) – value of oscillating quantity at the time t is called in 
mechanical systems as displacement (relatively to equilibrium position).  

Constant A, which is equal to the largest absolute value of oscillating physical 
quantity, is called the amplitude of oscillations. Amplitude measurement unit is a 
same, as measurement unit of a quantity x. 

Expression 
ω0t+φ0 = Φ(t),                                                     (3) 
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which defines the magnitude of quantity x at given moment of time, is called 
the phase of oscillation.  

SI measurement unit for phase is radian -  [rad]. 
At initial moment of time (t =0) phase Φ is equal to initial phase φ0:  

Φ(t=0)= φ0,  
When we deviate the pendulum at the first time to the left, then  

x=x(t=0)= –A         and            0 =,                                   (4) 
but when we deviate the pendulum at the first time to the right, then 

x0=x(t=0)=+A           and           0 =0.                                 (4a) 
Differentiation of (3) gives: 

dt
d

0 ,                                                          (5) 

hence, cyclic frequency is the time rate of change (velocity of variation) of a 
phase that measurement unit is radians per second -  [rad/s]. 

 
Parameters of oscillations: 
The period of the oscillations T is the smallest interval of time after which 

repeat all values of physical quantities characterized oscillatory motion. One full 
oscillation completes by the time of period T. 
 Frequency is defined as a number of oscillations per unit time: 

T
1

                                                          (6) 

SI measurement unit for frequency is Hertz – [Hz]. 
One full oscillation's phase cycle corresponds to 2π radians (as period of 

harmonic function). Then cyclic frequency (5) of oscillations is the number of phase 
cycles per seconds: 

T



22                                                      (7) 

SI measurement unit for cyclic frequency is radians per second – [rad/s]. 
Then the period of the oscillations 





2T                             (8) 

SI measurement unit for period is second – [s]. 
 
2.1 Harmonic oscillations of physical 

pendulum 
 

Harmonic oscillations are the type of free 
oscillations, which the system performs under 
activity only of restoring force. The restoring force is 
a force acted to the centre of gravity of a system and 
always directed to equilibrium position. The restoring 
force as well is termed as quasi-elastic force, because 
for its describing introduce the elasticity equation: 

 
 

Figure 1 – Restoring force of 
physical pendulum  
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FREST = – kqex,                                                   (9) 
where x – displacement from equilibrium position; kqe – quasi-elastic 

coefficient. 
Negative sign on the right hand side of the equation (9) means that the 

restoring force always acts in the opposite direction of the displacement. The role of 
restoring force is fulfilled usually by the total of gravity force and supporting or 
spring force. 

Natural system is an ideal physical model of system with no any energy losses. 
In the real-world systems there are always act different kind of damping forces, 
which increase period and decrease amplitude of oscillations (see Laboratory work № 
4-3). Regime of oscillations without of losing energy is termed eigenmodes and 
frequency of such oscillations – eigenfrequency. Parameters of eigenmodes of 
oscillations are being identified by 0 index. 
 Let’s consider natural mechanical oscillations of physical pendulum (Fig.1).  
Physical pendulum is a rigid body suspended from a fixed point in it, free to pivot 
about some horizontal axis through that point under the force of gravity. 
 The oscillations description method is in building and solving of differential 
equations for appropriate motions. If the pendulum shifted from its equilibrium 
position then there will appear a moment of restoring force (Fig.1): 

M = FRESTa = –mgasinα,                                         (10) 
here m – mass of a pendulum, a – distance from the pivot point to center of 

gravity C of the pendulum, α – small enough angle of deflection from equilibrium. 
The moment equation gives: 

M = Jε,                                                      (11) 

here 2

2

dt
d 

  – angular acceleration, so 

– mga sinα = Jε, 
 

where J – moment of inertia of the physical pendulum. 
Moment of inertia J is a physical analog of the mass of a rotating rigid body. 

For example, moment of inertia of the rotating point mass m apart on distance l from 
an axis is  

J=ml2.                                                    (12) 
Then SI measurement units for moment of inertia is kilogram-square meter – [kgm2]. 
We note that such oscillating point mass m on weightless suspension of length l is 
being termed as simple (mathematic) pendulum. 

As α is small we can replace sinα by α in moment equation(10): 

2

2

dt
dJmga 

 , 

from here we obtain differential equation of oscillations of physical pendulum: 

02

2



J

mga
dt
d          or        02

02

2




dt
d                       (13) 
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 Thus, oscillatory motion of physical pendulum is being described by the 
homogeneous second order differential equation. 

 General solution for this differential equation will be equation of oscillations 
of physical pendulum: 

 

α = αm cos(ω0t+φ0)                                                (14) 
 

Coefficient near α in (12) is squared cyclic eigenfrequency ω0,  then  

J
mga

0 .                                                      (15) 

Taking in to account (8) we’ll have a eigenperiod of the physical pendulum 

mga
JT  20                                                        (16) 

In special case (12), for simple (mathematic) pendulum 2
eqlmJ   and the 

eigenperiod will be 

g
l

T eq 20 .                                                       (17) 

Comparison of (16) and (17) shows that it is possible to pick such simple 
(mathematic) pendulum with length 

ma
Jleq  ,                                                         (18) 

which will have same period as a given physical has. Such length leq is called 
equivalent length of physical pendulum. 

Moment of inertia of physical pendulum we can determine using formula (14): 

2

2
0

4


mgaTJ .                                                      (19) 

 
3 Description of laboratory research facility and methodology of measurements 

Devices and outfits: console with a pendulum, millimetre scaled ruler, 
stopwatch. 

In a given work we observe natural oscillations of physical pendulum. Such 
pendulum consists from a metallic rod, suspended by one of its ends and free to rotate 
in a vertical plane. Mass of a pendulum is indicated on a metallic rod in the form of 
numerical imprint. Length of a pendulum is being measured by a ruler once, but with 
pinpoint accuracy (important!). Instrumental accuracy – 0,001m. 

Use small, about 3O – 5O, deflections of a pendulum from its equilibrium state 
to make it oscillate. Only in this case oscillations will be harmonic. 

For small angle deflection α it is possible to calculate value of amplitude via an 
approximate equation: 

A= lsinα ≈ lα 
o

o

180



l ,                                            (20) 

here l – length of a pendulum. 
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Direct measurements of period. The period is a small quantity, then for 

increasing an accuracy of its determination it is possible to measure time of 10 
oscillations. 

When pendulum appears in one of its edge positions start stopwatch and count 
10 complete oscillations (cycles). Use 0.01 precision when calculating average value 
of period.  

From average value of period it is possible to calculate a cyclic frequency of 
oscillations. From initial position according (4) and (4a) it is possible to calculate 
initial phase of oscillations and write equation of oscillations of pendulum with 
numerical coefficients A,ω0, φ0. 

 
Indirect measurement of moment of inertia. A task for students will be 

determination of moment of inertia of a given physical pendulum using its 
oscillations. Center of gravity of uniform rod is on the half of its length, so 

а = l/2 .                                                           (21) 
Substituting (21) in (19) it is possible to obtain an experimental value of 

moment of inertia:  

2

2
0

EXP
8


mglT

J .                                                      (22) 

 Free fall acceleration is 9.81 m/s2. 
From theoretical mechanics it is possible to calculate a theoretical value of 

moment of inertia: 

3

3

THEOR
mlJ  .                                                    (23) 

 
4 Data processing 
 

For representation of the result of direct measurements of quantity x it is 
necessary: 
1) Obtain the sequence of measured values x1,  x2, x3, ..., xn and write result of these n 
measurements in a second column of Table of measurements. In a first column of 
Table of measurements write an ordinal number of measurement. 
2) Calculate the average value of measurand: 








n

i
i

n x
nn

xxxx
x

1

321 1...
.                          (24) 

3) Find an abmodality each measurement and write result in a third column of Table 
of measurements: 

11 xxx  ;   22 xxx  ;   ... ;  nn xxx   .              (25) 
4) Square each abmodality in a fourth column of Table of measurements and 
summarize them: 
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



n

i
ix

1

2)(  2
1 )( x 22

2 )(...)( nxx  .                           (26) 

5) Find a statistical absolute error xST of measurements from Student’s equation: 

)1(

)(
1

2

,ST 






 nn

x
tx

n

i
i

n    .                                           (27) 

where  – confidence probability; n – number of measurements; t;n – 
Student’s coefficient. 
6) If it is not identified an absolute instrumental error xDEV on measuring tool, it is 
necessary to find a device absolute error of measurements from accuracy class  of 
electrical measuring instrument: 

100
max

DEV
x

x


 ,                                           (28) 

where хmax – grid limit. 
7) Find a total absolute error of measurements 

x = 2
DEV

2
ST )()( xx                                     (29) 

7) Calculate relative error of measurements: 





x
x  .                                                  (30) 

8) Final result should be represented by a confidence interval and relative error: 

б)( xxx  = ( …  ± … )0.95;       %100% 





x
x

x = … %.                (31) 

 
 
For representation of the result of indirect measuring of quantity y it is 

necessary: 
1) Calculate the average value of measurand <y> by formula from average values of 
known quantities <a>, <b>, <c>, for example: 

5

3 24

7
8






c
bay .                                       (32) 

2) Calculate relative error of measurand y from relative errors of known quantities 
a ,  b ,  c by formula that should be gained accordingly to this example: 
 

   
222

2
2

2 5
3
245

3
24 







































 

c
c

b
b

a
a

cbay ,    (33) 

 

where a, b, c – absolute errors of known quantities; <a>, <b>, <c> – its 
average values. 
3) Find an absolute error of measurand 

y =<y>y .                                              (34) 
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4) Final result should be represented by a confidence interval and relative error: 
 

б)( yyy  = ( …  ± … )0.95;       %100%  yy = … %.            (35) 
 
 

5 Work execution order and experimental data analysis 
 

1. Make a direct measurements of length of pendulum l, with ruler accuracy. Write mass 
of a pendulum from the numerical imprint on metallic rod, with accuracy 0,001kg. 
2. Make a direct measurements of time of 10 complete oscillations with help of 
stopwatch and write obtained data in a table of measurements. Repeat it direct 
measurement five times. 
3. Determine average value of a period (24), abmodality (25), and sum of squares of 
abmodalities (26), absolute (29) and relative (30) errors of a period. Represent a final 
result of direct measurements of period in (31) view. 
4. For 30 - 40 angular deflection from equilibrium state determine amplitude of 
oscillations A in metres according (20). Determine cyclic frequency ω0 according to 
(7), initial phase φ0 according to (4) and (4a). Write equation of oscillations of linear 
displacement of pendulum in (2) view in metres with numerical value of coefficients 
of A, ω0 and φ0. 
5. Calculate (make an indirect measurement) the moment of inertia of a pendulum 
using two methods: experimentally based JEXP – using formula (22), and theoretical 
based: using formula (23). Compare these two quantities. Calculate relative (33) and 
absolute (34) errors of experimental moment of inertia. Represent a final result of 
indirect measurement of experimental moment of inertia in (35) view. 
6. Calculate average value of equivalent length leq of physical pendulum (18). 

 
6 Control questions 

 

1. Which motion we call periodic?  
2. What are physical and simple mathematic pendulums? 
3. What is period, frequency, cyclic frequency? How do they related?  
4. What are harmonic oscillations? Under which condition free oscillations of any 
mechanical system became natural (harmonic)? 
4. What is restoring (quasi-elastic) force? How does it appear in a case of physical 
pendulum?  
5. Write an equation of restoring (quasi-elastic) force and its moment dependence 
from angle of deflection from equilibrium state. 
6. What is necessary to do, when oscillations description method is used? 
7. Formulate a differential equation of physical pendulum oscillations.  
8. Set up a formula of period of physical pendulum.  
9. Obtain an expression of moment of inertia of physical pendulum. 
10. What is equivalent length of physical pendulum? 
11. How free fall acceleration and mass affects on a period of physical pendulum? 
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7 Content of the report 
Laboratory work № 4-1 

I. Home work  
(answer on control questions from p.11). 

… 
 

II. Laboratory work № 4-1 implementation protocol. 
1) Topic:          EXPLORING of HARMONIC OSCILLATIONS. 
2) Goal:  
1. Studying physical pendulum undamped oscillations description method.  
2. Studying moment of inertia and equivalent length of physical pendulum 
determination method. 
 
3) Scheme of laboratory research facility:  

 

 

1 – physical pendulum; 
2 – ruler; 
O – pivot point; 
C – center of gravity; 
leq – equivalent length; 
α – angle of deflection; 
a – distance between pivot point (axis of rotation) 
               and center of gravity; 

RESTF


 – quasi-elastic force; 
N


 – supporting force; 
 gm

 –gravity force.        
 
4) Table of measuring instruments: 
№ Name Type Serial № Grid limit Grid unit Absolute 

error 
1. Stopwatch УXЛ-42  99,99 s 0,01 s 0,01 s 
2. Ruler У  1000 mm 1mm 1mm 

 
5) Equations for calculation: 
1. Statistical absolute error for direct measurements of period: 

)1(
)( 2

, 


  nn
Т

tТ i
nST , 

where   = 0,95 – confidence probability; n = 5 – number of 
measurements;     t 0,95 ; 5 = 2,77 – Student’s coefficient. 

Total absolute error of period 
T = 2

DEV
2

ST )()( TT  , 
where  TDEV = 0,01s – absolute instrumental error of stopwatch (see 

Table of measuring instruments). 
 



 13 

2. Amplitude of oscillations 

A= lsinα ≈ lα 
o

o

180



l ,  

here l – length of a pendulum;  = 5O – angle of deflection. 
Cyclic eigenfrequency of oscillations 





T
2

0 , 

where  <T>  – average value of period of oscillations. 
Initial phase of oscillations: 

0 =, when initial deflection to the left and x=x(t=0)= –A; 
0 =0, when initial deflection to the right and x=x(t=0)= +A. 

Equation of oscillations of physical pendulum:  
 

x(t)=Acos(ω0t+φ0); 
 

where x – linear displacement of pendulum; t – time.  
3. Experimentally determined by indirect measurement an average value of 
moment of inertia: 

2

2

EXP
8



mglTJ , 

 

where m – mass of a pendulum; g = 9.81 m/s2 acceleration due to gravity; 
l – length of a pendulum. 

Absolute error for indirect measurement of moment of inertia: 
 

JJJ  EXPEXP , 
 

where δJ – relative error for indirect measurement of moment of inertia: 
 

222
2 






 






 












l
l

m
m

T
T

J , 

 

here 
m
m , 

l
l ,



T
T  – relative errors for mass, length and period of the 

pendulum; Δm, Δl, ΔT  – absolute errors for mass, length and period of the 
pendulum. 
4. Theoretically determined a value of moment of inertia: 
 

3

2

THEOR
mlJ  . 

 

5. Average value of equivalent length of the pendulum: 

ml
Jleq



2 . 
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  6) Table of measurements 
m =   …  kg;   Δm =0,001 kg;     l =  …    m;  Δl = 0,001 m; 
№ ti, s Ti, s ΔTi, s (ΔTi)2, s2 
1.     

2.     

3.     

4.     

5.     

average value <T>= …  2)( iТ  … 
 
7)    Data processing:   

… 
8) Final results: 

1. T=( <T> ± ΔT)α  = ( …  ± … )0.95  s,     %100% 





Т
Т

Т  = … %. 

2. x(t) = … cos(…t +…)  m;   
3.  JEXP = (< J> ± ΔJ)α = ( …  ± … )0.95   kg·m2,     %100%  JJ = … %;   
4. JTHEOR = … kg·m2; 
5. l eq =  … m. 
 
9) Conclusion:  
(Compare moment of inertia defined experimentally by formula (22) with that 
of defined by theoretical calculation by formula (23)). 
 
10) Work done by:                                                    Work checked by: 

 
 
 

WORK 4-3 
DETERMINATION of DAMPED OSCILLATIONS PARAMETERS  

 
1 Goal of the work:  
Studying key parameters and method of description for damped oscillations of 

mechanical systems. 
 

2 Main concepts 
 Real-world oscillatory systems experience different kind of resistances. They 
loose its energy and with no external energy supply they stop after some finite 
interval of time. Damped oscillations are such type of free oscillations, which energy 
decreases with time. 
 Mechanical energy of oscillatory system gradually decreases transforming into 
heat. This process called energy dissipation, and such system – dissipative system. 
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 Besides the restoring (quasi-elastic) force (9) that acts in natural oscillatory 
systems, in the free linear oscillatory systems a drag force acts: 

FDRAG = – rυ,                                                         (36) 
where υ –  velocity of pendulum’s moving; r – drag coefficient. “Minus” on the 

right hand side of  (36) means that the drag force always acts in the opposite direction 
of the velocity. 
 Thus, for two forces (9) and (36) Newton’s second law for linear damped 
oscillations will be 

ma = —kx—rυ. 
In scalars, substituting acceleration of motion  a=d2x/dt2  and  velocity of 

motion  υ = dx/dt   and obtain  

02

2
 kx

dt
dxr

dt
xdm , 

where m – mass of oscillator (a body or a system of oscillating bodies).  
Now let’s rearrange this equation and obtain an equation of damped oscillator 

in differential view: 

02 2
02

2
 x

dt
dx

dt
xd ,                                          (37) 

here we introduce designations of variables: 

m
r

2 ,                
m
k

2
0 . 

Solution for this differential equation will be the dependence of displacement x 
from time t, which is termed equations of damped oscillations : 

 

x(t)=A0e–βtcos(ωt+φ01)    or     x(t)= A0e–βtsin(ωt+φ02),                          (38) 
 

The basic parameters of damping oscillations are: 
damping coefficient (damping factor) 

m
r

2
                                                            (39) 

and cyclic frequency of damped oscillations 
22

0                                                      (40) 
here ω0 – cyclic 

eigenfrequency (resonant cyclic 
frequency); A0e–βt – 
exponentially decaying 
amplitude; A0 – initial 
amplitude, determines by 
energy of the system at instant t 
= 0. 
 On the Fig. 2 represented 
plots of amplitude versus time 
(dashed line) and displacement  

 
Figure 2 – The underdamping oscillations. 
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versus time (solid line) dependencies. 
 Damped oscillations are non-periodic: values of oscillating physical quantities 
(such as displacement, velocity, acceleration) never repeat in damped oscillations 
process. That is why we can’t use concepts of period and frequency in the way that it 
been done for periodic (undamped) oscillations. 
 Conventional period of damped oscillations is such interval of time between to 
serial states of oscillating system at which oscillating physical quantities vary in the 
same direction, decreasing or increasing their magnitudes. 

 Knowing that 22
0   and ω=2π/T , obtain  

22
0

2




CT .                                                   (41) 

The conventional period (41) greater than the 
eigenperiod of T0 = 2π/ω0, when no any damping forces 
are present. 
 There are different modes of oscillating systems 
with respect to value of damping coefficient (see Fig.3): 
a) β = 0, so r = 0, T=2π/ω0=T0 – harmonic oscillations; 

b) β<ω0, ω0
2–β2>0, 0

22
0/2 TT   – almost 

periodic underdamping mode; 
c) β = ω0, ω0

2–β2=0, T→ ∞ – aperiodic critical mode; 
d) β>ω0, ω0

2–β2<0, T is imaginary – overdamping 
mode. 
 Decay decrement is a ratio of two serial 
amplitudes of the same sign At and At+T separated in time from each other by the 
period T: 

conste
eA

eA
A
A

D T
Tt

t

Tt

t  





)(

0

0 . 

Logarithmic decay decrement is a natural logarithm of this ratio: 

T
A

A

Tt

t 


ln .                                             (42) 

In practical calculations, for small damping, it is usually suggested that δ = βT0, 
where T0 – period of undamped oscillations of the system.  
 Denoting a τ – relaxation time as interval of time over which the amplitude of 
oscillations decreases in e times (e = 2.7183 – is the base of natural logarithm), we 
can write: 

                                                           ee
A
A

t

t  


.       

Hence, βτ = 1, or 




1 .                                                       (43)  

 
Figure 3 – Different modes 

of damping: harmonic; 
underdamping; critical; 

overdamping. 
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Thus, for meaning (physical sense) the damping coefficient β it is inversely 
proportional time over which amplitude of oscillations decreases in e = 2.7 times.  

By the time τ system makes Ne = τ/T oscillations (relaxation number), so, 
taking into account (42) and (43) we’ll have 

ee NN
T 11







 .                                        (44) 

So, for meaning (physical sense) the logarithmic decay decrement it is 
inversely proportional to number of oscillations producing by the time over which 
amplitude of oscillations decreases in e = 2.7 times. 
 Quality factor of a system is a ratio of coefficients from equation of damped 
oscillator (37):  





2

0Q . 

Taking into account previous equations we obtain 

eNQ 



 .                                                (45) 

Thus, for meaning (physical sense) the quality factor it is proportional to the 
number of oscillations Ne done by a system by the time τ over which amplitude of 
oscillations decreases in e = 2.7 times. 

 
 

3 Description of laboratory research facility and methodology of 
measurements 

Devices and outfits: physical pendulum with damper, stopwatch, ruler. 
As oscillating system in this work we have same 

physical pendulum 1 as in work 4-1 with plate 3, 
connected to pendulum with help of moving connector  
2 (Fig. 4). The connector make possible fixation of the 
plate in any place of pendulum, at any angle to plane of 
oscillations. By varying angle between plane of 
oscillations and the plate we can obtain different 
magnitudes of friction between oscillating system 
(pendulum + plate) and air. Free end of the pendulum 
has an arrow, using which we can fix an amplitude of 
oscillation by the ruler 4. 
 When a pendulum is in a static position put a 
ruler (or any millimetre scale) with zero mark straight 
under pendulum arrow. Distance between arrow and 
scale has to be about 1-2 mm.  

In following work we measure time of relaxation 
τ and number of oscillations Ne during which amplitude 
decreases in e = 2.7 times. 

 
4 Data processing (see laboratory work № 4-1). 
 

 
 
Figure 4 – Physical pendulum 

with damper. 
1 – physical pendulum;  
2 – moving connector;  
3 – plate;  
4 – ruler. 
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5 Work execution order and experimental data analysis 
1. Set plate in a random position on a pendulum. 
2. Make a direct measurements of a time interval  and number of oscillations Ne 
during which amplitude decreases in e = 2.7 times, also a conventional period T of 
damped oscillations.  

For this purpose it is necessary to shift a pendulum on 60 mm from equilibrium 
position then free. Start stopwatch when amplitude become 54 mm and count number 
of oscillations until amplitude decreases to 20 mm then stop counting and stopwatch. 
Write obtained values of relaxation time  and number of oscillations Ne in a Table 
of measurements.  

By ratio  and Ne obtain a conventional period T of oscillations. Write 
obtained value in a Table of measurements.  

Repeat these direct measurements five times. 
3. Determine average value of relaxation time, number of oscillations and 
conventional period (24), abmodality of a conventional period (25), and sum of 
squares of abmodalities of conventional period (26), absolute (29) and relative (30) 
errors of a conventional period.  

Represent a final result of direct measurements of conventional period in (31) 
view. 
4. Determine cyclic frequency ω according to (7), initial phase φ0 according to (4) 
and (4a), damping coefficient from (43). In final results write equation of damped 
oscillations of linear displacement of pendulum in (38) view in metres with 
numerical value of coefficients of A0, ω and φ0. 
5. Calculate a logarithmic decrement according to (44) and quality factor according to 
(45). Write their values in final results. 
 

6 Control questions 
1. Which mechanical systems we call dissipative? 
2. What is damped oscillations? Are they periodic? Why? 
3. What is conventional period of linear damped oscillations? 
4. What is the description method (differential equation) for damped oscillator? 
5. Write down and explain Hook’s law for quasi-elastic force. 
6. Write down an expression for drag (resistance) force. 
7. Write down equation of linear damped oscillations and explain meaning of 
physical quantities in it. 
8. Explain the meaning (physical sense) of damping factor. What is time of 
relaxation? How does magnitude of damping factor affect conventional period?  
9. What is a decay decrement? What does it mean (physical sense)? 
10. What is a logarithmic decay decrement? Explain it meaning (physical sense). 
11. What is quality factor? Explain it meaning (physical sense). 
12. How do quality factor, damping factor and logarithmic decay decrement related? 

 
 



 19 

7 Content of the report 
Laboratory work № 4-3 

I. Homework  
(answer on a control question from p. 18). 

… 
II. Laboratory work № 4-3 implementation protocol. 

1) Topic:  
DETERMINATION of DAMPED OSCILLATIONS PARAMETERS. 

2) Goal: Studying key parameters and method of description for damped 
oscillations of mechanical systems 
3)     Scheme of laboratory’s research facility:  
                                 

 

 

 
1 – physical pendulum;  
2 – moving connector;  
3 – plate;  
4 – ruler. 
 
 

 
4)     Table of measuring instruments: 

№ Name Type Serial № Grid limit Grid unit Accuracy class 
1. Stopwatch УXЛ-42  99,99 0,01 sec 0,01 sec 
2. Ruler   1000 mm 1mm 1mm 

 
5)    Equations for calculation: 
 1. Statistical absolute error for conditional period: 

)1(
)( 2

, 


  nn
Т

tТ i
n , 

where =0,95 – confidence probability; n=5 – number of measurements;      
t 0,95 ; 5= 2,77 – Student’s coefficient. 
2. Average value of damping coefficient: 

<β>=1/<τ>, 
where < τ> – average value of relaxation time. 

3. Average value of logarithmic decay decrement: 
<δ> = <β>·<Т>, 

where <Т> – average value of conventional period. 
4. Cyclic frequency of damped oscillations: 

<ω>. = 2π/<Т>. 
5. Quality factor: 

<Q>=π·<Ne>, 
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where <Ne> - average value of number of oscillations at which amplitude 
decreases in e times. 
6. Equation of physical pendulum damped oscillations: 

x(t) = A0 e–<β>·t cos <ω>t, 
where x – displacement of pendulum;  A0 – initial amplitude. 

 
6)    Table of measurements 

№ τi, s Nei Ti, s ΔTi, c (ΔTi)2, c2 

1.      

2.      
3.      
4.      
5.      
 <τ>=    … <Ne > =    … <T> =   … Σ(ΔTi)2= … 

7) Quantities calculation:  
… 

8) Final results: 

1. T=( <T>±ΔT)α  = ( …  ± … )0.95 s,  %100% 



ave

Т Т
Т  = … %; 

2. x(t) = …e–…t cos(…t +…)  m;   
3.  <δ> =…;   
4. <Q>=… . 
 
9)    Conclusion: 
(Compare obtained value of conventional period with eigenperiod defined in 
previous laboratory work № 4-1). 
 
10)  Work done by:                                             Work checked by: 
 
 
 

WORK 4-6 
EXPLORING of FORCED OSCILLATIONS in SERIES RLC-CIRCUIT 

 
1 Goal of the work:  

1. Studying of dependencies of current and voltage on capacitor in the RLC-circuit 
from ratio of driving frequency and circuit eigenfrequency. 
2. Studying resonance phenomena in AC circuit. 

 
2 Main concepts 
Forced (or driven) oscillations are the continuous oscillations of oscillatory 

system, when the system experiences action of external periodical force.           
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In order to continue the oscillations 
beyond the time allowed by the damping 
mechanism, it is necessary to replenish the 
oscillator's energy by a driving mechanism. 
The efficiency with which the driving 
mechanism supplies energy to the oscillator 
depends on the frequency of the driver as 
compared to the natural frequency of the 
oscillator. 

If we connect in series  (Fig. 5) capacitor, resistor, inductor and external source 
of periodical alternating EMF (generator), the oscillations, which will appear in such 
circuit, will be forced (or driven). 

Let’s consider oscillations of current and voltages in series RLC-circuit driven 
by external EMF varying under harmonic law: 

 

 =mcos(Ωt+φ0), (46) 
  

here m – external EMF amplitude, φ0 – external EMF’s initial phase, Ω – 
external EMF’s cyclic frequency (driving cyclic frequency). 

Now let’s apply second Kirchhoff’s rule to the given RLC-circuit: 
uR + uC = BACK + mcos(Ωt+φ0), (47) 

here uR=iR – the voltage on resistor, uC=q/C – voltage on capacitor.  Produced 
by inductor the back EMF BACK=–L(di/dt) we obtain from self-induction law. Taking 
into account all mentioned above, let’s rearrange equation (47) as                                    

dt
diL +iR+

C
q

= mcos(Ωt + φ0). (48) 

Differentiation of (28) and division it on L gives 

2

2

dt
id +

dt
di

L
R +

LC
1 i =-

L
m Ω·sin(Ωt + φ0), (49) 

here i = 
dt
dq . Introducing notations β = 

L
R

2
 and 

LC
12

0  we’ll have 

2

2

dt
id +2β

dt
di + 2

0 i =-
L
m Ω·sin(Ωt + φ0). (50) 

This second order linear non-homogeneous differential equation is differential 
equation of driven oscillations. Its solution  

i(t) = I0e-βtcos(ωt + φ0) + Imcos(Ωt + φ0+). (51) 
First term in (51) represents natural damped oscillations of current in the 

circuit with frequency ω (40), which quite fast decay. So further we’ll deal only with 
second term of (51): 

i (t) =Im cos(Ωt +) (52) 
called the steady state solution of driven oscillations differential equation. As it seen 
from (46) and (52) current varies under the same law with the same frequency Ω, as 
the driving EMF do, but with the phase difference . 

 
 

Figure 5 – Series RLC-circuit. 
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Let's choose a current's initial phase equal to zero φ0=0, and denote its phase 
lead as  (or phase lag of external EMF –) we’ll have 

i (t) =Im cosΩt ; (53) 
 (t) =mcos(Ωt–Ф), (54) 

where Im is the amplitude of current, which has to be determined.  
   
In order to determine current amplitude and the phase lead , let’s substitute 
instantaneous value of current (53) in (47) and consider each term of obtained 
equation: 
 
1. Voltage on inductor uL. With the assumption that inductor has no active 
resistance, the voltage uL is equal to self-induction (back) EMF with opposite sign: 

uL=
dt
diL  = –ImΩL sinΩt = UmL cos(Ωt +

2
  ), (55) 

here UmL=ImΩL=ImXL – amplitude of voltage on inductor and  
XL=ΩL – inductive reactance. 

 
2. Voltage on resistor uR.     

uR=iR=UmR cosΩt , (56) 
here ImR=UmR – amplitude of voltage on resistor and  
R – resistance of resistor. 

 

3. Voltage on capacitor uC. From definition of current i = 
dt
dq , then  dq=idt and 

 idtq =   tI m cos =

mI sinΩt = 


mI cos(Ωt – 

2
 ). (57) 

Thus from definition of electrocapacity 

uC =
C
q =

C
I m


cos(Ωt – 
2
 ).= UmC cos(Ωt –

2
 ), (58) 

where UmC =
C

I m


= Im XC  – amplitude of voltage on capacitor and  

XC = 1 / C – capacitive reactance. Both XL and XC measured in Ohms.  
Substituting (55), (56) and (58) in (47) we’ll have 

UmL cos(Ωt +
2
  ) + UmR cosΩt +  UmC  cos(Ωt – 

2
 ) = m cos(Ωt–Ф). (59) 

As seen in (59) the external EMF is equal to the sum of three harmonic 
oscillations with same frequency but different initial phases. In order to sum these 
oscillations let’s use vector diagram method. In this method each oscillation is being 
graphically represented as a vector that revolved around some axis with angular 
velocity equal to the driving cyclic frequency Ω. Length of each vector equals to 
amplitude of the individual oscillation. The angles between these vectors equal to 
phase difference that individual oscillations have with respect to each other. Vector 
representation of (59) shown on a Fig.6.  
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Figure 6 – Vector diagram of voltages on RLC-

circuit’s elements at low frequency Ω<ω0 
(current has a phase lead relative to an external 

EMF). 

 Figure 7 – Instantaneous values of current 
and EMF in RLC-circuit at low frequency 

Ω<ω0 (current has a phase lead relative to an 
external EMF). 

Simple geometry gives: 

 222
mLmCmRm UUU     or      2222

LmCmmm XIXIRI  ,   so 

  ZXXR
I m

LC

m
m









22
. (60) 

 This equation is analogue of Ohm’s law for DC homogeneous circuit unit, if to 
introduce the impedance: 

 22
LC XXRZ  , (61) 

here XC –XL  is the reactance of the circuit, R – resistance. Phase lead of 
current relative to an EMF (see Fig.6): 

R
XX

U
UU

tg LC

mR

mLmC 



  (62) 

  

 

 

 
Figure 8 – Vector diagram of voltages on 
RLC-circuit’s elements at high frequency 

Ω>ω0 (current has a phase lag  relative to 
an external EMF). 

 

 Figure 9 – Instantaneous values of current 
and EMF in RLC-circuit at high frequency 
Ω>ω0 (current has a phase lag relative to an 

external EMF). 

Let’s analyze obtained equations. Obviously that change of driving frequency 
Ω will lead to change of current amplitude Im. On Fig. 10 represented plot of Im 
versus Ω. From equation (60) follows that: 
a) If Ω = 0, then XC   and Im = 0. Increasing of Ω leads to increasing of a current; 
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At low frequency Ω<<ω0 current is limited by capacitance reactance XC>>XL : 

22
C

m
m

XR
I




   and  0

R
X

arctg C  (see Fig.6 and 7). 

b) At high frequency Ω>>ω0 current is limited by inductive reactance XC<<XL : 

22
L

m
m

XR
I




   and  0




R
X

arctg L  (see Fig.8 and 9). 

Increasing of driving frequency Ω leads to further decreasing of a current. 
c) When the UmC =UmL (voltage resonance), then current’s amplitude has a maximum: 

R
I m

m


  and  0  (see Fig.10 and 11). 

The resonance frequency we find from resonance condition for reactance  XC =XL : 
 

01

RES
RES 




C
L , so 

LC
12

RES  or 
LC
1

RES  . 

So we see that Ω RES= ω0. 

 

 

 

Figure 10 – Vector diagram of voltages 
on RLC-circuit’s elements at resonance 
Ω = ω0 (current synphase to an external 

EMF). 

 Figure 11 – Instantaneous values of 
current and EMF in RLC-circuit at 

resonance Ω = ω0 (current synphase to an 
external EMF). 

Resonance is a fast increasing of amplitude of oscillations when the driving 
mechanism’s frequency approach to eigenfrequency. Then circuit’s impedance equal 
to it active resistance and phase difference Ф between driving EMF and current 
equal zero. Obviously that maximal value of current depends only on active 
resistance of the circuit. On a Fig. 12 represented current’s amplitude in the circuit 
for different values of its resistance (quality factor). 

At resonance, forces of electric field, created by EMF source, tend to accelerate 
motion of charges. The amplitude would be increasing to infinity during the time of 
period if there was no active resistance in the circuit. In the real-world circuit 
increasing of a current leads to increasing of energy losses. Amplitude of current will 
approach its steady-state value when these losses will be equal to work done by the 
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source’s electric field forces. Phase difference Ф between current and EMF isn’t 
equal zero when driving frequency doesn’t equal to eigenfrequency. In this case, at 
one part of the period source’s electric 
field accelerates charges and decelerates 
at another one. That is why current’s 
amplitude is lower than it is at resonance 
and, for the period, at increasing of phase 
difference Ф deceleration time is 
greater than acceleration time. 

At resonance the circuit consume a 
minimum energy from the source. Stored 
energy of electric field WC=CUmC

2/2 
completely transforms into energy of 
magnetic field WL=LIm

2/2 and vice versa, 
as in the case of harmonic oscillations. 
Source’s energy spent only to 
compensate energy losses in the circuit. 
Instantaneous value of a power loss can 
be determined as: 

P(t) = i(t)u(t) = ImcosΩt  RImcosΩt = 2
mI Rcos2Ωt. 

Circuit’s energy loss during the period 

 
T

mm
T

RTIdttRIPdtW
0

222

0 2
1)(cos ,  

as  
T Tdtt
0

2 .
2

)(cos  

Resonant properties of RLC-circuit can be characterized by the quality factor : 





2

0Q  

One of physical senses of a quality factor is the ratio of energy stored in the 
circuit to energy dissipated at resonance: 

C
L

RLCR
L

RTI

LI

W
W

W
W

Q
m

m
LC 1

2
2

2
1
2
1

222
2

2










 . 

From voltage resonance condition we have equality of UmL and UmC   
magnitudes, but, they are in antiphase, so at any instant their sum equals zero: 

UmL = UmC = Im CRES

1


=
C
LC

R
m =m

C
L

R
1 =mQ.  

Thus we get another physical sense of quality factor, according which quality 
shows in how many times the inductance voltage amplitude or capacitance voltage 
amplitude at resonance greater than driving EMF amplitude:  

 
Figure 12 – Resonant curves: amplitude of 

current versus driving frequency plot for 
different values of resistance and quality 

factor: R1<R2<R3;  Q1>Q2>Q3. 
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m

mL

m

mC UU
Q







RESRES
. 

For small active resistance, 

i.e.  if R<<
C
L , Q>>1, hence 

UmL=UmC>>m. 
Than higher is quality than 

clearly and sharply resonance is. 
This is another physical sense of 
quality factor : 




 RESQ
2

, 

here  – full width of resonance at 
half energy maximum (FWHM). 

On the Fig. 12 represented current’s amplitude-frequency characteristics for 
different values of quality factor. It is visible, that higher quality factor has a narrow 
FWHM. 

As it was mentioned above amplitudes of inductance and capacitance depend 
on the frequency of driving EMF. Expression for amplitude of voltage on inductor 
can be written as: 

UmL=ImΩL=
2

2 1






 






L
C

R

Lm . 
(63) 

Voltage on inductor approaches maximum at frequency ΩL that is greater then 
circuit’s resonant frequency ΩRES=ω0. In order to find ΩL it is necessary to investigate 

expression (63) of the maximum, i.e. solve the equation 0
d

dU mL .  

 Amplitude of voltage on capacitor equals 

UmC=
2

2 1






 








L

C
RC

C
I mm . 

(64) 

It approaches maximum at frequency ΩC that is smaller than ΩRES=ω0. 
As it seen from Fig. 13 at ΩRES=ω0 amplitudes UmC

RES and UmL
RES are 

numerically equal but not maximal !! Difference of frequencies ΩL – ΩC is smaller 
than greater quality of the circuit is. At high quality factor ΩC ≈ ΩRES=ω0 ≈ ΩL . 
  
3 Description of laboratory research facility and methodology of measurements 

Devices and outfits: Set of inductances, set of capacities, set of resistances, 
voltmeter, sound generator ГЗ-36. 

Figure 13 – Amplitude – frequency characteristics: 
capacitance, inductance voltages and current’s 

amplitudes versus driving frequency Ω. 
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In a given work we study capacitor, inductor and resistor voltages 
dependencies on external driving EMF frequency Ω. Magnitudes of R, C, L and 
amplitude of driving EMF Em remain constant during the work.  

Facility's scheme represented on Fig.13. There we have capacitor C (one value 
from the set of capacities), inductor L (one value from the set of inductances) and 
resistor R (one value set on resistance box). The real inductance L has its own active 
resistance RL. Such inductance is equivalent to series RL circuit. As driving EMF 

source we have ГЗ-36 generator (or any 
similar). It output voltage (i.e. EMF ) 
can be measured with help of built-in 
voltmeter. Note that voltmeter indicates 
effective voltage magnitude, not 
amplitude. Effective current (voltage) 
magnitude is such magnitude of direct 
current which produces same heat in 
same circuit that alternating current does 
by the time of a period. Effective current 
is also called root mean square (RMS) 

value of alternating current. For harmonic alternating current relations between 
effective and amplitude values are so: 

2
mI

I  ,  
2
m  

Obviously that effective current and EMF related as  

 22
LC XXR

I



  

If we’ll change the frequency of generator then phase lag between current and 
EMF also will be changed as the reactance changes. As it seen from (63), (64) and 
Fig.13, at low frequencies uL < uC and uL > uC at high. Obviously that there will be 
some frequencies ΩC = ΩL at which uC = uL and get maximum.  

Using indexes of voltmeter, switched to capacitor or inductance coil we can 
find frequency ΩC or ΩL, which, in case of high enough quality, will be equal to 
resonance frequency.  

So, in this work we can plot: 
a) Effective voltage on capacitor UC versus driving EMF frequency Ω = 2πν, where ν 
determined with ГЗ-36 limb; 
b) Effective current I = 2πνCUC  in a circuit versus Ω; 
c) Effective voltage on inductor UL = IΩL, or substituting I and Ω, UL = 4π2ν2CUCL. 
Inductance L can be determined from the match of driving and natural frequencies of 
the circuit at resonance, i.e.: 

C
L 2

RES

1


  

 
4 Data processing (see laboratory work № 4-1). 
 

 
Figure 14 – Laboratory research facility's 

scheme. 
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5 Work execution order and experimental data analysis 
1. Turn on ГЗ-36. Wait 5 minutes till it warms up. 
2. Using potentiometer “Рег.выхода” set generator output voltage 1.5 – 3 V. This 
voltage should remain unchangeable during the work. 
3. Set fixed value of resistance R on the set of resistances. Fix value of capacity C. 
4. Set 20 Hz on generator and fix voltage on a voltmeter (is equal to voltage on 
capacitor). By changing the frequency GEN and look after voltmeter data let's pass all 
frequency range from 20 to 200 Hz.  

Change in 10 times the frequency band by «Множитель» switcher if there no 
resonance voltmeter data increasing will be found and so on until the frequency range 
at which resonance frequency RES situation will be determined. At this frequency 
RES the voltmeter reading will be maximal UC =UC 

RES.  
Note: generator scale gives frequencies GEN in Hz, whereas Ω=2πν in rad/s. 

5. In established frequency range do 5-7 measurements of effective values UC for 
GEN < RES and 5-7 measurements – for GEN > RES. 
6. By obtained data of GEN calculate values of cyclic frequency ΩGEN = 2πνGEN. By 
obtained data of effective values UC for given capacity C calculate values of 
amplitude of current from definition of amplitude of voltage on capacitor UmC=ImXC. 
and relation between the amplitude of voltage and its effective value UmC=UC2. 
Read calculated data to the measurement table. 
7. By resonance frequency ΩRES calculate inductance of coil from LC/1RES  . 
8. Plot a graphs UC = f(Ω) and Im = f(Ω) as a final result of the work. 

9. Calculate quality of circuit GEN
RES /  CUQ  and resistance from 

C
L

R
Q 1
 . 

10. Write values Q, ΩRES, L and R  in final results. 
 

6 Control questions 
1. What is forced (driven) oscillations? Draw an oscillating circuit with driving EMF. 
2. What is the description method for forced oscillations in RLC-circuit? Derive 
driven oscillations differential equation for current and write down its steady state 
solution. 
3. Derive equation for current amplitude and phase difference between current, 
driving EMF, voltages on capacitor and on inductor. 
4. How to determine inductive, capacitive and total resistances of contour? 
5. Draw voltage vector diagram for series RLC-circuit at low and high frequency. 
6. Plot amplitude of voltage on capacitor, amplitude of voltage on inductor and 
current amplitude versus driving frequency on one graph. 
7. Plot current amplitude versus driving frequency for different values of quality. 
8. Provide three different derivations  of equation of RLC-circuit quality (physical 
senses). Calculate quality according to graphs mentioned above taking axis scale as 
following: 1cm equals 1V.   
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7 Content of the report 
Laboratory work № 4-6 

I. Homework 
(answer the control questions from p.28). 

… 
II. Laboratory work № 4-6 implementation protocol. 

1) Topic:  
EXPLORING of FORCED OSCILLATIONS in SERIES RLC-CIRCUIT. 

2) Goal: 1. Studying of effective value of voltage on capacitor and effective 
value of current dependencies in the series RLC-circuit versus ratio of driven 
frequency to the circuit’s eigenfrequency. 
               2. Studying resonance phenomena in AC RLC-circuit. 
3) Scheme of laboratory research facility: 

 

 
V – voltmeter; 
C – capacitor; 
R – resistor; 
L – inductor (coil); 
ГЗ-36 – AC generator; 
 

4) Table of measuring instruments: 
№ Name Type Serial № Grid limit Grid unit Accuracy 

class 
1. Voltmeter M996  25 V 0.5 V 1.5% 

2. Sound generator ГЗ-36  20 - 20000 Hz 100 Hz  
5) Equations for calculation: 
1. Generator cyclic frequency: 

ΩGEN = 2πνGEN, 
where νGEN – generator linear frequency in Hz. 

2. Amplitude of current in the circuit: 
Im = 2π·νGEN·C·UC 2, 

where C – capacity of a circuit (one of the set), UC – effective voltage on 
capacitor. 
3. Quality factor of the circuit: 

GEN

RES

U
U

Q C , 

where UC
RES – effective voltage on capacitor at resonance; UGEN – effective 

driving EMF (ГЗ-36 output voltage, determined by Г3-36 voltmeter scale). 
4. Inductance of the circuit: 

С
L

2
RES

1


 , 

where ΩRES – resonance frequency. 
5. Resistance of the circuit: 
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C
L

Q
R 1
 . 

6) Table of measurements 
C= …  F;  UGEN =  … V. 

№ νGEN, kHz ΩGEN, kHz UC,,V Im, mA 

     
     
     
     
     
     
     
     
     
     
     
     

7) Quantities calculation: 
 Q = … ;   
 L =  …  mHn;   
 R =  …  Ohm.      
8) Graphs of  UC(Ω) and I(Ω) dependencies: 
 
 
 
 
 
 
 
 
 
 
9) Final results : 
1. Q =  … ;    
2. L = …  mHn;    
3. ΩRES =  …  kHz;     
4. R = … Ohm. 
 
10) Conclusion: 
 
 
Work done by:                                                   Work checked by: 
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WORK 5-1 
EXPLORING OF STANDING WAVES VIA MELDE METHOD 

 
1 Goal of the work 

1. Studying parametric resonance phenomena.  
2. Studying conditions of standing waves generation.  
3. Determination of vibrator oscillations frequency. 

 
2 Main concepts 
2.1 Waves. 
 A wave is a propagation of oscillations in space. Oscillations of elastic 

medium cause elastic waves, oscillations of electric and magnetic fields – 
electromagnetic waves. An oscillating mechanism that is a source of waves is called 
vibrator. 

Elastic wave is the mechanical disturbance (deformation) of a medium 
propagates through that medium. Propagation of elastic waves is in excitation of 
oscillations of more and more remote points of a medium. Set of oscillating points of 
given medium is called the wave field. Oscillation of each point is forced by vibrator 
(or another points). A locus of points having the same phase is called the wave 
surface. The wave front is a wave surface whith maximal distance from source at 
present moment. With respect to the shape of wave front there are traveling waves, 
plane waves, spherical waves. 

In longitudinal waves the points of medium oscillate at parallel to the direction 
of propagation. This type of waves related with compressive deformation of medium 
and able to propagate in solids, liquids, and gaseous mediums. In transverse waves 
the points of medium oscillate at perpendicular to the direction of propagation. These 
waves can only occur in media that oppose to shear deformation. Only solids have 
such property. That is why transverse waves propagate only in solids. 

The phase velocity of a wave   is physical quantity which numerically equal 
to distance at which any point of wave surface travels by unit of time. Vector of 
phase velocity   points in the direction of wave propagation, perpendicularly to wave 
surface. The wavelength of a sinusoidal wave is a distance between any two next 
points with the same phase. From another standpoint, wavelength is a distance which 
any phase of wave transits for a period. 

f
T

k






2 , (65) 

where 




2T  – period of a wave (smallest time interval after which the value 

of oscillating quantity is being repeated), f – frequency of a wave (number of 

oscillations per unit time), k 




2  – the wavenumber (number of wavelengths per 2π 

distance).   
Each point of one-dimensional traveling wave oscillates according the wave 

equation (equation of traveling wave in differential view) 
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2

2

22

2 1
tx 









, (66) 

General solution for this differential equation (66) will be equation of 
traveling wave  

 (t,x)=  A cos(ωt – kx+0) (67) 
Phase of the wave (ωt – kx+0) is function of position x and time t. For fixed x 

the displacement ξ(t,x) is harmonic function of time, and for fixed t  - a cosinusoid. 
 

2.2 Parametric resonance. Standing waves.  
In order to determine vibrator’s frequency we use standing waves that appear 

in tense thread connected to vibrator. Oscillations of any oscillatory system can be 
made forced by driving any of its parameters. The resonance that will appear in this 
case is called the parametric resonance. 

Let’s consider a horizontally tense thread fixed at one end. Another end of the 
thread connected to vibrator that is able to oscillate along 
the thread. In such system will appear transverse 
oscillations caused by periodically varying tension of 
thread. Let at initial moment of time the vibrator was 
shifted left and the thread is freely sags in gravity field 
(Fig. 14, a). When vibrator-rod moves right the tension 
increases until thread wouldn’t come in its horizontal 
position. In this case all points of thread will move 
upwards (Fig. 14, b) (velocities of some points shown as 
arrows). At reverse (right to left) motion of vibrator-rod 
thread’s tension decreases but its points will move 
upwards by inertia (Fig. 14, c). Over next complete 
oscillation of vibrator-rod the thread will sag again. Thus, 
by the time of two complete oscillations of vibrator the 
thread oscillates once. Hence, vibrator frequency is 
double thread’s frequency. Obviously, that considered 
above method of excitation of 
oscillations is parametric – 
external affection (vibrator’s 

oscillations) causes periodical alternations of one of the 
parameters of a thread (thread’s tension). 

Any system which is able to oscillate will perform 
natural oscillations under the action of random external 
affection. If the frequency of this parametric affection is 
double the system’s natural frequency the oscillations 
become forced (holds the conditions of parametric 
resonance). Same phenomena can be achieved in electric 
circuit by external alternation of capacitance or 
inductance. Work of parametric generators and amplifiers 
is based on parametric resonance phenomenon.  

 
Figure 14 – Standing 

wave in thread: 
a) at initial moment; 
b) over half of a period 
of vibrator. 
c) over period of 
vibrator 

Figure 15 – Traveling 
elastic wave propagation in 

a thread: 
a) incident wave; 
b) reflected wave . 
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Oscillations of vibrator produce elastic wave, propagating along the thread 
with frequency ω and amplitude A. All points of thread will perform undamped 
oscillations if thread is not quite long and dissipations of energy are small. 

Let’s set O (point of pulley and thread connection) as origin of coordinates. A 
wave, which has reached this point, will be reflected back. Thus we’ll have two 
waves travelling in opposite directions: 

ξ1 = A cos(ωt + kx) (68) 
ξ2 = A cos(ωt – kx+π) (69) 

All points of a thread will be behind vibrator’s oscillations as much, as smaller 
will be x in chosen coordinate system (Fig. 15). That is why equation (68) is equation 
of incident plane travelling wave, and (69) – equation of reflected wave. Minus sign 
before kx in reflected wave equation means that phase of oscillations of each thread’s 
point in reflected wave as smaller as far this point is from origin of coordinates. 
Besides, as point O immovable, phase of reflected wave will be deferent at that point 
from phase of incident wave on π. 

The result of superposition of incident and reflected waves will be complex 
oscillations of all points of thread under the law:  

ξ = ξ1 + ξ2 = 2A cos
2

 kxtkxt
 cos

2
 kxtkxt , 

or                                           ξ = 2Acos(kx – 
2
 )cos(ωt + 

2
 ) (70) 

Thus, we’ve obtain equation of steady state standing wave in a thread. A time 

independent expression ASW(x)=|2A cos(kx–
2
 )| represents the amplitude of standing 

wave. As it seen, the amplitude varies under harmonic law with respect to distance x 
from origin of coordinates. For points at which 
                                                       kx – 

2
  = nπ,            (n = 0, 1, 2, …) (71) 

amplitude gets maximal value equal to ASW(xAN)=2A. These points called antinodes 
or wave crests. From (71) we can obtaine coordinates of antinodes: 

xAN = (2n + 1) 
4
 . (72) 

Points, at which  

                                                    kx - 
2
  = (n - 

2
1 )π,         (n = 0, 1, 2, …)       (73) 

do not oscillate and ASW(xN)= 0. These points called nodes of standing wave. The 
nodes appear in points at which incident and reflected waves are in antiphase. As it 
follows from (73), the coordinates of nodes are 

xN = 2n 
4
 . (74) 

Distance between two nodes or antinodes called standing wavelength. That is 
why 

λST =  
2
1 λ. 
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Since there are nodes at both fixed ends of a thread, so, thread’s length l must 
contain integer number of standing wavelengths 

l = n λST =  n
2
 . 

 On a Fig. 16 shown appearance of standing wave by reflection, with phase, 
changed on π. Solid line represents displacement of thread’s points produced by 
incident wave, dashed line – by reflected wave. The resultant displacement 

represented by bold line. The figure shows moment at 
which incident wave come to point O with non-zero 
phase. 

The main feature of standing wave is that it 
doesn’t transport energy. That follows from the fact that 
position of nodes and antinodes doesn’t change with 
time. Such particularity is the result of the fact that the 
superposing wave transfer equal quantities of energy in 
the opposite directions. 

 
3 Description of laboratory research facility and methodology of 

measurements 
There is a vibrator fixed at the edge of laboratory desktop – a rod forced to 

oscillate by electromagnet. This electromagnet supplied by sinusoidal current, so, the 
forced oscillations of the rod are driven with frequency of the alternating current. On 
the opposite edge of the desktop there is a light pulley with a fixed axis of rotation. 
The vibrator and the pulley joined by a thread. One end of this thread is tied up to 
vibrator and the other one, thrown through the pulley, is pulled by the load in the 
plate (see Setup schematic diagram).  

In order to determine vibrator frequency we’ll need to obtain stable standing 
waves pattern. Such pattern might appear only when the condition of parametric 
resonance matched, i.e. when the vibrator frequency is double one of the natural 
frequencies of the thread. In this case length of thread l will contain integer number 
of standing wavelengths λst. 

Natural frequency of thread’s oscillations depends on its tension. If at some 
tension of a thread vibrator frequency fυ is double the lowest frequency f 
(fundamental harmonic) of the thread, then one standing wave will lay on its length. 
By decreasing the tension we can obtain conditions at which fυ is double the second, 
third,.., n-th harmonic of the thread (frequencies multiple to fundamental harmonic):  
fυ =2 fn. Thus we’ll have 2, 3,…, n  standing waves, lying on a thread’s length l. 

l = n λst  or l = n
2
 . (75) 

Relation between thread’s frequency f and λ is so 

f = 

 , (76) 

here υ – velocity of wave propagation in the thread. 

Figure 16 – Standing wave 
as superposition of incident 

and reflected waves. 
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 The velocity of wave propagation depends on magnitude of tension F, caused 
by immovable weight, linear density ρ (depends on thread’s mass m) and length l. 

As



F , then, including (75) and (76 ) we’ll have 

 




F
l

nf
2

. (77) 

Tension F is caused by the weight of load, so                                                                            
F = P = Mg, (78) 

here M – mass of the load (including mass of a plate). As the vibrator 
frequency is double thread’s natural frequency, from (78) we’ll have 




Mg
l
nfv . (79) 

 
 
4 Data processing (see laboratory work № 4-1). 
 
5 Work execution order and experimental data analysis 

1. Turn on the electromagnet and make rod oscillate. 
2. By loading the plate with different weights obtain stable standing wave pattern. 
3. Write number of standing waves n laying on thread’s length l and mass of load M. 
4. Repeat the experiment three-five times, getting stable standing wave pattern with 
different number of standing wavelength λST laying on thread’s length l. 
5. Measure thread’s length l between vibrator and pulley axle with ruler accuracy. 
7. Calculate linear density of thread for each case of stable standing wave pattern. 
The mass of the thread is on the setup. 
8. Calculate thread’s linear density absolute and relative error. Write final result as 
confidence interval with relative error. 

 
6 Control questions 

1. What is parametric resonance phenomenon? Explain it using work 5-1. What is a 
ratio of vibrator frequency to thread’s natural frequency in this work? 
2. What is a difference between travelling and standing waves? Consider amplitudes 
and phases of oscillation at different points in both cases. 
3. What is a standing wave? What is the condition of standing waves generation? 
Derive standing wave equation for the case of less dense medium reflection. Analyze 
this equation. 
4. What is a wavelength? What is a standing wave length? What is a relationship 
between two quantities above? 
5. What features of oscillations of a medium with standing waves in it? What is a 
node of standing wave? What is an antinode of standing wave? Prove node and 
antinode coordinate calculation equations for the case of reflection from denser 
medium. 
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6. Why is different number of standing wave lengths fitting in to thread lengths for 
different tensions of this thread? 
7. How do boundary conditions affect on the position of nodes and antinodes? Obtain 
standing wave equation for the case of reflection from denser medium. Analyze 
obtained equation. 
8. What is a goal of work 5-1? Describe what steps one needs to complete during the 
work. Derive an equation for vibrator frequency oscillation calculation. 

 
 

7 Content of the report 
Laboratory work № 5-1 

I. Homework  
(answer on a control question from p.35). 

… 
II. Laboratory work № 5-1 implementation protocol. 

1) Topic:  
EXPLORING OF STANDING WAVES VIA MELDE METHOD. 

2) Goal: Studying parametric resonance, studying conditions of standing 
waves generation and determining linear density. 
3) Scheme of laboratory research facility: 

 

 
1 – vibrator; 
2 – string; 
3 – movable pulley; 
4 – plate with weights. 

4)     Table of measuring instruments: 

№ Name Type Serial № Grid 
limit Grid unit Accuracy 

class 
1. Weights      
2. Ruler   1000 mm 1 mm 0.5 mm 

 
5)    Accessories:  metal cup for weights, thread. 
6)    Equations for calculation: 
1. When n stable antinodes are being observed in a string, the vibrator 
frequency can be calculated: 




Mg
l
nf v , 

where l – thread length between vibrator and pulley axle; M – mass of 
the load (including mass of plate); ρ – linear density of the thread; g = 9.81 m/s2 
free fall acceleration. 
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2. Linear density: 

22

2

vfl
Mgn

 , 

where fV = 100 Hz – vibrator frequency. 
3. Linear density absolute error: 

)1(

)(
1

2

, 





 kk

t

k

k , 

where  =0,95 – confidence probability; k=5 – number of measurements;         
t 0,95 ; 5= 2,77 – Student’s coefficient. 
7)   Table of measurements: 
l = … m 
№ М, кg n ρi , кg/m Δρi , кg/m (Δρi )2, кg2/m2 

1      
2      
3      
4      
5      

average value <ρ> = … 
k

i
1

2)(  … 

 
8)    Quantities calculation: 

… 
9) Final results: 
 ρ = (<ρ> ± Δρ) α = (… ± …) 0.95 kg/m;  %100% 





ave

 = … % 

10)    Conclusion: 
 
Work done by:                                                         Work checked by: 
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