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MODULE STRUCTURE 

 

Module № 2. „ Electrical oscillations and waves” – 72 hours total 

Lectures – 16 hrs, pract. trainings – 0 hrs, labs – 16 hrs, self-studies – 33 hrs. 

 

 

LIST OF  PRACTICAL TRAINING 

 
Number 

of   

lessons 
Denomination of  lessons Hours 

 

Module № 2 

1 
Mechanical harmonic oscillations.  Methods of representation of harmonic 

oscillations. 

2 

self 

2 Calculation of parameters of harmonic electrical oscillations. 
2 

lab 

3 
Damped oscillations. Parameters of damped oscillations. Quality factor of a 

system. 

2 

self 

4 Calculation of parameters of damping electrical oscillations. 
2 

lab 

5 Electrical driven oscillations. Alternative current. Phasors. 
2 

self 

6 Calculation of current and voltage in RLC circuit. 
2 

lab 

7 Electromagnetic waves.  Energy flux density. 
2 

self 

8 Calculation of parameters of electromagnetic waves. 
2 

lab 
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INTRODUCTION 

 

 All problems should be solved in a individual way, i.e. each student have its 

own variant, which is specified by instructor. 

Appropriate homework must forego to solving a problem. The homework 

contains self-studying of theory of sections “Oscillations” and “Waves” of the 

course of physics for telecommunications technician. 

 

• Complex task is consists of four problems: 3.2; 3.3; 3.4; 3.6. Student must 

implement on one task from each problem. Concrete number of statement on each 

stage and initial data in thirty variants is specified in Tables of task variants. Number 

of the variant is determining by the index of surname of student at a group journal. 

• Report is implementing on individual exercise book. Writings should be made 

on one side of double-page spread. 

• On the cover there is need to mark title of the work, number of the variant, 

surname and initials of student, code of group. 

• Calculation part it is necessary to dispose in order of numeration of the 

problems. 

 

• Calculation part of any problem must contain ten points (see examples): 

1. Title of the problem; 

2. Complete statement of a task; 

3. Short writing of statement; 

4. Transformation to the system of units SI of a numerical data of given quantities. 

5. Scheme or explanatory plan; 

6. List of laws and formulas which explain the physical phenomena of theme of the 

problem. All denotations at the formulas need an explanations; 

7. Literal solution. From the listed at point 6 formulas it is necessary to make system 

of equations and to obtain expression of each desired quantity through given 

quantities at the literal (symbolic) representation. 

8. Checkout of measurement unit of each desired quantity on correspondence to the 

expected measurement unit. For this purpose each symbol in the formula of a literal 

solution to substitute with its measurement unit and realize the necessary 

transformations. 

9.  Only after correspondence of measurement units to the expected it is possible to 

find the numerical solution. Calculation should be transacted with three significant 

digits. 

10.  Result of execution of calculated part. 

 

At the end of work it is necessary to enumerate the list of the used literature. 

Besides this guide is recommended to use literature from bibliography given at 

the end of this guide. 
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Problem 3.2. 

SIMPLE HARMONIC OSCILLATIONS 
 

MAIN CONCEPTS 
 

Oscillations are the periodic changes of any physical quantities. 
 

Simple harmonic oscillations. The equation which describes the eigenmode 

of oscillations has the simple harmonic form: 

)cos()( 00 ϕ+⋅ω⋅=ξ tAt ,                                           (1) 

where ξ(t) – physical quantity, which makes the oscillations; А – oscillation amplitude;  

ϕ0 – initial phase (phase constant). 

The time parameters of oscillations’ eigenmode are called eigen-parameters 

(or natural parameters) and are written down with index «0»: 

Cyclic eigenfrequency of oscillations (changing of oscillations’ phase per one 

second): 

ω0 = 2π / Т0 = 2 π⋅ν0 ,                                           (2) 

ν0 – eigenfrequency of oscillations (number of oscillations per one second);  

Т0 – eigenperiod of oscillations (minimal time interval of repeating of the 

value of oscillating quantity). 

In equation of oscillations (1) it is described both mechanical, and 

electromagnetic oscillations, therefore it is possible to set up correspondence of 

mechanical and electrical oscillations’ parameters: 

 

Mechanic oscillations Electromagnetic oscillations 

ξ(t) = x(t) 

– displacement from the equilibrium 

position of material point of oscillating 

device; 

ξ(t) = q(t) 

– charge of oscillating circuit capacitor; 

The velocity of material point of 

oscillating device: 

dt

dx
t =υ )(  ; 

Current flowing through the inductance coil 

of the oscillating circuit:  

dt

dq
ti =)(  ; 

Restoring force, acting on material 

point of oscillating device:  

2

2

)()(
dt

xd
m

dt

d
mtmatF =

υ
== , 

m – mass of oscillating device. 

Back EMF (self-induction) in the 

inductance coil of the oscillating circuit: 

2

2

)(
dt

qd
L

dt

di
LtBACK −=−=ε , 

L – inductance of the inductance coil. 

Cyclic eigenfrequency of spring 

pendulum oscillations: 

m

k
=ω0 , 

Cyclic eigenfrequency of oscillations in the 

oscillating circuit:  

                   
LC

1
0 =ω , 
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k – spring constant (stiffness of spring). С – electrocapacity of the capacitor. 
Potential energy of elastic deformation: 

2

)(
)(

2
txk

tWP

⋅
= . 

Energy of capacitor electric field: 

C

tq
tWE

2

)(
)(

2

= . 

Kinetic energy of oscillating device: 

2

)(
)(

2
tm

tWK

υ⋅
= . 

Energy of magnetic field of inductance 

coil: 

2

)(
)(

2
tiL

tWM

⋅
= . 

Total energy of oscillations is 

independence of time: 

const
2

)()(
2

2
0 =⋅ω=+=

A
mtWtWW KP , 

А – amplitude of material point strain of 

oscillating device. 

Total energy of oscillations is 

independence of time: 

const
2

)()(
2

2
0 =⋅ω=+=

Q
mtWtWW ME , 

Q – amplitude of capacitor charge of 

oscillating circuit. 
 

Electromagnetic simple harmonic oscillations. 

There are three main parameters, which are changing during oscillations in 

oscillating LC-circuit: q(t) – charge of capacitor, uC(t) – voltage on capacitor, i(t) – 

current flawing through coil. They have identical eigenfrequency, but amplitudes and 

initial phases are different. Relation between these quantities represented in two 

definition:  

current:    
dt

dq
i =         and        electrocapacity     

u

q
C = . 

 

Mathematic rules:  

Differentiation rule of harmonic function: 

1. The multiplication constant (amplitude) is necessary to take out of the 

derivative sign. 

2. Derivative of harmonic function has phase lead relative to own function on 

π / 2: 

)
2

cos()sin(])[cos(
π

+=−=′ xxx x        and          )
2

(sin)cos(])[sin(
π

+==′ xxx x . 

3. The result of derivation of harmonic function is necessary to multiply on 

derivative of a phase on time (on ω0) (see example). 

Integration rule of harmonic function: 

1. The multiplication constant (amplitude) is necessary to take out of the 

integral sign. 

2. Integral from harmonic function has phase lag from own function on π / 2: 

)
2

cos()sin()cos(
π

−==∫ xxdxx     and      )
2

sin()cos()sin(
π

−=−=∫ xxdxx . 

3. The result of integration of harmonic function is necessary to divide on 

derivative of a phase on time (on ω0) (see example). 
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EXAMPLE OF PROBLEM SOLUTION 

 

Example 1. The oscillation circuit consists of coil by inductance of L = 25 mH 

and capacitor. Current in circuit changes by the law i(t) = Im⋅cosω0t, where  

Im = 20 mА and ω0 = 10
4 

rad/s. 1) To get the equation of changing during the time 

charge of capacitor and voltage on the capacitor and on the coil. 2) To define total 

energy of oscillations in circuit. 

 

Input data:  

Im=20 mА = 0,02 А; 

ω0 = 10
4 
rad/s;  

L = 25 mH = 0, 025 H ; 

I(t) = Im ⋅cos(ω0t). 

Find:   

q(t), uC(t), εBACK(t), W – ?  

 

 

Solution:  

1) From definition of the current 

dt

dq
i =  

we find expression of charge from current (as the integration – is the mathematical 

function, inverse to differentiation):  

∫= idtq . 

Let’s substitute the input equation of current oscillations in this expression and 

integrate. We get the equation of oscillations of charge of capacitor : 

)
2

cos(sin)cos()( 00
0

0

π
−ω=ω

ω
=ω= ∫ tQt

I
dttItq m

m
m , 

with amplitude  
0ω

= m
m

I
Q , 

(1.1)

where  Im – current oscillation amplitude; ω0 – cyclic eigenfrequency of oscillations. 

In (1.1) we consider that integral from harmonic function has phase lag from 

own function on π / 2. 

From definition of the electrocapacity 

u

q
C =  

we find the expression of dependence of the voltage on capacitor from charge of its 

plate: 

C

q
uC = . 
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Let’s substitute the equation (1.1) in this expression we get the equation of 

oscillations of voltage on capacitor: 

)
2

cos()
2

cos()
2

cos()( 00
0

0

π
−ω⋅=

π
−ω

ω
=

π
−ω= tUt

C

I
t

C

Q
tu mC

mm
C , 

with amplitude  
C

I
U m

mC
0ω

= . 

(1.2)

Electrocapacity can be found with the formula of oscillations’ cyclic 

eigenfrequency in the oscillating circuit: 

CL ⋅
=ω

1
0 , whence 

                                  
L

C
2
0

1

ω
= ,                                                       (1.3) 

where L – circuit inductance. Substituted in the formula (1.2) the perceived equation 

for С (1.3) finally we obtain: 

)
2

cos()( 00
π

−ω⋅ω= tLItu mC .                                  (1.4) 

From the 2
nd

  Kirchoff’s rule voltage on the inductance coil equal to Back 

EMF:  

dt

di
Lttu BACKL =ε−= )()( . 

Let’s substitute the input equation of current oscillations in this expression and 

differentiate. We get the equation of oscillations of voltage on coil : 

)
2

cos()
2

cos()cos()( 0000

π
+ω⋅=

π
+ω⋅⋅ω=ω= tUtILtI

dt

d
Ltu mLmmL

, 

with amplitude  mmL ILU ⋅ω= 0 . 

(1.5)

In (1.5) we consider that derivative of harmonic function has phase lead 

relative to own function on π / 2. 

 

2. Total energy of oscillations in circuit equals the sum of energy of electric 

field in capacitor WE and energy of magnetic field in coil WМ: 

W = WE + WМ; 

)(cos
2

)
2

(cos
22

)(

2

)(
)( 0

2
2

0
2

222

t
LI

t
CUtiLtuC

tW mmCC ω+
π

−ω=
⋅

+
⋅

= . 

Substituting the expression for С from the formula (1.3), amplitude of 

oscillations of voltage on capacitor (1.2) and input equation of current oscillations, 

we get 

2
)cos(sin

2
)(cos

2
)

2
(cos

2

2

0
2

0
2

2

0
2

2

0
2

2
mmmm LI

tt
LI

t
LI

t
LI

W =ω+ω=ω+
π

−ω= .     (1.6) 

Let's note, a total energy of oscillations has no time dependence, because 

absence of power loss. 

Let’s check, whether the right part of equation of amplitude (1.1) gives the unit 
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of charge [C], of equation of amplitude (1.4) the unit of voltage [V] and the formulas 

of amplitude (5) the unit of energy [J]. 

CsA
s

AI
q m =⋅==

ω
=

−1
0][

][
][ ; 

V
C

J

smА

mN

s

mT

s

АWb
АHcILu mC ==

⋅⋅

⋅
=

⋅
=

⋅
=⋅⋅=⋅⋅ω= −

2
1

0 ][][][][ ; 

JmN
mА

АmN
АmT

А

АWb
АHILW m =⋅=

⋅

⋅⋅
=⋅⋅=

⋅
=⋅=⋅=

2
2

2
22 ][][][ . 

Substituted numerical values, let’s write down the equation of changing q and 

uC with numerical coefficients and calculate the full energy of oscillations in circuit 

Ctttq  )
2

10cos(10210sin
10

02,0
)(

464

4

π
+⋅⋅== −

;   

VtttuC  )
2

10cos(5)
2

10cos(02,0105,210)( 4424 π
−=

π
−⋅⋅⋅= − ; 

VtttuL  )
2

10cos(5)
2

10cos(02,0105,210)( 4424 π
+=

π
+⋅⋅⋅= − ;  

JW 6
22

105
2

02,0105,2 −
−

⋅=
⋅⋅

= . 

Results: Cttq  )10sin(102)( 46−⋅= ,    VttuC  )
2

10cos(5)( 4 π
−= ,  

              VttuL  )
2

10cos(5)( 4 π
+= ,     JW 6105 −⋅= . 

 

INDIVIDUAL TASKS FOR PROBLEM 3.2. 

ELECTROMAGNETIC SIMPLE HARMONIC OSCILLATIONS 

 

In accordance with your variant to solve one of the following problems listed 

below (The number of problem statement and all necessary input data are reduced in 

the table 3.2). 

 

1  In the oscillating circuit, which consists of the capacitor with electocapacity 

of С and coil with inductance of L, voltage on capacitor changes by dependence:  

uc(t) = Umc·cos(ω0t) . Write down the equation of changing uc(t) with numerical 

coefficients and get the equations of time changing of the charge on the plates of 

capacitor, current in circuit and energy of magnetic field. 

 

2 In the oscillating circuit with inductance of L and electocapacity of С current 

changes by law: i(t)= Im·cos(ω0t). Write down the equation of changing current with 

numerical coefficients and get the equation of changing by time the voltage on 

capacitor, energy of electric field and energy of magnetic field.  
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3 The oscillating circuit consists of coil with inductance of L and capacitor with 

electocapacity of С. Charge on plates of capacitor changes by law q(t) = Qm·cos(ω0t). 

Write down the equation of changing of charge with numerical coefficients and get 

the equations of changing by time voltage on capacitor, current in circuit and energy 

of magnetic field 

 

TABLE OF TASK VARIANTS 

Table  3.2 
 

Variant 
State-

ment 

С , 

µF 

 L , 

mH 

ω0 , 

rad/s 

Qm , 

µC 

Im , 

mA 

Umc , 

mV 

1 1 1 10 – – – 200 

2 3 – 10 10
3
 20 – – 

3 1 50 – 2·10
3
 – – 120 

4 2 0,2 0,5 – – 2 – 

5 3 – 2 10
4
 1 – – 

6 1 0,1 1 – – – 300 

7 3 2 – 10
5
 0,4 – – 

8 2 – 0,01 10
5
 – 50 – 

9 3 4 – 5·10
4
 0,6 – – 

10 1 – 0,2 10
5
 – – 100 

11 3 10 25 – 2 – – 

12 1 4 – 5·10
3
 – – 250 

13 2 – 10 2·10
3
 – 6 – 

14 3 100 0,1 – 8 – – 

15 1 5 0,5 – – – 300 

16 2 – 0,05 2·10
5
 – 7 – 

17 3 10 – 5·10
3
 3 – – 

18 1 – 2 5·10
4
 – – 200 

19 2 20 2 – – 9 – 

20 1 2 – 5·10
3
 – – 500 

21 2 1 0,1 – – 10 – 

22 3 – 50 2·10
3
 0,5 – – 

23 1 – 5 2·10
4
 – – 400 

24 3 10 1 – 6 – – 

25 2 0,1 – 10
6
 – 8 – 

26 1 – 1 5·10
3
 – – 150 

27 2 1 2,5 – – 4 – 

28 3 2,5 – 4·10
4
 1 – – 

29 1 4 0,4 – – – 80 

30 2 – 8 5·10
3
 – 5 – 
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Problem 3.3. 

DAMPED HARMONIC OSCILLATIONS 

 

MAIN CONCEPTS 
 

Damped harmonic oscillation.  

The system looses energy by a drag force  

FD = – r⋅υ, 

or a voltage drope on the active resistor  

uR = R⋅i, 
therefore the amplitude has exponential decay on time  

A(t) = А0⋅е
− β⋅t

. 

The equation of damped oscillations has a mode 

( )0
β 

0 cos)( ϕ+⋅ω⋅⋅=ξ ⋅− teAt t ,                               (3) 

where ξ(t) – physical quantity, which oscillates;  А0 – initial amplitude of oscillations; β 

– damping coefficient; ϕ0 – initial phase (phase constant). 

Cyclic frequency of damped oscillations (is written with no index) less then 

eigenfrequency: 

22
0 β−ω=ω .                                                (4) 

 

Parameters of linear damping oscillations: 

 

1) Relaxation of vibrations – lessening of amplitude in е = 2,71 times. The 

time of relaxation: 

τ = 1 / β.                                                   (5) 

2) As far as amplitude of damped oscillations uninterruptedly decreases 

A(t)=А0⋅е
−β⋅t

 , then the value of oscillating quantity ξ(t) will never repeat. That’s why, 

the quantity 

22
0

CONV
22

β−ω

π
=

ω

π
=T                                       (6) 

is called conventional period – minimal time, during which the value of oscillating 

quantity ξ(t) will be equal peak magnitude (amplitude). 

 

3) Decay decrement is a relation of two neibouring amplitude:   

D = At / At+T = e 
– β T

 .                                      (7) 

 

4) Logarithmic decay decrement (damping constant): 

δ = lnD=βTCONV ,                                        (8) 

 

5) Quality factor of system  

Q = ω0 / 2β .                                            (9) 
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In equation of oscillations (2) it is described both mechanical, and 

electromagnetic oscillations, therefore it is possible to set up correspondence of 

mechanical and electrical oscillations’ parameters: 

 

Mechanic oscillations Electromagnetic oscillations 

ξ(t) = x(t) 

– displacement from the equilibrium position 

of material point of oscillating device; 

ξ(t) = q(t) 

– charge of oscillating circuit capacitor; 

Parameters of a system: 

k – spring constant (stiffness of spring). 

m – mass of oscillating device. 

r – drag coefficient. 

С – electrocapacity of the capacitor. 

L – inductance of the inductance coil. 

R – resistance of circuit. 

Damping coefficient: 

m

r

2
=β ; 

L

R

2
=β ; 

Cyclic frequency of damped oscillations: 

2

2







−=ω
m

r

m

k
; 

2

2

1







−=ω
L

R

LC
; 

Quality factor of system: 

mk
r

Q
1

= . 
C

L

R
Q

1
= . 

 

 

EXAMPLE OF PROBLEM SOLUTION 

 

Example 2. The oscillating RLC-circuit consists of capacitor, and coil of 

inductance of 2 mH and resistor. At the initial moment of time charge on the 

capacitor plates is maximal and equals q0=Q0=2µC. Conventional period of 

oscillations 1 ms, logarithmic decay decrement is 0,8.  

1) To write down the equation of oscillations of charge with numerical coefficients.  

2) To define the capacity of capacitor and the resistance of resistor. 

 

Input data: 

L = 2 mH =0,002 H;  

Q0= 2 µC=2·10
–6

 C; 

ТCONV = 1s=10
–3

 s; 

δ = 0,8. 

Find:  q(t), С, R– ?  
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Solution:  

1) Oscillations in circuit will be damping. Let’s write the equation of damped 

oscillations of charge in a general view: 

)cos()( 0
β 

0 ϕ+ω= ⋅−
teQtq

t ,                                  (2.1) 

where Q0 – the initial amplitude of charge, β – damping coefficient; ω – cyclic 

frequency of damped oscillations; ϕ0 – initial phase. 

From a definition of the conventional period TCONV=2π/ω we express cyclic 

frequency of damped oscillations: 

ω = 2π / TCONV .                                               (2.2) 

From a definition of initial value of oscillating quantity q0=Q⋅cos(ϕ0) and 

considering that the oscillations beginning from the position of maximal charge on 

the capacitor Q, we find the initial phase of oscillations: 

ϕ0 = arccos(q0 /Q) = arccos(1) = 0.                                (2.3) 

From a definition of the logarithmic decay decrement is δ=βTCONV,  whence 

the coefficient of damping  

β=δ / TCONV.                                              (2.4) 

Let’s check, whether the right part of the formula (2.2) gives the unit of cyclic 

frequency [rad/s], and the left part of the formula (2.4) – measurement unit of 

damping coefficient [1/s]: 

[ω] = rad / s; 

[β] = 1 / s. 

Let’s substitute the numerical values in the formulas (2.2) and (2.4)  

srads /1028,6102
10

2 313

3
⋅=⋅π=

π
=ω −

−
;  

1

3
 800

10

8,0 −
−

==β s . 

Let’ write down the equation of oscillation of charge with numerical 

coefficients  

Cteq
t  )102cos(102 3800 6 ⋅π⋅⋅⋅= ⋅−−

.                               (2.5) 

2) Let’s substitute the equation of eigenfrequency LC/10 =ω  into the 

definition of cyclic frequency of damped oscillations 
22

0 β−ω=ω : 

222
0

1
β−=β−ω=ω

LC
       ⇒      22 1

β−=ω
LC

                        (2.6) 

and find expression of capacity of capacitor: 

)(

1

22 β+ω
=

L
C .                                           (2.7) 

From a definition of the damping coefficient β=R/2L we obtain resistance of 

resistor R: 

R = 2βL.                                                 (2.8) 
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Let’s check, whether the right part of the formula (2.7) gives the unit of 

electrocapacity [F], and the left part of formula (2.8) – the unit of resistance [Ω]: 
 

=






=

=
=

⋅

⋅
=






=

Φ−=ε
=

⋅
=






=

Φ=
=

⋅
=

− sCA

dtdQI

sV

Аs

sWbV

dtd

Wb

Аs

AWbH

IL

sH
C

/

/

/

/

/

/1
][

22

2
 

F
VCF

UQC

V

C
=






=
=

==
/

/
;  

Ω=






Ω=

=
=

⋅

⋅
=






=

Φ−=ε
=

⋅
=






=

Φ=
==

/

/

/

/

/

/
][

VA

RUI

sA

sV

sWbV

dtd

sA

Wb

AWbH

IL

s

H
R . 

Let’s make the calculations: 

FC  1025,1
)800104(102

1 5

2623

−
−

⋅=
+⋅π⋅

= ;     R = 2·300·2·10
-3

= 3,2 Ω. 

 

Results:   1)  Ctetq
t  )102cos(102)( 38006 ⋅π⋅= ⋅−− ,     

                  2)  C=1,25⋅10
-5

 F,   R = 3,2 Ω.    

 

 

INDIVIDUAL TASKS FOR PROBLEM 3.3. 

DAMPED HARMONIC OSCILLATIONS. 

 

In accordance with your variant to solve one of the following problems listed 

below (The number of problem statement and all necessary input data are reduced in 

the table 3.3). 

 

1  Load of mass of m, suspended on the spring with stiffness of k, oscillate in 

viscous medium with drag coefficient of r. The equation of oscillations of load has 

view  x(t) = А0·e
− βt

·cosωt. Logarithmic decay decrement of oscillations is δ. 

a) By the values of quantities, given in the table 3.3, find necessary parameters 

and write down the equation of vibrations with numerical coefficients. 

b) Find the system quality factor. 

c) Find the quantity, which is indicated in the last column of table. 

 

 2 The oscillation circuit consists of capacitor with capacity of С, coil of 

inductance of L and resistor of resistance of R. Current in circuit changes by law i(t) 

= I0·e
– βt

·sinωt. Logarithmic decay decrement of oscillations is δ. 

a) By the values of quantities, given in the table 3.3, find necessary parameters 

and write down the equation of current’s oscillations with numerical coefficients. 

b) Find the system quality factor. 

c) Find the quantity, which is indicated in the last column of table. 
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TABLE OF TASK VARIANTS 

Table 3.3 

V
ar

ia
n

t 

S
ta

te
m

en
t 

k , 

N/m 

r , 

kg/s 

m , 

g 

А , 

cm 

С ,  

µF 

L , 

mH 

R , 

Ω 

I0 , 

mА 

β , 

s
–1 

ω, 
rad/s 

δ Find 

1 2 – – – – 5 2 12 1 – – – δ 

2 2 – – – – 10 – – 5 300 – 0,9 L 

3 2 – – – – – 10 6 5 – – 1,2 С 

4 2 – – – – – – 20 3 – 10
4
 2 L 

5 1 – 0,5 100 4 – – – – – – 2 k 

6 2 – – – – – – 40 6 600 – 1,7 С 

7 1 – – 250 3 – – – – 2 – 1,1 r 

8 2 – – – – – – 50 1 800 – 1,8 L 

9 2 – – – – – 8 – 8 400 – 1,5 С 

10 1 – – 150 2 – – – – 5 – 1,6 k 

11 2 – – – – 0,5 5 80 2 – – – δ 

12 2 – – – – – 15 – 5 700 – 2 R 

13 1 70 1,6 200 1 – – – – – – – δ 

14 2 – – – – – 5 – 7 4000 – 1,9 С 

15 1 40 – – 2 – – – – 8 – 1,8 r 

16 2 – – – – – 5 16 4 – 5·10
3
 – δ 

17 1 – 1,2 80 1 – – – – – – 1,5 k 

18 2 – – – – 2 – – 2 900 – 1,6 R 

19 1 – – 40 1 – – – – 6 – 1,2 k 

20 2 – – – – – – 10 4 – 2·10
4
 1,5 L 

21 2 – – – – – 1 8 6 – – 1,4 С 

22 1 50 – – 3 – – – – 4 – 1,4 r 

23 2 – – – – 4 – – 3 2000 – 1,3 R 

24 1 50 0,8 50 2 – – – – – – – δ 

25 2 – – – – 0,2 – – 4 5000 – 1,1 L 

26 1 – – 20 1 – – – – – 30 1,3 k 

27 2 – – – – – – 74 9 800 – 1,1 С 

28 1 – 1,1 – 5 – – – – – 25 1,4 k 

29 2 – – – – 4 4 16 2 – – – δ 

30 1 – – 120 2 – – – – 3 – 1,2 r 
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Problem 3.4. 

DRIVEN HARMONIC OSCILLATIONS 

 

MAIN CONCEPTS 

 

Series oscillatory circuit.   

Ohm’s law for the alternate current is represented the formula (11) together 

with expressions (10) and (12) – (17): 

When the external electromotive force of AC-generator (generator voltage) has 

a simple harmonic view:       

εext(t) = εm⋅ cos(Ω⋅t+ϕ0εεεε) ,                                     (10) 

where εm = εRMS√2 – generator peak voltage (εRMS – its  root mean square value 

voltmeter of which is indicated); Ω=2πf – cyclic frequency of generator voltage (f –

frequency of generator);  ϕ0εεεε – initial phase of generator voltage, 

then steady state oscillations of public current in a circuit will be described by 

an equation:  

i(t) = Im⋅cos(Ωt+ϕ0I); 

                                                       Im=εm / Z – peak current, 

                                                        ϕ0I = ϕ0εεεε+∆Φ – initial phase of current. 

(11)

Impedance of series oscillatory circuit 

22 )( LC XXRZ −+= ,                                             (12) 

where  R – resistance of cirquit;  

XC =1/ ΩC – capacitive reactance; 

XL= ΩL –  inductive reactance; 
(13)

Phase difference (∆Φ=ϕ0I – ϕ0εεεε) between the current and generator voltage 

∆Φ= arctg[(XC – XL) / R] ,                                             (14) 

 

CONSIDERATION: if to take into account that the initial phase of current ϕ0I = ϕ0εεεε–∆Φ, 

then ∆Φ= arctg[(XL  – XC) / R]. 

 

The public current in a circuit i(t) determines individual voltages on circuit 

devices: 

Voltage on resistor 

uR(t) = i(t)⋅R = UmR⋅cos(Ωt+ϕ0R); 

                                                             UmR= ImR – peak voltage, 

                                                              ϕ0R = ϕ0I = ϕ0εεεε+∆Φ – initial phase. 

(15)

Voltage on inductor 

                    uL(t)= –εBACK= L⋅di(t) / dt = UmL⋅cos(Ωt+ϕ0L); 

                                                            UmL=ImXL – peak voltage, 

                                                             ϕ0L =ϕ0I+π/2=ϕ0εεεε+∆Φ+π/2 – initial phase. 

(16)
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Voltage on capacitor 

                               uC(t)=
C

q
 = ∫ dtti

C
)(

1
= UmC⋅cos(Ωt+ϕ0C), 

                                                                    UmC= ImXC – peak voltage, 

                                                                    ϕ0C = ϕ0I –π/2= ϕ0εεεε+∆Φ–π/2 – initial phase. 

(17)

 

The peak current as well as peak voltages on circuit devices are strongly 

depends on generator frequency. Magnitude of a current and distribution between the 

voltages in series RLC-circuit at three various regions of frequency spectrum are 

shown below. 

Low frequency Resonance ΩR High frequency 

Reactance: 

XC  > XL. 

Considerably 

predominate capacitive 

reactance. 

XC = XL; 

Lowest resistance: 

Z=R 

XC < XL. 

Considerably 

predominate inductive 

reactance. 

Reactive voltage: 

UmL< UmC =XC⋅εm / Z. 

Predominate capacitive 

voltage. 

UmC  = UmL =Q⋅εm; 

UmC  < UmL =XL⋅εm / Z. 

Predominate inductive 

voltage. 

Current: 

22/ Cmm XRI +ε≈ . 

Low current. 

Im = εm  / R; 

Heavy current. 

22/ Lmm XRI +ε≈ . 

Low current. 

Phase difference (∆Φ=ϕ0I – ϕ0εεεε) between the current and generator voltage: 

∆Φ > 0; ∆Φ = 0; ∆Φ < 0. 

 

Current and voltage phasors at t=0 are represented on vector voltage diagram: 
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EXAMPLE OF PROBLEM SOLUTION 

Example 3. Simple harmonic external EMF with the frequency 10
3
 Hz applied 

to the series oscillatory circuit of RLC-filter. The elements of filter have a nominal 

value: resistance 100 Ω, inductance 40 mH and capacity 1 µF. The voltage on 

capacitor varies with time by the law:  uC(t) = UmC⋅ cos(Ωt),  with the reading of an 

voltmeter URMS C =20 V .  

1) To rebuild the equation of changing of current in circuit, of voltage on 

resistor, voltage on capacitor, of voltage on inductor and EMF, applied to circuit with 

numerical coefficients.  

2) To build the vector voltage diagram at t=0.  

3) To find the values of external EMF – ε, voltages – uR, uC , uL  at the moment 

of time of t1 = Т/8 (Т – period of oscillations). To build the voltage diagram at t1 = Т/8. 

Input data:  

R = 100 Ω;   

L = 40 mH =0,04 H; 

С = 1  µF = 10
–6

 F;  

uC(t) = Umc cos(Ωt);  

URMS C = 20 V;  

f = 10
3
 Hz; 

t1 = T/8.  

Find:  

1) i(t), uR(t), uL(t), uC(t), ε(t) – ? 

2) Phasors at t=0 – ? 

3) phasors at t1,  uR(t1), uL(t1), uC(t1), ε(t1) – ? 

 

 

Solution:  

1) Let’s evaluate the peak voltage on capacitor UmC and cyclic frequency Ω of 

oscillations in circuit: 

UmC =Urms C ⋅√2;  [UmC]=V;                    UmC = 20 ⋅√2=28,3 V;        

Ω=2πf;                [Ω]=rad⋅Hz=rad /s;   Ω = 6,28⋅10
3
 rad /s. 

Here Urms C – root mean square value of voltage on capacitor voltmeter of which is 

indicated; f –frequency of external EMF of generator. 

From the view of the given equation uC(t) = Umc cos(Ωt) we can conclude then 

ϕ0C =0. 

Finally we obtain the equation of oscillations of voltage on capacitor with 

numerical coefficients: 

uС(t)= 28,3cos(6,28⋅10
3
t) V. 

From Ohm’s law for the AC voltage on capacitor with the peak voltage and 

initial phase there is a view:  

uC(t) = UmC⋅cos(Ωt+ϕ0C); 

                                                               UmC= ImXC ; 

                                                                ϕ0C = ϕ0I –π/2. 

(3.1)

where capacitive reactance is defined by the equation: 
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XC =1 / ΩC ;                                                (3.2) 

From this we obtain:           Im= UmC  / XC ;        ϕ0I =ϕ0C+π/2. 

Let’s check dimensionality and make the calculations:        

[XC]=1/ (F⋅ rad /s)=Ω;     XC = 1 / (6,28⋅10
3⋅10

–6
)= 159Ω;    

[Im]= V / Ω= A;   Im = 28,3 / 159=0,178 A;                                      

[ϕ0I]=rad;   ϕ0I =0+π/2=π/2. 

 
From Ohm’s law for the AC public current in circuit with the peak value and 

initial phase there is a view:  

i(t) = Im⋅cos(Ωt+ϕ0I); 

                                                       Im=εm / Z ; 

                                                       ϕ0I = ϕ0εεεε+∆Φ, 

(3.3)

where impedance of series oscillatory circuit and phase difference between the current 
and generator voltage are defined by the equations: 

22
)( LC XXRZ −+= ;                                             (3.4) 

∆Φ= arctg[(XC – XL) / R].                                              (3.5) 

Let’s substitute numerical values in (3.3) and obtain the equation of current 
oscillations with numerical coefficients: 

i(t)=0,178⋅cos(6,28⋅10
3
t+π/2) А. 

Thus current in circuit has phase lead relative to the voltage on capacitor on π/2. 

 

From Ohm’s law for the AC voltage on resistor with the peak voltage and initial 
phase there is a view:  

uR(t) = UmR⋅cos(Ωt+ϕ0R); 

                                                        UmR= ImR ; 

                                                         ϕ0R = ϕ0I = ϕ0εεεε+∆Φ. 

(3.6)

Let’s check dimensionality and make the calculations:      

[UmR] = A⋅Ω = V;    UmR = 0,178 ⋅ 100 = 17,8 V;                              

[ϕ0R] = rad;   ϕ0R = π/2. 

Let’s substitute numerical values in (3.6) and obtain the equation of oscillations of 
voltage on resistor with numerical coefficients: 

uR(t) = 17,8⋅cos(6,28⋅10
3
t + π/2) V. 

Thus voltage on resistor has phase lead relative to the voltage on capacitor on π/2. 

 
From Ohm’s law for the AC voltage on inductor with the peak voltage and 

initial phase there is a view:  

uL(t) = UmL⋅cos(Ωt + ϕ0L); 

                                                      UmL = ImXL ; 

                                                      ϕ0L = ϕ0I + π/2. 

(3.7)

where inductive reactance is defined by the equation: 

XL = ΩL.                                                     (3.8) 

Let’s check dimensionality and make the calculations:        

[XL] = rad /s⋅H = Ω;  XL = 6,28 ⋅ 10
3
 ⋅ 0,04 = 251 Ω;    
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[UmL] = A ⋅ Ω = V;  UmL = 0,178 ⋅ 251 = 44,7 V; 

[ϕ0I ] = rad;  ϕ0I = π/2 + π/2 = π. 

Let’s substitute numerical values in (3.7) and obtain the equation of oscillations of voltage 

on inductor with numerical coefficients: 

uL (t) = 44,7cos(6,28 ⋅ 10
3
t + π) V. 

Thus voltage on resistor has phase lead relative to the voltage on capacitor on π. 

 
From Ohm’s law for the AC external EMF of a generator there is a view:  

εext(t) = εm⋅ cos(Ω⋅t + ϕ0εεεε),                                     (3.9) 

where the peak external voltage and the initial phase we find from equations (3.3): 

εm = Im⋅ Z;                                                 (3.10) 

ϕ0εεεε =ϕ0I – ∆Φ;                                           (3.11) 

Let’s check dimensionality and make the calculations:     

Ω=Ω+Ω= 22 )(][Z ; Ω=−+=  136)251159(100 22
Z ;            

[εm] = A⋅Ω= V;   εm = 0,178 ⋅ 136 = 24,1 V; 

[∆Φ] = rad;  ∆Φ = arctg[(159 – 251)/100] = arctg[–0,93] = –0,75rad = –0,24π ≈–π/ 4;  

[ϕ0εεεε] = rad; ϕ0εεεε = π/2 + π/4 = 3π/ 4. 

Let’s substitute numerical values in (9) and obtain the equation of oscillations 
of external voltage with numerical coefficients: 

εext (t) = 24,1cos(6,28⋅10
3
t + 3π/ 4) V. 

Thus external voltage has phase lead relative to the voltage on capacitor on 3π/ 4. 

 
2) For building the vector voltage diagram at t=0 let’s write the equation of 

voltages in this moment of time without calculating the value of cosine:     

 

uС(t = 0) = 28,3cos(0) V; 

uR(t = 0) = 17,8⋅cos(π/2) V; 

uL (t = 0) = 44,7cos(π) V ; 

εext (t = 0) = 24,1cos(3π/ 4) V; 

i(t = 0) = 0,178⋅cos(π/2) А. 

∆Φ = –π/ 4; 

ϕ0εεεε = 3π/ 4. 

 

 

 
       

Figure 3.4,a – The vector voltage diagram at t=0. 
In this case the argument of cosine is a phase of corresponding voltage at t = 0. 
For each phasor, the angle which is numerically equal to an initial phase, we lay 

off counterclockwise (for positive phase) relative to the axis X (dashed axis at the  

Fig. 3.4,a). Initial phase of external voltage ϕ0εεεε = 3π/ 4 and ∆Φ ≈ –π/ 4 is shown at 

Fig. 3.4,a.   
The magnitude of each phasor is equal to peak value of corresponding voltage. 

If one chooses the scale of voltage equal 10 V/сm, then the phasor length, 
representing the oscillation of voltage on capacitor, will equal 2,8 сm (amplitude will 

be Umc = 28,3 V), this vector will be directed along the bearing axis, for the reason 
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that the argument of cosine is equal to zero at t = 0.  

In much the same way we build phasors, representing the oscillation of voltage 
on resistor, on inductor and external voltage of generator. 

At the result we obtain, that according to the second Kirhchoff’s rule, the phasor 
external EMF must be equal to the vector sum of the all voltage phasors (see Fig. 3.4,a): 

mLmCRm UUU
rrrr

++=ε      . 

 
3) For finding values of external EMF and voltages at the moment of time of t1 = Т/8 

we calculate the period of oscillations: 

T = 2π / Ω;  [T] = rad / rad/s = s;  T = 2 ⋅ 3,14 / 6,28⋅10
3 
= 10

–3
 s. 

Let’s substitute numerical value t1 = Т / 8 = 10
–3

/ 8 s  in the equation of oscillations. 
For building the vector voltage diagram at t1= Т / 8  we underline the equation of voltages in 
this moment of time without calculating the value of cosine and build phasors in the same 

way as Fig. 3.4,a: 
 

 

uС(t1)= 28,3cos(6,28/ 8)= 28,3cos(π/ 4) ;  

uR(t1)=17,8⋅cos(π/ 4+π/2)= 17,8⋅cos(3π/ 4);  

uL (t1)=44,7cos(π/ 4+π)= 44,7cos(5π/ 4);  

εext (t1)=24,1cos(π/ 4+3π/ 4)= 24,1cos(π); 

i(t1)=0,178⋅cos(π/ 4+π/2)= 0,178⋅cos(3π/ 4); 

∆Φ = –π/ 4; 

ϕ0εεεε = 3π/ 4. 

 
Figure 3.4,b – The vector voltage 

diagram at t1= Т/ 8. 

In this case the argument of cosine is a phase of corresponding voltage at t1 = 

Т/ 8. We note, that the phase of all voltages was incremented on π/ 4 and phasors have 

turned counterclockwise through an angle of π/ 4 (see Fig. 3.4,b). 

Finally we calculate numerical values of the voltages at t1 = Т/8: 

uС(t1)=28,3⋅0,707=20 V;       

i(t1)=0,178⋅0,707=0,126 А;     

uR (t1)=17,8⋅0,707=12,6 V;  

uL (t1)=44,7⋅(–0,707)= –31,6 V;     

εext (t1)=24,1⋅(–1)= –24,1 V. 

 
Results:  

1) uС(t)= 28,3cos(6,28⋅10
3
t) V;      i(t)=0,178⋅cos(6,28⋅10

3
t+π/2) А;     

 uR(t)=17,8⋅cos(6,28⋅10
3
t+π/2) V;              uL (t)=44,7cos(6,28⋅10

3
t+π) V;      

 εext (t)=24,1cos(6,28⋅10
3
t+3π/ 4) V.  

2) Phasors at t=0 see on Fig. 3.4,a. 
3) Phasors at t= Т/ 8  see on Fig. 3.4,b. 
 uС(t1)=20 V;  i(t1)= 0,126 А;  uR(t1)=12,6 V;  uL (t1)=–31,6 V;  εext (t1)= –24,1 V. 
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INDIVIDUAL TASKS FOR PROBLEM 3.4. 

DRIVEN ELECTROMAGNETIC OSCILLATIONS 
 

In accordance with your variant to solve one of the following problems listed 

below (The number of problem statement and all necessary input data are reduced in 

the table 3.4). 
 

1 Simple harmonic external EMF applied to the series oscillatory circuit of 

RLC-filter. Three nominal values of elements of filter and one equation of current or 

voltage oscillations in circuit are listed in the table 3.4. We used the following 

notations of quantities: ε – external EMF,  i – public current in circuit,  uR – voltage 

on resistor, uC – voltage on capacitor, uL – voltage on inductor.  

1) To rebuild five equations of all five electric oscillatory quantities in circuit 

with numerical coefficients.  

2) To build the vector voltage diagram at t=0.  

3) To find the values of external EMF – ε, voltages – uR, uC , uL  at the moment 

of time of t1 = Т/4 (Т – period of oscillations). To build the vector voltage diagram at 

t1 = Т/4. 
 

2  Simple harmonic external EMF on the resonance frequency applied to the 

series oscillatory circuit of RLC-filter. Three nominal values of elements of filter and 

equation of current or voltage oscillations in circuit are listed in the table 3.4. We 

used the following notations of quantities: ε – external EMF,  i – current in circuit,  uR 

– voltage on resistor, uC – voltage on capacitor, uL – voltage on inductor.  

1) To rebuild the equation of oscillations of all five quantities in circuit with 

numerical coefficients.  

2) To build the vector voltage diagram at t=0.  

3) To find the values of external EMF – ε, voltages – uR, uC , uL  at the moment 

of time of t1 = Т/8 (Т – period of oscillations). To build the vector voltage diagram at 

t1 = Т/8. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23

TABLE OF TASK VARIANTS 

Table 3.4 

Variant Statement 
С , 

mcF 

L , 

mH 

R , 

Ω 
The equation of oscillations 

1 1 1 5 50 i(t)=0,6⋅cos (2·104⋅t), А 

2 1 100 10 15 uR(t)=6⋅cos (500⋅t), V 

3 2 20 12,5 5 ε(t)=20⋅cos (ΩR⋅t), V 

4 1 0,4 0,5 25 uL(t)=5⋅cos (5·10
4⋅t), V 

5 1 5 1,5 20 ε(t)=39,5⋅cos (2·10
4⋅t), V 

6 2 0,1 1 20 i(t)=1,5⋅cos (ΩR⋅t), А 

7 1 2 0,05 7,5 uC(t)=5⋅cos (2·10
5⋅t), V 

8 2 0,5 0,2 5 uR(t)=15⋅cos (ΩR⋅t), V 

9 1 4 0,2 5 i(t)=1,6⋅cos (2,5·10
4⋅t), А 

10 1 0,5 0,15 20 uL(t)=12⋅cos (2·10
5⋅t), V 

11 1 10 25 75 uR(t)=30⋅cos (10
3⋅t), V 

12 1 4 7,5 50 uC(t)=20⋅cos (10
4⋅t), V 

13 1 25 20 20 ε(t)=19,3⋅cos (10
3⋅t), V 

14 2 4 2,5 4 uL(t)=50⋅cos (ΩR⋅t), V 

15 1 0,5 0,2 30 i(t)=0,6⋅cos (2·10
5⋅t), А 

16 2 0,5 0,05 2 uC(t)=30⋅cos (ΩR⋅t), V 

17 1 10 4 30 uR(t)=6⋅cos (2,5·10
3⋅t), V 

18 1 0,2 1,5 100 uC(t)=25⋅cos (10
5⋅t), V 

19 2 20 2 3 ε(t)=4,5⋅cos (ΩR⋅t), V 

20 1 2 10 50 uL(t)=20⋅cos (10
4⋅t), V 

21 1 1 0,1 15 ε(t)=21,2⋅cos (5·10
4⋅t), V 

22 2 5 50 10 i(t)=2⋅cos (ΩR⋅t), А 

23 1 0,25 1,5 40 uR(t)=24⋅cos (4·10
4⋅t), V 

24 1 10 1 15 uL(t)=3⋅cos (5·10
3⋅t), V 

25 2 0,1 0,01 4 uR(t)=6⋅cos (ΩR⋅t), V 

26 1 5 20 30 uC(t)=20⋅cos (4·10
3⋅t), V 

27 1 2,5 2,5 30 ε(t)=29,7⋅cos (8·10
3⋅t), V 

28 2 0,5 0,8 5 uL(t)=40⋅cos (ΩR⋅t), V 

29 1 2 2 15 i(t)=0,8⋅cos (2·10
4⋅t), А 

30 2 0,02 0,05 6 uC(t)=25⋅cos (ΩR⋅t), V 
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Problem 3.6. 

ELECTROMAGNETIC WAVES (EMW). 

 

MAIN CONCEPTS 

 

When a plane EMW propagates from the source (which is located at point 

x0=0) along the positive direction of x-axis, the vector of electric field intensity will 

be changing along the y-axis, and the vector of magnetic field intensity will be 

changing along the z-axis, according to the equations of EMF: 

Ey(x,t)=Em⋅cos(ωt–kx+ϕ0);             

Hz(x,t)=Hm⋅cos(ωt–kx+ϕ0), 
(18) 

where Em and Hm – amplitudes of electric field intensity and magnetic field intensity 

in a wave correspondingly; ϕ0 – initial phase of the wave source. 

Cyclic frequency ω [rad / s] – is a changing of phase of a wave per second: 

ω =2π / T =2πf ,                                             (19) 

here  T [s]  – period  is a time of one oscillation of waves’ quantities;   

         f  [Hz] – frequency is a number of oscillations of waves’ quantities per second.   

Wave number k [rad / m] – is a changing of phase a wave per meter: 

k = 2π /  λ ,                                              (20) 

here  λ [m]  – wavelength is a length of one oscillation (distance which is transited by a 

wave for a period). 

Phase velocity of propagation of EMW in medium 

n

c
=

µµεε
=υ

00

1
 ,                                      (21) 

where speed of light (velocity of propagation of EMW in vacuum): 

001 µ⋅ε=c ;                                          (22) 

and refractive index 

εµ=n ;                                                (23) 

ε0   and µ0 – electric and magnetic constants correspondingly;  

ε   and µ  – relational electric permittivity and magnetic permeability of 

medium (as a rule the transparent medium is non-magnetic µ=1). 

In one EMW the volume density of energy of electric field wC is equal to volume 

density of energy of magnetic field wL: 

22

2
0

2
0 HE µµ

=
εε

.                                             (24) 

Instantaneous flux density of energy of EMW (Pointing’s vector) 

][),( HEtxP
rrr

×= .                                           (25) 

The average value of Pointing’s vector defines the wave intensity: 

I=PAVE = Em⋅Hm / 2.                                           (26) 
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EXAMPLE OF PROBLEM SOLUTION 

Example 4.  In the homogeneous isotropic non-magnetic medium with the 

dielectric permittivity of ε = 9 along the х-axis propagates plane EMW from wave 

source which is located at point x0 = 0. The change of intensity of magnetic field is 

described by equation Hz(x,t) = Hm⋅cos(ωt – kx – π/2), when amplitude of magnetic 

field intensity in a wave 0,02 A/m. The oscillation period is 1 µs.  

1) To rebuild the equations of change of electric field intensity and magnetic 

field intensity with numerical coefficients.  

2) To draw the graph of wave at the moment of time of t1 = 1,5T.  

3) To define the Pointing’s vector at the moment of time of t1 = 1,5T in the 

point with coordinate x1 = 1,25λ and plot it on the graph. 

4) To define the wave intensity. 

Input data: 

Нm = 0,02 A/m;  

Т =1 µs = 10 
–6

 s;  

ε = 9;   µ = 1; 

Hz(x,t)=Hm⋅cos(ωt–kx–π/2) 

Find:  Нz(x, t),  Еy(x, t) – ? 

Graph , ),( 11 txP
r

,  I – ? 

 
 

Figure 3.6 – Graph of wave at t1=1,5T . 

Solution:   

1) Equations of given EMW have a general view: 

Ey(x,t)=Em⋅cos(ωt–kx+ϕ0);            Hz(x,t)=Hm⋅cos(ωt–kx+ϕ0), 

where Em and Hm – amplitudes of intensities of electric and magnetic fields of the 

wave correspondently, x – coordinate of a point of space;  t – time of propagation of a 

wave; ϕ0= –π/2 – initial phase of the wave source. 

For the rebuilding this equations with numerical coefficients, it’s necessary to 

define the cyclic frequency ω and wave number k, which are defined by equations: 

Т

π
=ω

2
;                                                    (4.1) 

λ

π
=

2
k .                                                    (4.2) 

Period Т is given in the problem statement, the wave length λ is a distance 

which is transited by a wave for a period: 

T⋅υ=λ ,                                                    (4.3) 

where υ – phase velocity of propagation of EMW. In non-magnetic medium with 

permeability µ=1 and dielectric permittivity  ε the velocity υ of propagation of EMW 

is defined with the formula:  

ε
=

µ⋅ε
=υ

cс
,                                             (4.4) 

where с=3⋅10
8
 m/s – the speed of light. 
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Let’s substitute in the formula (4.2) the expression of λ from the formula (4.3) 

and υ from the formula (4.4): 

cTT
k

επ
=

υ

π
=

22
 .                                              (4.5) 

From the equality of volume energy density of electric and magnetic field 

mm НЕ ⋅µ=⋅εε 00 , 

we obtain the relation between the amplitudes of electric and magnetic intensities: 

mm НЕ ⋅
εε

µ
=

0

0 .                                          (4.6) 

The right part of the formula  (4.1) gives the unit of measurement of cyclic 

frequency [rad/s]; let’s check whether the right part of the formula (4.5) gives us the 

unit of wave number [rad/m], and right part of the formula (4.6) – the unit of 

intensity of electric field [V/m]. 

[ ]
[ ] [ ]

mrad

s
ms

rad

Tc

rad
k /=

⋅
=

⋅
= ;  

mV
m

А

А

V
mА

sАА

VsV
mА

CА

VWb
mА

mF

mH
HЕ mm ////

/

/
][

][

][
][

0

0 ==
⋅⋅

⋅⋅
=

⋅

⋅
==

ε

µ
=  

Let’s make the calculations and write down the equation Е and Н with 

numerical coefficients 

16

3
 102

10

2 −−
−

⋅π=
π

=ω s ;   rad/mk π=
⋅⋅

π
=

−
02,0

10103

92

63
 ; 

mVЕm /  51,202,0
91085,8

104
12

7

=⋅
⋅⋅

⋅π
=

−

−
; 

Then finaly equations of EMW:      Ey(x,t)=2,5⋅cos(2⋅10
6π⋅t–0,02π⋅x–π/2) V/m;   

                                                         Hz(x,t)=0,02⋅cos(2⋅10
6π⋅t–0,02π⋅x–π/2) A/m. 

2) Let’s draw the graph of wave at the moment of time of t1=1,5T.  

At this time the source will have a phase, equal to 

Φ(x=0,t1)= (2⋅10
6π⋅1,5⋅10 

–6
 – 0,02π⋅0 – π/2)= (3π – 0 – π/2)= π/2, 

then intensities of electric and magnetic fields in a source will have a zero values, as 

a   cos(π/2)=0 (Fig. 3.6, point x=0). 

Through distance, equal to wave length 

λ= 2π / k    or    λ= 2π / 0,02π=100m 

this value will repeat, as a   cos(π/2–kλ)=0 (see Fig. 3.6, point x=λ). 

During this time the wave will transit distance equal to position of a wave front: 

λ=⋅
λ

=⋅
λ

=⋅υ= 5,15,111 T
T

t
T

txWF , 

then in position of wave front intensities of electric and magnetic fields in a source 

will have a values same as source at t=0, that is zero, as a   cos(π/2–k⋅1,5λ)=0  (see 

Fig. 3.6, point x=xWF).  
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3) Let’s Calculate instantaneous value of modulus of the Pointing’s vector 

(vector of energy fluxes density of EMW): 

P(x,t)= Ey(x,t)⋅Hz(x,t)= Em⋅cos(ωt–kx+ϕ0)⋅Hm⋅cos(ωt–kx+ϕ0)= Em⋅ Hm⋅cos
2
(ωt–kx+ϕ0). 

Let’s check whether the obtained formula gives the unit of energy fluxes 

density [W / m
2
] 

222
][][][

m

W

msА

АJ

mC

АJ

m

А

m

V
HEP mm =

⋅⋅

⋅
=

⋅

⋅
=⋅=⋅= ; 

Let’s substitute the numerical values:  

P(x,t)= 2,5⋅0,02⋅cos
2
(2⋅10

6π⋅t–0,02π⋅x–π/2). 

At the moment of time of t1=1,5T=10 
–6

s (given by the problem statement) and 

at the point with coordinate x1 =1,25λ= 1,25⋅2π / k;  then   x1 =1,25⋅2π / 0,02π=125 m 

we obtain: 

P(x1,t1) = 2,5⋅0,02⋅cos
2
(2⋅10

6π⋅1,5⋅10 
–6

 – 0,02π⋅125 – π/2) = 

            = 0,05⋅cos
2
(3π – 2,5π – π/2) = 0,05⋅cos

2
(0,5π – π/2)= 0,05⋅(1)

2
=50 mW / m

2
. 

Let’s plot it on the graph obtained Pointing’s vector (see Fig. 3.6, point x=x1 =1,25λ). 

 

4) The intensity of electromagnetic wave is the average energy in time, going 

through the unit plane, which is perpendicular to the direction of wave propagation; 

mmAVE HEPI
2

1
== , 

where Р – average value of vector modulus of energy fluxes density of EMW 

(modulus of Pointing’s vector). 

Let’s make the calculations: I = 0,5·2,51·0,02 = 2,51·10
-2

 W / m
2 
= 25 mW / m

2
. 

Results:   Ey(x,t)=2,5⋅cos(2⋅10
6π⋅t–0,02π⋅x–π/2) V/m; 

 Hz(x,t)=0,02⋅cos(2⋅10
6π⋅t–0,02π⋅x–π/2) A/m. 

 P(x1,t1) =50 mW / m
2
;   I = 25 mW / m

2
. 

 

 

INDIVIDUAL TASKS FOR PROBLEM 3.6. 

ELECTROMAGNETIC WAVES 

 

In accordance with your variant to solve the following problem listed below 

(all necessary input data are reduced in the table 3.6). 

 

Plane electromagnetic wave propagates in homogeneous isotropic non-

magnetic medium with dielectric permittivity ε. The intensity of electric field of wave 

changes by law E = Em⋅cos(ωt− kx+π/2). 

1) By input data, given in the table 3.6, find necessary parameters and 

equations of electric intensity Е and magnetic intensity Н with numerical coefficients. 

2) Draw the graph of wave at the moment of time of t1 . 

3) To define the Pointing’s vector at the moment of time of t1 in the point with 

coordinate x1 = λ / 8  and plot it on the graph. 

4) Calculate the intensity of wave. 
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TABLE OF TASK VARIANTS 

Table 3.6 
 

Variant 
f, 

MHz 

Т, 

µs 

ω, 

rad/s 

λ , 

m 

υ  , 

Mm/s 

k, 

rad/m 
ε 

Еm , 

V/m 

Нm, 

А/m 

t1 , 

µs 

1 – – – 100 – – 1,44 40 – 0,7 

2 – – – – 40 π/10 – – 0,5 0,75 

3 – – 2,5·10
6
π 240 – – – 50 – 1 

4 1 – – – 70 – – – 0,3 2 

5 – 0,5 – – – – 2,25 20 – 0,75 

6 1,25 – – – – π/20 – – 0,4 1,4 

7 – 2 – – 200 – – 30 – 3 

8 – – – – – π/50 5,76 – 0,2 1 

9 2 – – 60 – – – 10 – 0,5 

10 – – 10
6
π – – – 9 – 0,3 3,5 

11 – 4 – 560 – – – 20 – 5 

12 – – 2·10
6
π – 80 – – – 0,4 1,5 

13 – – – – – π/15 16 10 – 0,5 

14 – – – 60 240 – – – 0,1 0,25 

15 0,5 – – – – – 4 40 – 3 

16 – – 5·10
6
π 40 – – – – 0,2 0,5 

17 1 – – – 180 – – 50 – 1,5 

18 – 0,8 – – – π/30 – – 0,4 1 

19 – – – 30 – – 25 20 – 0,5 

20 – – – – 90 π/36 – – 0,3 1,4 

21 – 8 – 320 – – – 10 – 10 

22 2,5 – – 120 – – – – 0,1 0,6 

23 5 – – – – π/8 – 30 – 0,35 

24 – – 2·10
6
π – – – 36 – 0,5 1 

25 – – – 260 130 – – 20 – 3 

26 – 2 – – – π/34 – – 0,3 3,5 

27 – 0,8 – – – – 6,25 40 – 1 

28 – 0,4 – – 60 – – – 0,4 0,7 

29 0,5 – – – – – 21,3 10 – 2 

30 – – 5·10
5
π – 160 – – – 0,2 7 
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