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Foreword

The purpose of this book, Financial Modelling with Forward-Looking Information:
An Intuitive Approach to Asset Pricing, is to deeply inquire, holistically reflect
on, and practically expose the current and emerging concept of information-
based modelling to the areas of financial market microdynamics and asset pricing
with real-time signals. During the previous decades, the analytical tools and the
methodological toolbox of applied and financial mathematics, and of statistics, have
gained the attention of numerous researchers and practitioners from all over the
world, providing a strong impact also in economics and finance. Here, the notions
of futuristic information on asset fundamentals and informational disparities among
market participants are turning out to be key issues from an integrated perspective,
and they are closely connectedwith further areas such as financial signal processing,
market microstructure, agent-based modelling, and early detection of financial
bubbles and liquidity squeezes.

This book seeks to reassess and revitalize, amid ongoing structural problems
in financial markets, the role of information through a fundamental approach that
can be used for pricing a broad spectrum of financial and insurance contracts. The
approach focuses on an intuitive, yet theoretically robust, framework for integrating
financial information flows, which is also known as the Brody, Hughston and
Macrina framework. This book could become a helpful compendium for decision-
makers, researchers, as well as graduate students and practitioners in quantitative
finance who aim to go beyond conventional approaches to financial modelling.

The author of this book is both an academic and practitioner in the area of
applied financial mathematics, with considerable international research experience.
He uses the state-of-the-art model-based strong methods of mathematics as well
as the less model-based, more data-driven algorithms—often called as heuristics
and model-free—which are less rigorous mathematically and released from firm
calculus in order to integrate data-led approaches with a view to efficiently coping
with hard problems. Today, labeled by names like Statistical or Deep Learning and
Adaptive Algorithms, and by Operational Research and Analytics, model-free and
model-based streamlines of traditions and approaches meet and exchange in various
centers of research, at important congresses, and in leading projects and agendas in
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viii Foreword

all over the world. The herewith joint intellectual enterprise aims to benefit from
synergy effects, to commonly advance scientific progress and to provide a united
and committed service to the solution of urgent real-life challenges.

To the author of this valuable book,Dr. Nadi Serhan Aydın, I extendmy heartily
appreciation and gratitude for having shared his devotion, knowledge, and vision
with the academic community and mankind. I am very thankful to the publishing
house Springer, and the editorial team around Dr. Christian Rauscher thereat,
for having ensured and made become reality a premium work of a high-standard
academic and applied importance, and a future promise of a remarkable impact for
the world of tomorrow.

Now, I wish all of you a lot of joy in reading this interesting work, and I hope
that a great benefit is gained from it both personally and societally.

Middle East Technical University Gerhard-WilhelmWeber
Ankara, Turkey
March 2017
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Chapter 1
Introduction

The raison d’être of the markets we study is to support information-based trading.
Yet, there is a fundamental conflict between how efficiently markets spread infor-
mation and the incentives to acquire it. This is something conventional stochastic
models and, particularly, the way their information content is structured tend to
oversimplify. As such, the notion that “there is a universal market filtration” also
seems to be unrealistic. What counts, for market efficiency, is that, in practice,
investors have access to different levels of information and with varying ease. This
calls for a broader view of market efficiency which takes into account the amount
and pace of such access. Nevertheless, by exchanging information through highly
frequent trades, market participants are able to maintain a law of reasonable price
range, if not a law of one price.

Complications related to construction of an information flow are generally
bypassed through the concept of “natural filtration” F , whereas the essential point
is that all relevant information is contained in, and therefore, can be extracted from,
the past trajectory. Yet, little is known about the structure of this filtration. It is
not clear, for example, why a stochastic driver should be regarded as to contain all
relevant information about the “fundamental” value rather than noise. The filtration
generated by this random process is also pre-imposed on the future evolution of
the “fundamental” value. We emphasise here the word “fundamental” to reflect the
notion that an asset’s future is not necessarily determined by its past, but also its
future prospects.

In this book, we focus on a concept where some of the aforementioned
problems are sought to be addressed. Market participants get noisy signals � on
the future convenience dividends of an asset directly, or market factors which affect
them.1 When combined together, the signals � form the “all-wise” filtration. The
informational diversity thus naturally stems from the fact that either �s might differ
in quality (i.e., in their signal-to-noise) or agents might vary in their capacity to

1We refer as convenience dividends to any material benefit drawn from holding the asset.

© Springer International Publishing AG 2017
N.S. Aydın, Financial Modelling with Forward-looking Information, Contributions
to Management Science, DOI 10.1007/978-3-319-57147-8_1
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2 1 Introduction

interpret the same signal (cf. [1]). In this structure, a subset of all available signals
could determine the filtration of the agent rather more explicitly. As a result, the
question of how real-time information flow dynamics can be satisfactorily imitated,
as well as its implications for asset pricing and market microstructure, need to be
brought more under spotlight.

Assume we know a priori that a business—with two possible outcomes—will
default at maturity. Had it not failed, the business would pay one unit to its investors.
The only thing the agents know when the business started is that the two outcomes
would have even chances. Therefore, it is natural for them all to value the business
at an initial price of 0:5. But, once they start to get rumours about the health of
the business through different sources, the situation will change. As some of these
sources will be more reliable than others, revealing the true status of the business
at a faster pace, investors will start to differ in their judgements about the real
value of the latter and, if allowed, try to exploit that information. One who has
access to a fast-track signal source will uncover quickly what the real outcome
will be, constantly trimming the value to the asset, whereas the ones with access
to less superior information sources will have to wait longer periods to see what is
happening, putting any bet they make during that time at the risk of being exploited
by others (cf. Fig. 1.1, left panel). Although it does not mean that the faster signals
will get the investor a more realistic value judgement at all instances and throughout
the horizon, on average, they will do so (Fig. 1.1, right panel).

One benefit, inter alia, of working with signals rather than their aggregate (e.g.,
price) directly is that the signals on certain factors can be both more accessible
and predictable. Consider the likelihood of a regular policy decision on interest
rates, an intervention on the value of a currency, positive earnings announcement,
a merger or acquisition, certain regulatory changes, the resigning of a company’s
top management, or a candidate winning the approaching national poll. It may be
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outcome is set to default with a priori probability of 0:5



1 Introduction 3

much easier to collect signals on the outcome of ongoing discussions on a regulatory
change that would impact the way a company is running, judge the reliability of
signal sources, and determine the relative importance of that policy change against
other possible factors, than to focus on that company’s equity performance.

Needless to say that the ideas presented above are not all new. Yet, the literature
on the dynamics of financial information flow is considerably scarce, as compared to
that on heterogeneous information (which is also empowered by the recent advances
in methods such as the Malliavin calculus (cf. [8])) and stochastic filtering (with
ongoing emphasis on generalisations to nonlinear systems, and particle methods
(cf. [2, 7])), which can be seen natural extensions of the present framework. In this
book, we aim to introduce the framework which was originally developed in [3] and
extend it in different directions.

• Accordingly, the next chapter, i.e., Chap. 2, assembles some fundamental prop-
erties of random bridge processes and justifies their use in modelling forward-
looking financial information. Although this chapter is essentially based on [3, 5]
and [4], it contributes to the existing literature by recovering the necessary
properties of the signal-based framework in a much greater detail, and presenting
a useful information-theoretic analysis to quantify the information component.

• Chapter 3 introduces an interactive market setup where agents receive variegated
information. This chapter, which is inspired by the remarks of authors in [6], is a
significant addition to the literature on equilibrium with long-lived information.
It not only vividly illustrates some interesting price discovery dynamics in the
presence of heterogeneous information through numerical analysis, but also
explores optimal strategies to exploit differential information by analytically
characterising ex-ante gains from trade.

• Chapter 4 puts the signal-based framework to practical use by introducing a
slightly modified version of the signal process and making a particular choice
for real-time signals. To the best of the author’s knowledge, this is the first such
attempt, with results having significant implications for harnessing the signal-
based framework in a real-world setting. We also contribute the literature by
presenting a crisp formula for the signal-based price.

Finally, Chap. 5 concludes with a brief outlook, and some remarks on the
contemporary area of Financial Signal Processing (FSP).

Throughout the book, we may interchange between the terms “dividends” and
“cashflows”, as well as “agents” and “investors”—which is of no harm. However, a
distinction has to be made at the outset between an “investor” and a “trader.” In the
present context, all market participants are “investors” who make their decisions
on the basis of long-term targets, more due diligence and a proper analysis of
fundamental factors; while “traders” will not necessarily do so.
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Chapter 2
The Signal-Based Framework

The flow of forward-looking information through signals is essential for the
smooth operation of the highly complex financial market engine and it is the most
fundamental input to the pricing of any type of asset. Themarket agents, both human
and non-human, on the other hand, are signal processors who continuously mine for
and interpret these signals to extract information.

In what follows, we lay out the basic characteristics of the information-based
framework which was first introduced in [8] as a new way of modelling credit
risk and, later on, applied to a broad spectrum of issues in financial mathematics,
including the valuation of insurance contracts based on the cumulative gain process
in [9], modeling of defaultable bonds in [30] (as an extension of [8] to stochastic
interest rates), general asset pricing in [10], pricing of inflation-linked assets in
[20], and modelling of asymmetric information and insider trading in [11], before it
was generalised to a wider class of Lévy information processes in [18] for valuing
credit-risky bonds, vanilla and exotic options, and non-life insurance liabilities. This
method was used, in [6], to aggregate individual risk aversion dynamics to form a
market pricing kernel, in [25], to price credit-risky assets that may include random
recovery upon default, in [26], to introduce an extension of the theory towards an
analysis of information blockages and activations, as well as information-switching
dynamics, in [13], to introduce a general framework for signal processing with
Lévy information, in [33], to value storable commodities and associated derivatives
and, most recently, in [7], to obtain a stochastic volatility model based on random
information flow, and in [2], to produce estimates of bankruptcy time.

However, we distinguish the present analysis from another particular strand of
literature which looks at information dissemination and epidemics in networks with
certain topological properties, with applications to finance (see, e.g., [3, 5, 14, 15,
23]).

© Springer International Publishing AG 2017
N.S. Aydın, Financial Modelling with Forward-looking Information, Contributions
to Management Science, DOI 10.1007/978-3-319-57147-8_2
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6 2 The Signal-Based Framework

2.1 Modelling Information Flow

The information-based approach stems naturally from the dynamic nature of
information. Information is revealed at some pace and it is not pure all the time.
There is normally little or no rumour about an asset’s future value when there is
a significant time frame until its maturity; the beliefs are most diverse around the
midway through the lifetime of the asset when the rumours intensify; there is a
growing consensus, as the asset approaches its maturity, on how things will turn
out; and, finally, the true value becomes known.1 Bridge processes indeed have
some nice properties to imitate this behaviour. Consider a Brownian bridge process
defined over the period Œ0;T	2 which takes on values 0 and z at times 0 and T,
respectively:

ˇ
Œ0;z	
0T .t/ WD Bt � t

T
.BT � z/: (2.1)

with Bt being a Brownian motion. The bridge process in Eq. (2.1) is a standard
Brownian bridge with a deterministic drift. Let z represent the true value at time
T of a random quantity ZT that adheres to the a priori marginal density fZT .z/, i.e.,
ZT.!/ D z. Rearranging the terms of Eq. (2.1) yields a random bridge process:

ˇ
Œ0;ZT 	
0T .t/ D t

T
ZT C Bt � t

T
BT D t

T
ZT C ˇ

Œ0;0	
0T .t/; (2.2)

where ˇŒ0;0	0T .t/ is a standard Brownian bridge, representing the ‘pure noise’, that
adheres to the lawN .0; .t
�1

t /
1=2/ with 
t WD T=.T � t/.3 The first part .t=T/ZT , on

the other hand, is the ‘hidden truth’ about the future value of the random variable
ZT (in the sense that it is concealed by noise). The term 1=T, in this case, governs
the overall speed of revelation of true information about the actual value of ZT .

Definition 2.1 The process ˇŒ0;ZT 	0T .t/ is a ‘Brownian random bridge’ if:

• Its terminal value ˇŒ0;ZT 	0T .T/ has the marginal law � which admits density p.z/,
i.e., �.dz/ D p.z/dz.

• There exists a Gaussian process .Gt/0�t�T with density gt.y/ for all t 2 Œ0;T	,
and � concentrates mass where 0 < gT.z/ < 1 for �-almost-every z.

1Zero-noise at initial date is still intuitive since single point will have no prediction power.
2See [2] for bridges on a random intervals Œ0; � 	.
3The part EŒˇt	 D 0 is indeed trivial, whereas V Œˇt	 D E

h
B2t � t

T BtBT C t2

T2 B
2
T

i
D t�2 t2

T C t2

T D
t
�1

t .
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• Furthermore,

Q

h
ˇ
Œ0;ZT 	
0T .t1/ � y1; : : : ; ˇ

Œ0;ZT 	
0T .tl/ � yl

ˇ̌
ˇ
Œ0;ZT 	
0T .T/ D z

i

D Q
�
Gt1 � y1; : : : ;Gtl � yl

ˇ̌
GT D z

�
(2.3)

for every l 2 Z
C, increasing .t1; : : : ; tl/ 2 Œ0;T	, .y1; : : : ; yl/ 2 R

l, and �-almost-
every z.4

Thus, a Brownian random bridge is identical in law to a Brownian motion
conditioned to have the a priori law of ZT at time T. Indeed, one can define
XT WD ZT=.�T/ in Eq. (2.2) by introducing a more general parameter, say � (or,
alternatively, �t) instead of 1=T. This enables us to introduce the signal process �t
(or, the information process in the sense of [8]):

�t D � tXT C ˇt: (2.4)

where (and, henceforth) ˇt WD ˇ
Œ0;0	
0T .t/. In other words, � will be gauging the

ratio of true signal to noise (henceforth, just ‘signal-to-noise’). This particular
way of defining the information flow, in fact, distinguishes the current framework
from a large class of asymmetric information models, where, as in [22], a bulk of
information is assumed to arrive instantly at the beginning of the trading period,
or, as in [1], the arrival pattern of information is found to be irrelevant to trading
strategies of agents. We also set ˇt and XT to be independent: ˇt ?? XT . We note
that, hereafter, the signal �t will be regulating the information flow.

We also remark that Eq. (2.4) is not the only way to represent information flow.
Some other forms have also been considered in the literature with slightly different
characteristics, such as �t D tXT C ˇt (cf. [6]), and �t D .t=T/XT C �ˇt or �t D
.t=T/XT C ˇt (cf. [19]).

More formally, we define a probability space .
;F ;Q/, on which the filtration
.F �

t /t2Œ0;T	 will be constructed. Here,Q, i.e., the risk-neutral measure, is assumed to
exist. The default measure is set to Q throughout the book, if not stated otherwise.
For simplicity, we assume that the asset under consideration is of predetermined
maturity, i.e., the cashflow will be generated, and the related information process
will expire, at a pre-known time T. The filtration F �

t , which is assumed to be
generated directly by .�s/0�s�t, is given by:

F �
t D f� .�s/ W 0 � s � t < Tg : (2.5)

4See [18] for a definition of Lévy random bridge instead.
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We are now in a position to work out, with respect to the available information
F �

t , the value St and dynamics dSt of an asset which generates a cashflow �T D
�.XT/ at time T for some invertible function �. The value St, 0 � t < T, is given
by

St D 1ft<Tge�r.T�t/
E

h
�T
ˇ̌F �

t

i
;

(or, simply) D 1ft<Tge�r.T�t/�t; (2.6)

where �t, �t.XT/, EŒ�T jF �
t 	 are all equivalent, and r is the money market rate.

Also not to mention that the asset goes ex-dividend at T, i.e., immediately after the
dividend is paid, should the asset’s maturity be longer than T and should there be
other dividends to be paid.

The quantities XT and �.XT/ are measurable with respect to F �
T , but not

necessarily w.r.t. F �
t , t < T. On an important note, we remark that ˇt, i.e., the

pure noise, is not measurable w.r.t. F �
t , meaning that it is not directly accessible to

market agents. Thus, an agent, although he observes �t, cannot separate true signal
from noise until time T.

Note that the expectation in Eq. (2.6) is conditioned, as we understand from
Eq. (2.5), on the entire path of �t, which renders it difficult to handle. Therefore,
verifying that the information process �t satisfies the Markov property could
bring a great deal of simplification to the construction of price dynamics. In
[18], it is indeed shown that Lévy bridges, and Lévy random bridges alike,
satisfy the Markov property. Here we verify the latter for Brownian random
bridges.

Proposition 2.1 The information process .�t/0�t�T , as defined in Eq. (2.4), is
conditionally Markovian.

Proof (See an Alternative Proof in [24])We set 
t D T=.T � t/ here and, whenever
appropriate, throughout the text. Let �t be intrinsically pinned to an unknown value
XT D x. Defining Bt as a Brownian motion, we can indeed express the signal process
�t as

� tx C 

� 1
2

t Bt or � tx C 

� 1
2

t

Z t

0

dBs: (2.7)

One can verify that these are identical to

�t D � tx C .T � t/
Z t

0

dBs

T � s
; (2.8)
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which, in turn, implies

d�t D
�
�x �

Z t

0

dBs

T � s

�
dt C .T � t/

dBt

T � t

D
�
�x � �t � � tx

.T � t/

�
dt C dBt

D .�x � �t=T/ 
tdt C dBt: (2.9)

Equations (2.8) and (2.9) indeed follow from two other well-known representa-
tions of bridges (see, e.g., [28]). Equation (2.9), on the other hand, directly implies
that, given XT D x, �t is a Markov process with respect to its own filtration, i.e.,

EŒh.�t/j� .�r/r�s	 D EŒh.�t/j�.�s/	 .s � t/; (2.10)

for any x, and any measurable, finite-valued function h (cf. [28]). ut
Proposition 2.1 leads to a significant reduction in the complexity of calculating

the expectation in Eq. (2.6). The latter expectation can now be written, again, for the
single dividend as

St D 1ft<Tge�r.T�t/
E Œ�T j�t	 ; (2.11)

or, when the payoff has a continuous density, as

St D 1ft<Tge�r.T�t/
Z

X

�.x/�t.x/dx: (2.12)

Here, the posterior density �t.x/ WD p.xj�t/ is given by

�t.x/ D d

dx
Q.XT � xj�t/: (2.13)

To restore St and its dynamics, apparently, we need to work out �t, the posterior
density. Using Bayesian inference, �t can be written as

�t.x/ D p.x/p.�tjx/Z

X

p.y/p.�tjy/dy

D p.x/p.�tjx/Z

X

p.�t/dy
.x 2 X/ ; (2.14)

where X is the support of XT , p.x/ the a priori probability density of XT , and p.�tjx/
the likelihood (i.e., compatibility of the signal �t given the measurement x). We
note that the procedure in Eq. (2.14) is similar to a Kalman [21] filtering operation
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in which a transition step based on p.xj�s/ and p.�tj�s/ also takes place before the
measurement update p.xj�t/ (see, e.g., [4]).

Here, we find it useful to state a dynamical consistency property satisfied by �t.

Proposition 2.2 The process �t is dynamically consistent, meaning that, if we store
the information transmitted by �s, s 2 Œ0;T	, in �s.x/ and, then, re-initialise it at
time s as � 0

t , s � t � T, updating also its flow rate to � 0, then �t.x/ can be written
in terms of �s.x/ (i.e., the new prior) as follows

�t.x/ D �s.x/p.� 0
t jx/Z

X

�s.y/p.�
0
t jy/dy

.s � t � T/; (2.15)

where

� 0
t D �t � T � t

T � s
�s D � 0.t � s/XT C ˇ0

t ; (2.16)

with � 0 D �T=.T � s/, and ˇ0
t being a standard Brownian bridge over Œs;T	 (see a

time-varying information flow version in [10]).

Proof Calculate �s.x/p.� 0
t jXT D x/ as per definitions of �t, � 0

t and �
0 and verify that

the right-hand side of Eq. (2.15) is indeed equal to �t.x/. ut
Before we embark on the dynamics of the signal-based price process, let us

compute p.�tjx/ in Eq. (2.14). Indeed, Eq. (2.4) implies E Œ�tjx	 D � tx andV Œ�tjx	 D
t=
t where 
t is as above. Hence,

p.�tjx/ D 1p
t=
t

p
2�

e� 1
2
.�t�� tx/2

t=
t : (2.17)

We then accommodate Eq. (2.17) into Eq. (2.14) to get �t.x/. With some
arrangement,

�t.x/ D
p.x/ 1p

2�
p
t=
t

e
� 1
2
.�t�� tx/2

t
�1
t

Z

X

p.y/
1p

2�
p
t=
t

e
� 1
2
.�t�� ty/2

t
�1
t dy

D p.x/e
1
2

��2t C2�t� tx��2x2 t2

t
�1
t

Z

X

p.y/e
1
2

��2t C2�t� ty��2y2 t2

t
�1
t dy

D p.x/e
t.�x�t� 1
2 �

2x2t/
Z

X

p.y/e
t.�y�t� 1
2 �

2y2t/dy
.x 2 X/ : (2.18)
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Essentially, Eq. (2.18) is a convolution density in which p.�tjx/, as given in
Eq. (2.17), operates as a filter on p.x/ to map the latter to its posterior �t.x/ by
comparing the signal �t against each possible value of x 2 X.

2.2 The Signal-Based Price Process

We shall continue to assume, w.l.o.g., that the asset pays a single cashflow �.XT/

based on a single market factor XT . Accommodating Eq. (2.18) into Eq. (2.12), the
price process .St/0�t�T can be written as:

St D 1ft<Tge�r.T�t/

Z

X

�.x/p.x/e
t.�x�t�
1
2 �

2x2t/dx
Z

X

p.x/e
t.�x�t� 1
2 �

2x2t/dx
: (2.19)

The dynamics of St, on the other hand, can be worked out as follows. First, we
re-write Eq. (2.11):

St D 1ft<Tge�r.T�t/
E Œ�.XT/j�t	 D 1ft<Tge�r.T�t/�t.XT/; (2.20)

where, again, �t.XT/ D E Œ�.XT/j�t	. Apparently, �t.XT/ can be expressed in the
form �.t; �t/. Equation (2.19), on the other hand, implies:

�.t; �t/ D

Z

X

�.x/p.x/e
t.�x�t�
1
2 �

2x2t/dx
Z

X

p.x/e
t.�x�t�
1
2 �

2x2t/dx
: (2.21)

Now, we work out the dynamics of �.t; �t/, from which the dynamics of St will
follow directly. Itô’s Lemma implies

d�.t; �t/ D @�.t; �t/

@t
dt C @�.t; �t/

@�t
d�t; (2.22)

where the first partial derivative on the right-hand side equals, by virtue of
Eq. (2.21),

@�.t; �t/

@t
D 
2t

�Z

X

�.x/

�
��tx=T�1

2
�2x2

�
p.x/e
t.�x�t� 1

2 �
2x2t/dx

Z

X

p.x/e
t.�x�t� 1
2 �

2x2t/dx

�
Z

X

�.x/p.x/e
t.�x�t� 1
2 �

2x2t/dx
Z

X

�
��tx=T�1

2
�2x2

�
p.x/e
t.�x�t� 1

2 �
2x2t/dx

�
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�
�Z

X

p.x/e
t.�x�t� 1
2 �

2x2t/dx

��2

D 
2t

�
.��t=T/Et Œ�.XT /XT 	 � 1

2
�2Et

h
�.XT /X

2
T

i

�Et Œ�.XT/	

�
.��t=T/Et ŒXT 	 � 1

2
�2Et

h
X2T

i� �

D 
2t

�
.��t=T/ .Et Œ�.XT /XT 	 � Et Œ�.XT /	Et ŒXT 	/

�1
2
�2
�
Et

h
�.XT/X

2
T

i
� Et Œ�.XT/	Et

h
X2T

i	 �

D 
2t

h
.��t=T/Covt .�.XT/;XT /� �2Et Œ�.XT /	Covt .�.XT/;XT/

i

D �
2t .�t=T � �Et Œ�.XT /	/Covt .�.XT/;XT / :

(2.23)

whereCovt D Cov.�j�t/ denotes the conditional covariancewith respect to available
information �t at time t. The equality

1

2



Et
�
�.XT/X

2
T

� � Et Œ�.XT/	Et
�
X2T
�� D Et Œ�.XT/	Covt .�.XT/;XT/ (2.24)

in Eq. (2.23) can indeed be verified by applying Stein’s Lemma (cf. [32]), which
implies that

E Œg.X/ .X � E ŒX	/	 D V .X/E
�
g0 .X/

�
(2.25)

holds for any differentiable function g. Similarly, one can verify that the second
partial derivative term on the right-hand side of Eq. (2.22) is equivalent to

@�.t; �t/

@�t
D �
t

�Z

X

�.x/xp.x/e
t.�x��
1
2 �

2x2t/dx
Z

X

p.x/e
t.�x�t�
1
2 �

2x2t/dx

�
Z

X

�.x/p.x/e
t.�x�t�
1
2 �

2x2t/dx
Z

X

xp.x/e
t.�x�t�
1
2 �

2x2t/dx

�

�
�Z

X

p.x/e
t.�x�t�
1
2 �

2x2t/dx

��2

D �
t .Et Œ�.XT/XT 	 � Et Œ�.XT/	Et ŒXT 	/

D �
tCovt .�.XT/;XT/ : (2.26)
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Combining Eqs. (2.23) and (2.26) as per Eq. (2.22) yields

d�t.XT/ D �
tCovt .�.XT/;XT/ Œ
t .�t=T � �Et Œ�.XT/	/ dt C d�t	 : (2.27)

As a direct result of Eq. (2.27), and using St D e�r.T�t/�t.XT/, the dynamics of
St is given by

dSt D re�r.T�t/�t.XT/dt C e�r.T�t/d�t.XT/;

D re�r.T�t/�t.XT/dt C e�r.T�t/�
tCovt .�.XT/;XT/

� Œ
t .�t=T � �Et Œ�.XT/	/ dt C d�t	 ;

D rStdt CƒtdWt; (2.28)

whereƒt WD e�r.T�t/�
tCovt .�.XT/;XT/, and

dWt WD 
t .�t=T � ��t.XT// dt C d�t (2.29)

or, equivalently,

Wt WD �t C
Z t

0


s .�s=T � ��s.XT// ds: (2.30)

Alternatively, one can start with the dynamics of �t.x/ given in Eq. (2.18) and
use Eq. (2.12) to reach the same result as in Eq. (2.28) (for details, see [10, 24]).

The term ƒt which appears in Eq. (2.28) is the ‘absolute price volatility.’5 An
interesting observation related to the absolute price volatility is that its overall
magnitude is determined by the signal-to-noise parameter � . Thus, an increase
in the information flow rate means an increased price volatility. This observa-
tion seems to be paradoxical if one considers that the growing financial market
interconnectedness—which is expected to increase market efficiency and reduce
price anomalies—can actually increase the price volatility.

Another interesting observation from Eq. (2.28) pertains toWt and helps us shed
a bit more light on another somewhat paradoxical point in financial mathematics
literature which pertains to whether Wt really contains information or represents
pure noise. The process Wt, as will be shown to be a martingale w.r.t. F�t below, is
not imposed on the model as one of its inputs, but rather appeared as one of its by-
products. Furthermore, when the information flow structure is defined explicitly,Wt

is no more simply irreducible, as suggested by many classical models in financial
mathematics.

Proposition 2.3 The process Wt in Eq. (2.30) is a Brownian motion adapted to F�t .

5Note that ƒt is also forward-looking.
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Proof (See [10, 24] for a Sketch) Referring to Lévy’s characterisation of Ft-
Brownian motion, we first need to show that the processWt, as defined in Eq. (2.29)
is an F�t -martingale and, second, that d ŒW;W	 .t/ D dt. The first condition is
equivalent to

E

h
WujF �

t

i
D Wt or E

h
Wu � WtjF �

t

i
D 0 (2.31)

for u � t. Using the definition ofWt in Eq. (2.29) as well as the Markov property of
the process �t, we can write the left-hand side more explicitly as

E

h
Wu � WtjF �

t

i
D E Œ�u � �tj�t	C E

�Z u

t
.
s�s=T/ dsj�t

�

�E

�Z u

t
�
sE Œ�.XT/j�s	 dsj�t

�
: (2.32)

Now, using the definition of �t in Eq. (2.4) in the first and second terms on the
right-hand side, and the tower property6 in the third one, we find

E

h
Wu � WtjF �

t

i
D �uE Œ�.XT/j�t	C E Œˇuj�t	 � .� tE Œ�.XT/j�t	C E Œˇtj�t	/

CE

�Z u

t
.
s=T/ .�s�.XT/C ˇs/ dsj�t

�

��E Œ�.XT/j�t	
Z u

t

sds

D �uE Œ�.XT/j�t	C E Œˇuj�t	 � .� tE Œ�.XT/j�t	C E Œˇtj�t	/

C .�=T/E Œ�.XT/j�t	
Z u

t
s
sds C .1=T/E

�Z u

t

sˇsdsj�t

�

��E Œ�.XT/j�t	
Z u

t

sds: (2.33)

The integral .1=T/
Z u

t
s
sds can be shown to be equal to

Z u

t

sds C t � u by

change of variable T � s to �, and, then, � back to T � s. Hence,

E

h
Wu � WtjF �

t

i
D �uE Œ�.XT /j�t	C E Œˇuj�t	 � .� tE Œ�.XT /j�t	C E Œˇtj�t	/

C�E Œ�.XT /j�t	
�Z u

t

sds C t � u/

�
C .1=T/E

�Z u

t

sˇsdsj�t

�

6
E ŒE ŒXjFu	 jFt	 D E ŒXjFt 	 for t � u and increasing set of � -algebras .Ft/t�0.
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��E Œ�.XT /j�t	
Z u

t

sds

D E Œˇuj�t	� E Œˇtj�t	C .1=T/E

�Z u

t

sˇsdsj�t

�
: (2.34)

To conclude thatWt is an F
�
t -martingale, we write the expectationE Œˇuj�t	 above

as follows:

E Œˇuj�t	 D E ŒE Œˇuj�.XT/; ˇt	 j�t	 : (2.35)

Note, by intuition, that the �-algebra generated by both �.XT/ and ˇt is larger
than that by �t (the agent, given �t, cannot knowwhat is noise and what is not). Since
we also know that the independence relation �.XT/ ?? ˇu exists, Eq. (2.35) can be
rearranged as

E Œˇuj�t	 D E ŒE Œˇujˇt	 j�t	 : (2.36)

To calculate E Œˇujˇt	, we use the independence relation7

ˇu
u � ˇt
t ?? ˇt: (2.37)

Also, we note that E Œˇujˇt	 can be rearranged as

E Œˇujˇt	 D 
�1
u .E Œˇu
u � ˇt
tjˇt	C E Œˇt
tjˇt	/

D 
�1
u .E Œˇu
u � ˇt
tjˇt	C ˇt
t/ : (2.38)

Using the independence relation in (2.37) then implies E Œˇujˇt	 D .
t=
u/ˇt
and, therefore, E ŒE ŒˇuT jˇtT 	 j�t	 D .
t=
u/E ŒˇtT j�t	. Then, we conclude that Wt is
an F�t -martingale by employing Eq. (2.38) in Eq. (2.34), i.e.,

E

h
Wu � WtjF �

t

i
D .
t=
u � 1/E ŒˇtT j�t	C .1=T/

Z u

t

s.
t=
s/E Œˇtj�t	 ds

D .
t=
u � 1/E ŒˇtT j�t	C ..u � t/
t=T/E Œˇtj�t	
D .
t=
u � 1/E ŒˇtT j�t	C .1 � 
t=
u/E Œˇtj�t	
D 0: (2.39)

The second part, i.e., d ŒW;W	 .t/ D dt, is rather simple. Recall Eq. (2.29), i.e.,

dWt WD 
t .�t=T � �Et Œ�.XT/	/ dt C d�t: (2.40)

7Indeed; V Œˇu
u � ˇt
t; ˇt	 D E Œ.ˇu
u � ˇt
t/ˇt	 D 
uE Œˇuˇt	 � 
tE
�
ˇ2t
� D t
u
�1

u �
t
t
�1

t D 0:
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We note that d ŒW;W	 .t/ is only due to d Œ�; �	 .t/ (given �t at time t). And, by
representation (2.9), we already know that

d Œ�; �	 .t/ D d ŒB;B	 .t/ D dt; (2.41)

which completes the proof. ut
Below, we will work out St for some particular dividend structures.

2.2.1 Gaussian Dividends

Assume � is an identity, i.e., �.XT/ D XT with XT � N .0; 1/. Then, accommodat-
ing two well-known Gaussian integrals8 into Eq. (2.19) would yield

St D 1ft<Tge�r.T�t/

Z

X

xp.x/e
t.�x�t� 1
2 �

2x2t/dx
Z

X

p.x/e
t.�x�t� 1
2 �

2x2t/dx

D 1ft<Tge�r.T�t/

Z

X

xe� x2
2 e.�
t�t/x�.

1
2 �

2
tt/x2dx
Z

X

e� x2
2 e.�
t�t/x�.

1
2 �

2
tt/x2dx

D 1ft<Tge�r.T�t/ �
t�t


�2
tt C 1

��3=2
.�2
tt C 1/

�1=2

D 1ft<Tge�r.T�t/ �
t�t

�2
tt C 1
; (2.42)

where X D .�1;1/. Since 
t has a singularity at t D T (i.e., 
t ! 1 as t ! T),
we can talk about the limit of St as t approaches T. Indeed, it is straightforward to
show that

lim
.T�t/!0

St D �t

�T
D XT : (2.43)

8These are [27]:

1.
R
X
exp.�x2=2/ exp.ax � bx2/dx D p

2�.2b C 1/�1=2 exp.a2=.2.2b C 1//, and
2.
R
X
x exp.�x2=2/ exp.ax � bx2/dx D p

2�a.2b C 1/�3=2 exp.a2=.2.2b C 1///,

where X D .�1;1/.
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2.2.2 Exponential Dividends

Besides normal density, exponential class of distributions are also commonly used
to model dividends. Assume, again, � is an identity function and p.�.x// D p.x/ D
�e��x, � > 0, and X D Œ0;1/, a priori. This implies, again by virtue of Eq. (2.19),
that

St D 1ft<Tge�r.T�t/

Z

X

xe��xe
t.�x�t� 1
2 �

2x2t/dx
Z

X

e��xe
t.�x�t� 1
2 �

2x2t/dx

D 1ft<Tge�r.T�t/

Z

X

xe� 1
2

�
.x�

p
t
t/

2�2x.
t��t��/Ca2
	
dx

Z

X

e� 1
2

�
.x�

p
t
t/

2�2x.
t��t��/Ca2
	
dx

D 1ft<Tge�r.T�t/

Z

X

xe� 1
2 .x�

p
t
t�a/

2

dx
Z

X

e� 1
2 .x�

p
t
t�a/

2

dx

�
a D 
t��t � �

�
p
t
t

�

D 1ft<Tge�r.T�t/

Z

X0

x0 C a

�
p
t
t

e�x02=2dx0
Z

X0

e�x02=2dx0


x0 D x�

p
t
t � a; X

0 D Œ�a;1/
�

(2.44)

With some further arrangement, we obtain the following explicit formula for the
asset price (similar to the one in [10]):

St D 1ft<Tge�r.T�t/

1
�

p
t
t

Z

X0

x0e�x02=2dx0C a

�
p
t
t

p
2� .1�‚.�a//

p
2� .1�‚.�a//



y D x02; dy D 2x0dx0

�

D 1ft<Tge�r.T�t/

1
�

p
t
t

�
�e�x02=2

ˇ̌
X0

	
C a

�
p
t
t

p
2�‚ .a/

p
2�‚ .a/

D 1ft<Tge�r.T�t/ 1

�
p
t
t

0
B@ e

� 1
2

�

t��t��
�

p

t
t

	2

p
2�‚

�

t��t��
�

p
t
t

	 C 
t��t � �

�
p
t
t

1
CA :

(2.45)

where‚.�/ denotes the standard normal cumulative density.
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2.2.3 Log-Normal Dividends

Assume now �.XT/ is not an identity but the dividend �.XT/ will be paid according
to

�.XT/ D S0e.
�� 1

2 �
2/TC�p

TXT ; (2.46)

with � > 0, and let XT � N .0; 1/. Note that this is equivalent to saying that �.XT/

is an identity and adheres to lognormal marginal law with parameters .ln S0 C .��
�2=2/T; �

p
T/. We now simply accommodate Eq. (2.46) into Eq. (2.19), i.e.,

St D 1ft<Tge�r.T�t/

Z

X

S0e.
�� 1

2 �
2/TC�p

Txe� x2
2 e
t.�x�t�

1
2 �

2x2t/dx
Z

X

e� x2
2 e
t.�x�t�

1
2 �

2x2t/dx

D 1ft<Tge�r.T�t/S0e.
�� 1

2 �
2/T

Z

X

e�
p
Txe� x2

2 e
t.�x�t� 1
2 �

2x2t/dx
Z

X

e� x2
2 e
t.�x�t� 1

2 �
2x2t/dx

D 1ft<Tge�r.T�t/S0e.
�� 1

2 �
2/T e

1
2 a
2

e
1
2 b
2

Z

X

e� 1
2 .x

2.1C�2
tt/�2x.�
p
TC
t��t/Ca2/dx

Z

X

e� 1
2 .x

2.1C�2
tt/�2
t��tCb2/dx

D 1ft<Tge�r.T�t/S0e.
�� 1

2 �
2/T e

1
2 a
2

e
1
2 b
2

Z

X

e� 1
2

�
x
p
1C�2
tt�a

	2
dx

Z

X

e� 1
2

�
x
p
1C�2
tt�b

	2
dx

;

(2.47)

where X D .�1;1/, a D .�
p
T C 
t��t/=

p
1C �2
tt and b D

.
t��t/=
p
1C �2
tt. Hence, we get

St D 1ft<Tge�r.T�t/S0e

�
�� �2

2

	
TC �2T

2.1C�2
t t/
C �

p

T
t�
1C�2
t t

�t
: (2.48)

As for dynamics dSt, we first need the evaluate the conditional covariance term
which appears in Eq. (2.27), i.e,

d�t.XT/ D �
tCovt Œ�.XT/;XT 	
�

t


T�1�t � �Et Œ�.XT/	

�
dt C d�t

�
; (2.49)
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to derive the dynamics of St as given in Eq. (2.28), i.e.,

dSt D rStdt CƒtdWt; (2.50)

where, again,ƒt WD e�r.T�t/�
tCovt .�.XT/;XT/, and dWt andWt as in Eqs. (2.29)
and (2.30), respectively.

In order to calculate the conditional covariance term and, hence, dSt, more
explicitly, we need to evaluate one additional integral, namely,

Et Œ�.XT/XT 	 D

Z

X

�.x/xe� x2
2 e
t.�x�t� 1

2 �
2x2t/dx

Z

X

e� x2
2 e
t.�x�t� 1

2 �
2x2t/dx

: (2.51)

We can use the same Gaussian integrals as above to compute Eq. (2.51):

Et Œ�.XT/XT 	 D
S0e.�� 1

2 �
2/T
Z

X

xe� x2
2 e.
t��tC�

p
T/x�. 12 
t�2t/x2dx

Z

X

e� x2
2 e.
t��t/x�.

1
2 
t�

2t/x2dx

D
S0e.�� 1

2 �
2/T 
t��tC�

p
T

.
t�2tC1/3=2
exp

�
1
2

.
t��tC�
p
T/

2

�2
ttC1

�

1

.�2
t tC1/1=2
exp

�
1
2

.�
t�t/
2

�2
ttC1
	

D S0e.
�� 1

2 �
2/T �
t�t C �

p
T

�2
tt C 1
exp

 
�
t�t�

p
T C 1

2
�2T

�2
tt C 1

!
:

(2.52)

We are now equipped with Eqs. (2.42), (2.48) and (2.52) to calculate the
conditional covariance Covt .�.XT/;XT/ D Et Œ�.XT/XT 	 � Et Œ�.XT/	Et ŒXT 	:

Covt .�.XT/;XT/ D S0e.
�� 1

2 �
2/T �
t�t C �

p
T

�2
tt C 1
exp

 
�
t�t�

p
T C 1

2
�2T

1C �2
tt

!

�S0e.
�� 1

2 �
2/T �
t�t

�2
tt C 1
exp

 
1
2
�2T

1C �2
tt
C �
t�t�

p
T

1C �2
tt

!

D S0e.
�� 1

2 �
2/T exp

 
�
t�t�

p
T C 1

2
�2T

�2
tt C 1

!
�
p
T

1C �2
tt
: (2.53)
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Notice that Eq. (2.53) without its last term is exactly Ster.T�t/ and, therefore,

Covt .�.XT/;XT/ D Ste
r.T�t/ �

p
T

1C �2
tt
: (2.54)

Then, by virtue of Eq. (2.50), we have

dSt D rStdt C �
t�
p
T

�2
tt C 1
StdWt; (2.55)

where, again, dWt is defined as in Eq. (2.41). Now, we discover that, for the
particular choice of �2 D 1=T in Eq. (2.55), not only we get

dSt D rStdt C �StdWt; (2.56)

but also the information flow process �t turns into a standard Brownian motion, i.e.,

E Œ�s�t	 D E

h�
sXT=

p
T C ˇsT

	 �
tXT=

p
T C ˇtT

	i

D .st=T/E
�
X2T
�C .s=

p
T/E ŒXTˇtT 	

C.t=pT/E ŒXTˇsT 	C E ŒˇsTˇtT 	 .X ?? ˇ/

D s � 
�1
t s C 
�1

t s D s: (2.57)

Yet, there is a more direct way to see this. Once we choose �2 D 1=T, Eq. (2.48)
reduces to

St D 1ft<TgS0 exp



� � �2=2

�
t C ��t

�
; (2.58)

where, again, �t substitutes for Wt, the innovation process. Therefore, with the
special choice of �.XT/ in Eq. (2.46), we actually end up in a Black-Scholes-type
model of stock price dynamics. Next, we will deal with signal-based derivatives
pricing.

2.3 Change of Measure and Signal-Based Derivative Pricing

In this section, we show how the present signal-based framework can be used to
price derivatives. A standard European call option that is written at time 0 on an asset
which is characterised by the price process in Eq. (2.48).9 Assume that the option

9It reads St D 1
ft<Tg

S0 exp
�
��.T � t/C

�
�� �2

2

	
T C �2T

2.1C�2
t t/
C �

p

T
t�
1C�2
t t

�t

	
.
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Fig. 2.1 Signal-based option
pricing timeline

expires at time t and has an exercise price K. The underlying pays �.XT/ 2 .0;1/

at time T where � is not an identity. The information process .�s/0�s�T will again
be carrying signals regarding the factor XT . Then, the value function for the option
can be written as,

C0 D e�rt
E ŒSt � K	C

D e�rt
E Œ�t.XT/� K	C ; (2.59)

where EŒ�	C denotes expectation over positive values. A simple timeline is given in
Fig. 2.1.

Indeed, Eq. (2.59) looks like an “information” analogous to a forward “rate”
agreement (i.e., FIA versus FRA) as, once integrated over all possible values of
�.XT/, parties in fact contract solely on the time-t value of the pricing signal, i.e.,
f�sg0�s�T , which will determine �.XT/. Using Eq. (2.12),10 we have

C0 D e�rt
E

�
e�r.T�t/

Z

X

�.x/�t.x/dx � K

�C

D e�rt
E

2
664e�r.T�t/

Z

X

�.x/p.x/e
t.�x�t�
1
2 �

2x2t/dx
Z

X

p.x/e
t.�x�t�
1
2 �

2x2t/dx
� K

3
775

C

D e�rt
E

2
664e�r.T�t/

Z

X

�.x/pt.x/dx
Z

X

pt.x/dx
� K

3
775

C

D e�rt
E

"�Z

X

pt.x/dx

��1 Z

X



e�r.T�t/�.x/� K

�
pt.x/dx

#C

D e�rt
E

�
ˆ�1

t

Z

X



e�r.T�t/�.x/� K

�
pt.x/dx

�C
; (2.60)

10St D 1
ft<Tg

e�r.T�t/
R

1

0 x�t.x/dx.
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where

pt.x/ WD p.x/e
t.�x�t� 1
2 �

2x2t/; ˆ�1
t WD

�Z 1

0

pt.x/dx

��1
: (2.61)

Proposition 2.4 The process ˆ�1
t is the Radon–Nikodym derivative (in Girsanov’s

sense [17]) of the bridge measure B, under which �t turns out to be a standard
Brownian bridge, with respect to the pricing measure Q.

Proof We begin with the dynamics of pt D p.t; �t/. Apparently, using Eq. (2.29)11

for d�t and d Œ�t; �t	 D dt, we have

dpt D @p.t; �t/

@t
dt C @p.t; �t/

@�t
d�t C 1

2

@2p.t; �t/

@�2t
d Œ�t; �t	

D
�

2t =T

�
�x�t � 1

2
�2x2t

�
� 
t

�
1

2
�2x2

��
ptdt

C
t�xptd�t C 1

2

2t �

2x2ptd Œ�t; �t	

D
�

2t =T

�
�x�t � 1

2
�2x2t

�
� 
t

�
1

2
�2x2

��
ptdt

C
t�xpt
�
dWt � 
t



�tT

�1 � ��t.XT/
�
dt
�C 1

2

2t �

2x2ptdt

D 1

2
�2x2




2t � 
2t tT�1 � 
t

�
ptdt C 
2t �

2x�t.XT/ptdt C 
t�xptdWt:

(2.62)

The bracketed term in the last line of Eq. (2.62) can easily be shown to equal 0.
Therefore,

dpt
pt

D 
2t �
2x�t.XT/dt C 
t�xdWt: (2.63)

Now, we focus on ˆt. Since ˆt WD R1
0

pt.x/dx is basically a function of time,
we can write

dˆt D d

�Z

X

pt.x/dx

�
D
Z

X

dpt.x/dx: (2.64)

11It can rewritten as d�t D dWt � 
t


�tT�1 � �Et Œ�.XT/	

�
dt where, again, Wt is a martingale

under the pricing measure.
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Accommodating dpt.x/ from Eq. (2.63), we have

dˆt D
Z

X

�

2t �

2xpt.x/�t.XT/dtdx C
Z

X


t�xpt.x/dWt

�
dx

D 
2t �
2�t.XT/

�Z

X

xpt.x/dx

�
dt C 
t�

�Z

X

xpt.x/dx

�
dWt: (2.65)

On the other hand, it follows from the definition of ˆt that

Z

X

xpt.x/dx

ˆt
D �t.XT/

i.e.,
Z

X

xpt.x/dx D �t.XT/ˆt: (2.66)

Substituting this back into Eq. (2.65), we have

dˆt D �2
2t �
2
t .XT/ˆtdt C �
t�t.XT/ˆtdWt: (2.67)

And, as a direct consequence,

d Œˆt; ˆt	 D �2
2t �
2
T.XT/ˆ

2
t dt: (2.68)

Now, applying Itô Formula to f .ˆt/ D 1=ˆt, we can show that

df .ˆt/ D dˆ�1
t D @f .ˆt/

@ˆt
dˆt C 1

2

@2f .ˆt/

@ˆ2t
d Œˆt; ˆt	

D �ˆ�2
t �

2
2t ˆt�
2
T.XT/dt �ˆ�2

t �
tˆt�t.XT/dWt

Cˆ�3
t �2
2t �

2
t .XT/ˆ

2
t dt

D ��2
2t �2T.XT/f .ˆt/dt � �
tf .ˆt/�t.XT/dWt

C�2
2t �2t .XT/f .ˆt/dt

D ��
t�t.XT/f .ˆt/dWt; (2.69)

where the term �
t�t.XT/ can simply be called as the “market price of risk” (again,
in Girsanov’s sense). Based on Eq. (2.69), f .ˆt/ can be written as

f .ˆt/ D exp

�
�1
2
�2
Z

X


2s �
2
s .XT/ds � �

Z

X


s�s.XT/dWs

�
; (2.70)
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which is the exponential martingale. As a final step, we can define a Brownian
motion QW under B, by using Girsanov theorem, as

QWt WD Wt C �

Z

X


s�s.XT/ds; (2.71)

and check whether EB
� QWt

�
or E

� QWtˆ
�1
t

�
is martingale. Apparently, by virtue of

Eqs. (2.69) and (2.71),

d

 QWtf .ˆt/

� D QWtdf .ˆt/C f .ˆt/d QWt C d
� QWt; f .ˆt/

�

D �
t��t.XT/ QWtf .ˆt/dWt C f .ˆt/dWt C �
t�t.XT/f .ˆt/dt

�
t��t.XT/f .ˆt/dt

D �
1 � QWt
t��t.XT/f .ˆt/

�
f .ˆt/dWt (2.72)

is a martingale. This completes the first part of the proof.
We can verify that �t turns into a standard Brownian bridge under B as follows.

If we write Wt explicitly in Eq. (2.71), using Eq. (2.30), indeed, we see that

QWt D �t C
Z

X


s


�sT

�1 � ��s.XT/
�
ds C �

Z

X


s�s.XT/ds

D �t C .1=T/
Z

X


s�sds; (2.73)

which implies

�t D QWt � .1=T/
Z

X


s�sds or d�t D d QWt � .1=T/
t�tdt: (2.74)

Note that the differential equation in (2.74) above is the one satisfied by a
standard Brownian bridge ˇtT over the interval Œ0;T	. To see this, consider the
representation in Eq. (2.9)12 without the drift term �.x/.

ut
We now rewrite option value in Eq. (2.60) under B as

C0 D e�rt
E
B

�Z

X



e�r.T�t/�.x/� K

�
pt.x/dx

�C
: (2.75)

Assuming that there exists a solution ��
t (following from the monotonicity of

pt.x/ in �t as per Eq. (2.61)) to the equality

Z

X



e�r.T�t/�.x/� K

�
pt.x/dx D 0 (2.76)

12It reads d�t D 

��.x/� T�1

R t
0 
sdW

0

s

�
dt C dW 0

t D 

��.x/� T�1
t�t

�
dt C dW 0

t .
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for arbitrary t, T and K, and knowing that �t is a standard Brownian bridge (i.e.,
�t D z

p
t=
t with z � N .0; 1/), we can infer C0 as follows:

C0 D e�rT
Z

X

�.x/p.x/
Z

Z

e
t
�
�xz

p
t
�1

t � 1
2 �

2x2t
	
1p
2�

e� z2
2 dzdx

�e�rtK
Z

X

p.x/
Z

Z

e
t
�
�xz

p
t
�1

t � 1
2 �

2x2t
	
1p
2�

e� z2
2 dzdx

D e�rT
Z 1

�1
�.x/p.x/

Z

Z

1p
2�

e� 1
2 .z

2�2pt
t�xzCt
t�2x2/dzdx

�e�rtK
Z

X

p.x/
Z

Z

1p
2�

e� 1
2 .z

2�2pt
t�xzCt
t�2x2/dzdx

D e�rT
Z

X

�.x/p.x/
Z

Z

1p
2�

e� 1
2 .z�

p
t
t�x/

2

dzdx

�e�rtK
Z

X

p.x/
Z

Z

1p
2�

e� 1
2 .z�

p
t
t�x/

2

dzdx: (2.77)

As we are interested in the expected value where �t � �?t (or, equivalently, z �
z?), Eq. (2.77), in fact, corresponds to

C0 D e�rT
Z

X

�.x/p.x/‚

�z? C p


tt�x
�
dx

�e�rtK
Z

X

p.x/‚

�z? C p


tt�x
�
dx (2.78)

and

P0 D e�rtK
Z

X

p.x/‚


z? � p


tt�x
�
dx

�e�rT
Z

X

�.x/p.x/‚


z? � p


tt�x
�
dx (2.79)

for call and put prices, respectively, where ‚.�/ denotes the standard normal
cumulative distribution.

Corollary 2.5 Assume �.XT/ is as given in Eq. (2.46).13 Then, explicitly,

�� D
�
2
�
ln K

S0
C �2

2
T � rt

		 


t�

2t C 1
� � �2T

2
t
p
T��

: (2.80)

13It reads �.XT/ D S0 exp
h

�� 1

2
�2
�
T C �

p
TXT

i
, where XT � N .0; 1/.
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Fig. 2.2 Call option value for ranging pairs .�; t/. Arbitrary parameters: T D 2, � D 0:05, K D
100, � D 0:2, S0 D 100

Figure 2.2 depicts the call option value against a range of values for the
information flow rate � and maturity t, where T is a constant and �.XT/ is as in
Eq. (2.46). As expected, greater time frame to maturity implies greater chances of
price exceeding the threshold K. But, again, how do we interpret faster information
flow leading to higher uncertainty and, therefore, higher option prices? At this point,
we would like to distinguish between the pattern in which information has been
incorporated into prices, and “informativeness” of prices in the sense of [22]. As
we shall see in Sect. 2.4 later in this chapter, for any t 2 Œ0;T	, when �1 � �2,
the relation h.�.XT/j�2t / � h.�.XT/j�1t / always holds among conditional entropies
of �.XT/, i.e., �2t quickly turns into a less informative signal. Although this might
initially seem somewhat contradictory, pricing of contingent claims is more about
volatility, i.e., the pattern that information is incorporated, and the variability of
signals, i.e., V.�t/ D .� t/2V.XT/C t
�1

t , and, therefore, variability of model prices
are increasing in � , leading to higher option prices.

While the present signal-based framework enables chopping up of the valuation
problem into modelling and prediction of market factors, it also reduces the
challenge of explaining price variability to determining (e.g., based on data) how
fast new information is revealed to the market. Since volatility is latent and cannot
be observed directly, it has to be inferred from the data using a certain metric (with
squared deviations from the mean being the most common one). Information flow,
however, is more intuitive and can be modelled more structurally as well as in a
more forward-looking manner.

Figure 2.3 shows the relationship between implied volatility and signal-to-noise
ratio of call options written on two selected tickers, namely, AAPL and MSFT, for
different information maturities T. Each curve is an iso-maturity and the vertical
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Fig. 2.3 Implied volatility and information flow rate. Options are valued on May 1, 2015, and
mature on August 21, 2015

lines show the Black-Scholes implied volatilities on the valuation date. Implied
volatility has in fact no financial meaning, other than being an additional degree
of freedom to equate the model output to the market reality, and is not sensitive
to forward-looking information. We can infer from the figure that information flow
rate offers a more intuitive substitute to implied volatility, with substitution rate
decreasing as T increases, and allow us to make observations such as “information
is flowing more rapidly/slowly to the market,” not just “market prices imply a
higher/lower volatility.”

2.4 An Information-Theoretic Analysis

Another intriguing question at this point would be how much information about
�.XT/ is carried in signal �t at time t. This would help us measure the change, both
w.r.t. time and different values of the flow parameter � , in the amount of information
carried by �t.

We can write the Shannon [31] entropy (which is a special case of Renyí [29]
entropy) of �t as

h.�t/ D �
Z

„

p.�t/ log2 p.�t/d�t D �Ep.�t/ Œlog2 p.�t/	 ; (2.81)

where h.�/ � 0 almost surely, and �t 2 „, i.e. the support of �t (see, e.g., [16]).
Thus, in general, the greater the variance of �t, the greater its entropy will be.
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In the present framework, however, we are more concerned about information in
a bilateral sense. In this regard, ‘joint’ and ‘conditional’ entropies are defined as

h.�t; �.XT// D �
Z

„

Z

X

p.�t; x/ log2 p.�t; x/dxd�t D �Ep.�t;x/ Œlog2 p.�t; x/	 ;

(2.82)
and

h.�tj�.XT// D �
Z

X

�Z

„

p.�tjx/ log2 p.�tjx/d�
�
p.x/dx

D �
Z

X

Z

„

p.�t; x/ log2 p.�tjx/d�tdx

D �Ep.�t ;x/ Œlog2 p.�tjX/	 ; (2.83)

respectively, where

p.�; x/ D @2

@�@x
Q Œ.�t < �/ \ .�.XT/ < x/	

D @2

@�@x
Q Œ�t < �j�.XT/ < x	Q Œ�.XT/ < x	

D p.�j�.XT/ D x/p.x/

or, D p.xj�t D �/p.�/: (2.84)

Using Eq. (2.83), we can work out the following property:

h.�tj�.XT// D �
Z

X

�Z

„

p.�tjx/ log2
p.xj�t/p.�t/

p.x/
d�t

�
p.x/dx

D �
Z

X

Z

„

p.�t; x/ log2 p.xj�t/d�tdx C
�

�
Z

„

p.�t/ log2 p.�t/d�t

�

�
�

�
Z

X

p.x/ log2 p.x/dx

�

D h.�.XT/j�t/C h.�t/� h.�.XT//; (2.85)

which directly implies

h.�.XT// � h.�.XT/j�t/ D h.�t/ � h.�tj�.XT//: (2.86)

It is straightforward to see from its definition that, 8t � T, �t is of higher entropy
(more uncertain) without the knowledge of �.XT/ than with it and, therefore, h.�t/�
h.�tj�.XT// � 0 should hold. This means, in turn, by virtue of the left-hand-side of
Eq. (2.86), that �.XT/ is of higher entropy (more uncertain) without the knowledge
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Fig. 2.4 Evolution of conditional entropy h.�.XT /j�t/ over time and across information flow rates
� . Arbitrary parameters: T D 2, �.XT / D XT � N .0; 1/

of �t than with it otherwise (we’ve already used this latter property in Sect. 2.3). To
illustrate this point further, we depict in Fig. 2.4 the evolution of conditional entropy
of �.XT/ with respect to �t, i.e., h.�.XT/j�t/, for different values of � . Note that
h.�.XT/j�t/ decreases both as the signal �t (for a given �) reveals more information
in time, and as its quality, i.e., � , increases (for a given t).

‘Mutual information,’ on the other hand, measures the amount of information that
�t contains about another random variable �.XT/, or vice versa, and corresponds to
the reduction in the amount of uncertainty of one variable due to the knowledge
of other. Mutual information (I), in fact, corresponds to the ‘relative entropy,’ or
Kullback–Leibler Distance, (D) between p.�; x/ and p.�/p.x/, i.e.,

I.�t; �.XT// D D. p.�; x/jjp.�/p.x// D
Z

„

Z

X

p.�; x/ log2
p.�; x/

p.�/p.x/
d�dx

D Ep.�;x/

�
log2

p.�; x/

p.�/p.x/

�
; (2.87)

where I.�t; �.XT// D D. p.�; x/jjp.�/p.x// � 0 almost surely.14 Furthermore,
a direct relationship between joint entropy h.�t; �.XT// and mutual information

14We complete the definition (2.87) by adding the conditions 0 ln .0=0/ D 0, 0 ln .0=p.�// D 0,
and p.�/ ln . p.�/=0/ D 1.
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I.�t; �.XT// can be established using Eqs. (2.82) and (2.87):

I.�t; �.XT// D
Z

„

Z

X

p.�; x/ log2 p.�; x/d�dx �
Z

„

p.�/ log2 p.�/d�

�
Z

X

p.x/ log2 p.x/dx

D h.�t/C h.�.XT//� h.�t; �.XT//: (2.88)

In the present context, since St is an invertible function of �t, we can also show
that I.�t; �.XT// D I.St; �.XT// (cf. [12]).

2.5 Single Dividend–Multiple Market Factors

We leave the case where the asset pays multiple cashflows to Chap. 5 and focus
on the case where asset pays a single dividend that is, this time, determined by a
multiplicity of independent market factors, i.e., X1T ; : : : ;X

m
T , and, therefore, multiple

information processes �1t ; : : : ; �
m
t . Then, St is given by

St D 1ft<Tge�r.T�t/
E
�
�T.X

1
T ; : : : ;X

m
T /j�1t ; : : : ; �mt

�

D 1ft<Tge�r.T�t/
Z

X

: : :

Z

X

�T.x1; : : : ; xm/�
1
t .x1/ : : : �

m
t .xm/dx1 : : : dxm;

where, again,� i
t .x/’s are the posterior density functions as in Eq. (2.18).

15 Similarly,
multi-factor analogue of d�.XT/ in (2.49)16 is given by

d�.X1T ; : : : ;X
m
T / D

mX
iD1

� i
tCov
i
t



�.X1T ; : : : ;X

m
T /;X

i
T

�

� 

tT�1 
� it � � iTEt
�
�.X1T ; : : : ;X

m
T /
��
dt C d� it

�
; (2.89)

where Covit WD Cov
�
�.X1T ; : : : ;X

m
T /;X

i
T j�1t ; : : : ; �mt

�
. We, again, define

dWi
t , 
t



� it T

�1 � � i
Et
�
�.X1T ; : : : ;X

m
T /
��
dt C d� it (2.90)

15It reads �t.x/ D p.x/e
t.�x�
˛
t �

1
2 �

2x2t/=
R
X
p.x/e
t.�x�t�

1
2 �

2x2t/dx:
16It reads d�.XT/ D �
tCovt .�.XT /;XT/

�

t


T�1�t � �Et Œ�.XT/	

�
dt C d�t

�
.
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or, equivalently,

Wt , �t C
Z t

0


s


�s=T � �Es�.X

1
T ; : : : ;X

m
T /
�
ds: (2.91)

Equation (2.90) enables us to simplify Eq. (2.89) as

d�.X1T ; : : : ;X
m
T / D

mX
iD1

� i
tCov
i
tdW

i
t : (2.92)

Since St D 1ft<Tge�r.T�t/�.X1T ; : : : ;X
m
T /, in a similar sense to Eq. (2.28), we can

write the dynamics dSt as

dSt D �Stdt C
mX
iD1

ƒi
tdW

i
t ; (2.93)

where we again used the definition ƒi
t WD e�r.T�t/� i
tCovit. This implies that the

overall absolute volatility at time t is

ƒt D
 

mX
iD1
.ƒi

t/
2

!1=2
: (2.94)

Equation (2.94) is quite telling in the sense that it enables us to decompose the
absolute volatility at time t into its unhedgeable stochastic volatility components
(see [24]).
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Chapter 3
A Signal-Based Heterogeneous Agent Network

Trade can occur on purely informational causes. In [6], for example, we are shown
that there are situations in which both parties are strictly better off under a trade
executed solely on the basis of their individual information.1 The literature on the
dynamics of heterogenous markets is still in its infancy but actively developing.
Indeed, one can be overwhelmed by the task of handling a very broad spectrum
of aspects where agent-level heterogeneity can arise, such as risk aversion levels,
degrees of rationality, patience, beliefs, and information gathering, processing skills,
and so on.

A detailed classification of different market microstructure models, on the other
hand, is given in [10] which is beyond the scope of the present chapter. However,
we start with a review of the selected literature. In this regard, Table 3.1 provides
a summary overview of the literature on equilibrium information-based agent
networks.

Perhaps one of the earliest sequential (discrete) trade models is the one described
in the work of Glosten and Milgrom (cf. [15]), where an attempt is made to
explain bid-ask spread as a purely informational phenomenon that is believed to
be arising from adverse selection behaviour encountered by less-informed traders.
The informational properties of transaction prices and the reaction of the spread to
market-generated as well as other public information is also investigated. One of
the interesting implications of this model is the possibility of market shutdowns due
to severe informational inefficiencies. This is similar to the “lemons problem” of
Akerlof [2]. The informational content of prices and the value of extra information
to the holder are also examined in the work of Kyle (cf. [18]) through sequential
as well as continuous auction models. Moreover, the latter two seem to converge
as the trading interval gets smaller. One interesting result of the model discussed in
[18], and to a certain extent in [15], is that modelling innovations as functions of
quantities traded is found to be consistent with modelling price innovations as the

1Contrary to, e.g., [16, 19].
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consequence of new information arrivals. The ‘informativeness of prices’ (which
is complementary to the amount of information which is yet to be incorporated
into prices) in the context of [18] refers to the error variance of future dividend
given the market clearing price. The question is how intensively the agent, given his
superior signal, should trade over time to maximise his profit given his actions might
disturb the market (i.e., prices and depth). This model is later on extended in [3] to
general continuous distributions for the dividend. Then, a modified version of [15]
in continuous time, where ‘bluffing’ (i.e., mixed strategy) is also allowed, is shown
to converge to, again, a modified version of [18] with a random signal deadline in
[4]. A rather game-theoretic approach to signal-based trade is taken in [6] where,
this time, the dividend is let endogenously be determined by the action of the agent
and its correspondence with the realised fundamental. The signals, in this case, are
related to the action that needs to be taken. A sufficient level of signal precision is
found to be necessary and sufficient for establishing the case where both seller and
buyer are better off from trade in expectation (referred to as “common knowledge
of gains from trade” in [6]), which is the equilibrium.

So far, there is no explicit mention of the dynamics of information flow, which
is the subject of heterogeneity, and it is understood to be an ‘immediate access’
to a publicly unknown value �.XT/ without any noise component. Building on
[3, 18], a learning component is added in [5]. This means the signals are now
long-lived with a signal-to-noise varying in time. Although this made possible
the mentioning of information ‘flow’ in its true meaning, the interpretation of
‘learning’ through signal in [5] is slightly different in that when the noise-to-signal,
i.e., reciprocal of signal-to-noise, is large, this means the agent is learning a lot.
Yet, interestingly, given the total amount of information disparity in favour of the
more informed, the pattern in which the information flows is found to be rather
irrelevant in equilibrium. Later on, the long-lived signal process is associated with
a exponential distributed random deadline (as in [4] earlier) in [12]. In fact, a
random deadline changes the way the strategies for exploiting extra information
are structured in various ways, with one way being that agents do not rush to unload
their information before it becomes useless and, accordingly, trade frantically as
deadline approaches. Backward induction methods of dynamics programming are
also rendered inapplicable.

Perhaps the most interesting alternative to the models of ‘diverse information’
models (where agents do generally share the same probability measure but work
over distinct probability spaces) are those of ‘diverse beliefs’. One way to account
for the diversity of beliefs is through equivalent (i.e., defined over the same filtered
probability space) probability measures which reflect agents’ personal beliefs on
the true value of the dividend, as in [9]. This is maintained by likelihood ratio
martingales (or, density processes). Interestingly, the equivalence of the latter two
models is established, even without a particular choice of explicit signal structure
for private information. And, not so interestingly, the greater the diversity of beliefs,
the larger the volume of trade is. A similar approach is found in [13] where an
equilibrium is established in terms of ‘surviving agents.’ In a belief-heterogeneous
market, the surviving agent is found to be the one who is the most rational. Last
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but not least, in cognisance of the important role played by dynamic optimisation
in approaching heterogeneous financial market equilibrium problems, we underline
two recent accounts of the latter, i.e. [11, 14], where how, in a market of two agents
with heterogeneous characteristics, equilibria for various quantities can be found by
means of a single backward-induction algorithm is vividly shown.

The approach in the rest of this chapter to being informationally (dis)advantage-
ous is analogous to the one in [7, 8]: we do not view the state of being informa-
tionally (dis)advantageous as (not) having immediate access to the future value of
a variable which is unknown to the public information. We rather view it as having
access to efficient streams of information or, equivalently (cf. [1]), being more
capable to compile and process large and complex datasets out of publicly available
information. Both of these are associated with a higher � of � in the context of
Chap. 2. Yet, in the sense of [9], the present framework can also be seen as a diverse
belief model where beliefs are shaped in time by information itself.

3.1 Model Setup

We assume that there is a pure dealershipmarket comprising risk-neutral agents with
heterogeneous informational access. For simplicity, and w.l.o.g., we assume there is
a pair of agents, j D 1; 2, with access to the filtrations �1t , �

2
t , and a single risky

asset with payoff �.XT/ not being measurable w.r.t. F �
t , t < T. We also assume

�1 < �2, i.e., agent 2 is informationally more susceptible than agent 1. In our
dynamical model, for simplicity of analysis, we suppose that agents trade with each
other futures contracts on the single risky asset at sequential auction times ti 2 Œ0;T	
for i D 1; 2; : : : ;m, without any intertemporal consumption and exogenous wealth.
Both agents simply follow a buy-and-hold strategy. In this setup, execution of trades,
besides a potential profit or loss, results in two things. First, they help, e.g., the
central-planner, consolidate2 information sets of agents at time ti to have a joint
information bundle N�c D �.�1; �2/. Second, the competitive market price will be
discovered immediately. Below we will analyse the latter two separately. Limit
orders are cleared by aWalrasian matching engine (as in [11]), which can be deemed
a central-planner in the context of [9] or a group of competitive market makers. The
central-planner aims solely to maximise the overall expected profit (or, utility) of
agents.

We also note that, for any given t and a priori density p.x/, the price is a function
of � and � , i.e., St D S.�; �/. This means, if St is observed, then one needs to know
� to be able to back out �t. Without knowledge � , the observer cannot infer how
reliable an observed sample of �t is.

2Here we emphasise the term ‘consolidate,’ since how information is consolidated will be one of
the key questions in our algorithm.



38 3 A Signal-Based Heterogeneous Agent Network

Moments before the sequential auction time ti, agents, having observed their
signals, submit to the central planner the bid and ask prices at which they are willing
to trade. One key property of our model is that an agent may not necessarily know
his signal is superior (i.e., agnostic) and the agents will be able to infer each other’s
prices, and also information (unless they are ‘omitters’, as described below), when,
and only if, a price match occurs and a clearing price is set. Otherwise, limit orders
are kept with the auction engine (i.e., closed limit order trading book). This also
rules out ‘bluffing’ (cf. [4, 12]).

Individual bid and ask prices are based on the signal-implied prices worked out
by virtue of Eq. (2.19) and trade occurs whenever

&�S1t � &CS2t or &�S2t � &CS1t ; (3.1)

with &� and &C being the constant bid and ask multipliers, respectively, where &� �
1 and &C � 1. Obviously, if Eq. (3.1) holds with equality, i.e., if &�S1t D &CS2t or
&�S2t D &CS1t , then the market price S�

t will be discovered directly. In case of an
inequality, under risk-neutrality assumption, the market will clear at the mid-price3

S�
t D &�S1t C &CS2t

2
or

&�S2t C &CS1t
2

: (3.2)

The initial contract holdings of agents, as denoted by � j0, j 2 f1; 2g, are set to 0.
Here � jt denotes the total time-t net contract stock held by agent j. We also define
�t WD P

j �
j
t as the total net contract ‘stock’ held by the central clearing at time t.

Accordingly, total net order ‘flow’ at time t should be ��t which is given by

��t D
X
j

��
j
t D

X
j

q j
t D qt (3.3)

for some trading process .q j
t /0�t�T , given by

q j
t WD

8<
:
q jC
t ; Sjt > S�

t ;

q j�
t ; S

j
t < S�

t ;

0; otherwise;
(3.4)

with q jC
t > 0, q j�

t < 0. Market clearing conditions imply qt D P
j q

j
t D 0 and,

therefore, �t D 0, 8t 2 Œ0;T	. Now we define the increasing process .st/t2Œ0;T	, i.e.,
the time of the last trade prior to time t, as follows:

st D supfs W s < t; jq j
s j > 0g: (3.5)

3In [11, p. 7], the authors elegantly elaborate why the real-world interpretation of the price posted
by a Walrasian auctioneering computer is the bid-ask midpoint.
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It is apparent that st is 0 if t D 0, or if t > 0 and q j
s D 0 8s 2 Œ0; t/. The ex-post

(i.e., at contract expiry) profit/loss of agent j coming from time t transaction can be
written as

…
j
t D 1

H\fSjt>S�

t gq
jC
t .X � S�

t /C 1
H\fSjt<S�

t gq
j�
t .X � S�

t /C (3.6)

1
L\fSjt<S�

t gq
j�
t .X � S�

t /C 1
L\fSjt>S�

t gq
jC
t .X � S�

t /

(or, simply) D q j
t .X � S�

t /; (3.7)

where S�
t is as in Eq. (3.2), and H and L denote high- and low-type markets,

respectively (cf. [18]). Equation (3.6) is based on the correspondence of signal and
reality. Market clearing conditions again will require…t D P

j…
j
t D 0 8t 2 Œ0;T	.

3.2 Numerical Analysis

We now present some numerical results based on the setup above. Let jq j
t j 2 f0; 1g

and assume, in this first scenario, that both agents are “omitters” (or, “stubborn
bigots” of [9]) who never change their mind and simply execute trades according to
the following recurring procedure: (1) Observe signal � jt . (2) Quote signal-based bid
and ask prices. (3) Let the central-planner determine—using the pre-announced and
legally binding matching rule (3.2)—the trade direction, if any, and the transaction
price (which are then revealed to the agents). Note that agents execute trades
“without” learning from each other—who could, otherwise, update their likelihoods
p.�jx/ as we will see later on—and continue to rely solely on their own information
sources.

In Fig. 3.1, where the true fundamental value of X is set to 1, we illustrate
one possible path of such a scenario. Despite a bid-ask margin, occurrence of
trade is highly likely in this case as agents do not learn from each other and as
personal value judgements diverge. The informationally more (less) susceptible
agent, though unknowingly, keeps trading in the right (wrong) direction due to
superiority (inferiority) of his signal. Note from Fig. 3.1 that even after the agent
with better signal discovers the asset’s true value (around auction 5), he is still able
to execute profitable trades thanks to the matching rule. Figure 3.2, on the other
hand, shows the profit-and-loss (P&L) results of such a scenario for each time step
averaged over 103 simulations, where the number of auctions is increased to 100.
We note at the first glance that the qualitative behaviour of the P&L agrees with the
qualitative behaviour of the magnitude of extra information held, presented through
our information-theoretical analysis in Sect. 2.4 of Chap. 2 of this book, as well as
that in [7].

On an additional note, when multiple (>2) agents with various informational
capabilities are involved in the market, our numerical results presented in Fig. 3.3
suggest that, while P&L continue to agree with the qualitative behaviour of the
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true value is set to 1) with p0.x/ 2 Œ0:5; 0:5	. The dotted lines are bid and ask prices based on S&�

and S&C, respectively, with & 2 Œ0:95; 1:05	
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Fig. 3.3 Evolution of information-based transaction P&L of multiple agents averaged over 103

path simulations and based on parameters given in Fig. 3.1, except that �t D 1=100

magnitude of extra information held by the agent, it is also distributed between
agents proportional to the quality of their signal (particularly once the differential
informational reaches an adequate level).

Yet, the exchanges generally do not operate quite this way. A more realistic
scenario would be that agents are “attentive” and infer their counterpart’s posterior
� j
st
.x/, and, therefore, likelihood p.� jst jx/, from their price quote at time st. This

would mean having partial access to a larger �-algebra, N�.�st /, generated by the
join4 of �.�1st / and �.�

2
st
/, i.e.,

N�.� jst / D �.�1st / _ �.�2st /: (3.8)

Once agent j gains partial access to N�.� jst /, he updates his posterior from � j
st .x/

to N� j
st .x/ (by updating p.� jst jx/ to Np.� jst jx/, i.e., the effective likelihood), which will

be again of the form

N� j
st
.x/ D p.x/Np.� jst jx/Z

X

p.x/Np.� jst jx/dx
: (3.9)

4Note that the union of collection of sigma algebras is not always a � -algebra or even an algebra.
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Note that we intentionally avoid the notation p.�1st ; �
2
st
jx/, and use Np.� jst jx/ instead,

so as not to mean that one party’s signal is directly observable to the other at the
last auction time st (which is also not needed). By virtue of bi-dimensional normal
density, Np.� jst jx/ or, effectively, p.�1st ; �2st jx/, in Eq. (3.9) can be written in the form

p.�1st ; �
2
st jx/ D 1

2�.st=
st/
p
1 � �2

� exp
 

�1
2

.�1st � �1xst/2

.1 � �2/st=
st

!

� exp
 

�1
2

�2�.�1st � �1xst/.�2t � �2xst/
.1 � �2/st=
st

!

� exp
 

�1
2

.�2st � �2xst/2

.1 � �2/st=
st

!
; (3.10)

with j�j < 1 denoting the correlation between �1st and �2st conditional on x.5
Finally, we note that, in the present setup, the effective information N�.� jst / can

be worked out only after (not before) the trade at time st, which renders it literally
‘useless’ until the present auction at time t. Therefore, before submitting an order at
time t, having observed a new signal � jt , the agent will need to update his effective
information to N�.� jt / D �.�1t /_�.�2st / (e.g., for agent 1) or �.�1st /_�.�2t / (in the case
of agent 2). Also, since �t is Markovian, for an agent, partially accessing the signal
sample � jst of his counterpart will be as valuable as partially accessing his entire
signal history



� js
�
s�st

. Accordingly, right before the auction at time t, the ‘useful’
effective likelihood Np for agent 1 will be

p.�1t ; �
2
st
jx/ D 1

2�
p
t=
t

p
st=
st

p
1 � O�2

� exp
�

�1
2

.st=
st/.�
1
t � �1xt/2

.1 � O�2/.t=
t/.st=
st/
�

� exp
 

�1
2

�2 O�.�1t � �1xt/.�2st � �2xst/
p
.t=
t/

p
.st=
st/

.1� O�2/.t=
t/.st=
st/

!

� exp
 

�1
2

.t=
t/.�2st � �2xst/2

.1 � O�2/.t=
t/.st=
st/

!
; (3.11)

5Note that when � D 1, assuming �1 ¤ �2, the central planner will only need to solve two linear
equations, with X and ˇti� being the two unknowns, to get instant access to X.
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where we used the relation ˇ1st D �ˇ2st Cp
1 � �2 Ň

st , with ˇ
2
st ?? Ň

st , to find O�, i.e.,
the new correlation structure between �1t and �2st given x, as follows:

O� D Cov.ˇ1t ; ˇ
2
st/

�ˇ1t �ˇ2st

D Cov.�ˇ2t Cp
1 � �2 Ň

t; ˇ
2
st/p

t=
t
p
st=
st

D �
st=
tp

t=
t
p
st=
st

D �

r
st
t


st

t
; (3.12)

with � being same as in Eq. (3.10). We note that O� is a decreasing function of time,
as expected, and also that, when O� D 0, Eq. (3.11) simply reduces to

p.�1t ; �
2
st jx/ D 1

2�
p
t=
t

p
s=
st

� exp
�

�1
2

.st=
s/.�1t � �1xt/2
.t=
t/.st=
st/

�

� exp
 

�1
2

.t=
t/.�2st � �2xst/2
.t=
t/.st=
st/

!
; (3.13)

which also reduces to p.�1t jx/ when st D 0 (no trade). The signal-based price of
agent j, Sjt, is then given by

Sjt D E

h
Xj N�.� jt /

i
: (3.14)

Accordingly, the new trading procedure is as follows: (1) Observe signal � j
t . (1a)

Work out N�.� j
t /. (2) Quote signal-based bid and ask based on effective information.

(3) Let the central-planner do his work (same as (3) above).
One realisation of this second scenario is depicted in Fig. 3.4. At the first glance,

learning seems to have decreased profit margins substantially (i.e., to a level where
they are often eaten up by the spread, preventing trade). In Fig. 3.5, we again show
average stepwise P&L of agents over 103 realisations. It is apparent from the figure
that the informationally more susceptible agent is no more able to extract rents that
are as large as in the first scenario (see Fig. 3.2), although he is still able to maintain
some modest profits. His ability to maintain modest profits is most likely due to
the lag in the learning process as there is still a room for the superior signal to
provide the agent receiving it with extra information in-between auctions. The huge
difference between the outcomes of two scenarios, i.e., “omitter” and “attentive”,
implies that, when each agent deems his own signal superior, there might exist
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Fig. 3.4 Sample evolution of information-based transaction prices along a sample path in scenario
2 (jq j

t j 2 f0; 1g). Arbitrary parameter values: T D 1, �t D 1=10, r D 0:05, � 2 Œ0:5; 1:5	, and
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Fig. 3.5 Evolution of information-based transaction P&L averaged over a series of 103 path
simulations and based on parameters given in Fig. 3.4, except that �t D 1=100
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Fig. 3.6 Learning process: Bayesian updating of posteriors � j
t .x/ averaged over 103 path simula-

tions and based on parameters given in Fig. 3.4, except that �t D 1=100

Fig. 3.7 Learning process: Bayesian updating of posteriors � j
t .x/ averaged over 103 path simula-

tions and based on parameters given in Fig. 3.4, except that �t D 1=100

optimal strategies where agents can still be “attentive” but, this time, choose which
time to reveal their information through trade.

To conclude this section, we compare, in Figs. 3.6 and 3.7, the impact of allowing
mutual learning on the speeds at which the two agents discover the true fundamental
value of the asset. In the case where the differential between information flow speeds
is high (refer to Fig. 3.6), learning seems to work more in favour of the agent with
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less superior signal with little or no benefit to the agent with a superior signal,
whereas, when the differential is minimal (cf. Fig. 3.7), both agents equally benefit
from sharing their information via trading.

3.3 Signal-Based Optimal Strategy

The P&L figures provided in Sect. 3.1 are ex-post, i.e., calculated at the terminal
date. In reality, when they trade, agents do so based on their signal-based expecta-
tions about the true fundamental value to be revealed at time T. They learn whether
their earlier trades in futures contracts turned out to be a profit or loss again at time T.
This, in fact, establishes the main argument which calls for the existence of optimal
choices of trading times which maximise their signal-based expected profits: both
agents believe that their trades will make them better off (or, there exists ‘a common
knowledge of gains from trade’ in the sense of [6]). Throughout this section, we will
regard the agents as ‘attentive,’ and assume &˙ D 1.

3.3.1 Characterisation of Expected Profit

We recall from Sect. 3.2 that, just before the auction at time t, the agent j observes
the value of his signal and works out his effective information N�.� jt / before he makes
a judgement of the asset’s value. Assuming X 2 fXl;Xhg and, again, jq j

t j 2 f0; 1g,
the expected (ex-ante) profit of agent j from his possible trade at time t can be
decomposed as follows:
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�
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t j�e

� ˇ̌
(3.15)

with P j
t .�c/ and P j

t .�e/ being the chances of agent j getting correct and erroneous
signals, i.e., �c and �e, at time t, respectively. And, again, EtŒ�	 D EŒ�j N�.�t/	. More
formally,

P j
t .�c/ D P j

t .H/P
j
t .�cjH/C P j

t .L/P
j.�cjL/ (3.16)
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j
t .�ejH/C P j

t .L/P
j.�ejL/ (3.17)

D P j
t .H/P
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t jH/C P j

t .L/P
j.Sjt > S�

t jL/;
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where, again, H and L denote high- and low-type markets in the sense of [18], and

.�cjH/ WD .Sjt > S�
t jH/; .�cjL/ WD .Sjt < S�

t jL/
.�ejH/ WD .Sjt < S�

t jH/; .�ejL/ WD .Sjt > S�
t jL/: (3.18)

Then, Eq. (3.15) can be written more explicitly as follows:
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(3.19)

where
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with f .t; �; �; x/ WD ��tx � .1=2/�2x2t. When the payoff, i.e., �.X/ D X, is
continuous, however, Eq. (3.19) implies
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where Xh D .S�
0 ;Xmax/ and Xl D .Xmin; S�

0 /; �
jC
t and � j�

t are normalised posteriors
for high- and low-type markets, respectively; and, at this time,

P j
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j
t .x/dx: (3.22)
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The notation S.x/ is used to denote EŒXj�.x/	, i.e., the signal-based price of the
agent when the actual signal is pinned to the value x. In a nutshell, expected profit
of the agent is decomposed, through Eqs. (3.19) and (3.21), into two components,
i.e., whether the agent’s signal is pointing at the right (wrong) trade direction and,
in that case, what the expected profit (loss) would be.

3.3.1.1 Trading Signal Quality: Digital Dividend

Assume, without loss of generality, that X 2 fx0; x1g, with x0 D 0, x1 > 0 and the
prior knowledge of the pair .p0; p1/.6 Let the true value of X be x1. Equation (3.19)
implies
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We can calculate the likelihoods of receiving a correct trade signal for agent 1
when st D 0 (i.e., no trade until t) in high- and low-type markets, respectively, as
follows:
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(3.24)

A straightforward calculation yields
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6Note that any binary payoff structure X 2 fx0; x1g, x1 > x0 can be simplified as f0; x1 � x0g, a
property which will simplify our calculations.
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where, again,‚.�/ is the standard normal cumulative distribution function.7 The last
line simply follows from z1 ?? z2 and z1;2 � N .0; 1/. Similarly, by arranging the
last three lines of Eq. (3.25) and changing the direction of inequality from > to <,
we can indeed verify that

P1t .�cjx0/ D P1t .�cjx1/ (3.26)

and, moreover, by virtue of convex combination in Eq. (3.16), that

P1t .�c/ D P1t .�cjx0/ D P1t .�cjx1/: (3.27)

Equations (3.27) and (3.25) then directly imply

P2t .�c/ D 1 � P1t .�c/ D P1t .�e/: (3.28)

Thus, the chances of agent j getting a correct (or erroneous) signal are the same
no matter if the market is bullish or bearish, and one agent’s success is the other
one’s failure, as expected. We now generalise Eq. (3.25) to the case where agents

7Note that, in Eq. (3.25), we inherently employ the basic relation P.x > b� a/ D 1�‚.b� a/ D
‚.a � b/.
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did already exchange their information through trading, i.e. st > 0. Setting st D s,
Eq. (3.25) can be rearranged as
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which, again, implies

• P1t .�cjx0; s/ D P1t .�cjx1; s/,
• P1t .�cjs/ D P1t .�cjx1; s/ D P1t .�cjx0; s/, and
• P2t .�cjs/ D 1 � P1t .�cjs/ D P1t .�ejs/.
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Note that neither P1t .�cjx1/ in Eq. (3.25) nor P1t .�cjx1; s/ in Eq. (3.29) is a function
of the value of agent j’s specific information at time t, i.e., N�.� jt /, but rather depends
only on the differential between information flow speeds, �1 and �2 (or, how agents
perceive it), and the spread of X.

Equations (3.25) and (3.29) indeed reveal a number of intuitive properties, which
agree with the analyses in Chap. 2 and earlier in this chapter, such as: (i) the larger
the differential j�1 � �2j, the more likely the agent with superior signal will get a
correct signal (�c), (ii) with j�1��2j given, the agent with superior signal will prefer
more uncertainty (i.e., greater spread for X) to less uncertainty (i.e., smaller spread
for X), and (iii) with j�1 � �2j and spread of X given, refraining from a trade will
always result in greater chances of getting a correct signal (although there will be a
cost to refraining).

To complete the case where the contract pays a binary dividend, we state, by
virtue of Eq. (3.30), the expected ‘profit-to-go’ of agent j at time t:
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Note that we preserve the subscript t for pj and E
j as they will be inferred based

on the effective information at time t, i.e., N�.� jt /. Below we generalise the above
results to the case where X has a continuous distribution.

3.3.1.2 Trading Signal Quality: Gaussian Dividend

We first redefine the likelihoods of high- and low-type markets (see Eq. (3.22)):
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t .x
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t .x/dx; (3.31)

where X
C D .0;1/ and X

� D .�1; 0/. By virtue of Eq. (2.42) of Sect. 2.2.1,
where we define the signal-based price when asset pays Gaussian dividends, the
chances for agent 1 having right trade signals in high- and low-type markets can be
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found, in the same manner as Eq. (3.21), as follows.8 Let X D x, x > 0,
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t is the normalised density,
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Accordingly, for a low-type market, it can be shown that

P1t .�cjx�/ D
Z

X�

‚

�
at
bt
x

�
�1�t .x/dx .at; bt > 0; xt < 0/

D
Z

XC

‚

�
�at
bt
x

�
�1Ct .x/dx .at; bt > 0; x > 0/

D P1t .�cjxC/: (3.35)

8We use the property that the price process St is Gaussian when X has a Gaussian terminal
distribution.
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If st D s is non-zero, in which case Eq. (2.42) takes the form
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where, again, z1;2 are independently N .0; 1/, N�C is the normalised effective
posterior density as given in Eq. (3.9),
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Indeed, we can quickly verify that ast > 0.
9 Moreover, similar to the digital payoff

case, it directly follows from (3.37) that P1t .�cjxC; s/ D P1t .�cjx�; s/, p1t .�cjs/ D
P1t .�cjxC; s/ D P1t .�cjx�; s/, and p2t .�cjs/ D 1�p1t .�cjs/ D p1t .�ejs/. Note in addition
that, for s D 0, Eq. (3.37) simplifies to Eq. (3.32).

For a low-type market, similarly,
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Expected profit-to-go at time t can be inferred in a similar sense to Eq. (3.30).
As a final step to calculate the signal-based expected profit of then agent at time

t (i.e., just before the auction), as given in Eq. (3.21), we now compute the expected
transaction price in low- and high-type markets and with correct and erroneous

9As x > y implies x=.x C 1/ > y=.y C 1/.
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signals. Note that

E
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h
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i
; (3.41)
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i
; (3.42)
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and

E
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�C ˇ̌
x�; s

i
: (3.44)

Notice that we dropped t and j from E
j
t’s in Eqs. (3.41)–(3.44) since, by

Eq. (3.37), when .� jt /0�t�T is pinned to a certain value x, the price differential is not
conditional on the specific value of agent j’s signal at time t, but rather a function of
�1, �2, t and s. Thus, all one needs to do (so as to compute the expected transaction
price under different market situations and trading signal quality) is to work out the
expected value of the ‘absolute price differential’ under each circumstance. To that
end, we can infer from Eq. (3.37) that



1=2


S2t .x/ � S1t .x/

� ˇ̌
xC; s

� � N .ast x; bst /;

1=2


S2t .x/� S1t .x/

� ˇ̌
x�; s

� � N .ast x; bst /;

1=2


S1t .x/ � S2t .x/

� ˇ̌
xC; s

� � N .�ast x; b
s
t /;


1=2


S1t .x/ � S2t .x/

� ˇ̌
x�; s

� � N .�ast x; b
s
t /;
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s
t > 0 are as given above. As a result,
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and
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�C ˇ̌
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i
;

(3.46)

with density normalising factors �1, �2. Thus, under the Gaussian payoff scenario,
we have derived explicit formulae for the two main sources of uncertainty involved
in signal-based trade, namely, the likelihood of a signal’s pointing at the right
(wrong) trade direction, and the expected amount of profit (loss) given the signal
was correct (erroneous). With inputs from Eqs. (3.37) and (3.41)–(3.44), Eq. (3.21)
can now be written for agent 1 as
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(3.47)

where N�C, N�� are, again, normalised effective posteriors for high- and low-type
markets, withXC D .0;1/ andX� D .�1; 0/. Equation (3.47) can also be written
for agent 2 without much effort. Accordingly, agent j updates his trading procedure
as follows: (1)—(1a) Same as in Sect. 3.2 above. (1b) Calculate E

j
tŒ…

j
t	 based on

Eq. (3.47). (1c) Decide whether to quote or not to quote a price. If yes, proceed to
next step. (2) Quote signal-based price (as &˙ D 1). (3) Same as in Sect. 3.2 above.

Now, equipped with the flexibility to shape his strategy .q j
t /0�t�T , jq j

t j 2 f0; 1g,
by timing his trades, agent j will need to develop an optimal ‘online’ trading rule
(referring to (1c) above) that maximises his profits, in understanding of his marginal
benefits and losses from seizing or skipping a trade opportunity.
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3.3.2 Risk-Neutral Optimal Strategy

It is not difficult to see that E1t
�
…1

t

�
in Eq. (3.47) will always be negative when

agent knows that his information is less superior. The top and bottom left panels of
Fig. 3.8, in this regard, depicts the evolution in time of E1t

�
…1

t

�
, based on almost

all possible strategies and a sample path of �1t , when an agent believes that he is
informationally less susceptible than his counterpart. Yet, the agent can minimise
his chances of losing from a trade by keeping his information up-to-date through
trading at “each” time step (i.e., the top edge of each shape in the left panel).We note
that the marginal expected cost of refraining from trade for the less susceptible agent
is always positive when the agent believes he is informationally less susceptible.

We therefore infer from Fig. 3.8 that a solution to the maximisation problem
in Eq. (3.48) is unattainable from the perspective of a less informationally capable
agent. The real-world implication of this is that market shutdowns may not occur
in a real market setting because investors think their effective information are either
constantly or temporarily superior to the market information. We, thus, turn our
focus to the case where both agents believe their information source is characterised
by a higher � .

Fig. 3.8 Evolution of Ej
tŒ…

j
t	 as given in Eq. (3.47) for sample trajectories of �1t and �2t and all

possible trading strategies. The dividend is assumed to be Gaussian
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The top and bottom right panels of Fig. 3.8, on the other hand, shows the

evolution in time of Ej
t

h
…

j
t

i
for the agent who believes that he is informationally

more susceptible. The strategy which results in the bottom edge these shapes on the
right panel is unique, i.e., jq j

t j D 1 8t. However, there is no single strategy which
can achieve the top edge of each shape, which is a combination of different strategies
that result in the maximum expected potential at different time points.

We define the optimal strategy of an agent as the one which maximises his overall
expected terminal profit from trading the contract based on his effective information
N�.� jt /, i.e., for agent 1,

argmax.q1t /

TX
tD0

E
1
t

�
…1

t

� D
TX

tD0
E
�
…1

t j N�.�1t /
�

s.t. S�
t D 1=2.S1t C S2t /; (3.48)

qt D 0

8t;
where N�.�1t / is same as in Eq. (3.8).

On an extra note, we remark that setting a mid-price, as in Eq. (3.2) and (3.48),
is indeed equivalent to

E
�
q1t .X � S�

t /j N�.�1t /
� D E

�
q2t .X � S�

t /j N�.�2t /
�
: (3.49)

Thus, we can reinterpret the role of the central planner, in the context of this
section, as ‘to observe N� jt ’s through price quotes and set the transaction price as the
mid-price which equates the signal-based terminal profits of agents.’

Similar to [11], we can define the dynamic programming formulation of the agent
j’s problem given in Eq. (3.48) as follows:

Vj
t D sup

.q
j
t /

�
E
j
t

h
…

j
t

i
C E

j
t

h
Vj
tC1
i	
; (3.50)

where Vj
t is the value function. Note that E

j
tŒ…

j
t	 is implicitly determined by

.q j
s/0�s<t, whereas E

j
tŒV

j
tC1	 by .q j

s/0�s�t. Therefore, at each auction, the agent

will need to consider the marginal impact of his current strategy on E
j
tŒV

j
tC1	. The

particular nature of the present model, however, does not allow us to employ a
backward-induction technique that is similar to the one described in [11, 14].

Based on Eq. (3.50), we introduce the following real-time optimal trading
strategy for agent j:

jq j
t j D

8
ˆ̂<
ˆ̂:

1; if E
j
t

h
…

j
t

i
> 0;

and E
j
t

h
…

j
t

i
C E

j
t

h
…

j
tC1
i

jq j
t jD1

> E
j
t

h
…

j
tC1
i
q
j
t D0

;

0; otherwise;

(3.51)
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Fig. 3.9 Value of cost-adjusted expected gain from trade (averaged over a number of sample paths
of � jt ) for the more informationally susceptible agent based on Eq. (3.51) for all t and st

where the term

E
j
tŒ…

j
t	 �

�
E
j
tŒ…

j
tC1	q j

t D0 � E
j
tŒ…

j
tC1	jq j

t jD1
	

(3.52)

can be seen as the immediate expected gain from trade adjusted for the cost of
losing the informational advantage. Thus, the agent chooses to trade whenever his
cost-adjusted expected gain from trade is strictly positive.10

Figure 3.9 plots the value of (3.52) (averaged over a number of sample paths
of � jt ) for the more informationally susceptible agent for each point t in the trading
horizon and given each possible trading history st. The decision rule variable is
positive for any possible past strategy characterised by the last time of trade, qjst ,
implying that the agent can maximise the sum of his expected terminal profits
by trading at each time point t, thereby constantly incorporating his differential
information into prices, i.e., jq j

t j D 1 8t 2 Œ0;T	.
We can indeed show that the optimality of this strategy is invariant to the path of

�
j
t . Consider agent 2 who deems his signal superior (�2 > �1) and let the market be
high-type (i.e., x 2 X

C). For given x, �1, �2, let’s denote the corresponding integrand

10In other words, whenever an agent refrains from trade in expectation of greater future profits, he
should refrain on the basis that he has to recover immediate cost of refraining.
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in Eq. (3.47), rearranged for agent 2, by H2.t; s/, where

H2.t; s/ D ‚

�
ast
bst
x

�
�1

1p
2�bst

Z 1

0

ye
� 1
2

.y�ast x/
2

.bst /
2 dy

�‚
�

�ast
bst
x

�
�1

1p
2�bst

Z 1

0

ye
� 1
2

.yCast x/
2

.bst /
2 dy: (3.53)

Note thatH2.t; s/ in Eq. (3.53) is the expected profit of agent 2 at time t given the
time of last trade, s, and a high-type payoff x, and it is not a function of �2t . Agent
2 version of Eq. (3.47) is, in fact, nothing but the sum of convex combinations of
H2.t; s/ and its low-market analogous L2.t; s/ with respect to the effective posteriors
N�2Ct and N�2�t , respectively. Thus, similar to the relation (3.52),

H2.t; s/ � ŒH2.t C 1; s/ � H2.t C 1; t/	 (3.54)

can be seen as the signal-independent version of the cost-adjusted immediate gain
from trade (for the agent who deems his signal superior), whose value is depicted
in Fig. 3.10. It can be inferred from the figure, again, that it is optimal for the
informationally more susceptible agent to trade continuously without accumulating
his extra information.

Fig. 3.10 Value of signal-independent cost-adjusted expected gain from trade for the more
informationally susceptible agent based on Eq. (3.51) for all t and st
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3.3.3 Extension to Risk-Adjusted Performance

In case agents are risk-adjusted expected profit (e.g., Sharpe ratio, [20]) maximisers
“at the portfolio level”, the objective function in Eq. (3.48) can simply be modified
as

argmax
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tE
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i
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We then write the conditional variance V
j
t.…

j
t/ D V

j.…
j
tj N�.� jt // of the signal-

based profit at time t, whose expectation is given in Eq. (3.47), using the “law of
total variance”,11 as
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(3.56)

Figure 3.11 depicts the risk-adjusted version of Fig. 3.8 using the same signal
sample as in the latter.

3.3.4 Extension to Risk-Averse Utility

The above setup can easily be generalised to the case where agents are ‘charac-
teristically’ risk-averse and attach decreasing marginal utility to each extra unit
of expected return due to the additional risk involved. In [6], the authors show

11
VŒ…j�	 D EŒEŒ…2j�;X		� EŒEŒ…j�;X		2.
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Fig. 3.11 Evolution of Sharpe ratio based on Vj
t.…

j
t/ given in Eq. (3.56) for sample trajectories of

�1t and �2t and all possible trading strategies where dividend is Gaussian

that the following two cases are equivalent: (a) terminal payoff is exogenous (as
in our case) and agents are risk-averse, (b) dividend is endogenous and agents
are risk-neutral. When the asset dividend (or terminal payoff) is exogenous and
agents’ actions have no impact on it, one needs to introduce either trade quotas or
proper risk aversion assumptions to prevent agents from trading unlimited amounts
to make infinite profits, should quoted prices be in their favour. In the presence of
informational differences, there would be less or no motivation for agents who are
not only informationally less capable but also risk averse to actively participate in a
market where the participants are assumed to be rational. Such state of affairs can, in
fact, exacerbate the situations where markets shut down due to perceived differential
information. Such situations are avoided in the literature by introducing the concept
of ‘noise-traders’ (refer to Table 3.1), which we avoid in the present context so as to
focus solely on the influence of differential information on market phenomena.

We assume that agents are risk-averse with the utility assigned to a sure dividend
x, i.e.,

Uj.x/ D �e��jx .�j > 0/; (3.57)
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that is characterised by a constant absolute risk aversion level �j. We note that the
utility function U W .0;1/ ! R in Eq. (3.57) is C2, and satisfies U0 > 0, U00 < 0

as well as the Inada conditions [17]. Under U, the certainty equivalent of EŒX	 for
agent j is given by

xjc D �
ln
�
�E

h
Uj.X/j N�.� jt /

i	

�j
(3.58)

with xjc < EŒXj N�.�2t /	 following from strict concavity. Assuming again X is normal
with N .0; 1/, the equilibrium strategy in a market where agents maximise their
expected utility from terminal wealth12 is now associated to the objective function
which is analogous to Eqs. (3.48) and (3.55) and given by
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ˇ̌ N�.� jt /

i
(3.59)

where each signal-based price Sjt is worked out, this time, according to certainty
equivalence relation in Eq. (3.58) as follows (assuming st D 0 for simplicity):
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This implies, for a bid quote,

Sjt D U�1
j .E
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Uj.X/

ˇ̌
�
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i
/ D �j
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j
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�2j 
tt C 1
� 1
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tt C 1
(3.61)

12There is no intertemporal consumption.
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and, similarly, for an ask quote,
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: (3.62)

The second term in Eqs. (3.61) and (3.62) can be considered as the “information-
adjusted risk premium” and appears naturally as the bid/ask spread which is
inversely proportional to �j and t. Thus, given �j and t, the more an agent is
informationally more (less) susceptible, the lower (higher) a risk premium he will
have.

The central planner, on his side, will set the price transaction price to the one
which equalises their individual signal-based expected utility from the transaction,
i.e.,
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: (3.63)

Assuming again jq j
t j 2 f0; 1g, market is a high-type and agent 2 buys, the pricing

rule in Eq. (3.63) can be arranged further as follows:

�

Z

X

e��1.S�

t �x/e�

x2
2 e
t.�1�

1
t x�

1
2 �

2
1 x
2t/dx

Z

X

e�

x2
2 e
t.�1�

1
t x�

1
2 �

2
1 x
2t/dx

D �

Z

X

e��2.x�S�

t /e�

x2
2 e
t.�2�

2
t x�

1
2 �

2
2 x
2t/dx

Z

X

e�

x2
2 e
t.�2�

2
t x�

1
2 �

2
2 x
2r/dx

�
e��1S�

t

Z

X

e�

x2
2 e.�1
t�

1
t C�1/x�. 12 �

2
1 
t t/x2dx

Z

X

e�

x2
2 e.�1
t�

1
t /x�.

1
2 �1j

2
t t/x2dx
D �

e�2S
�

t

Z

X

e�

x2
2 e.�2
t�

2
t ��2/x�. 12 �

2
2 
t t/x2dx

Z

X

e�

x2
2 e.�2
t�

2
t /x�.

1
2 �

2
2 
t t/x

2

dx

�e��1S�

t e
.�1
t �

1
t C�1/

2

2.�21 
t tC1/ e
�

.�1
t�
1
t /
2

2.�21 
t tC1/ D �e�2S
�

t e
.�2
t �

2
t ��2/

2

2.�22 
t tC1/ e
�

.�2
t�
2
t /
2

2.�22 
t tC1/

�e
��1S�

t C

1
2

�21

�21 
t tC1
C

�1
t�
1
t �1

�21 
t tC1 D �e
�2S�

t C

1
2

�22

�22 
t tC1
�

�2
t�
2
t �2

�22 
t tC1 ; (3.64)

which directly implies, also by Eq. (3.61), that
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Thus, the information-based market price is the weighted average of risk-
adjusted signal-based prices with respect to the risk aversion levels �j. Accordingly,
ast and b

s
t , and all relevant quantities such as P

j
t .�

j
cjxC; s/ will need to be updated to

re-explore an optimal strategy.
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Chapter 4
Putting Signal-Based Model to Work

Building upon the concepts introduced in the previous chapters, this chapter aims to
focus on a more practical issue: how can we put signal-based framework to work for
a certain type of risky financial asset when there is a multiplicity of real-time market
signals on X which, in turn, determines �.X/. In other words, this chapter illustrates,
in a practical sense, how the problem of predicting the future value of a stochastic
random variable can be simplified to interpreting the information concerning one of
its constituents. In particular, we focus on equity market due to the relatively simpler
interpretation of the term “fundamental,” referring to the value of a cash-generating
business.

No matter how an information flow pattern is modelled, the aim of financial
modelling based on forward-looking information is to ensure that future information
(e.g., earnings and/or dividend payments in the case of equity) on an asset’s
fundamental value is represent—either fully or partial—in price discovery.

4.1 Multiple Dividends: Single Market Factor

The risky asset is now characterised at any time t by an infinite number of
cashflows which accrue continuously but are announced (or physically distributed)
at discrete times intervals. We then call a time-varying subset of these cashflows,
i.e., f�kgkD1;:::;nt , which are due T1; : : : ;Tnt , the cashflows “within” the horizon.
Each payoff �k can be deemed a function of mk market factors as a subset of
fX1; : : : ;Xmax.mk/g for any k, thereby making the price a function of max.mk/market
factors. This setting indeed allows one to consider a broader spectrum of financial
instruments. When each market factor X is associated with an information process
f�tg0�t�Tk , the problem of valuing an equity reduces to identifying a set of potential
candidates for X and, therefore, � in a real-world setting, and calibrating the signal
flow rate.
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For simplicity, we shall assume mk D 1, 8k, throughout the chapter (i.e, a single
market factor X determines each cashflow �k). We further assume that X1; : : : ;Xnt ,
are i.i.d. At any time t, the �-algebraF �

t is assumed to be the ‘join’ of the �-algebras
generated by nt independent information processes, i.e., �.�1/_� � �_�.�nt /, and the
current and past values of the market factors and the risky asset, i.e., Ft D �.Xs; Ss W
0 � s � t/:

F �
t WD �.�1/ _ � � � _ �.�nt / _ Ft: (4.1)

The price of the asset is then simply given by

St D
ntX

kD1
1ft<Tkge�r.Tk�t/

E

h
�Tk.X/jF �

t

i
; (4.2)

where E is w.r.t. Q by setting. Furthermore, the dynamics of asset price process
fStgt�0 is analogous to those derived in Chap. 2 for the single cashflow case (cf.
[4]):

dSt D rtStdt

C 1ft<T1ge�r.T1�t/�1

1
t Covt Œ�.XT1/;XT1 	 dW

1
t

:::

C 1ft<Tnge�r.Tn�t/�n

n
t Covt Œ�.XTn/;XTn 	 dW

n
t

D rtStdt C
ntX

kD1
1ft<T1ge�r.Tk�t/�k


k
t Covt Œ�.XTk/;XTk 	 dW

k
t

�
ntX

kD1
�.XTk/d1ft>Tkg; (4.3)

where Cov is the covariance function. The last term in Eq. (4.3) comes from the
price adjustment due to accrual of cashflow (ex-dividend). Equation (4.3) implies
that the asset price dynamics in the multiple cashflow case based on signal-based
framework remains fairly tractable. In what follows, we show how the present
framework can be applied on real market data with slight modifications.

4.2 The Case for “Implied” Dividends

In [5] and [23], the present concept is applied to produce a tractable formula
for storable commodity prices under the assumption that the asset pays—what
authors call—a continuous ‘convenience dividend’ that is assumed to follow



4.2 The Case for “Implied” Dividends 69

Ornstein–Uhlenbeck (OU) dynamics. The OU process is then associated, through its
orthogonal decomposition, to the concept of ‘OU bridge,’ thereby putting together
analytical formulae for commodity spot and derivatives prices. In this chapter, we
introduce the concept of “implied dividend,” which is based on earnings, as the
stochastic market factor X that determines the dividend through identity �.X/ D X
and, eventually, the equity price.

There is indeed a large body of literature which argues that it is reasonable to
consider earnings data as a proxy for company’s expected dividends and measures
tied to the former, rather than the latter, will likely provide better information
about the actual cash flows generated (see, e.g., [6, 19, 20]). Indeed, many growth
businesses choose not to pay cash dividends but, instead, to use their earnings to
repurchase outstanding shares or to reinvest in future expansion—making earnings
a more informative measure of the fundamental value of a business (see [6, 7]).
Investors are also far more interested in the earnings potential of a business rather
than its paid dividends (cf. [2]). Earnings, like dividends, are also generated on
a continuous basis, although their true value is revealed at discrete time points
(quarterly or annually), justifying their suitability for use in continuous-time setups.

In the sequel, we assume that earnings are the basis for changes in an asset’s
value as “invisible” dividends and they provide some kind of convenience yield
�.X/ which become known to agents at Tk, k D 1; : : : ; n. The raw signal process
�t in this case conveys noisy information about the true value of the earnings (and,
eventually, dividends).

Based on the Bakshi–Chen model introduced in [2], we relate earnings X to
“implied” dividends X0 as follows:

�.X0
k/ D ı�.Xk/C �k; �k � N.0; ��k /: (4.4)

where we implicitly assumed � to be identity. Here, ı 2 Œ0; 1	 is the dividend
payout ratio. The use of constant payout ratio is common in the equity valuation
literature. The classic survey in [18] finds that indeed ıt ! ı. The rationale for and
interpretation behind Eq. (4.4) is addressed in [2] and [7]. Therefore, independent of
whether the firm pays cash dividends or not, we interpret ı�.X/ given in Eq. (4.4)
as the “implied dividend” which will be the governing factor X in our model behind
asset price movements.

Furthermore, we assume that earnings and earnings growth follow a geometric
Brownian and Ornstein-Uhlenbeck (OU) dynamics, respectively. That is,

dXk D �X
k XkdTk C �XdWX

k ; (4.5)

d�X
k D ˛.�0 � �X

k /dTk C ��dW
�
k ; (4.6)

where dTk D Tk �Tk�1. Also we setWX
k ?? W�

k forF �-adaptedWX
k andW�

k that are
martingale under the pricing measure. In what follows, we will be employing this
model to estimate the parameters of our signal-based valuation framework.
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4.2.1 Recovering the Gordon Model in Continuous Time

First we associate the signal-based price St to Gordon model [10, 11] under constant
earnings growth assumption, and later on extend this to time-varying growth.

4.2.1.1 Constant Earnings Growth

Assuming S pays an infinite strip of earnings starting from u, where u > t, the
continuous time analogous of Eq. (4.2) is

St D e�rut .u�t/
Z 1

u
e�rb.v�u/

E

h
ıXvjF �

t

i
dv; (4.7)

where F �
t , Ft are as given in Eq. (4.1). When �X is constant, say �0, a straightfor-

ward calculation yields

St D ıe�rut .u�t/
Z 1

u
e�rb.v�u/

E

h
Xue

.�0� 1
2 �

2
X/.v�u/C�XWX

v�u
ˇ̌F �

t

i
dv

D ıe�rut .u�t/�t.Xu/

Z 1

u
e�rb.v�u/

E

h
e.�0�

1
2 �

2
X/.v�u/C�XWX

v�u

i
dv

D ıe�rut .u�t/�t.Xu/

Z 1

u
e�rb.v�u/e.�0�

1
2 �

2
X/.v�u/C 1

2 �
2
X.v�u/dv

D ıe�rut .u�t/�t.Xu/

Z 1

u
e�.rb��0/.v�u/dv (� D v � u)

D ıe�rut .u�t/�t.Xu/

Z 1

0

e�.rb��0/�d�

D ıe�rut .u�t/ �t.Xu/

rb � �0 .rb > �0/ ; (4.8)

where rb is the investment benchmarkwhile rut is the moneymarket rate for maturity
u. Equation (4.8) is nothing but the earnings (or implied dividend) equivalent of
the well-known intrinsic value model of Gordon. Note the slight difference in
appearance between the discrete and continuous forms of the Gordon model (cf.
[16]) which disappears as .1 C �0d�/�t.Xu/ ! �t.Xu/ as d� ! 0. This model,
however, is mostly criticised for assuming that the dividend growth rate as well as
the risk-adjusted discount rate remain constant—a point which is confronted in the
literature by the well-known St. Petersburg paradox (see, e.g., [8]). In our pricing
algorithm, we shall circumvent this issue by considering a constant spread between
�0 and rb.
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4.2.1.2 Time-varying Earnings Growth

If�X were time-variant, on the other hand, we would simply have an additional term
exp.

R u
t ��d�/ substituting for �0 from the first line of Eq. (4.8). By the well-known

solution to the OU process in Eq. (4.6), we have

�� � N
0
@�te

�˛.��t/ C �0.1 � e�˛.��t//;

 
�2�

2˛
.1 � e�2˛.��t//

!1=2
1
A ; (4.9)

with t � � � u. This implies

E

�
exp

�Z u

t
��d�

��
D exp

�Z u

t
�te

�˛.��t/ C �0.1 � e�˛.��t//d�

�
�

E

�
exp

�Z u

t
�0
�d�

��
; (4.10)

where the notation �0
� is introduced to denote �� without a drift. The variance ofR u

t �
0
�d� is given by

V

�Z u

t
�0
�d�

�
D E

�Z u

t
�0
�d�1

Z u

t
�0
�d�2

�
D
Z u

t

Z u

t
E
�
�0
�1
�0
�2

�
d�1d�2:

(4.11)

The covariance term E
�
�0
�1
�0
�2

�
follows from the solution to the driftless OU

process, i.e.,
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�
�0
�1
�0
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� D E
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�

D �2�

2˛
e�˛.�1C�2/ 
e2˛min.�1;�2/ � 1� : (4.12)
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Simply by assuming �1 < �2, w.l.o.g., V

R u

t �
0
�d�

�
can be found as
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t
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Returning back to Eq. (4.10), we conclude

E

�
exp
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��d�

��
D exp

�
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˛



1 � e�˛.u�t/
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2˛3
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2e�˛.uCt/ C e�˛.u�t/ C e˛.u�t/ � e�2˛ue�2˛t � 2

	#
:

(4.14)

Equation (4.14) would be accommodated into Eq. (4.8) to derive a time-varying
growth version of the Gordon model. This, however, is beyond the scope of our
analysis in this chapter. Below, we introduce the earnings signals that will act,
among possible others, as our information flow process �t. We also introduce a
slightly modified version of the latter.

4.3 Real-Time Information Flow

Financial markets, with equity market being a particular example, are forward-
looking, i.e., prices are ideally discovered on the basis of expectations pertaining to
the future value-generating ability of the underlying business. One vivid example to
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this is the price adjustments to an equity following unexpected deviations of realised
earnings from their consensus values and/or inter-temporal revisions of earnings
expectations by brokers. We explain how this property can be worked to fit it into
the present context in more detail below.

At time tk, market experts start disseminating their consensus estimates on
the true value of a certain ticker’s quarterly earnings value Xk, and therefore its
implied dividend, which is due at Tk. These consensus figures are derived from
comprehensive assessments of up to 40 brokerage analysts which closely follow
a certain ticker and incorporate as much information as available. As for quarterly
earnings consensus, Tk�tk is generally between 2 and 4 years. We exhibit in Fig. 4.1
the quarterly earnings signals extracted from Bloomberg terminal for a large-cap
U.S. blue-chip company (ticker: MSFT) that are released at an average frequency
of four days during 2004Q1–2015Q3. The data are adjusted for corporate issues
such as stock splits, exclude non-recurring items, include employee stock options
expenses, and incorporate any guidance issued by the company prior to actual
earnings announcement.
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Fig. 4.1 Evolution of quarterly earnings signals. Data source: Bloomberg
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As we cannot separate X from noise in any observed signal to construct
empirically the desired � given in Eq. (2.4),1 we introduce2 a slightly modified
version of � in Eq. (2.4), while preserving its intuitive properties, as follows:

�kt D
(
x�
k C � kt .Xk � x�

k /C ˇkt
�.Tk�tk/

; if tk � t � Tk;

Ø; otherwise,
(4.15)

where x�
k is the first signal sample received at time tk about the true value of Xk, ��1

now a measure of noise-to-signal, and

� kt D 1t�tk
t � tk
Tk � tk

2 Œ0; 1	 (4.16)

the proportion of signal lifetime elapsed since it started being transmitted. Intu-
itively, we now allow an increasing � to suppress noise (thereby, increasing
signal-to-noise) rather than to increase the signal content directly, as in Eq. (2.4).
The conditional variance of �kt given Xk D x can be rewritten as

V


�kt
ˇ̌
Xk D x

� D 1

�2
.t � tk/ .Tk � t/

.Tk � tk/3
D � kt



1 � � kt

�

�2.Tk � tk/
: (4.17)

Note that the modified version of the information process �t in Eq. (4.15) is
better suited to the real-time signals considered here and, again, do not compromise
intuitive and statistical properties of �t described in Chap. 2. The equivalence of the
latter two in the sense of integral in Eq. (2.19) can easily be seen as follows. Let us
assume w.l.o.g. that x� D 0 and tk D 0. Then, apparently,

Z

A
xp.x/e� 1

2

�
��ax
b

	2
dx D

Z

A
xp.x/e� 1

2

�
�0�ax=c

b=c

	2
dx (4.18)

with a D � t, b D �t.T � t/, � 0 D �=c, and c D �T.
As indicated by Eq. (4.15), the �-algebra F�t constantly enlarges and shrinks

whenever the number of available signals increases and decreases, respectively.
Once the signal �k is started to be received at time tk, the market updates its prior
information about Xk (i.e., pX.x/) through relation (2.14). On the other hand, the
noise-to-signal measure 1=� needs to be determined from the data. Again, for
t > Tk, i.e., once Xk has been revealed, .�t/t1�t�T becomes degenerate (information-
null).

1For instance, one does not normally observe a noisy signal for � tX in the market but X and,
therefore, the desired signal � tX C �t cannot be recovered from X C �t.
2Also based on recommendation from Edward Hoyle, PhD, Department of Mathematics, Imperial
College London.
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Fig. 4.2 Residuals of empirical information processes depicted in Fig. 4.1

To check the boundary values, apparently, �ktk D x�
k and �kTk D Xk, with the

latter ensuring that the marginal law of �kt is the a priori law of Xk (cf. [13, 14]).
In Fig. 4.2, we plot the residuals ˇk

t from several paths of actual earnings signals,
extracted as per Eq. (4.15) whereas their starting and end points are aligned.3 Sample
residuals do indeed exhibit properties that are similar to those of a bridge process.
Furthermore, jumps occur occasionally as a result of the significant revisions of
consensus data.

4.4 Calibrating the Information Flow Rate

The information flow parameter �k, which is time-homogeneous by our setting, is
calibrated based on the modified information process given in Eq. (4.15) as follows.
We have an sample history of N D 41 quarterly earnings signals (with lengths
varying from 1:1 to 4:7 years) for the stock ticker considered.4 To calibrate �k,

1. We first extract the linear part of each signal according to Eq. (4.15) to get various
paths of the empirical bridge processes. We refer the reader back to Fig. 4.2 for a
visualisation of the residual series ˇk, k D 1; : : : ;N.

3We recall that Tk � tk differs across signals.
4The first signal in sample commences on February 20, 2004, and lasts until on October 27, 2005,
pinned to 2005Q3 earnings per share figure, whereas the last signal starts and ends on November
29, 2012, and October 21, 2015, respectively, pinned to 2015Q3 earnings per share figure.
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Fig. 4.3 Calibration results of information flow rate, i.e., O�k, using Levenberg–Marquardt nonlin-
ear curve-fitting algorithm. Arbitrary signals are shown

2. For each ˇk, we then run the following non-linear regression based on the
theoretical variance of ˇk

t :



ˇk
t

�2 D 1

O�2k
� kt .1 � � kt /

Tk � tk
C �kt ; tk � t � Tk; (4.19)

where, again, � kt D .t � tk/=.Tk � tk/ and, presumably, �kt jF �
t � N .0; ��/.

Figure 4.3 shows the calibration results of O�k for arbitrary quarterly earnings
signals, whereby the Levenberg–Marquardt nonlinear curve-fitting algorithm is
used.5;6

5Parameter estimates for all signals are statistically significant with considerably low p-values.
6We also remark that some other statistical learning algorithms, e.g., Expectation-Maximisation
algorithm (cf. [12]), could also be used to capture possible multi-modal dynamics.
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3. (Optional) As a final step, assuming ˇ1 ?? : : : ?? ˇk, we perform a simple
variance averaging over all fitted curves resulting from Eq. (4.19) to find O� :

O� D
 PN

kD1 O��2
k

N

!�1=2
: (4.20)

The last step yields O� D 0:79 for the ticker MSFT with respect to the period
2005Q3–2015Q3. In what follows, we develop a closed-form approximation to
signal-based price and present the pricing results.

4.5 Analytical Approximation to Signal-Based Price

We now turn our attention back to deriving a preferably crisp formula for pricing
the risky asset when there is a multiplicity of information processes �t1T1 ; : : : ; �tnTn ,
delivering a continuum of market signals on i.i.d. market factors X1; : : : ;Xn, and,
thereby, cashflows �.X1/; : : : ; �.Xn/, through the identity �.x/ D x.

For simplicity of exposition and without loss of generality, consider any three
signals with

.Tk�1;Tk;TkC1/ D .r; s; u/; r < s < u: (4.21)

We state the well-known solution to the SDE of X in Eq. (4.5) at time u:

Xu D Xs exp

�
�X
su � �2X=2

�
.u � s/C �XW

X
u�s

�

D Xs exp

�
�X
rse

�˛.s�r/ C �0.1 � e�˛.s�r// � �2X=2
�
.u � s/

C �XW
X
u�s C ��.u � s/

Z s

r
e�˛.s��/dW�

�

�
: (4.22)

where�su is simply the growth between s to u. Therefore, by virtue of Eq. (4.12) and
using the fact that WX ?? W�, we can write Xu=Xs in the conditionally log-normal
form

Ysu D Xu

Xs
D exp . Q�su.u � s/C Q�suZu�s/ ; (4.23)

where Z � N .0; u � s/, and with

Q�su D �X
rse

�˛.s�r/ C �0.1 � e�˛.s�r//� �2X=2 (4.24)

and

Q�2su D �2X C �2�

2˛
.u � s/.1 � e�2˛.s�r//: (4.25)
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The pricing relation at time t, s � t � u, will then be based on

St D e�rut .u�t/
E

h
ıXu C �ujF �

t

i
D e�rut .u�t/

E

h
ıXujF �

t

i
; (4.26)

where, again,F �
t is defined as in Eq. (4.1). The second equality, in fact, follows from

the fact that �t carries information only about Xu (i.e., �u ?? �t) and the assumption
that E Œ�ujfXtgt<u	 D 0.

We now know from Eq. (4.22), (4.25) and (4.24) that, conditionally,

XujXs � logN . Q�0
su; Q�su/ (4.27)

with Q�0
su WD lnXs=.u � s/C Q�su. Then, the pricing relation in Eq. (4.26) implies,

St D e�rut .u�t/
E ŒıXj�t	

D ıe�rut .u�t/

�

Z

X

exp

�
�1
2

.ln x � Q�0
su.u � s//2

Q�2su.u � s/
� 1

2

.�t � Œx� C �t.x � x�/	/2

�t.1 � �t/=.�2.u � t//

�
dx

Z

X

x�1 exp
�

�1
2

.ln x � Q�0
su.u � s//2

Q�2su.u � s/
� 1

2

.�t � Œx� C �t.x � x�/	/2

�t.1 � �t/=.�2.u � t//

�
dx

;

(4.28)

whereX D .0;1/. Equation (4.28) is apparently not very handywithout recourse to
numerical methods. We try to circumvent this issue by using two possible analytical
approximations, namely, through gamma and log-gamma distributions.

More specifically, this uses either X � �.a; b/ approximately, or Z �
log�.a; b/, again, approximately, where Z D logX, and � and log� are gamma
and log-gamma7 probability laws with densities

fX.xja; b/ D xa�1

ba�.a/
e�x=b; x 2 .0;1/; (4.29)

and

fZ.zja; b/ D 1

ba�.a/
eaz�ez=b; z 2 .�1;1/; (4.30)

7“Log-gamma” in the sense that it is logarithm of a gamma random variable (not that its logarithm
is a gamma distribution as in the case of, e.g., lognormal distribution).
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respectively.8 For approximation, we choose to minimise the Kullback–Leibler [17]
divergence between the theoretical and approximating density functions, i.e.,

argmin
.a;b/

Z

X

fX. Q�0
su.u � s/; Q�supu � s/

� log2
�
fX. Q�0

su.u � s/; Q�p
u � s/

f 0
X.asu; bsu/

�
dx; (4.31)

or

argmin
.a;b/

Z

Z

fZ. Q�0
su.u � s/; Q�supu � s/

� log2
�
fZ. Q�0

su.u � s/; Q�p
u � s/

f 0
Z.asu; bsu/

�
dz; (4.32)

which ensures the expected entropic (or, informational) distance between the latter
two is minimised. Approximate analytical solution to problems given in Eqs. (4.31)
and (4.32), on the other hand, is given by

asu � 1

Q�2su.u � s/
; bsu � Q�2su.u � s/ exp

��
Q�0
su C Q�2su

2

�
.u � s/

�
(4.33)

(see Appendix A for a sketch of proof). Figure 4.4 shows the results of gamma
approximation to the log-normal density for different parameter values, using both
numerical and analytical solutions to the Kullback–Leibler minimisation problem.
The approximation works extremely good, particularly for small variances values,
and this is why it will work particularly good in our context.

We use this property to replace the log-normal density (normal density) with
its gamma (log-gamma) conjugate prior with shape and scale parameters asu D
a. Q�0

su; Q�su/ and bsu D b. Q�0
su; Q�su/, which yields

QSt D ıe�rut .u�t/

Z

X

xasu exp

�
� x

bsu
� 1

2

.�t � Œx� C �t.x � x�/	/2

�t.1 � �t/=.�2.u � t//

�
dx

Z

X

xasu�1 exp
�

� x

bsu
� 1

2

.�t � Œx� C �t.x � x�/	/2

�t.1� �t/=.�2.u � t//

�
dx

;

(4.34)

8We remark that gamma distribution is conjugate prior to log-normal distribution with a known
mean.



80 4 Putting Signal-Based Model to Work

Support of X (truncated)

0 0.5 1 1.5 2 2.5

D
en

si
ty

0

0.5

1

1.5

2

2.5

3
Lognormal: m=0,s=(0.10,0.15,0.25)
Gamma numerical approx.
Gamma numerical approx. (rounded)
Gamma analytical approx.

Fig. 4.4 Approximation of conditional log-normal by its conjugate prior gamma

where QSt is the approximation to St with a gamma prior and, again,X D .0;1/. We
can further simplify Eq. (4.34) as follows:

QSt D ıe�rut .u�t/
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X

xasu exp
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2
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D ıe�rut .u�t/
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where  t WD �t � .1 � �t/x� � 1��t
bsu�2.u�t/

and �t WD
p
�t.1��t/

�
p
.u�t/

. A double change of
variable, i.e.,

QSt D ıe�rut .u�t/
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2
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�
�t

�t
dx0
; (4.36)

with x0 WD .�tx �  t/=�t and X0 D .� t=�t;1/, followed by

QSt D ıe�rut .u�t/
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�2!
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; (4.37)

with x WD �tx0 C  t and X D .0;1/, reveals that the signal-based price St can
crisply be expressed as the ratio of two consecutive raw (uncentered) absolute (left-
truncated at 0) moments of the normal random variable

X � N 

 t; �

2
t

�
; (4.38)
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where, again,

 t WD �t � .1 � �t/x
� � 1 � �t

bsu�2.u � t/
and �t WD

p
�t.1 � �t/

�
p
.u � t/

: (4.39)

With reference to, e.g., [22], Eq. (4.37) can be rephrased more even neatly as
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where 1F1.
; �I z/ corresponds to the confluent hypergeometric function of the first
kind (or Kummer’s function) that is given by

1F1.
; �I z/ �
1X
mD0

.
/m

.�/m

zm

mŠ
(4.41)

with .
/m being the Pochhammer symbol defined by

.
/m �


1; if m D 0;


.
 C 1/ : : : .
 C m � 1/; if m > 0:
(4.42)

Equation (4.41) is known to converge for any z 2 C and is defined for any 
 2 C,
� 2 C n fZ� [ f0gg, with Z

� being the set of negative integers. We also note
that 1F1.
; �I 0/ D 1 for all feasible 
, �. Further details on this type of functions
are provided in [21]. Furthermore, in [4], the authors reach a closed-form result in
terms of a finite sum of Legendre-type polynomials that is somewhat analogous to
Eq. (4.40).

There is in fact a range of fast and effective algorithms available in the literature
(see, e.g., [21]) to compute 1F1.
; �I z/, such as Taylor series, single fraction,
Buchholz polynomials, asymptotic series expansion, quadrature methods, or via
solving the confluent hypergeometric differential equation (CHDE):

z
d2f

dz2
C .� � z/

df

dz
� 
f D 0: (4.43)

A thorough survey of algorithms that deal with confluent hypergeometric
functions is beyond the scope of this chapter, but Taylor series expansion seems to
stand out as the most simple and least costly method to compute Eq. (4.41). Picking
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an appropriate tolerance level, say e D 10�15, and introducing, based on Eq. (4.41),
the series

Am WD .
/m

.�/m

zm

mŠ
; OFm WD

1X
mD0

Am; (4.44)

with A0 D 1, OF0 D A0, and

AmC1 D Am

�

 C m

� C m

��
z

m C 1

�
; OFmC1 D OFm C Am; OF1 D 1F1; (4.45)

the desired function 1F1 can easily be computed to a high precision using the
following truncation procedure:

OFM D
MX

mD0
Am; such that

jAMC1j
j OFMj < e: (4.46)

This method indeed yields the desired values of 1F1 in a small fraction of a
second. Figure 4.5 shows the ratio of two confluent hypergeometric functions for
several values of 
 and z, calculated based on the above method.

Thus, all in all, we are able to recover a crisp tractable approximation formula for
the signal-based price of a risky asset at time t which will pay an implied dividend
of �.Xu/ at time u. For computational purposes, we finally note from Eq. (4.40) that,

Fig. 4.5 Ratio of two confluent hypergeometric functions whereas values are calculated using
Taylor expansion with a tolerance level e D 10�15
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when s < t � u (i.e., with aus and b
u
s having already been inferred from the data) only

the last argument of 1F1 needs to be updated with the arrival of new information �t �
which is expected to improve the algorithm’s speed.

4.5.1 Extension to Multiple Signals

At any time t, there will be a total of k D 1; : : : ; n.t/; earnings signals, with each
of them being �k into their lifetime. Thus, the approximate price QSt in the multiple
cashflow case is the sum of information-based net present values QS1t ; : : : ; QSn.t/t , of a
strip of n.t/ cashflows, and a Gordon continuation value in the sense of Sect. 4.2.1
above, i.e.,

QSt D ı

 
nX

kD1
e�rkt .Tk�t/

�
�t.XTk /C 1fkDng

�t.XTkC1
/

rb � �0
�!
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r � �0
�!
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nX

kD1
QSkt
�
1C 1fkDng

e�0dTk

rb � �0
�!

; (4.47)

where rkt ¤ rb, rb > �0, each QSkt as given in Eq. (4.40) above, and with

�t.Xv/ D �t.�u.Xv// .t � u � v/ (4.48)

following from the tower property given the definition �t.Xu/ WD Et Œ�.Xu/	, or
E Œ�.Xu/j�t	. In the next section, we calibrate our earnings model to actual data.

4.5.2 Maximum-Likelihood Estimation of Earnings Model

We recall from Sect. 4.5 that Y D � logX is normally distributed with Q� and Q� ,
given in Eqs. (4.24) and (4.25), which are, in turn, functions of the parameters ˛,
�0, �X and ��. We write the log-likelihood function L.˛; �0; �X; ��jy/, based on
the transition density of logX, to be maximised as follows:

L D L.˛; �0; �X; ��jy/
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(4.49)

where �Tl WD Tl � Tl�1 and w is the estimation window size (i.e., number of
Y samples at each iteration). Indeed, one can easily verify that the function L is
concave.

Log-likelihood calibration procedures for a two-layer stochastic asset pricing
model with latent growth parameter (or volatility factor) are not very explicit in
the literature, at least to the author’s knowledge, and possesses some challenges.
In [1], for instance, authors develop a maximum-likelihood calibration method for
a two-layer stochastic volatility model where option prices are inverted to produce
an estimate of the unobservable volatility state variable. Our GBM model with OU
drift, as given in Eqs. (4.5) and (4.6), can also be considered within this difficulty
category. The issue with estimating the parameters of our earnings model is that
a mean-reverting drift is not directly observable, which can lead to a distortion of
parameter estimations, particularly of ˛.

We therefore replace the unobservable�X
l�2;l�1, l � n, which goes into Eq. (4.49)

with its empirical proxy O�X
l�2;l�1 as follows. By Eq. (4.22),

�X
l�2;l�1 D

log
�
Xl�1
Xl�2

	
� �XW�Tl�2

�Tl�2
C �2X

2
: (4.50)

Thus, when sgn.logXl�1=Xl�2/ D C1, logXl�1=Xl�2 we replace �X
l�2;l�1 by its

empirical proxy

O�XC
l�2;l�1 D

E log
�
Xl�1
Xl�2

	C

�Tl�1
C �2X

2
(4.51)
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and, when sgn.logXl�1=Xl�2/ D �1, by

O�X�
l�2;l�1 D

E log
�
Xl�1
Xl�2

	�

�Tl�1
C �2X

2
: (4.52)

We considered expected values in Eqs. (4.51) and (4.52) so as to prevent noise
from disturbing the estimation of ˛. The equivalent procedures

arg max
˛;ˇ;�X ;��

L.˛; ˇ; �X ; ��jy/ (4.53)

and its necessary first-order optimality conditions

@L
@˛

D @L
@̌

D @L
@�X

D @L
@��

D 0 (4.54)

then yield the desired results. To illustrate, we estimate the earnings model on
selected tickers for the period 2000Q1–2015Q1 using more than 60 quarters of
earnings data for each. The model output for each ticker is depicted against the
actual earnings data in Fig. 4.6, where the calibrated parameters are reported as
figure titles. It can be inferred from the figure that earnings growth is generally

Fig. 4.6 Sample paths of actual earnings (solid lines) compared to the calibrated earnings model
output (with parameters in headers)
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Fig. 4.7 Maximum likelihood parameter estimation of stochastic drift model for implied divi-
dends (top panel) and market price (bottom panel, two copies to ease vertical comparison)

characterised by large diversions from, as well as extremely fast reversions to, a
long-term growth trajectory.9

For pricing purposes (in forthcoming Sect. 4.5.3), we shall recursively estimate
the parameters of L using various rolling window lengths w by incorporating both
past information and filtered future signals. To illustrate, if the number of available
signals at a certain time step t is nt, the estimation window will then comprise
w � nt and nt past and future earnings data, respectively. Figure 4.7 depicts the
values over time of log-likelihood calibrated parameters, namely, Q�, Q� and �0,
for the ticker MSFT considered in this study (top panels), along with (two copies
of) the observed market price for the same period (bottom panels) where major
financial incidents are also indicated. Estimated values for ˛, on the other hand, lie

9Alternatively, similar to, e.g., [9], where authors discuss the calibration of stochastic volatility
models, �X

0;1 can be added as an additional parameter to the maximisation problem in Eq. (4.53).
Yet, this did not have any significant impact on our results.
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in the band Œ54:8; 191:0	. One notable observation from Fig. 4.7 could be that the
estimated model parameters are able to capture major idiosyncratic and systemic
incidents of financial stress.

4.5.3 Information-Based Model Output

The confluent hypergeometric functions which allowed us to derive a closed-form
formula for the signal-based price in terms of Pochhammer series appear rarely in
the financial mathematics literature and are generally used as a tool to derive the
characteristic function of an average F-distribution as part of the general theory of
asset pricing (see, e.g., [15]). In [3], a confluent hypergeometric function appears
in the computation of the Laplace transform of the normalised price for arithmetic
Asian options. Computation of the confluent hypergeometric functions can pose,
however, significant challenges, particularly, when jzj 	 0 (see, e.g., [3, 21]).

For each time step t, we require at least a minimum number of signals be present
for the forward-looking information to have sufficient impact on price movements.
Figure 4.8, in this respect, shows the number of active signals and their average
length for the time period covered in our dataset. Notably, some signals commence
as early as over 4 years before their associated earnings are announced. Finally, for
r.t; k/, i.e., the discount rate, we adopt U.S. T-bill yield curve rates with maturities
corresponding (or falling close enough) to that of the cashflow k, k D 1; : : : ; n.t/.
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Fig. 4.9 Signal-based price based on multiple signals on quarterly earnings

We accommodate �t for pricing in Eqs. (4.28), (4.34), (4.40) alongwith Eq. (4.47)
to compute both signal-based price St (i.e., using (4.28)) and its numerical as well
as closed-form approximations QSt (i.e., using Eqs. (4.34) and (4.40), respectively).
Figure 4.9 left panels depict the log of the calculated price process (which is also
linearly detrended) during the pricing sample period July 22, 2005–October 21,
2014, covering a total of 3379 data points.

Accordingly, we make some immediate observations as follows:

• The numerical results are almost identical to those obtained by the analytical
approximation (left panels of Fig. 4.9).

• Since the bulk of the price accumulates the continuation value, which in turn
depends on the filtered value of the last cashflow Xn.t/, the signal-based price is
most sensitive to the fluctuations in the last earnings “within” the horizon. This
is represented by large swings in the signal-based price, when t D tn C 1 or
t D Tn C 1.

• Also when t D Tk, the contribution of Xk to S simply changes by the amount
of surprise (i.e., how much the signal k is off-target just prior to the release of a
true factor value). But, more importantly, the surprise at each Tk is incorporated
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Table 4.1 Notable reactions of signal-based price to select idiosyncratic and systemic shocks

Date (shock) Notes

Apr. 27, 2006 (internal) Although there is no known systemic shock, the signal-based
fundamental value quickly reflects the diminishing business
growth prospects implied by an unexpected earnings decline.

Dec. 2007 (external) This is when an across-the-board slowdown in financial activity
has started. Yet, there is no significant reaction by the
signal-based price, in line with the fact that the real business is
yet to be affected.

Sep. 15, 2008 (external) Lehman collapse. Again, the signal-based price foregoes any
significant reaction, until the second round effects hit company’s
long-term earnings growth prospects.

Jan. 22, 2009 (internal) Systemic risks starts to threaten business growth outlook (i.e.,
second round effects), signalled by significantly off-the target
earnings.

May 6, 2010 (external) Known as the “Flash Crash.” Again the signal-based price keeps
its focus at long-term prospects.

into the signal-based price through improved or deteriorated long-term growth
prospects �0t .

• The reaction of the signal-based price to shocks of different types (marked in
the top-right panel of Fig. 4.9) has some noteworthy characteristics which are
summarised in Table 4.1.

Thus, in this chapter, we availed the signal-based framework for practical use by
adapting it to a certain choice of real-time signals.
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Chapter 5
Conclusion

In Chap. 2, we have recovered some of the useful properties of the information-
based framework introduced in [2]. This included, inter alia, that the signal process
.�t/0�t�T was indeed Markov w.r.t. its own filtration and, more strongly, it was
dynamically consistent. The latter meant that two agents which observed �t starting
from two different time points, say 0,s, for s > 0, would not only have a common
view of how �t could evolve in the future (Markov property). They would also have
a common view of how XT could turn out, although the filtration of agent who
started observing �t at s was regarded as being generated by .� 0

t /s�t�T instead of
.�t/0�t�T , provided that his a priori knowledge about the terminal law of XT was
updated to �t.s/. Furthermore, although the martingale driver Wt was not imposed
on the model at the outset, it popped up rather naturally in the price process as a
‘reducible’ component. It was also shown that, although a higher � would ensure
a less certainty ‘at the end’ of a certain period about the true fundamental value, a
higher � also meant an elevated price volatility ‘during’ that period (which seemed
somewhat paradoxical) as information was incorporated rapidly. The availability
of an exponential martingale for a shift from Q to B, on the other hand, brought a
significant deal of simplification to the problem of derivative pricing. The calculated
option prices were indeed in line with the decreasing conditional entropy of (or,
uncertainty about) the market factor XT w.r.t. �t both in time and for growing values
of signal-to-noise � .

In Chap. 3, where a network of a pair of agents with heterogeneous informational
skills was introduced, we have seen that the dispersion of the P&L results among
agents was directly linked to whether information was revealed through price
quotes. The case where agents were ‘attentive’ and did learn from each other, as
compared to the case where they were ‘omitters,’ was associated with a shrinking of
opportunities for (chances of) profit (loss). It was also apparent from the analysis on
the impact of learning on the evolution of individual information that the learning
process, through updating of posteriors � j

t , worked in favour of the agent with an
inferior individual signal when �1 ¤ �2, and the agents benefited equally otherwise.

© Springer International Publishing AG 2017
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As a result, the existence of a common knowledge of gains from trade in the sense
of [1] was essential to an equilibrium in the presence of informational asymmetries,
and to avoid market shutdowns. For the case where each agent deemed his own
signal superior, we have derived explicit formulae for the expected trade signal
quality and the potential profits/losses that the agent could make/incur (given his
signal pointed at the right/wrong direction), and, thereby, his overall expected P&L
before an auction took place. As expected, perception of a greater informational
superiority, j�1 � �2j, meant a greater likelihood for the agent that his trading signal
was directionally correct, i.e., � jt D �c, and greater expected profits (vice versa).
And this likelihood was stronger in the case of an a priori greater dispersion of
the uncertain outcome XT , and also when the agent chose to refrain from trade. In
equilibrium, we found that the optimal strategy was to exploit extra information as
it arrived, as the cost of foregoing a profit was higher than the cost of sharing the
extra information.

In Chap. 4, we have shown, through a particular example, that the information
process and information-based framework can be practically viable, and an analyt-
ical approximation to the numerical asset price be recovered. Introducing a slightly
modified version of �t and using quarterly earnings consensus data as a basis for
constructing the required signals empirically, we approximated the numerical price
process via confluent hypergeometric functions of the first kind (or, Kummer’s
function) in terms of a summation of Pochhammer functions. The model output was
notable in that the signal-based price was in general able to capture major trends
in the actual price, but it was also successively more responsive to the shocks that
were related to the long-term fundamental value of the underlying business, than
those that had limited or no impact on the latter.

As an outlook, the present research can be extended in several directions. How
a time-varying flow rate �t (i.e., agents deem their signal superior only temporally)
would affect the equilibrium strategy and P&Ls of agents in Chap. 3 would be an
interesting issue to look into. Moreover, making the amount of information shared
a function of the amount traded would give the agents the additional flexibility
of deciding ‘how much information to share,’ in addition to ‘when to share,’ and
possibly affect their trading strategies . qjt/0�t�T . Finally, the analysis in Chap. 4
reveals that abrupt price changes do actually result from sudden changes in the
amount and shape of available information. This allows to extend the analysis in
this chapter to a more realistic case by using Lévy processes to model �t.

5.1 Financial Signal Processing (FSP)

The use of digital signal processing (DSP) techniques in financial modelling as a
method at the core of engineering discipline is becoming increasingly widespread.
FSP, as an branch of DSP, applies techniques from the latter to aid quantitative
investment strategies. The overall aim of the theory of FSP is to construct optimal
casual filters to extract useful information from a broad range of financial signals.
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In the financial context, a signal can be deemed to be the price, or any other, process
sampled at a certain frequency which has a certain degree of explanatory power on
the variable of interest.

The justification for the use of signal processing techniques for modelling
financial data stems from the simple fact that any process in the time domain can
be expressed as an ensemble of infinite sinusoidal cycles, each characterised by
a distinct cyclic or angular frequency and radius in the frequency domain. Finite
impulse-response (FIR) filters, in this regard, are generally preferred due to their
stability, linear phase response, flexibility in shaping the magnitude response, and
convenience in implementation.

One of the most potent questions pertaining to the application of DSP techniques
to finance is about how to deal with latency without trading off attenuation of noise
in a causal filter context. This involves designing of, e.g., FIR, filters with selectively
prescribed delays in specific frequency regions without adversely influencing the
attenuation. This requires a methodology that would take the desired specifications
in amplitude, phase or group delay over a band of frequencies, and deliver the
required transfer function. One feasible approach is to use root moments, as
described in [6]. Hilbert transform is also a useful tool to move from amplitude
to phase, so as to achieve the objective of minimising the phase delay.

There are basically two separate issues involved forecasting that need to be dealt
with separately, namely, signal ‘representation’ and ‘signal prediction.’ Existing
techniques, in the main, focus the second issue and consider the first as given
and compliant. The ‘surrogate signal method,’ on the other hand, as proposed in
[4], emerges from the basic idea that the latter two problems must be decoupled
from each other, and an efficient representation of the signal must precede, and
be the basis for, its prediction. In this respect, the surrogate signal, which aims to
offer a satisfactory representation of the original signal, is derived from the latter
in a way that it retains the desirable attributes of the parent signal, while also
satisfying a priori external and equally desirable constraints, such as smoothness
and predictability. One particular way to extract the surrogate is through the use of
‘annihilator.’ Extracted surrogates are linked to trading decisions through a quality
factor, and specification of a surrogate quality threshold.

The identification of dominant cycles, i.e., the peak in the representation of
the signal in the frequency-amplitude plane through Fourier transform (signal
spectrum), is another important concept in DSP. This component is sometimes
used to develop momentum as well as high-frequency trading strategies. For non-
stationary signals, however, the dominant cycle is generally time-varying and needs
to be detected recursively. This gives rise to the issue of instantaneous frequency
(as an alternative to filter bank) and the necessity of adaptive filtering techniques
(cf. [4]).

Another point where sophisticated DSP techniques can be of great help is
basically by introducing the concept of ‘smooth independent components,’ which
implies that the independent components resulting from the independent component
analysis (ICA), a well-known blind source separation algorithm, can be constructed
in a way that they are robust and stable and, therefore, applicable to maximum
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portfolio diversification. One example to this is given in [5], where the smooth ICA
is used to compactly represent a portfolio of assets.

Finally, the first difference or natural logarithm are generally used as the
customary starting to ensure stationarity in financial data, although they sometimes
reduce the information component. There are some recent techniques, such as
empirical data decomposition (EMD) and the like, which do not require a resort
to such transformations while preserving some of the desired characteristics of the
data (cf. [3]).
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Appendix A
Analytical Gamma Approximation
to Log-Normal via Kullback–Leibler
Minimisation

We recall the objective function related to Kullback–Leibler distance minimisation
problem (4.31):

D.at; bt/ D
Z

X

fX. Q�t; Q�t/ log
�
fX. Q�t; Q�t/
gX.at; bt/

�
dx; (A.1)

where X D .0;1/. Let h. Q�t; Q�t/ denote the terms which don’t depend on at and bt.
We have

D.at; bt/ D h. Q�t; Q�t/C log .� .at//C at log .bt/C 1

bt
Ef ŒX	� .at � 1/Ef Œlog .X/	 :

(A.2)

Taking derivatives of D with respect to its arguments, each set to zero, we get

@D.at; bt/

@at
D ‰.0/ .at/C log .bt/� Ef Œlog .X/	 D 0 (A.3)

@D.at; bt/

@bt
D at

bt
� 1

b2t
Ef ŒX	 D 0

D atbt � Ef ŒX	 D 0: (A.4)

where

‰.m/.at/ � dmC1 log�.at/=damC1
t (A.5)
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is the polygamma function. Knowing that Ef Œlog.X/	 D Q�t and Ef ŒX	 D exp. Q�t C
Q�2t =2/, we obtain the following system of equations to solve:

‰.0/ .at/C log .bt/ D Q�t

atbt D exp

�
Q�t C Q�2t

2

�
: (A.6)

Next we eliminate bt by inserting first equation into the latter

at D exp

�
‰.0/ .at/C Q�2t

2

�
: (A.7)

A first-degree approximation to ‰.0/ .at/ is given by

‰.0/ .at/ � log .at/ � 1

2at
(A.8)

which yields

at � 1

Q�2t
; bt � Q�2t exp

�
Q�t C Q�2t

2

�
: (A.9)
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