

Ministry of Education and Science of Ukraine

Yuriy Fedkovych Chernivtsi National University

National Aerospace University “KhAI”

Zaporizhzhia National Technical University

H. I. Vorobets, V. S. Kharchenko, R. K. Kudermetov,

Ya.M. Klyatchenko, V. E. Horditsa, O. O. Pshenychnyi, I.S. Khamula,

I. M. Lobachev, M. V. Lobachev, M. Y. Tiahunova, O. V. Polska

Internet of Things for Industry and Human Applications

Internet of Things

Technologies for Cyber

Physical Systems

Practicum

Edited by H. I. Vorobets and V. S. Kharchenko

Project

ERASMUS+ ALIOT “Internet of Things: Emerging Curriculum

for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

UDС 004.415/.416:004.89](076.5)=111

T38

Reviewers:

Dr. Ah-Lian Kor, Leeds Beckett University, United Kingdom

Prof., DrS. V. V. Mohor, Corresponding Member of NAS, Ukraine, Director of the

G.E. Pukhov Institute of Modeling Problems in Energy

T38 Vorobets H. I., Kharchenko V. S., Kudermetov R. K., Klyatchenko Ya.,

M., Horditsa V. E., Pshenychnyi O. O., Khamula I. S., Lobachev I. M.,

Lobachev M. V., Tiahunova M. Y., Polska O. V. Internet of Things

Technologies for Cyber Physical Systems: Practicum / Vorobets H. I. and

Kharchenko V. S. (Eds.) – Ministry of Education and Science of Ukraine, Yuriy

Fedkovych Chernivtsi National University, National Aerospace University

“KhAI”, Zaporizhzhia National Technical University, 2019. – 172 p.

ISBN 978-617-7361-97-7
The materials of the practical part of the study course MC4 “IoT Technologies for Cyber

Physical Systems”, developed in the framework of the ERASMUS+ ALIOT project “Internet of

Things: Emerging Curriculum for Industry and Human Applications” (573818-EPP-1-2016-1-UK-

EPPKA2-CBHE-JP).

The course structure, teaching materials, examples of tasks for seminars, practical and

laboratory works, as well as methodological recommendations for self-preparation and knowledge

testing in the discipline, and criteria for their assessment are given. The material is submitted

sequentially to form a holistic picture of the current state, synergy, prospects for research and

development of Internet of Things and Cyber-Physical Systems technologies. The focus is on the

conceptual issues of modeling, analysis, synthesis and practical implementation of CPS, and the role

of IoT at all stages of the life cycle of complex computerized systems.

Designed for Masters of Universities in Information Technology: Computer Science and

Information Systems and Technologies, Cybersecurity, Systems Analysis, Software and Computer

Engineering, as well as teachers of relevant faculties, engineers and scientists involved in the

development and implementation of CPS and IoT technologies.

Ref. – 81 items, figures – 51, tables – 10.

Approved by Academic Council of National Aerospace University “Kharkiv Aviation

Institute” (record No 4, December 19, 2018)

ISBN 978-617-7361-97-7.

© Vorobets H. I., Kharchenko V. S., Kudermetov R. K., Klyatchenko Ya. M.,

Horditsa V. E., Pshenychnyi O. O., Khamula I. S., Lobachev I. M., Lobachev M. V.,

Tiahunova M. Yu., Polska O. V.

This work is subject to copyright. All rights are reserved by the authors, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilms, or in any other physical way, and transmission

or information storage and retrieval, electronic adaptation, computer software, or by similar or

dissimilar.

Міністерство освіти і науки України

Чернівецький національний університет імені Юрія Федьковича

Національний аерокосмічний університет «ХАІ»

Запорізький національний технічний університет

Г. І. Воробець, В. С. Харченко, Р. К. Кудерметов,

Я.М. Клятченко, В. Е. Гордіца, О. О. Пшеничний, І.С. Хамула

І. М.Лобачев, М. В.Лобачев, М. Ю.Тягунова, О. В. Польська

Інтернет речей для промисловості та гуманітарних застосувань

ТЕХНОЛОГІЇ ІНТЕРНЕТУ РЕЧЕЙ

ДЛЯ КІБЕРФІЗИЧНИХ СИСТЕМ

Практикум

За редакцією Г. І. Воробця та В. С. Харченко

Проект

ERASMUS + ALIOT «Інтернет речей: нові навчальні

програми для промисловості та гуманітарних застосунків»

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

4

УДК 004.415/.416:004.89](076.5)=111

T38
Рецензенти: Доктор Ах-Ліан Кор, Університет м. Лідса, Великобританія

Проф., д.т.н. В. В. Мохор, член-кореспондент НАН України, директор

Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова

T38 Воробець Г. І., Харченко В. С., Кудерметов Р. К., Клятченко Я. М.,

Гордіца В. Е., Пшеничний О. О., Хамула І. С., Лобачев І. М., Лобачев М. В.,

Тягунова М. Ю., Польська О. В. Технології Інтернету Речей для кіберфізичних

систем. Практикум / За ред. Г. І. Воробця та В. С. Харченко – МОН України,

Чернівецький національний університет імені Юрія Федьковича, Національний

аерокосмічний університет “ХАІ”, Запорізький національний технічний

університет, 2019. – 172 с.

ISBN 978-617-7361-97-7.
Викладено матеріали практичної частини курсу МC4 “Технології інтернету

речей для кіберфізичних систем”, підготовленого в рамках проекту ERASMUS+

ALIOT “Internet of Things: Emerging Curriculum for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP).

Наведено структуру курсу, навчальні матеріали, приклади завдань для

семінарів, практичних і лабораторних робіт, а також методичні рекомендації для

самопідготовки і перевірки знань з дисципліни, та критерії їх оцінювання. Матеріал

подається послідовно для формування цілісної картини сучасного стану, синергії,

перспектив розвитку та досліджень технологій інтернету речей і кіберфізичних

систем. Увага акцентується на концептуальних питаннях моделювання, аналізу,

синтезу і практичного впровадження КФС, та ролі ІоТ на всіх етапах життєвого

циклу складних комп‘ютеризованих систем.

Призначено для магістрів університетів у галузі інформаційних технологій:

комп‘ютерних наук та інформаційних систем і технологій, кібербезпеки,

системного аналізу, програмної та комп'ютерної інженерії, а також викладачів

відповідних курсів, інженерів та науковців, які займаються розробкою та

впровадженням технологій КФС та IoT.

Бібл. – 81, рисунків – 51, таблиць – 10.

Approved by Academic Council of National Aerospace University “Kharkiv Aviation

Institute” (record No 4, December 19, 2018)

ISBN 978-617-7361-97-7.

© Воробець Г. І., Харченко В. С., Кудерметов Р. К., Клятченко Я. М., Гордіца В. Е.,

Пшеничний О. О., Хамула І. С., Лобачев І. М., Лобачев М. В., Тягунова М. Ю.,

Польська О. В.

Цей твір є об‘єктом авторського права. Усі права захищені авторами, незалежно від того чи
стосується це всього матеріалу, або його частини, зокрема права на переклад, передрук,
повторне використання ілюстрацій, декламацію, трансляцію, відтворення на мікрофільмах

чи будь-яким іншим фізичним способом, а також передачу інформації для зберігання та
пошуку, електронної адаптації, відтворення програмного забезпечення для комп’ютера, або
подібними чи іншими методами.

5

Abbreviations

ABBREVIATIONS
ABA –advanced branching algorithms

ACS – automated (automatic) control systems

ADC – analog-to-digital converter

BDD – Block Definition Diagram

CPS(s) – Cyber Physical System(s)

CSpace (CWorld) – cyberspace (world)

ES – embedded system

Esp-IDF – Espressif IoT Development Framework

FPGA – Field-Programmable Gate Array

GCPS – global CPS

GPIO interface – General Purpose Input Output interface

GUI – graphical user interface

I2C interface – Inter-Integrated Circuit interface

IBD – Internal Block Diagram

IDE – integrated development environment

IoT – Internet of Things

LCD – LED Countdown Display

LED – Light-emitted diode

LRM – laboratory research module

LSM – LED traffic signal module

LWIP – Light weight IP Stack

MARTE – Modeling and Analysis of Real-Time and Embedded Systems

MBD – Model-Based Design

MBSE – Model-Based Systems Engineering

NFP – Non-Functional Properties

OMG – Object Management Group

OOP – object-oriented programming

PAD – Pedestrian Audible Device

PCB – printed circuit board

PO – physical object

PoE – Power over Ethernet

PP – physical process

PTL – Pedestrian Traffic Light

PW(PS) – physical world (physical space)

PWM –pulse width modulation

RT process – process in real time

SDE – software development environment

SysML – Systems Modeling Language

UCF-file – User Constraints File

UML – Unified Modeling Language

VSL – Value Specification Language

6

Introduction

INTRODUCTION

The materials of the practical part of the study course MC4 “IoT

Technologies for Cyber Physical Systems”, developed in the framework

of the ERASMUS+ ALIOT project “Internet of Things: Emerging

Curriculum for Industry and Human Applications” (573818-EPP-1-

2016-1-UK-EPPKA2-CBHE-JP)1 are presented.

The course structure, teaching materials, examples of tasks for

seminars, practical and laboratory works, as well as methodological

recommendations for self-preparation and knowledge testing in the

discipline, and criteria for their assessment are given. The material is

submitted sequentially to form a holistic picture of the current state,

synergy, prospects for research and development of Internet of Things

and Cyber-Physical Systems technologies. The focus is on the

conceptual issues of modeling, analysis, synthesis and practical

implementation of CPS, and the role of IoT at all stages of the life cycle

of complex computerized systems.

Module 1 “Basic Principles for the Organization and Functioning of

Ecosystems of the Internet of Things and Cyber-Physical Systems”

discusses conceptual issues related to the subject of research and the

field of applications, structural organization and construction, as well as

the functioning principles of the Internet of Things and Cyber-Physical

Systems. The main attention is paid to a comparative analysis of the

mutual similarities and differences between the subject area and the

technologies used in the field of IoT and CPS. The synergy of IoT and

CPS is studied and demonstrated using the example of a complex

analysis of hierarchical-modular organization models of complex

systems and multi-contour interaction of physical- and cyber-space

elements. This module provides one practical lesson and seminar.

The second module “IoT Technology in the Problems of Analysis

and Synthesis of CPS” is considered as the basic module in terms of

research, design and development of modern cyber-physical systems.

__

_
1 The European Commission's support for the production of this publication does not

constitute an endorsement of the contents, which reflect the views only of the authors, and

the Commission cannot be held responsible for any use which may be made of the

information contained therein.

7

Introduction

The special role of the Internet of Things technologies is

emphasized both at the stage of research and development of CPS, and at

the stage of implementation and expansion of their functionality. The

synergy of IoT and CPS is demonstrated using the hybrid CPS/IoT

information-measuring model. The model of through design of CPS/IoT

systems from the physical process automation to the intellectualization

of information processing and the management process is considered.

This module provides for six laboratory works covering the entire cycle

of analysis and development of CPS/IoT technical solutions, including

the possibility of using reconfiguring computer means. The modern

component base is analyzed, and the capabilities of the software and IoT

technologies for solving the problems of creating modern cyber-physical

smart systems are shown.

The third module “Power-Over-Ethernet Based Transducer

Networks for Cyber Physical Systems,” discusses the capabilities of

modern network technologies and standard protocols for the

intellectualization of spatially distributed CPS. Based on PoE

technology, interesting solutions for optimizing information flows, a

smart model of energy-efficient CPS are proposed. An extended seminar

is offered to familiarize with these questions and to analyze and study

them thoroughly.

The fourth module "Model-Based Systems Engineering for the

Cyber-Physical Systems" discusses modern CPS/IoT modeling and

analysis techniques. Examples of the synthesis of intelligent CPS/IoT

solutions and their optimization based on the MBSE approach are given.

Two laboratory works are proposed for mastering these methods.

The course is intended for Masters of Universities in Information

Technology: Computer Science and Information Systems, Cybersecurity,

Systems Analysis, Software and Computer Engineering, as well as

teachers of relevant courses, engineers and scientists involved in the

development and implementation of CPS and IoT technologies.

Practicum prepared by a team of authors from Yuriy Fedkovych

Chernivtsi National University – Associate Professor, Head of Computer

Systems and Networks Department Heorhii Vorobets, Assistants

Valentyna Horditsa and Oleksii Pshenychnyi, Master of Engineering

Illia Khamula, Student Volodymyr Buchakchiiskyi; National Aerospace

University named after M. Zhukovsky "KhAI" – Professor, Head of

Computer Systems, Networks and Cybersecurity Department Viacheslav

Kharchenko; Zaporizhzhya National Technical University – Associate

8

Introduction

Professor, Head of Computer Systems and Networks Department Ravil

Kudermetov, Associate Professor Mariia Tiahunova, Senior Lecturer

Olga Polska; Odessa National Polytechnic University – graduate student

Ivan Lobachev and Associate Professor, DrS Mykhailo Lobachev.

The authors are grateful to the reviewers, project colleagues, staff

of the departments of academic universities, industrial partners for

valuable information, methodological assistance and constructive

suggestions that were made during the course program discussion and

assistance materials. Special thanks to the foreign partners of the ALIoT

project – Coimbra University, Portugal; University of New Castle, and

Leeds, United Kingdom; KTH Polytechnic University, Stockholm,

Sweden; and University of Pisa, Italy for seminars, practical experience

on CPS and IoT development and implementation, which they sincerely

shared with the project implementers from Ukraine.

9

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

1. BASIC PRINCIPLES FOR THE ORGANIZATION AND

FUNCTIONING OF ECOSYSTEMS OF THE INTERNET OF

THINGS AND CYBER-PHYSICAL SYSTEMS

Assoc. Prof., PhD H. I. Vorobets (ChNU)

1.1 Features of structural and functional synergy of IoT and CPS

(Practical Work)

The aim of the Workshop: studying the conceptual foundations of

the organization and functioning of IoT and CPS technologies

ecosystems, obtaining practical skills in the methodology of developing

the structure and functional models of modern high-performance IoT and

CPS platforms, and their analysis.

Learning tasks:

 analysis of modern approaches and conceptual diagrams of the

structural and functional organization of IoT and CPS;

 study of existing methodologies for the structural synthesis of IoT

and CPS based on a hierarchically modular approach to their

construction and requirements for the functional completeness of the

tasks they implement;

 familiarization with the methodology of the complex approach and

prototyping of systems and its application for the tasks of analysis

and synthesis of IoT and CPS;

 mastering the studied approaches and methodologies by performing

an individual practical task of building a functional CPS model and

applying IoT technologies.

Preparation for the practical work includes two stages:

1) thorough study and analysis of theoretical material in a lecture course

[1], recommended and self-processed literature and theoretical and

methodological calculations given below;

2) implementation and preparation of an individual assignment report

due to the recommendations below and its public defense in the

audience.

10

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

1.1.1 Theoretical aspects of a complex approach to the analysis

and synthesis of IoT and CPS

Definition of the essence of IoT and CPS, physical- and cyber-

space structure. The concept of IoT and CPS synergy. According to

the generally accepted definition, CPS is a technical high-tech solution

where the combination of high-performance computing capabilities with

informative filling of physical processes creates a new quality of world

perception and new added value in the form of new knowledge, products

or reducing the cost of its production [1,2]. The basis or the object of

research and development here is the “physical process” (PP) of the real

world (Fig. 1.1). PP is caused by a change in the state of physical object

(PO), observing which a person (user, observer) receives new

information about the PO.

The user himself can call some PPs acting on the PO indirectly

through certain instrumental (device) interfaces (II, or DI): buttons,

knobs, mechanisms, servos, electronic keys, etc., which are also

elements of the real physical world/space (PW or PS). In an effort to

reduce the amount of manual labor, the user engages mechanisms and

systems that perform a certain ordered set of actions/influences on POs.

Such tools perform the functions of managing objects or processes. They

can be conditionally assigned to cyberspace (control space) and together

with PS objects form automated or automatic control systems (ACS). As

you can see, the selection of cyberspace objects here is purely

conditional – these are real devices that affect the object, but are not

directly involved in the implementation of the functions implemented by

the PO.

Possibilities of implementing control functions increase

significantly when using computer tools as control devices. In this case,

their essence is “virtualized”, since the control process is more

associated with the use of “calculations” than by the direct generation of

control signals. Even greater cyber-component virtualization is achieved

by implementing network technologies for remote access to computing

resources, the so-called “Cloud Technologies”. Thus, it is generally

accepted that hardware and software resources as objects of the real

world create its superstructure in the form of cyber-space (world)

(CSpace or CS and CWorld or CW) (Fig. 1.1).

The technology of vertical information exchange from physical

processes to computing resources in the Internet on certain computers,

11

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

servers or distributed resources in the Cloud, and the results of

processing information and control signals in the opposite direction are

commonly called the “Internet of Things”.

Router

SP

TCP/IP

IoT

Physical
spase

SP

12

SP
K UW or IR SA

Cloud Technologies

SP

4

Physical process

Physical objects

Instrumental interface

Communi-
cation level

3

6

Cyber spaсe

Automatic system

Cyber Physical system

Autonomous CPS

5

WiFi

SR CPS

Fig. 1.1 – Structural organization and interaction of physical space and

cyberspace components in CPS and IoT

12

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

The synergіаізy of CPS and IoT can be traced already in their model

representation: 5C CPS model and three-level IoT [1, 3, 4], and the

expansion of the functionality of edge devices and network solutions

leads to even greater leveling of differences between them. However, the

applied hierarchically modular approach (Fig. 1.1) allows to trace the

evolution of CPS and IoT and the differences between them, and to

refine their classification depending on the functional completeness of

the performed tasks. Let us consider the CPS evolution from

mechatronic to self-configuration systems using the example of step-by-

step automation of the information-measuring system – the SF series

spectrophotometer.

Physical process analysis and modeling features. The essence of

the physical process used in the system is to change the optical properties

of the probe beam passing through the object under study, and provides

the user with information about the characteristic parameters of the

object – transmission/absorption of certain radiation wavelengths. To

justify CPS platform models of various functional levels, we define the

minimum required Mmin and the full Mfull PS parameter sets which CS

will interact with.

The wavelength λ of the source radiation S* and the magnitude of

the information signal of the photo potential Uis can be attributed to the

minimum required set. It is the dependency Uis=f (λ) that provides the

necessary information to the user about the research object. However, to

obtain it, it is necessary ensure synchronization of the fixation of Uis and

λ. This is achieved by searching for the signal of the initial value λ0 in

the scanning mode of the scale λ, when applying control pulses to the

stepper motor, and setting the necessary offset Δλi (number of pulses ni)

for the corresponding λi. In addition, the background value calibration

signal Uis0 is used to quantify Uis. It is determined for each value of λi

before Uis measurements. To do this, the frame is shifted with the help of

a stepper motor, and the geometric dimensions of the light window,

which adjusts the maximum light flux ΦΔλ to the photodetectors at a

given value λi to a maximum ΦΔλmax, are changed.

Thus, the set

Mmin={λ0, λi, λf, ni(Δλi), Uis0, Uis, Uisf, mj(ΔUj), km}

contains the minimum required set of PS parameters to automate the

measurements of the studied PP at some fixed values of the PO states:

SUW/IR={0, 1} – type of radiation source of ultraviolet (UW) or infrared

(IR) wavelength range; PDUW/IR={0, 1} – type of photodetector of UW or

13

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

IR radiation; δU={0, 1, 2, 3}10={00, 01, 10, 11}2 – photodetector

sensitivity on one of the fixed four ranges, that can be encoded with two

bits in binary form. In this case, the coordinate λi=λ0 + Δλi is uniquely

determined by the rotation of the wavelength servo motor with the

supply of ni=NΔλi/(λf-λ0) pulses on it , where N is the number of pulses

that ensures movement of the scale λi from the minimum λmin=λ0 to the

maximum λmax=λf value of the available wavelength range. Similarly, in

the calibration mode (km=1; km {0, 1}, 0 – measurements, 1 –

calibration), the discretization step of the maximum search ΦΔλmax is

determined by the range of the photodetector signal change

mj=MΔUj/(Uisf-Uis0) when changing the light window size. For complete

automation of the PO, Mmin needs to be supplemented with state

parameters:

Mfull={λ0, λi, λf, ni(Δλi), Uis0, Uis, Uisf, mj(ΔUj), km, SUW/IR, PDUW/IR, δU}.

Functional-structural analysis and classification of IoT and

CPS. Using microcontrollers (1, Arduino, or 2 (ESP32), Fig. 1.1), or

computer tools (Sensors – DI (II) – 1 (Arduino) – USB port – 4 (personal

computer, PC), Fig. 1.1) for processing sets of Mmin and Mfull allows

synthesizing mechatronic ACS of respectively automated or automatic

type. The application of “intelligent” system control algorithms for

searching for given research ranges Δλi and self-calibration of the optical

channel is implemented here according to one or another given algorithm

and does not provide new knowledge about the studied object, which this

device is actually intended for. New knowledge, or their search with the

help of new corrected measurements, is obtained after processing the

received primary information by the user.

Applying a remote computer for controlling the PO and primary

processing of the obtained measurement results (6) according to the

scheme PS – Sensors – DI(II) –1 – 2 – 6 (Fig. 1.1), where data are

exchanged using TCP/IP protocols, implements the IoT technology .

Wherein module 6 can be implemented on the basis of a PC, smartphone,

tablet, netbook, and use both wired and wireless communications (WiFi,

RF, Bluetooth, IR, etc.).

Using of a control module (3) based on Raspberry Pi 3B+,

BeagleBone C or another modification of a single-board microcomputer

with the ability to deploy an embedded operating system (OS) as a

cyber-component allows implementing an embedded computer system

(ES – embedded system).

14

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

If advanced branching algorithms (ABA), which give new

knowledge about the object under study, or/and allow to refine an

already implemented process in real time (RT process) to obtain new

knowledge, are used to process measurement data then we can talk about

CPS implementation. Two options are possible if the PC hardware and

software resources (3, 4, and 6 in Figure 1.1) allow implementing the

necessary ABA:

1) autonomous CPS in the configuration Sensors – DI(II) – 1 (Arduino)

– USB port – 4 (PC) or Sensors – DI(II) – 1 (Arduino) – USB port – 4

(PC);

2) Open-type CPS according to the scheme PS – Sensors – DI(II) – 1 – 2

– 6, or PS – 1 – USB port – 4 (PC) – Ethernet/Internet Gateway – 6

(PC) (Fig. 1.1) using IoT technology.

Open-type CPS can be classified according to various criteria - used

IoT network technologies, implemented algorithms, problem orientation

of tasks, architectural complexity, etc.

If local (4) or remote (6) PC resources for processing and simulating

the studied objects and processes are not enough, or if high-performance

data mining and analysis techniques are required, then it is advisable to

use Cloud Technologies, which gives reason to speak about the global

CPS (GCPS) formation (Fig. 1.1).

Both in autonomous and in open and global CPS, problem-oriented

tasks are mainly solved, the essence of which is determined by the

features of PP in the PO as elements of influence or control, and by the

ways of processing data and obtaining the expected information. In such

cases, it is advisable to use special processors based on FPGA

reconfiguration environments to optimize the system in terms of

minimizing hardware resources or solution obtaining time, energy

efficiency of the system and others. Thus, the reconfigure levels and self-

reconfiguration levels CPS (SR CPS) of an autonomous or open type are

implemented (module 5, Fig. 1.1). To implement SR CPS, the system

must have sufficient built-in hardware resources for the synthesis of

special processors according to the implemented problem-oriented ABA.

Such systems operate under the 3S model [1, 7] in certain conditions of

uncertainty of the initial data regarding environmental influences. They

have the properties of self-analysis, self-training/adaptation and self-

organization/reconfiguration [8].

However, in all implementation cases of complex systems for

information processing and management of objects and processes,

15

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

perhaps it's advisable to speak in terms of "systems" about CPS and in

terms of "technology" about IoT. This essence is reflected in the names

themselves. CPSystems – by the definition of "system", is a collection of

physical- and cyber-space objects that interact with each other, and act as

a whole when interacting with the environment to achieve a common

goal [9,10]. InternetOT – technologies of communication and interaction

between objects that can interact with the environment on their own, and

are not required to form a system, although they do not exclude it. IoT,

as technology can also provide intersystem communications.

The hybrid CPS/IoT model [1, 11] takes into account the synergy

capabilities of “systems” and “technologies” and makes it possible to

optimize technical solutions according to the generalized

economy/speed-performance index [12] of both the cyber component

and the CPS as a whole.

At the same time, a clear separation of functions and tasks

performed by CPS and IoT will allow to standardize design approaches

and technical requirements for individual modules, their interfaces,

development and modeling environments, and accordingly to simplify

the process of through analysis and synthesis of CPS from sensors and

terminal devices to hardware solutions of all levels and cloud models.

Features of IoT and CPS algorithms synthesis. Let's consider an

example of a functional algorithm that requires a cyber-physical

approach for its implementation, in contrast to the mechatronic one. So

for the mechatronic ACS of SF-series spectrophotometer, it is enough to

implement a linear algorithm of data measurement to establish the

dependence Uis=f(λ):

1) set the initial data: information about the test sample, scanning range

λ : λ1<Δλ<λ2, scanning step δλ in nm, file name to write data;

2) open the data file and record the initial information and carry out the

initial settings:

- move the carriage of the scale λ to the state λ0;

- move the carriage of the scale λ from the state λ0 to the state λ1;

3) run the measurement management program:

- write the values of λ1 to the file;

- calibrate the optical channel – close the key K (Fig.1.1) and set the

value Uis0=0%, open the key K and set the value Uis0=100%, close the

key K;

- place the studied sample to the optical channel;

- open the key K;

16

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

- measure the value of Uis at the set λ1 value;

- write the measured value Uis to a file according to λ1;

- move the scale carriage λ from the state λ1 to the state λi=λ1+δλ;

4) cyclically repeat step 3 until the value λi=λ2 is reached;

5) carry out the last measurement cycle, write the Uis value to the file

according to λ2, close the file and finalize the program.

As can be seen, the entire measurement process is carried out

automatically. Most information will be obtained when choosing the

minimum scan step for the spectrum δλ, but the measurement duration

will be the highest, within an hour. Increasing the δλ step when exploring

new unknown samples can lead to information loss between the values

of λi and λi+1 at unknown intervals of i. To solve this problem, it is

proposed to intellectualize the system by implementing ABA and

"raising" the technical software solution to the level of CPS, or the

"analytical/thinking" system.

Several ABA depending on the requirements for measurement

accuracy can be implemented. In particular, the algorithm of δλ dynamic

correction, depending on the change dynamics of the Uis photo detector

signal, is attractive. Its essence is as follows. With a small calibration

characteristic drift in time , it's proposed to measure it with a sufficient

step δλ once before a series of studies, write it to a memory/file and use it

further to process and establish the actual measurement values of the

studied samples characteristics Uis=f(λ). Spectrum measurements are

carried out in scanning mode, taking into account the dynamics of

changes in the calibration characteristic (Sk=ΔUisk/Δλi), the inertia of

mechanics as the spectrum sweep speed (υλ≈2÷5 nm/s) and the duration

of the analog-to-digital conversion (τADC ≈ 1 ms) of the information

signal Uis. According to the estimatesthe cyber-component manages to

take several hundreds of Uis measurements and to estimate the dynamics

(Sm=ΔUis/Δλi) in comparison with Sk during the δλ=1 nm offset. The

initial set λi is selected from the condition of the correct visual display

Uis=f(λ) on the monitor or by printing the specified range λ1 <Δλ <λ2.

Changing the step δλ of fixing Uis at the corresponding λi occurs

dynamically during the measurement process in accordance with a

change in the ratio ε=Sm/Sk (%). That is, with an increase in ε by X%, the

step δλ of the next fixation of the measurement results decreases by the

same percentage. Measurement synchronization is carried out by the

counter of clock pulses, which are fed to the servo of scale λ. Thus, the

more features the spectrum under study will have in a certain area Δλ

17

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

compared to the background, the more fixation points λi will be in the

same range.

Sets of parameters Mmin, Mfull for the development of functional

models and implementation of the proposed ABA require extension –

Mmin
*={Mmin, Sm, Sk, ε}, Mfull

*={Mfull, Sm, Sk, ε}.

Unlike the previous algorithm, the measurement process itself is

unpredictable, that is, it is realized under certain conditions of

uncertainty of the problem by the input parameters, and depends on the

properties of the object under study. Accordingly, the cyber component,

although it works according to the recorded algorithm, however,

provides correction of this algorithm’s parameters. Steps 2 and 3 of the

linear algorithm description, when modifying it for the proposed ABA,

must be rewritten as:

“…- complete the optical channel calibration cycle and store the data;

- place the test sample to the optical channel;

- write the value λ1 to a file;

- take measurements of the value of Uis with the set λ1;

3) start the measurement management program:

- start the ni counter;

- start moving the carriage of the scale λ from the state λ1 to the

state λi=λ1+δλ;

- take measurements of Uis value for the current intermediate value

λi;

- calculate the parameter Smi;

- calculate ε=Sm/Sk (%);

- make correction for δλ
*;

- stop the counter and, accordingly, the carriage λ, with the

corrected values ni
* and λi

*=λ1+ δλ
*;

- take measurements of the value of Uis when set λi
*=λ1+ δλ

*;

- write to file the defined Uis values with set λi
*;

4) cyclically repeat step 3 to achieve the value of λi=λ2; … “.

The branching of this algorithm is manifested at the stage of making

correction for δλ
* according to the calculation results ε=Sm/Sk (%). It is

clear that the duration of all the calculations and correction processes

should be completed before fixing ni
* and λi

*. This imposes additional

requirements on the productive speed-performance of cyber-component

computing resources of the designed CPS.

The disadvantage of this approach is also the "unpredictability" of

the data file size, and, accordingly, the amount of memory for storing the

18

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

results. The selection of the appropriate modules and parameters of the

CPS cyber-component is performed by searching for the maximum value

of the target function Fs of the hardware resources description of the

designed system [1, 7].

IoT technology is used here if the system configuration is

implemented according to structure A: PS – Sensors – DI(II) – 2 –

Ethernet/Internet Gateway – 6 (PC) (Fig. 1.1). However, option B is also

possible: PS – Sensors – DI(II) – 2 – USB port – 6 (PC). The correct

choice of option A or B requires further time parameters exploring of the

Ethernet/Internet Gateway, USB port of PC and the ESP32 platform

used.

Other ABAs that meet the requirements of "cyberphysics" of

systems, that is, the synergy of “computing” and “physical processes”,

and the wider use of IoT technologies are also possible. For example, an

algorithm for critical points searching (weakly expressed local extrema,

inflection points of linear sections Uis=f(λ), etc.) and the subsequent

“thin” scanning of selected sections Δλ, or an algorithm for dynamic

modeling of measured characteristics in real time and / or Fourier

analysis of the obtained spectra with parallelizing these processes on

computational modules. To evaluate and optimize the required resources

for the implementation of such algorithms, it is necessary to apply a

systematic approach and correctly determine the target functions of the

analysis and synthesis of CPS and IoT.

1.1.2 Recommendations for completing an individual practical task

General recommendations for studying the CPS and IoT

synergy in a specific subject area. The features of CPS and IoT

synergy should be analyzed based on the functional purpose of the

systems under study and the essence of the physical processes embedded

in their functionality. Applying system decomposition separate structural

modules – components – elements allows to better understand the

physical nature of the objects being analyzed and to establish causal

relationships of their functional. A hierarchically modular model of

functional description allows to summarize the requirements for the

methods and methodologies of information processing at individual

levels, as well as to trace the movement of information flows between

the levels.

19

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

A generalized integrated approach to the analysis and synthesis of

CPS and IoT functional models provides the following steps:

1.A detailed study of the information transformation and transmission

features in the analyzed physical system at the physical (natural)

level.

2.Establishing multiple physical values and characteristics for the

quantitative assessment of physical processes.

3.Determining the minimum required, complete and expanded sets of

parameters and characteristics necessary for the basic system

functionality implementation.

4.Choosing an algorithm for the basic functionality implementation of

data collecting and processing, and process management.

5.Optimization of the selected algorithm in terms of minimizing used

hardware resources and system performance.

6.Justification of the requirements for the parameters of the hardware

resources used for the implementation of functionally structural

solutions.

Such steps can be implemented using the methodology of linear

gradual approximation of solution and multiple iterations by the model

of multi-circuit CPS interaction with components of the physical world.

As shown in the theoretical part, the attention should be focused on

the parametric description of the system in paragraphs 2-4, since they

form further requirements for the structural-algorithmic synthesis of CPS

and IoT and determine its complexity. It is also worth comparing

possible functional algorithms that allow for a qualitative transition from

mechatronic systems to CPS and justify the need for synergy in the

hybrid CPS/IoT model, for example that is handled in an individual task.

The topics of individual tasks concern the practical applications of

CPS and IoT in the environment and everyday life and are not limited

with the list below. Student initiative is supported to formulate and

expand the proposed topics, especially tasks promising for further

promotion in the form of start-up projects. It's worth noting that the

proposed tasks should allow for a through analysis of the system from

the level of sensors and servos to the possibility of using cloud

technologies.

Recommended topics for individual tasks:

1. Autonomous car model for closed-loop racing.

2. Traffic light model with intelligent daily and situational traffic

management.

20

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

3. Mars-rover model for cross-country traffic and metal search.

4. The system of intelligent lighting control in a multi-room apartment.

5. The system of intellectual zonal control of urban youth area lighting.

6. Climate control system of greenhouse economy.

7. Pet care system.

8. Smart exercise bike with intellectual analysis of the user's functional

life activities.

9. Monitoring system of athlete's physical activity in the course of

performance of strength exercises.

10. Monitoring system of driver's emotional and physical condition.

11. Express system of quality analysis of one type of the food.

12. Smart-windows energy efficiency monitoring and correction.

13. Gas-analyzer for underground work.

14. System for protecting premises against unauthorized access.

15. The temperature control system for 3D thermal printers.

Requirements for the structure and content of the technical

report are determined by the general requirements for the formalization

of the research results and scientific reports. The presentation of the

material should be consistent and logical. The disclosure completeness

of individual issues should be sufficient to justify the main ideas and

theses that the author makes for general discussion and coverage of the

relevant topic. It is strictly forbidden to compile parts of other authors'

publications and study guides, as well as overload the text with well-

known reference materials. References to cited literary sources or

authors whose ideas are discussed or further developed in the presented

study are mandatory. The structure and content of the submitted

materials can be as follows:

• Title page, indicating the educational institution, department and

specialty where the undergraduate studies, full name of the

undergraduate, research titles, in parentheses – subheading: individual

assignment from the course IoT technologies for CPS, bottom of the

page – city and year of work. Abstract, list of abbreviations and key

phrases, content. Volume – 4 pages.

• Introduction (a brief overview of the relevance and processing state

of the task is presented; the purpose, object and subject of research

are defined; whether this work is a continuation of previous research

and publications of the author should be indicated), volume – 2 pages,

title is not numbered.

21

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

• Main part. The presented material is structured in paragraphs. The

paragraphs names are formed according to the topic and purpose of

the study, and the specific tasks they solve, and are numbered from

position 1. Recommended volume – 3-4 paragraphs, only 11-14 text

pages. For example:

1. Analytical review of modern approaches to the synthesis of CPS

(a thorough analysis of well-known scientific publications and

Internet materials with emphasis on unresolved problems or tasks

requiring further research is presented; the paragraph ends with

statement of tasks for our own developments, which will be

covered in the following paragraphs). Volume – 3-4 pages.

2. Method and examples of solving the problem of structural-

algorithmic CPS synthesis using IoT technology (the results of

research, development of recommendations, models, technical

solutions, etc. are presented, proposed by the author, which, in his

opinion, are sufficiently substantiated, or confirmed by

experiments or practical applications; separate subparagraphs may

be highlighted for a more understandable presentation of the

material) Volume – 5-6 pages.

3. Analysis/modeling of the proposed methods and technical

solutions (a comparative analysis of the advantages and

disadvantages of the models, approaches and solutions proposed

and described by the author in Section 2 is carried out; modeling

and simulation at the level of program models or sketchy models

are possible). Volume – 3-4 pages.

• Conclusions (the achieved 3-5 main results are ascertained, which,

in the author's opinion, are sufficiently substantiated with calculations

in the main part; suggestions are made for further research and

recommendations; the heading is not numbered). Volume – 1-2

pages.

• List of cited references (a list of publications and Internet

publications used by the author to substantiate the provided research;

the heading is not numbered). Volume –1-2 pages.

• Appendices (materials that are not included in the main part, but are

important for a more complete disclosure of their contents are

provided; the heading is not numbered). Volume – up to 5 pages.

Thus, the total report volume doesn't exceed the size of 1 printed

sheet (24 pages) and is within 17-24 standard A4 pages, font – Times

New Roman, size – 14, spacing – 1.5, margins – 2 cm.

22

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

It is suggested to use this design template for other reports on a

seminar, individual and other tasks in this manual, where no special

requirements are specified, as well as for the preparation of materials on

research work, technical reports, and materials for scientific publications

of masters.

Implementation and protection of an individual task. An

individual assignment is recommended to start with a thorough study of

the lecture material [1] and additional literature. The above theoretical

calculations can be used as an example of this task.

First of all, it is necessary to systematize the studied material and

structure it according to a previously developed plan. It's recommended

to use schemes, diagrams, tables, figures for systematization. This allows

you to present more information in a compact form and compare the

advantages and disadvantages of various solutions and approaches.

Based on this comparison and analysis, proposals are generated to

address the identified shortcomings, and methods for their elimination.

This approach is individual and depends on the previous experience of

the performer.

To protect the completed report, it is recommended to prepare a

brief presentation of 15-18 slides, based on 5-7 minutes of the report.

The filling of the slides should correspond to the structure and content of

the plan developed by the author on his theme according to the above

sample. The language of presentation and report is English.

When evaluating the results of an individual task, the following are

taken into account:

- originality of approaches and proposed solutions;

- the quality of text design in form and content;

- the quality of the presentation on design and content;

- the quality of the report and the format of the discussion when

discussing the report;

- the completeness and correctness of the answers to the questions.

Recommended literature
1. Internet of Things for Industry and Human Application. In Volumes 1-3.

Volume 1. Fundamentals and Technologies / V. S. Kharchenko (ed.) –

Ministry of Education and Science of Ukraine, National Aerospace

University KhAI, 2019. - 605p.

2. K. Schwab, The fourth industrial revolution. Crown Publishing Group,

Division of Random House Inc, 2017.

23

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

3. B. Bagheri, S. Yang, H. Kao and J. Lee, "Cyber-physical Systems

Architecture for Self-Aware Machines in Industry 4.0 Environment", IFAC-

PapersOnLine, vol. 48, no. 3, pp. 1622-1627, 2015. Available:

10.1016/j.ifacol.2015.06.318.

4. N. Suda, “Reconfigurable Architectures and Systems for IoT Applications”,

Dissertation Presented in Partial Fulfillment of the Requirements for the

Degree Doctor of Philosophy. Arizona state university, 2016. – 83 p. – N.

Suda, Repository.asu.edu, 2019. [Online]. Available:

https://repository.asu.edu/attachments/ 164110/

content/Suda_asu_0010E_15651.pdf. [Accessed: 20- Jul- 2019].

5. E. Lee and S. Seshia, "Introduction to Embedded Systems - A Cyber-

Physical Systems Approach", Ptolemy.berkeley.edu, 2019. [Online].

Available:

https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV1_

08.pdf. [Accessed: 05- Jul- 2019].

6. R. D. Sriram, "Toward Internet of Everything: IoT, CPS, and SNSS",

OntologPSMW. Ontologforum.org, 2019. [Online]. Available:

http://ontologforum.org/index.php/ConferenceCall_2015_03_12. [Accessed:

20- Jul- 2019].
7. H. Vorobets and V. Tarasenko, "Self-configuring computer tools in

Cyberphysical Systems (Ukrainian)", in Cyberphysical Systems::

Achievements and Challenges: Proceedings of the Second Science Seminar,

Lviv, 2016, pp. 114-120. Available:

http://195.22.112.37/bitstream/ntb/39386/1/20-114-120.pdf
8. N. Wiener, Cybernetics or control and communication in the animal and the

machine. Mansfield Centre, CT: Martino, 2013.

9. V. Golembo and O. Bochkaryov, "Approaches to Building Conceptual

Models of Cyberphysical Systems (Ukrainian)", Ukrainian Journal of

Information Technology, vol. 864, no. 1, pp. 168-178, 2017. Available:

http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-

2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh.

[Accessed 3 August 2019].

10. V. Melnyk, I. Lopit and A. Keith, "Information exchange protocol for

computer devices automatic creation in reconfigurable hardware platforms

of the cyber-physical systems computing nodes (Ukrainian)",

in Cyberphysical Systems: Achievements and Challenges: Proceedings of the

Second Science Seminar, Lviv, 2016, pp. 17–22.

11. C. Greer, M. Burns, D. Wollman and E. Griffor, Cyber-Physical Systems

and Internet of Things. NIST Special Publication 1900-202, 2019, p. 61.

Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.1900-202.pdf

12. В. V. Glushkov, Introduction to Cybernetics.(Russian) Kiev: Publishing

House of the Ukrainian SSR Academy of Sciences, 1964.

https://repository.asu.edu/attachments/
http://195.22.112.37/bitstream/ntb/39386/1/20-114-120.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.1900-202.pdf

24

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

1.2 Multi- contour interaction of cybernetic and physical space in the

CPS/IoT model. Assessment of CPS computing resources (Seminar 1)

The aim of the seminar: studying of the methodology of the

systematic approach to the analysis and synthesis of CPS and IoT and

the construction of a multi-contour model for the interaction of cyber

components with the physical environment, the acquisition of practical

skills in the systematic assessment of the computing resources of IoT and

CPS and their analysis.

Learning tasks:

 mastering the decomposition methodology for the analysis and

synthesis of CPS and IoT and building a hierarchically modular

organization of modern CPS in the form of configuration Structure –

Device – Module – Process – Function – Procedure/Action (S – D –

M – P – F – A);

 studying the methodology for constructing interaction contours in the

CS-PS system and the synthesis of a multi-contour model of CS and

PS interaction, determining the role and place of IoT technology in

such interaction;

 getting acquainted with the methodology of the system analysis

problem statement for a comprehensive CPS hardware resource

assessment approach;

 practical development of the studied approaches and methodologies

by performing an individual task of constructing S – D – M – P – F –

A models and multi-contour interaction in CPS using IoT

technologies.

Preparation for the seminar.

Preparation for the seminar includes the stages:

1) getting acquainted with the purpose and tasks of the seminar;

2) thorough study of theoretical material in a lecture course [1],

recommended and self-processed literature;

3) analysis of individual task questions;

4) implementation and preparation of an individual task report due to the

recommendations in paragraph 1.1.2;

5) presentation at the seminar and public discussion of the report.

25

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

1.2.1 Basic recommendations on theoretical material

When studying the theoretical material, it's worth paying attention

to the variety of CPS and IoT application areas, and, accordingly, to the

peculiarities of structural-functional solutions, depending on the

application. The hierarchical-modular approach simplifies the system

synthesis process. However, the issue of a comprehensive assessment of

the functionality of the components offered on the market at a certain

price and functional segment of modules, a comparative analysis of

technical complexity/efficiency, economic indicators (cost, energy

consumption, maintenance costs, etc.) comes to the fore. Such an

analysis is carried out precisely in retrospect of functional algorithms

chosen earlier for implementation in the system. As shown in paragraph

1.1.1, the choice of algorithm can significantly affect the quantitative and

qualitative indexes of the hardware resources required in the system.

Important aspects are the requirements for the system multitasking

and the effective redistribution of resources. The system approach

proposed in [1, 2] allows taking into account the indicated aspects and

comprehensively evaluate the resources necessary for the

implementation of CPS in accordance with the user-defined FCPS target

function.

1.2.2 Recommendations for the practical task

The practical task is performed by students individually and is a

continuation of the studies begun in accordance with the selected options

for individual tasks in paragraph 1.1.2. Based on the developed

functional model and the functional algorithm described in the previous

task, students are invited to develop a methodology for synchronizing

data processing processes with the corresponding functional modules [3].

Determine the data processing cycling and describe cycles at the level of

used modules interaction. Assess the necessary resources for the

implementation of the multi-contour model, and justify the capabilities

of the well-known Arduino, Discovery, Raspberry Pi, BeagleBone,

ESPXXXX base platforms for the CPS project implementation, both

with and without using IoT technologies. Compare the latest options for

the complexity and efficiency of the main functional algorithm

implementation.

26

1. Basic principles for the organization and functioning of ecosystems of the IoT and CPS

For better preparation for the seminar, it is suggested to study the

following issues:

1. Justify the functional purpose of the analyzed CPS and briefly

describe the essence of the PP used.

2. Identify the possibilities of parallel information processing when

managing and obtaining data on PO and PP in the studied CPS.

3. Compile a table of correspondence between the CPS

modules/devices/components and the parameter sets of the PS objects

with which they interact.

4. Identify which IoT components can be used to provide "intelligent"

data processing in the described CPS.

5. What IoT technologies can be used in the processes of cyclic

information exchange and data transfer in the CS-PS complex

described by CPS?

6. What types of information processing (Parallel, cloud, fog, edge

calculations) can be used when considering the CPS/IoT model?

7. What types of hardware resources can be used to process information

in the CPS/IoT model?

8. What software (SCADA, MARTE, SysML, UML) is appropriate to

use for modeling and simulation of the described CPS/IoT model?

Requirements and recommendations for the preparation and

execution of the report are similar to the requirements described in

paragraph 1.1.2 for the practice work.

Recommended literature
1. Internet of Things for Industry and Human Application. In Volumes 1-3.

Volume 1. Fundamentals and Technologies / V. S. Kharchenko (ed.) –

Ministry of Education and Science of Ukraine, National Aerospace

University KhAI, 2019. - 605p.

2.G. Vorobets, O. Vorobets and V. Horditsa, "Application of the System

Approach for Synthesis of Models of Basic Elements of Reconfigurable

Structures at the Information Transmission Systems", Electrical And

Computer Systems, vol. 28, no. 104, pp. 257-267, 2018. Available:

10.15276/eltecs.28.104.2018.31.

3.A. Melnyk and I. Iakovleva, "Method for Storing in the Memory of a Flowing

Graph Algorithm in the Form of a Structural Matrix (Ukrainian)", 96041,

2011.

27

2. IoT technology in the problems of analysis and synthesis of CPS

2. IOT TECHNOLOGY IN THE PROBLEMS OF ANALYSIS

AND SYNTHESIS OF CPS

2.1 Basic principles, hardware solutions and application of IoT

technologies in CPS synthesis tasks

Assoc. Prof., PhD H. I. Vorobets, Assist. of Lect. V. E. Horditsa,

Assist. of Lect. O. O. Pshenychnyi, MsS I. M. Khamula (ChNU)

2.1.1 Basic modules for structure synthesis and CPS/IoT

technology testing

In the market of electronic components and functional modules,

currently offered by manufacturers, to create models, prototypes of

functionally completed projects, there are products of a wide price range,

various architectures, complexity, and, accordingly, with a wide range of

functionality. These are, for example, entire series (lines) of breadboards

from the simplest and cheapest Arduino XXX [1], Discovery XXX [2],

Raspberry Pi XXX [3], BeagleBone [4] and others in the price range

from 2-3 to 10 dollars and to powerful modern modules with high-speed

processors and reconfiguring architecture components such as Nexys

Video Artix-7 FPGA [5, 6], Stratix 10 SX SoC Development Kit [7]

costing from several hundreds to 8-10 thousand dollars.

An interesting solution for deploying IoT projects is also offered as

the NuMaker Brick platform [8], which has extensive expansion/scaling

capabilities and supports open-source codes and protocols. Such on-

board modules are deployed on the NuMaker Brick platform: a

temperature and humidity sensor, a gas detection module, an infrared

module, gyroscopes, an accelerator, a sonar, a LED and a buzzer. It is

compatible with Android mobile devices and tablets.

The platform is implemented according to the strategy of fully

open-source codes for all embedded programs, hardware and application

software of the NuMaker Brick platform, consisting of the terminal of

the main controller and several modules (Fig. 2.1). The main controller

terminal and sensor modules use the high-performance NuMicro® M451

series controllers. This allows implementing the technologies of parallel,

distributed and boundary calculations (fog and edge) of data collected

from sensors, and offloading data traffic for IoT applications.

Mobile phones and tablets can be connected to the platform through

the applications for the platform functional adjustment (Fig. 2.2).

28

2. IoT technology in the problems of analysis and synthesis of CPS

NuMaker Brick also provides greater software flexibility. Each module

is already designed to enable a specific function. Users can start using

the NuMaker Brick platform without having to rewrite any program, and

modules can be spaced or connected randomly. An expansion board is

provided where developers can create their own modules.

Fig. 2.1 – NuMaker Brick Base Platform Layout [16]

Fig. 2.2 – NuMaker Brick Platform Software [16]

Modification of the NuMaker Uni basic solution uses the 32-bit

Cortex®-M0 NANO100NE3BN microcontroller capable of operating at

up to 42 MHz [9]. The board contains an RGB LED, infrared transmitter

and receiver, 3-axis accelerometer and 3-axis gyroscope (MPU6500),

temperature and humidity sensor (HTU21D), Wi-Fi 802.11b/g/n module

(ESP-03) which supports TCP, UDP client-server technology, access

29

2. IoT technology in the problems of analysis and synthesis of CPS

point or station mode and AT command, as well as Bluetooth 3.0

module.

The NuMicro NuMaker UNO Development Board [10], which is

fully compatible with Arduino equipment, and uses the NuMicro ™

Cortex®-M0 microcontroller to develop and test applications, has also

been created. Users can use the Arduino IDE, IAR EWARM, and Keil

RVMDK to develop their applications and use a large number of open-

source examples. In particular, using the peripheral functions of the

ADC, PWM, I²C, SPI, etc., and support for the virtual COM port on

USB.

Of course, new developments are also offered on the component

market, in particular, Seeed Studios has released a new product under the

brand Air602 Wi-Fi Development Board [11]. The core of this board, 12

mm x 10 mm of size and costing $ 1.90, is the tiny WinnerMicro W600

microcontroller, which has a built-in 32-bit ARM Cortex M3 processor.

At the hardware level, it implements encryption, as well as two UART

interfaces, I2C, SPI and I2S, a real-time clock (RTC), and Wi-Fi support.

However, it can be programmed using conventional ARM development

tools (such as Keil) using the provided SDK. And although the cost of

such a crystal is commensurable with the $ 2-3 cost of an ESP32 crystal,

in development tools it is inferior.

As can be seen from the analysis, there are a lot of solutions that are

very similar in architecture, technical specifications, price range, but

differ only by manufacturers. Therefore, project developers are faced

with complex questions of justifying the choice of certain components.

Of course, first of all, the necessary functionality, the set of implemented

algorithms for a specific set of problem-oriented tasks are determined,

and it is reflected further on the set of technical parameters and

characteristics of the required modules, as shown in the previous section.

However, the designer has to make the decision of selecting the optimal

ratio for the technical feasibility/quality/cost of the proposed

components/modules for the specific problem being solved. If the

requirements for the ratio of quality/cost aren't questions in this case,

then the assessment of feasibility is closely related to both technical

characteristics and economic indicators. In particular, it is clear that any

universal module needs to be adapted to the specifics of problem-

oriented tasks. And here there are questions of hardware resources

redundancy of the selected module regarding the specific tasks to be

30

2. IoT technology in the problems of analysis and synthesis of CPS

solved, its energy supply and energy efficiency, stability (elasticity),

reliability and service, etc.

Based on these considerations, for a comprehensive solution of

educational issues, testing of control algorithms and data processing,

rapid prototyping and embedded solutions implementation, as well as

research and providing communication capabilities of IoT technologies,

a technical solution of a laboratory research module (LRM) based on

ESP32 crystal is proposed (Fig. 2.3). The created LRM layout

corresponds to the price range of 50-80 euros, which is comparable with

the 5Stack ESP 32 M5 Kit [12], BeagleBone [4] prototypes, and several

advanced models of Arduino XXX [1], Discovery XXX [2], NuMaker

Brick [8].

ESP32 is a somewhat extended version of ESP8266 [13]. This

series is designed for mobile devices, small-sized electronics, and IoT

applications. ESP32 is characterized by ultra-low power consumption

due to energy-saving features, including high-resolution synchronization,

and several modes of dynamic power correction and dynamic power

scaling [14].

The heart of the ESP32 is the Tensilica Xtensa LX6 dual-core

processor with a clock speed of up to 240 MHz. The ESP32 is tightly

integrated with built-in antenna switches, radio frequency balance, power

amplifier, low noise input amplifier, filters, and power management

modules. And although it differs from the ARM architecture used in

advanced versions [1-3], nevertheless it easily fits with them at the

hardware-modular level [15, 16]. In addition, the Arduino IDE is now

adapted for programming various modifications of the ESP32 and

ESP8266 [17, 18].

A significant advantage of the created LRM (Fig. 2.3) compared to

[8-11], which are more focused on IoT technologies, is also its expanded

functionality for the synthesis and testing of CPS. Thus, in [8, 11] there

are practically no interface modules with servo drives based on

PCA9685 and local information display devices – OLED display and

LED matrix based on MAX7219, which is implemented in LRM.

The following components are located in the base module for

expansion of LRM functionality (Fig.2.3):

1. ESP 32 WROOM-32 main controller module.

2. 8-port PCF8574 control module.

3. Combined accelerometer/gyroscope IMU 6050, accessed via the

I2C bus.

31

2. IoT technology in the problems of analysis and synthesis of CPS

Fig. 2.3 – Layout of the basic laboratory research for the development,

sketchy layout and testing of CPS/IoT structures and technologies

4. 16-channel 12-bit PWM/Servo module with I2C interface based on

PCA9685.

5. LED-indicator connected to 13 ESP32 output (similar to Arduino

compatible boards and modules).

6. Color RGB LED connected directly to ESP32. Using PWM allows

up to 16 million colors.

7. BMP-180 atmospheric pressure sensor.

8. OLED display 0.96" I2C 128x64.

32

2. IoT technology in the problems of analysis and synthesis of CPS

9. Digital light sensor GY-302 BH1750FVI.

10. Power supply input for servos, 5V/5A.

11. Schematic of the AC/DC converter based on LM2596 for forming

the 3.3V power supply line of the stand.

12. Buttons and switches to interact with the user and reset the stand.

13. USB UART interface based on the CH340 chip.

14. LED matrix based on MAX7219.

15. Relay connector for external loads.

The proposed component set allows using this module as a base for

approbation and testing solutions in CPS at the level of the instrumental

interface, since it contains a set of basic sensor types and a switching

module for connecting power control circuits in the form of a 16-channel

12-bit PWM/Servo module with I2C interface based on PCA9685. In the

same version, it can also be used as a base platform for an embedded

system with enhanced peripheral switching capabilities in the form of

two contact rows along the base crystal (1), as well as a local functional

of control for PP parameters and its progress, with visualization of

individual results (components 8 and 14) . Using exactly ESP32 also

allows for implementing TCP, UDP network layer protocols using IoT

technology. Therefore, based on this LRM, a cycle of laboratory works

for master students for the basic level mastering of synthesis and analysis

of individual solutions and CPS/IoT technologies is proposed.

Recommended literature

1. "Arduino Official Store | Boards Shields Kits

Accessories", Store.arduino.cc, 2019. [Online]. Available:

https://store.arduino.cc/.

2. "STM32 Discovery Kits - STMicroelectronics", STMicroelectronics, 2019.

[Online]. Available: https://www.st.com/en/evaluation-tools/stm32-

discovery-kits.html.

3. Raspberrypi.org, 2019. [Online]. Available: https://www.

raspberrypi.org/products/raspberry-pi-4-model-b/

4. "BeagleBone Black Rev.C купить Днепр / Украина магазин

Xcraft", Xcraft.com.ua, 2019. [Online]. Available:

https://xcraft.com.ua/mini-kompyuter-beaglebone-black-rev-c.

5. Internet of Things for Industry and Human Application. In Volumes 1-3.

Volume 1. Fundamentals and Technologies / V. S. Kharchenko (ed.) –

Ministry of Education and Science of Ukraine, National Aerospace

University KhAI, 2019. - 605p.

https://xcraft.com.ua/mini-kompyuter-beaglebone-black-rev-c

33

2. IoT technology in the problems of analysis and synthesis of CPS

6. "Nexys Video Artix-7 FPGA: Trainer Board for Multimedia

Applications", Digilent, 2019. [Online]. Available: https://store.

digilentinc.com/nexys-video-artix-7-fpga-trainer-board-for-multimedia-

applications/.

7. "Stratix 10 SX SoC Development Kit", Intel.com, 2019. [Online].

Available:

https://www.intel.com/content/www/us/en/programmable/products/

boards_and_kits/dev-kits/altera/stratix-10-soc-development-kit.html.

8. "NuMaker Brick (IoT Platform) - Nuvoton Direct", Nuvoton Direct.

[Online]. Available: https://direct.nuvoton.com/en/numaker-brick.

9. "NuMaker Uni (IoT Wearable Platform) - Nuvoton Direct", Nuvoton

Direct, 2019. [Online]. Available: https://direct.nuvoton.com/en/numaker-

uni.

10. "NuMaker Uno (Arduino Compatible) - Nuvoton Direct", Nuvoton Direct.

[Online]. Available: https://direct.nuvoton.com/en/numaker-uno.

11. M. Posch, "Tiny WiFi-Enabled ARM MCU For Tiny Projects", Hackaday,

2018. [Online]. Available: https://hackaday.com/2018/10/02/tiny-wifi-

enabled-arm-mcu-for-tiny-projects/.

12. "M5Stack Official Store. ESP32 Basic Development Kit Core Expandable

Micro Control Wifi BLE IoT Prototype Board for Arduino-in Industrial

Computer and Accessories from Computer and Office on Aliexpress.com |

Alibaba Group", aliexpress.com, 2019. [Online]. Available:

https://ru.aliexpress.com/item/32837164440.html.

13. S. Santos, "ESP32 vs ESP8266 - Pros and Cons - Maker Advisor", Maker

Advisor. [Online]. Available: https://makeradvisor.com/esp32-vs-esp8266/.

14. "The Internet of Things with ESP32", Esp32.net, 2019. [Online].

Available: http://esp32.net/.

15. "How do I interface ESP8266 to ARM?", Quora.com. [Online]. Available:

https://www.quora.com/How-do-I-interface-ESP8266-to-ARM.

16. "How can we interface an STM32 F103 black pill with an ESP8266 for

data transfer in Arduino IDE?", Quora.com. [Online]. Available:

https://www.quora.com/unanswered/How-can-we-interface-an-STM32-

F103-black-pill-with-an-ESP8266-for-data-transfer-in-Arduino-IDE.

17. "Configuring the Arduino IDE to program the ESP8266 WiFi module

(Ukrainian)", Geekmatic.in.ua. [Online]. Available:

http://geekmatic.in.ua/ua/arduino_ide_with_wifi_esp8266.

18. "ESP8266: What's inside the “people's WiFi”? (Russian)", Habr.com,

2014. [Online]. Available:

https://habr.com/ru/company/coolrf/blog/238443/.

https://store/
https://www.intel.com/content/www/us/en/programmable/products/
https://direct.nuvoton.com/en/numaker-brick
http://geekmatic.in.ua/ua/arduino_ide_with_wifi_esp8266

34

2. IoT technology in the problems of analysis and synthesis of CPS

2.1.2 ESP32 module in CPS/IoT projects. Espressif IoT Development

Framework software development environment

(Laboratory Work № 1)

The aim of the laboratory work: gaining skills in the Espressif

IoT Development Framework (Esp-IDF) software development

environment (SDE), getting acquainted with the key features of the

ESP32 module.

Recommended hardware and software

Name Link

ESP32(DevKit) https://github.com/playelek/pinout-doit-

32devkitv1

ESPAsyncWebServer.h https://github.com/me-no-

dev/ESPAsyncWebServer

USB 2.0 cable type A/B https://store.arduino.cc/usb-2-0-cable-type-a-b

Theoretical Information

Introduction. The basic CPS concept involves using significant

computing resources for managing physical objects and processes and

mathematical information processing. IoT technology provides the

ability to transfer data using standard network protocols. The ESP32

(DevKit) platform was developed to implement such a complex of tasks.

It is also attractive that in addition to the Eclipce and Esp-IDF

environments, the Arduino IDE supports the software development for

ESP32 crystals. Therefore, let's take a closer look at the possibilities of

using the technologies provided to ESP32 by the developers for the

implementation of CPS/IoT projects.

ESP32 module. The main computing element on board

ESP32(DevKit) is the ESP-WROOM-32 module (ESP32) (fig. 1.1),

which is already a small-sized printed circuit board (PCB) that contains

the main chip (microprocessor with all interfaces), flash memory chip

and antenna for WiFi.

The main characteristics of the module:

 microprocessor: Xtensa Dual-Core 32-bit LX6, 160 or 240 MHz;

 memory: 520 KByte SRAM, 448 KByte ROM;

 flash on the module: 1, 2, 4… 64 Mb;

https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer
https://store.arduino.cc/usb-2-0-cable-type-a-b

35

2. IoT technology in the problems of analysis and synthesis of CPS

Fig.2.4 – ESP-WROOM-32 module

Wireless technology:

- Wi-Fi: 802.11b/g/n/e/i, to 150 Mbps with HT40;

- Bluetooth: v4.2 BR/EDR and BLE;

Periphery interfaces:

- 12-bit SAR ADC up to 18 channels;

- 2 × 8-bit DAC;

- 10 × touch sensors;

- Temperature sensor;

- 4 × SPI;

- 2 × I²S;

- 2 × I²C;

- 3 × UART;

- 1 host (SD/eMMC/SDIO);

- 1 slave (SDIO/SPI);

- Ethernet MAC with support DMA and IEEE 1588;

- CAN 2.0;

- IR (TX/RX);

- Motor PWM;

- LED PWM up to 16 channels;

- Hall sensor;

- Ultra low power analog pre-amplifier;

Security:

- IEEE 802.11 security WFA, WPA/WPA2 и WAPI;

- Secure boot;

- Flash encryption;

- 1024-bit OTP, including up to 768-bit under the task;

- Cryptographic engine: AES, SHA-2, RSA, ECC, RNG.

36

2. IoT technology in the problems of analysis and synthesis of CPS

As we can see, the ESP32 module is a powerful tool for realization

of CPS/IoT projects, and it also has a large enough and powerful set of

software components to work with. These methodological materials

describe the work with the basic functionality of this system.

Setting up the programming environment. Before you can begin

programming ESP32, you must first make some computer settings.

1. First of all we need to download the main tool for working with

our board – this is our API interface, or as it is called the framework,

which allows you to work with the hardware platform ESP32.

Download link: https://github.com/espressif/esp-idf

After downloading the framework we will briefly review its

contents. In the folder "components" we see dozens of other folders,

each containing a list of all components of our framework. In data files

stored a set of functions that allow the programmer to control the

interface device. These files are intended to be compiled with your

application.

Next is the folder "docs", which stores compressed documentation

on programming all system components, correct use of necessary

features information on configuring development environments on

different operating systems and other useful information.

Particular attention should be paid to the folder "examples", as it

contains some real-life examples of programs that will be very useful for

further study of the ESP32 module. It should also be noted that all

projects written on this framework are created on the basis of make-up

system, that is, each project will contain at least one MakeFile or .mk file

which describes the rules of project assembly, compatible compilation of

raw files of your program with the necessary for your project to raw

framework files.

The "make" folder contains several .mk files that already describe

the basic build rules for all projects on this system.

Folder "tools" contains the basic tools and utilities for automatic

configuration of projects for different operating systems.

2. The fastest way to start developing for ESP32 is to install the

necessary basic tools, such as:

- Compiler – without it, our program would be just a set of text files.

This tool creates a binary firmware file from a written program, this

file which is loaded into the ESP32 flash memory is the true

appearance of the program.

https://github.com/espressif/esp-idf

37

2. IoT technology in the problems of analysis and synthesis of CPS

- Windows OS doesn't have a built-in make environment, so we'll use

MSYS2 (somewhat similar to the Linux terminal) to work with it.

However, we will not need to work with this environment every time,

as it will be automatically used by the Eclipse IDE development

environment. MSYS2 will mainly be used to generate the

configurations of our device, namely which COM port of the

computer we have connected to the device, the processor speed in the

ESP32 module, switching on/off and configuring certain peripherals

of the module.

You can download this tool at the link: https://dl.espressif.

com/dl/esp32_win32_msys2_environment_and_toolchain-20170918.zip

3. The next step is to download the Eclipse IDE development

environment. Of course, you can use any other environment to your

liking, you can even do without it and use only MSYS2. However, this

framework is quite convenient to configure it to work with third-party

programming microcontrollers and devices as well as Eclipse provides a

convenient interface for working with project files, syntax highlighting

language and navigate the elements of the program.

For downloading this environment, please visit: http://www.eclipse.

org/downloads/packages/eclipse-ide-cc-developers/oxygen1a

4. We need to install a driver for this device so that our physical

workstation understands that a specific device is connected to it via USB

and that we can program it. For our board, we need to download driver

“CP210x USB to UART Bridge VCP Drivers” by the link: https://www.

silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-

drivers

5. Since all necessary software we already have, we can proceed

to its configuration and programming ESP32. First of all, we will select

an existing project from the examples presented in the framework and

select a folder with the project "hello_world" (…\esp-idf\examples\get-

started\ hello_world), copy it in random disk space where projects are

stored. The project is written in C programming language and it will be

used by us in the future as a ready template program which we will build

all future projects. Then run environment msys2.exe (fig.2.5), located in

the tools folder.

When the msys2 window opens, the first step is to go to the

directory with our project using command cd < path > (fig.2.6). We

check the contents of the folder with the ls command while already in

this location. Now we specify the compiler the path to the framework

38

2. IoT technology in the problems of analysis and synthesis of CPS

directory with the command export IDF_PATH=< path >, this is

created in order to carry out that the compiler can compile the files of

your project with the source code of framework.

Fig. 2.5 – Window of the environment msys2.exe

Fig.2.6 – Creating a link to an external resource

At this point, you need to run a special utility - the configurator,

which allows you to generate a specific configuration of the project,

which is stored in the sdkconfig file (fig.2.7). This file stores settings

such as the port number to which the card is connected, the built-in

programmer settings, and module peripheral settings. The launch of this

utility is performed by command make menuconfig.

Now we go to the menu “Serial flasher config → Default serial

port” and instead “/dev/ttyUSB0” write with which port we need to work

with, such as "COM4". Of course, to check which port you want to

select, you need to connect the board with a USB cable to your computer

and check for an active COM port in Device Manager. Then click on

"Exit" and return to msys2. From now, we can already download this

sample project to the ESP32 module using the command make flash, but

we instead move on to setting the programming environment Eclipse

IDE.

39

2. IoT technology in the problems of analysis and synthesis of CPS

Fig.2.7 – The main window of configurator

6. Open Eclipse and execute the command File → Import. In the

open window select C/C++ → Existing Code as Makefile Project

(fig.2.8). In the next window, select Cross GCC and specify the path to

the directory with the project and click Finish. Now our project is open

in Eclipse environment, it remains to configure it to work with ESP32.

Let's go to the project properties by right-clicking and selecting a

command Properties. In the open window, go to the bookmark C/C++

Build → Environment and create environment variables IDF_PATH,

PATH, V (fig.2.9). In the variable value IDF_PATH prescribe the path

to the framework (…/esp-idf). It is important that this path be spelled

with the character "/" instead of the usual "\". In the PATH variable, we

list the paths to our tools (compiler and make-up system). In general, this

variable should contain three values separated by a semicolon

(...\msys32\usr\bin; ...\msys32\mingw32\bin; ...\msys32\opt\xtensa-

esp32-elf\bin). It should be noted that all paths must be absolute. In the

variable V enter the value 1.

We return to the tab C/C++ Build and uncheck the box Use default

build command and in box Build command: we enter the following

text: bash ${IDF_PATH}\tools\windows\eclipse_make.sh and click

Apply.

Then we go to the tab C/C++ General → Preprocessor Include

Pat, Macros etc. and open the bookmark Poviders. We choose an item

CDT GCC Built-in Compiler Setting Cygwin and enter the following

text in the box below: xtensa-esp32-elf-gcc ${FLAGS} -E -P -v -dD

40

2. IoT technology in the problems of analysis and synthesis of CPS

"${INPUTS}". This text indicates the name of the compiler and its

options for compilation. We do a similar action with an item CDT GCC

Build Output Parser where we enter the following text: xtensa-esp32-

elf-(gcc)|([gc]\+\+)|(clang) (fig.2.10).

Fig.2.8 – Project type selection window in Eclipse IDE

Fig.2.9 – Setting up internal project variables

41

2. IoT technology in the problems of analysis and synthesis of CPS

Fig.2.10 – The compiler setting

Now you have to specify the properties of the project by the specific

components of the framework, that is, the environment where our search

for files with the announcement of the functions we need for the

relationship with the hardware capabilities of the module. As mentioned

earlier, all the source code for the function declaration is in the

corresponding folder in the “components” directory of the framework.

Let's go to the tab C/C++ General → Paths and Symbols, open the

bookmark Includes and click Add. In an open window, we need to spell

out a path to a specific component, but since we already have a variable

in the project that stores the path to the framework, we will use it and

insert relative paths:
${IDF_PATH}/components/esp32/include

${IDF_PATH}/components/newlib/include

${IDF_PATH}/components/freertos/include

${IDF_PATH}/components/nvs_flash/include

${IDF_PATH}/components/driver/include

${IDF_PATH}/components/log/include

We'll have enough of these components to get started, but if others

42

2. IoT technology in the problems of analysis and synthesis of CPS

suddenly need for the project, we'll just add them to the existing list. The

next time you press Add tick the box Is a workspace path and prescribe

the path to the folder where the files of our project lie. Click Apply and

OK. The only thing left is to register commands for the make-up system.

There will be three of them: to compile the project, to upload it to ESP32

and to clear it. We do right-click on the project and choose Make

Targets → Create… and in the field Target Name we enter:

- all for compiling

- flash for downloading

- clear for cleaning

As a result, we should have three goals for building the project, as

shown in Fig. 2.11.

Fig.2.11 – Created goals for the project building

ESP32 programming. The ESP32 module allows you to write

applications that can run directly on your device. You can compile

programs written in C\C ++ and download them to a device on which

they are already running. For your applications to perform some useful

action, they must be able to interact with a particular environment, such

as the local and global network (Internet) or even the nature. This can be

43

2. IoT technology in the problems of analysis and synthesis of CPS

achieved by setting up a network connection and connecting certain

sensors and output devices, which can include either a regular LED or

LCD screen or powerful stepper motors. In order to use all the

peripherals allowed for this board, ESP32 contains a basic set of

functions through which we will programmatically work and exercise

control over all our devices. This feature set can be represented as an

internal operating system, which provides use our API interface to

interact with all the hardware capabilities of the board. Any function may

be called in your program at any time when the program is running and it

guarantees the provision of the services for which it is intended. This

entire interface is fully documented and described in the ESP32 software

documentation – https://esp-idf.readthedocs.io/en/latest/api-

reference/index.html. In order to successfully write credible applications,

you need to know about the availability of specific API interfaces. For

example, if we need to connect to a WiFi hotspot, we use specific

features in a certain order, which gives us the API to work with the

wireless network. Similarly, if we want to connect a third-party device to

our board for a specific physical interface, we use the software

implementation of the interface in the provided API.

In order to write reliable applications for CPS/IoT device, there is

no need for a thorough study of the entire API, it is enough to know that

it includes the implementation of the necessary functionality for your

application and to be able to use it. This API (framework) was developed

by the manufacturer of the ESP32 module and was called the "Internet of

Things Development Fremework", better known as ESP-IDF.

1. The entry point to the program. When your application is

downloaded to your device, it must start from a specific location. In your

application, written on this framework, the entry point to the program is

a function int app_main(void). This function is analogous to the

function main().It is important to note that when you write normal

programs running on a regular computer, the program runs from the

beginning of the main () function (or defined entry point) to its end and

ends there. If this scenario works in a program written for the embedded

system, then the program will run in an instant and the rest of the time

the device will simply consume current and perform nothing useful. So,

the end of the program for embedded systems under normal conditions

can be considered the moment when the device power is turned off or the

device is simply restarted. In this case, the eternal loop is inserted into

the main function, in which the basic work of the device is performed.

https://esp-idf.readthedocs.io/en/latest/api-reference/index.html
https://esp-idf.readthedocs.io/en/latest/api-reference/index.html

44

2. IoT technology in the problems of analysis and synthesis of CPS

2. Error handling. Most of the features in the ESP-IDF that we

call can return a specific error code if something unexpected happens.

Most features result is data in type esp_err_t, which can be considered

as an integer. If the function call is successful, then returns ESP_OK

value. Any other value means an error. It is recommended to use a macro

ESP_ERROR_CHECK() to handle these errors, into which, as a

parameter, we can pass a call to a particular function. If our function

returns a value other than ESP_OK, our program simply stops executing

and the corresponding message is displayed on the console. We need to

attach the file <esp_err.h>, to use this opportunity.

3. Working with the console. In general, to program our device,

we use a USB cable connection to our computer. This connection on

your computer looks like connecting a third-party device to a specific

COM port. Downloading the application to ESP32 after setting up the

environment will be performed automatically when the project is built,

but we can also use this connection to a computer as a tool to display

information on a computer monitor. Overall, our program already

outputs some information to the PC console by default, but you can also

output your own messages. To do this programmatically, we need to call

a standard function printf(),with which we can work just like in C

language:

int value = 7;

printf(“value is %d \n”, value).

To work with the console (COM port connection) on a PC, we'll

need PuTTY, or some other equivalent. To open the console, we need to

enter the appropriate port settings:

- Port number: COM <numbe>

- Transmission speed (bod\sec): 115200

- Information bits: 8

- Stop bits: 1

- Parity: None

These settings depend on the configuration of the device, which will

be described below.

4. Work with the connectors (pins) of the device. The easiest way

to work with input-output information when it comes for embedded

systems is to use the GPIO interface (General Purpose Input Output).

The purpose of this interface is to output or input binary information

from a device or to a device. That is, the simplest algorithm for working

with this interface is:

45

2. IoT technology in the problems of analysis and synthesis of CPS

- Set connector for input or output:

gpio_set_direction(GPIO_NUM_18, PIO_MODE_OUTPUT);

or

gpio_set_direction(GPIO_NUM_18, GPIO_MODE_INPUT);

where GPIO_NUM_18 is a macro, which means number 18, аnd

GPIO_MODE_OUTPUT is a type list gpio_mode_t.

- Set the connector to logic zero, or logical unit if mode

GPIO_MODE_OUTPUT is selected:

gpio_set_level(GPIO_NUM_18, 0).

- Input mode connectors are a bit trickier and include the

development of a feedback function (interrupt function) that needs to

be described and logged into the embedded operating system. This

function will work every time the signal level on the selected

connector changes. An example of how this function works is shown

in Listing 1.1 for laboratory work.

Generally, there are a number of additional GPIO features and

macros, which an announcement and a description are in the header file

<driver/gpio.h>.

5. Built-in operating system FreeRTOS. Our device, in terms of

computing resources, is a 32-bit dual-core processor with a maximum

clock speed of 240 MHz. To work with such resources with the ability to

run the program concurrently and manage all possible interfaces, this

API is built on the operating system FreeRTOS, which communicates

with the hardware of the device, monitors the occurrence of certain

events, organizes the work of interrupts and system calls. This system is

slightly different from the operating system we are familiar with. It

doesn't have any GUI elements, Task Manager, etc. Its main task is to

allocate microprocessor resources between different program threads (if

created) and create relationships with hardware capabilities of the

module ESP32. To work with the capabilities of this system, you need to

include in your program the required header file, as there are several of

them and they are in the path …/esp-idf/components/freertos/

include/freertos. These files contain the necessary announcements of

operating system functions and their descriptions. An example of a

multi-threaded program using FreeRTOS is listed in Appendix B.

The Practical Part

1. Download and configure the Eclipse desktop and ESP-IDF

framework.

46

2. IoT technology in the problems of analysis and synthesis of CPS

2. Compile and download the “hello-world” project for the board

by running the flash command.

3. View the result of running the program using any terminal

program (PuTTY, Terminal or others) with the following COM port

settings:

- Speed (baude): 115200

- Data bits: 8

- Stop bits: 1

- Parity: None

- Flow control: XON/XOFF

4. Make changes to the application by removing the automatic

reset. Compile and download the application to your device. Describe the

program.

5. Put all the code that is in the main function in the eternal cycle.

Download the program and describe its behavior.

6. Using Listing Code 1.2, modify the program from item 4 so

that its code runs in a separate thread.

7. Create a program that demonstrates the operation of the GPIO

interface, such as the activation of the RGB LED in different colors at

any interval (using a delay). The code for this program should be

generated in a single thread (without the use of FreeRTOS) and in multi-

threaded, where switching on/off of a single connector connected to the

LED occurs in separate threads.

Report

A report on laboratory work is issued in the form of a short abstract,

containing a title page formatted according to the requirements of

paragraph 1.1.2; a task description, a brief results description of 2-3

pages; and 2-3 pages of answers to individual control questions.

Protection of the results of the work done is carried out orally in the form

of an interview with the teacher and answers to questions.

Test questions

1. Describe the characteristics of the ESP32. Which of them are the

most important for the implementation of CPS/IoT projects?

2. Describe the structure of the ESP-IDF software environment?

3. Describe the procedure for creating a project based on the ESP32

module in the ESP-IDF for CPS?

47

2. IoT technology in the problems of analysis and synthesis of CPS

4. Describe the features of programming ESP32 and compiling

programs in C/C ++.

5. How to register the path to a particular project component in ESP-

IDF?

6. What commands are used for the make-system and how are they

written in the project?

7. Describe the purpose of the int app_main (void) function. In

which CPS/IoT project scenarios can it be used?

8. How is error handling implemented in the ESP-IDF? What are the

possible program actions for detecting errors?

9. Describe the features of working with the console. How to

implement the output of your own messages on a PC?

10. Describe the process of setting up the output of information to

individual contacts of the ESP32 board.

11. What are the features of working with connectors in the input signal

mode?

12. Describe the main characteristics of the FreeRTOS embedded

operating system, and the possibilities of its application in CPS/IoT

projects based on ESP32.

Recommended literature
1. "M5Stack Official Store. ESP32 Basic Development Kit Core Expandable

Micro Control Wifi BLE IoT Prototype Board for Arduino-in Industrial

Computer and Accessories from Computer and Office on Aliexpress.com |

Alibaba Group", aliexpress.com, 2019. [Online]. Available:

https://ru.aliexpress.com/item/32837164440.html.

2. "The Internet of Things with ESP32", Esp32.net, 2019. [Online]. Available:

http://esp32.net/.

3. "me-no-dev/ESPAsyncWebServer", GitHub, 2019. [Online]. Available:

https://github.com/me-no-dev/ESPAsyncWebServer.

4. [8]"espressif/esp-idf", GitHub, 2019. [Online]. Available:

https://github.com/espressif/esp-idf.

5. "Eclipse IDE for C/C++ Developers | Eclipse Packages", Eclipse.org, 2019.

[Online]. Available: https://www.eclipse.org/downloads/packages

/release/neon/2/eclipse-ide-cc-developers.

http://esp32.net/
https://github.com/me-no-dev/ESPAsyncWebServer
https://www.eclipse.org/downloads/packages%20/release/
https://www.eclipse.org/downloads/packages%20/release/

48

2. IoT technology in the problems of analysis and synthesis of CPS

2.1.3 Creating a local WiFi network based on the ESP32 module

(Laboratory Work № 2)

The aim of the laboratory work: gain practical skills in

implementing and programming ESP32-based WiFi-networks for

embedded systems in CPS/IoT projects.

Recommended hardware and software

Name Link

ESP32(DevKit) https://github.com/playelek/pinout-doit-

32devkitv1

ESPAsyncWebServer.h https://github.com/me-no-

dev/ESPAsyncWebServer

USB 2.0 cable type A/B https://store.arduino.cc/usb-2-0-cable-type-a-b

Theoretical Information

Introduction. With the advent of the IEEE 802.11 standard (Wi-

Fi), wireless networks have become commonplace. However, this

technology has long been used only in the field of personal computers

and mobile devices. With the development of embedded systems and the

emergence of industries such as CPS/IoT, there was a need for cheap and

energy-efficient solutions that could fully meet the standard and interact

with any other device.

WiFi. Before you go into creating a WiFi-based device, you need a

certain understanding of the concepts behind this technology. At a high

level, WiFi is an opportunity to participate in a connection based on a

stack of TCP / IP protocols through to high-frequency radio

communications. In general, the name WiFi is just a trademark, which

means a set of protocols described in the architecture of the IEEE 802.11

wireless LAN. Devices that participate in the process of sharing

information over a network are classified in this architecture:

-Access point. It usually connects (or acts as) as a TCP/IP router to

the rest of the TCP/IP network. Very often, the access point also has a

network connection to the Internet and serves as a bridge between the

wireless network and the wider TCP/IP network, which is the Internet.

-Station. This is a device that connects to an access point and operates

on the network solely through a connected access point. That is, in this

mode, all incoming and outgoing messages from one station to another

https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer
https://store.arduino.cc/usb-2-0-cable-type-a-b

49

2. IoT technology in the problems of analysis and synthesis of CPS

move through the access point. The station can only be connected to one

access point at a time.

When several access points operate around a station, the station

must know which one to connect to. Each access point has its own

network identifier called a BSSID (more commonly used SSID). SSID is

a unique name for a wireless network that distinguishes one WiFi

network from another. In fact, it is a 32-character value, which is a target

for sending packets of information through a created network.

1.WiFi initialization. The ability to create and interact with WiFi

networks is just one of the many features of ESP32. This way you can

only turn on and use WiFi when your device needs it. To allow the

program to work with this capability, the header file <esp_wifi.h> must

first be included in the project and the function esp_wifi_init() must be

called. The recommended way to do this:

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();

 esp_wifi_init(& config);

In this example, wifi_init_config_t is a structure that contains

presets to initialize the WiFi environment. We used a macro that sets the

default object of this structure.

2.Select a mode for the device. An ESP32-based device can act as

an access point for other devices as well as a station that will connect to

a particular access point, or operate in both modes simultaneously,

allowing you to organize a point-to-point network. The mode is selected

using the function esp_wifi_set_mode(). The parameter of this function

is a type list wifi_mode_t, which may have the values specified in the

table 2.1.

3.

Table 2.1 – Lists of the wifi_mode_t values specified

Function Mode

WIFI_MODE_NULL no mode

WIFI_MODE_STA station mode

WIFI_MODE_AP access point mode

WIFI_MODE_APSTA station mode + access point mode

4.Connection to the access point. If our device is going to serve as a

station, we will have to connect to an access point. We can ask for a list

of available access points to which we can try to connect. This is done

using the function esp_wifi_scan_start().The scan results are stored in a

dynamically allocated storage in the module memory. The data is

50

2. IoT technology in the problems of analysis and synthesis of CPS

returned to us when we call esp_wifi_scan_get_ap_records() as a

structure object wifi_ap_record_t, which contains information such as

the SSID of the access point, its authentication mode, and more.

Once a scan request is issued, we will be informed of the event's

completion with an event ID SYSTEM_EVENT_SCAN_DONE

(regarding ESP32 events, their concepts and their processing will be

discussed below). The data associated with this event contains the

number of access points, but can also be accessed through a call

esp_wifi_scan_get_ap_num().If we want to cancel the scan before it

ends on our own, we can call esp_wifi_scan_stop().Example showing

the access point search provided in Listing 2.1 for this laboratory work.

5.Handling system events related to WiFi. There may be some

external events that may occur when using a WiFi device. For example,

connecting a third-party device to your access point, or turning off the

third-party access point that your device was communicating with.

Handling these events is critical to creating reliable software for your

device, as they can occur at any point in time that is unknown

beforehand and interrupts the current program execution. The occurrence

of event data creates an interruption, which in programming is called the

emergence of system calls and their processing (handling) is part of the

code that will be executed after its occurrence. Such interrupts are

followed by the built-in FreeRTOS operating system, which either

redirects the current execution of the program to the event handler, or as

it is called a callback function.

In order to programmatically handle such situations, we first need to

create this function, which will be called when they occur, and register

the function in the operating system of the device. It should be noted that

the origin and processing of events is not only work with WiFi, but also

with many other works of the hardware board. To register the handler

function on the system, you must call esp_event_loop_init().We pass

the pointer to the handler function (its name) as the first parameter and

the null pointer (NULL) as the second parameter. The callback function

must match a particular sample:

esp_err_t function_name (void *ctx, system_event_t *event)

{

// processing code...

return ESP_OK;

}

In order to create and register this function, you need to include

51

2. IoT technology in the problems of analysis and synthesis of CPS

some header files for compatible compilation:

-#include <esp_event.h>

-#include <esp_event_loop.h>

-#include <esp_wifi.h>

-#include <esp_err.h>

When this function is called by the system, we get as a parameter

some information related to this event. The type of this parameter

system_event_t, which contains:

-system_event_id_t event_id is the unique identifier of the event

that triggered the handler. Table 2.2 lists the identifiers and what they

mean;

-system_event_info_t event_info – is a C language association that

can contain different structures of information at some point, depending

on the event that occurred. Table 2.3 lists the structures, the names of the

objects of these structures in event_info, and at what event we can obtain

this information.

Table 2.2 – Lists of the identifiers and what they means

Event_id Event

SYSTEM_EVENT_STA_START Start in station mode

SYSTEM_EVENT_STA_STOP End in station mode

SYSTEM_EVENT_STA_CONNE

CTED

Connection to the access

point

SYSTEM_EVENT_STA_DISCON

NECTED

Disconnect from access point

SYSTEM_EVENT_STA_AUTHM

ODE_CHANGE

Authentication mode

changed

SYSTEM_EVENT_STA_GOT_IP An IP address was obtained

from the access point

SYSTEM_EVENT_AP_START Start in access point mode

SYSTEM_EVENT_AP_STOP End in access point mode

SYSTEM_EVENT_AP_STACON

NECTED

Connecting station

SYSTEM_EVENT_AP_STADISC

ONNECTED

Disconnecting station

SYSTEM_EVENT_AP_PROBER

EQRECVED

We received a test request

when we are an access point

52

2. IoT technology in the problems of analysis and synthesis of CPS

Table 2.3 – The structures and names of the objects in event_info

Structure
The object

name
Event

system_event_sta_con

nected_t

connected SYSTEM_EVENT_STA_CON

NECTED

system_event_sta_disc

onnected_t

disconnected SYSTEM_EVENT_STA_DISC

ONNECTED

system_event_sta_scan

_done_t

scan_done SYSTEM_EVENT_SCAN_DO

NE

system_event_sta_auth

mode_change_t

auth_change SYSTEM_EVENT_STA_AUT

HMODE_CHANGE

system_event_sta_got_

ip_t

got_ip SYSTEM_EVENT_STA_GOT_

IP

system_event_ap_stac

onnected_t

sta_connected SYSTEM_EVENT_AP_STACO

NNECTED

system_event_ao_stadi

sconnected_t

sta_disconne

cted

SYSTEM_EVENT_AP_STADI

SCONNECTED

system_event_ap_prob

e_req_rx_t

ap_probereq

recved

SYSTEM_EVENT_AP_PROBE

REQRECVED

It is important that when a particular event occurs, we take the

appropriate merge field that fits a particular structure. Below is an

example of an event where we display an IP address message in the

console to receive an IP address. We use a macro IPSTR to get the IP

address, which is simply a string “%d.%d.%d.%d”, and a macro

IP2STR, which expands the ip field to four integers:

if(event->event_id == SYSTEM_EVENT_STA_GOT_IP)

{

 printf("Our IP address is " IPSTR

"\n", IP2STR(&event->event_info.got_ip.ip_info.ip));

}

6.Operation of the device in station mode. When we think of our

device as a WiFi station, we understand that it can only be connected to

one access point at any one time. In other words, it makes no sense to

say that the device is connected to two or more access points at a time.

The access point we want to connect to is set in the data structure

wifi_sta_config_t. This structure contains two very important fields

called ssid and password. The field ssid is the SSID of the access point

we connect to. The password field is a clear text value for the password

53

2. IoT technology in the problems of analysis and synthesis of CPS

that will be used to authenticate our device to the destination access point

to allow the connection. An example of initialization of this structure:

wifi_config_t staConfig = {

.sta = {

.ssid="<access point name>",

.password="<password>",

.bssid_set=false

}

}.

Once our structure is initialized, we can provide our device with this

data to connect to the access point:

esp_wifi_set_config(WIFI_IF_STA,

(wifi_config_t *)&staConfig).

Do not forget that you must first set the appropriate mode of

operation of the device:

esp_wifi_set_mode(WIFI_MODE_STA).

Finally, we call the function esp_wifi_connect()to connect to the

access point. After this function is called, several events will occur after

a while, such as connecting to the access point and obtaining the IP

address from the point, if it has not been set statically. Only after

processing these events are we allowed to participate in the transmission

of information over the network. In order to disconnect from the access

point, we use the function esp_wifi_disconnect().

There is another issue related to access point connection, and this is

the idea of automatic connection. There is a Boolean flag stored in the

flash memory that indicates whether ESP32 should attempt to connect

automatically to the last access point. If the value set to True, the device

will immediately attempt to connect to the last access point used when

the device is started. We can enable or disable the auto-connect feature

by calling esp_wifi_set_auto_connect().For an example of how to set

the unit to station mode, see Listing 2.2 for lab work.

7.Operation of the device in access point mode. This mode will

allow you to connect to our device. To be an access point, we need to

define an SSID that allows other devices to differentiate our network.

This SSID can be marked as hidden if we do not want it to be visible

during scanning. In addition, we will also need to provide an

authentication mode that will be used when the station wishes to contact

us. This is used to permit authorized stations and ban unauthorized. Only

stations that know our password will be allowed to connect. If we use

54

2. IoT technology in the problems of analysis and synthesis of CPS

authentication, we will also need to choose a password that other devices

will need to know to successfully connect.

First of all, we need to set the access point mode:

esp_wifi_set_mode(WIFI_MODE_AP);

The next step, as in station mode, is to configure the device:

wifi_config_t apConfig = {

.ap = {

.ssid="<access point name>",

.ssid_len=0,

.password="<password>",

.channel=0,

.authmode=WIFI_AUTH_OPEN,

.ssid_hidden=0,

.max_connection=4,

.beacon_interval=100

 }

}.

Each of the fields in this structure is responsible for the specific

characteristics of the access points, which are described in Table 2.4.

Table 2.4 – Specific characteristics of the access points

Field name Characteristic

ssid Network ID

ssid_len The ssid length in bytes. Exposed at NULL

password Authentication password

channel The channel we will use to build the network

authmode Authentication mode

ssid_hidden Visibility of ssid. The default is NULL

max_connection Maximum number of access point connections (4)

beacon_interval The default is 100

After completing the configuration structure, we must notify the

device of this configuration:

esp_wifi_set_config(WIFI_IF_AP, &apConfig);

All you have to do is turn on WiFi on your device:

esp_wifi_start();

When operating in this mode, we can determine how many stations

are currently connected to our device. This is done by calling the

55

2. IoT technology in the problems of analysis and synthesis of CPS

function wifi_softap_get_station_num(). If we want to know the details

of the connected stations, we can call wifi_softap_get_station_info(),

which will return a linked list wifi_sta_list_t. After receiving this

information, we need to clear the memory space with help

wifi_softap_free_station_info().Below is an example of getting this

information:

uint8 stationCount = wifi_softap_get_station_num();

os_printf("stationCount = %d\n", stationCount);

wifi_sta_list_t *stationInfo = wifi_softap_get_station_info();

if (stationInfo != NULL)

{

while (stationInfo != NULL)

{

os_printf("Station IP: %d.%d.%d.%d\n",

IP2STR(&(stationInfo->ip)));

stationInfo = STAILQ_NEXT(stationInfo, next);

}

wifi_softap_free_station_info();

}
When ESP32 acts as an access point, it allows other devices to

connect to it and make connections. However, it emerges that two

devices connected to the same ESP32 acting as an access point cannot

interact directly with each other. For example, imagine two devices that

connect to our access point. They can be allocated by IP-address

192.168.4.2 and 192.168.4.3 (192.168.4.1 is the default access point

address). We can imagine that 192.168.4.2 could communicate with

192.168.4.3 and vice versa, but this is not allowed. It seems that direct

networking is only allowed between new connected stations and an

access point (ESP32). This seems to limit the use of ESP32 as an access

point. The main use of ESP32 as an access point is to allow mobile

devices (such as your phone) to connect to ESP32 and talk to an

application running on it.

The Practical Part

1.Compile and download the program to the board from listing 2.1,

which puts mode "Station" and searches for access points. Analyze how

this code works.

56

2. IoT technology in the problems of analysis and synthesis of CPS

2.Modify the application so that after successful search for access

points, the program displays all the available access point names in the

console.

3.Then the group split into two teams. The first team of students on

the basis of code provided in Appendix B is developing a program that

will do:

- At the event that characterizes the connection of the device to an

access point, displays all available information about the access point

and lights the RGB LED in green.

- At the event that characterizes obtain the IP address of the access

point displays this address in the console and RGB-LED lit in yellow.

- When disconnecting the device from the access point,

programmatically determine the cause of the disconnection and

display a message about the cause in the console and illuminate the

RGB LED in red..

4. A second team of students develops a program that puts the

device in "access point" mode and gives it to another team. Creates a

callback function in which:

- In the event that characterizes the access point starts, displays a

corresponding message in the console.

- At the event that characterizes the connection of a third-party

device, display information about this device in the console and at the

same time illuminate arbitrary colors of RGB-LED at an arbitrary

interval.

- When disconnecting an external device from this access point,

display the corresponding message and stop the RGB LED from

flashing.

5. Compile application data and upload it to the appropriate boards.

Check the result of executing these programs using an optional terminal

program (console). Third-party devices may include smartphones and

existing WiFi routers.

6. The team that created the device, which acts as an access point,

gives its name and password to the team that created the device "station".

The second team modifies its code so that their device with an existing

access point of other team, trying to connect to their device.

7. Check the compatibility of devices when different types of

events occur, including turning off the access point, or changing the

settings of the access point. On the results of execution try to make

conclusions.

57

2. IoT technology in the problems of analysis and synthesis of CPS

Report

A report on laboratory work is issued in the form of a short

abstract, containing a title page formatted according to the requirements

of paragraph 1.1.2; a task description, a brief results description of 2-3

pages; and 2-3 pages of answers to individual control questions.

Protection of the results of the work done is carried out orally in the form

of an interview with the teacher and answers to questions.

Test questions

1. Describe the Wi-Fi devices classification by their functionality in

CPS/IoT projects?

2. How to initialize a Wi-Fi access point for IoT implementation?

3. How is ESP32 mode programmed?

4. Describe the technology for connecting a Wi-Fi station to an access

point.

5. Describe the function of esp_wifi_scan_get_ap_records ().

6. How does the event switching of system elements on the WiFi

network occur? What is the FreeRTOS role in this?

7. Describe the features of the event identifier function

system_event_id_t event_id event id.

8. Describe the features of function system_event_info_t event_info.

9. Analyze the features of the Wi-Fi device in “workstation” mode.

10. Analyze the features of the Wi-Fi device in “access point” mode.

11. How to determine how many stations are currently connected to a

particular device?

12. What are the ESP32 limitations of working with many stations?

Recommended literature
1. "M5Stack Official Store. ESP32 Basic Development Kit Core Expandable

Micro Control Wifi BLE IoT Prototype Board for Arduino-in Industrial

Computer and Accessories from Computer and Office on Aliexpress.com |

Alibaba Group", aliexpress.com, 2019. [Online]. Available:

https://ru.aliexpress.com/item/32837164440.html.

2. "The Internet of Things with ESP32", Esp32.net, 2019. [Online]. Available:

http://esp32.net/.

3. "me-no-dev/ESPAsyncWebServer", GitHub, 2019. [Online]. Available:

https://github.com/me-no-dev/ESPAsyncWebServer.

http://esp32.net/
https://github.com/me-no-dev/ESPAsyncWebServer

58

2. IoT technology in the problems of analysis and synthesis of CPS

2.1.4 Implementation of the TCP/IP protocol stack for Wi-Fi data

transfer in embedded LWIP systems. Socket technology

(Laboratory Work № 3)

The aim of the laboratory work: to explore TCP/IP stack workflow

and Wi-Fi network communication for CPS/IoT; get socket

programming skills.

Recommended hardware and software

Name Link

ESP32(DevKit) https://github.com/playelek/pinout-doit-

32devkitv1

ESPAsyncWebServer.h https://github.com/me-no-

dev/ESPAsyncWebServer

USB 2.0 cable type A/B https://store.arduino.cc/usb-2-0-cable-type-a-b

Theoretical Information

TCP/IP is a systematic stack of network protocols that is divided

into four levels acoording to the OSI reference model. For CPS/IoT

device, these are protocols that ESP32 understands and uses as rules for

transporting data over WiFi. Addressing these rules is by using IP

addresses. When we talk about TCP / IP, we are not only talking about

TCP protocol that works over IP, but we actually use it as a stack for

basic protocols such as IP, TCP and UDP, as well as additional relevant

protocols such as DNS, HTTP, FTP, Telnet and more.

LWIP. If we are considering TCP/IP protocol, then we can split it

into twodifferent layers: hardware (physical) and software (cyber).

Typically, TCP/IP is implemented in software and is intended to collect

bits of data from the physical environment at one end of a given protocol

stack, and at the other end to reproduce this data in a form already

understood by the main program, or even by humans.

One such software implementations exist in ESP-IDF and called

LWIP (Light weight IP Stack). This implementation of TCP/IP for

ESP32 provides us with the following services: IP, ICMP, IGMP, MLD,

ND, UDP, TCP, Sockets API, DNS.

A TCP connection is a bidirectional transmission channel through

which data can flow in both directions. Before connecting one side acts

as a server - a passive listening for incoming connection requests. The

server will simply stall until a connection request. The other side of the

https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer
https://store.arduino.cc/usb-2-0-cable-type-a-b

59

2. IoT technology in the problems of analysis and synthesis of CPS

connection is responsible for initiating the same connection. Once

created, both sides will be able to send and receive data. In order for a

client to request a connection to the server, it must know the address of

the server. This address consists of two different parts. The first part is

the server IP address and the second part is the client port number. If you

make an analogy with your computer, you may have a lot of programs

running on it, each of which can receive an incoming connection. Just

knowing the IP address of your PC is not enough to access the program

you need on this PC. The combination of IP address and port number

provides all the necessary address.

We can now look at the settings and organization of the information

transmission created by the network. To do this, we need to understand

socket technology.

Socket technology. A socket is a programming interface for

working with a TCP/IP network. Depending on the use of a particular

transport protocol, sockets can be programmed to work with TCP or

UDP. In this lab, we will look at how sockets work for TCP connections.

For the organization of the server TCP connections we will need to:

1. Create a TCP socket.

2. Associate the local port with the socket.

3. Set the socket to listening mode.

4. Confirm new connection, if available.

5. Receive, and / or send data.

6. Close the connection.

7. Return to Step 4.

For the organization of the client TCP connections we will need to:

1. Create a TCP socket.

2. Connect to a TCP server.

3. Receive, and / or send data.

4. Close the connection.

Access to work with LWIP and sockets is in the file

<lwip/sockets.h>. For client and server applications, the process for

creating sockets is the same. This is a function call socket():

int sock=socket(AF_INET, SOCK_STREAM, IPPROTO_TCP).

The result of this function is an integer that is now associated with

the socket just created and for which we will refer further to the socket.

If this function returns "-1", then this indicates an error. When we create

a server-side socket, we want it to wait for incoming connection

requests. To do this, tell the socket which TCP / IP port number it should

60

2. IoT technology in the problems of analysis and synthesis of CPS

listen to. Please note that we do not provide a port number directly with

numeric values. Instead, we provide a value that returns a function

htons().In this unit, only one program can be associated with a certain

number of the local port. If we want to associate a port number with an

application, for example, our server application, in this case we perform

a task called "binding", which binds (or assigns) a port number to a

socket, which in turn belongs to this program. This is done using the

function bind():

struct sockaddr_in serverAddress;

serverAddress.sin_family = AF_INET;

serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);

serverAddress.sin_port = htons(portNumber);

bind(sock, (struct sockaddr *)&serverAddress,

sizeof(serverAddress)).
When the socket is now connected to the local port number, we can

start listening to incoming connections. We do this by calling a function

listen().When we access this function, the server will start listening to

the port for connection requests:

listen(sock, backlog);

backlog is a parameter that specifies the number of connection

requests that can occur at one time. Those connections that occur after a

given number of existing connections are simply discarded by the server.

Now, from a server perspective, we are ready to do some work. The

server application can now block incoming client connections. The

bottom line is that the purpose of a server is to process client requests,

and when it does not have an active client, it has nothing left to do but

wait to receive a request from a new client. That is, there is some

blocking of the server program until you receive a connection request. Of

course, this makes our executable program dependent on client

connectivity, which we cannot predict. This model of sockets is not

unique, there are asynchronous connection models, but we will not

consider them in this lab.

When our server receives a request to connect to the program, you

need to get information about a new client. This is done by calling a

function accept():

struct sockaddr_in clientAddress;

socklen_t clientAddressLength = sizeof(clientAddress);

int clientSock = accept(sock, (struct sockaddr *);

&clientAddress, &clientAddressLength).

61

2. IoT technology in the problems of analysis and synthesis of CPS

In this function, we pass as parameters our socket, a pointer to the

structure, which will then contain information about the client and the

size of the given structure. The value returned by this function is a new

socket, which is a newly created client-server connection. It should be

noted that the pre-created socket is a function socket() is still active and

is used to listen to connections, while the latter is used for data sharing.

Like all TCP connections, the newly created one is also symmetrical and

bidirectional in relation to the server and the client, so no server and

client concepts exist after the connection has been established.

If we want to create a client socket, the procedure for creating a

client socket is similar to a server program. Again, we create a socket

function socket(), but in this case we don't have to use the functions

bind()/listen()/accept(). All you have to do is call the function connect()

to connect to a server that is waiting for a connection:

struct sockaddr_in serverAddress;

serverAddress.sin_family = AF_INET;

inet_pton(AF_INET, "192.168.1.200",

&serverAddress.sin_addr.s_addr);

serverAddress.sin_port = htons(9999);

int rc = connect(sock, (struct sockaddr *)&serverAddress,

sizeof(struct sockaddr_in)).
Once we have a connection, it remains to receive and transmit

information through sockets. Information is obtained by means of

function recv():

char *data = new char[1];

ssize_t sizeRead = recv(clientSock, data, 1, 0);

if (sizeRead < 0);

printf("Error with size reading\n");

printf("%d\n", data[0]).

As parameters, the function accepts:

- socket number, which is a bidirectional link;

- a memory pointer that stores information retrieved over the

network;

- the amount of memory in bytes in which the information will be

written;

- a checkbox indicating that incoming messages are blocked. The

default is NULL.

The return value of a function is the size in bytes of information

received at one time.

62

2. IoT technology in the problems of analysis and synthesis of CPS

Function for information transfer send():

char *data = new char[1];

data[0] = ‘A’;

ssize_t sizeRead = send(clientSock, data, 1, 0);

if (sizeRead < 0);

printf("Error with size reading\n").
This function looks the same as recv(). It has similar parameters and

a return value. The only difference is that we send data transmitted

through the pointer data, but not receive.

In general, these functions are not the only ones used to send and

receive information over the network, but are the most commonly used.

Below is a description of the functions that are often used when using

sockets and network programming.

1. The function that receives the incoming request: int accept(int

socket_fd, struct sockaddr* addr, socklen_t* addrlen).

This function is blocking and is waiting for a request for incoming

communication from the server socket. As soon as the client connects,

his address is returned to us along with its length. If we try to accept too

many connections at one time, ESP32 may return ENFILE to indicate

that we have overflow connections.

Function returns socket for client, or -1 in case of error.

The file: <lwip/sockets.h>.

2. The function that associates the socket with the address: int

bind(int s, const struct sockaddr* name, socklen_t namelen).

The name parameter is the socket address that will be associated

with the socket; the namelen provides address length.

If the value returned is less than zero, then this indicates an error.

The file: <lwip/sockets.h>.

3. The function that closes the socket: int close(int s) or

closesocket(int s).
s – this is an existing socket.

The file: <lwip/sockets.h>.

4. The function that connects to the server: int connect(int sockFd,

const struct sockaddr* partnerAddr, socklen_t addrlen).

This function is usually called by the client.

The file: <lwip/sockets.h>.

5. The function that sets the socket property: fcntl(int s, int cmd,

int val).

63

2. IoT technology in the problems of analysis and synthesis of CPS

For example, to install a non-blocking socket: s is a socket, cmd –

F_SETFL, val – O_NONBLOCK.

The file: <lwip/sockets.h>.

6. Function that searches for a host by its name: struct hostent

*gethostbyname(const char *name).

It returns a pointer to a structure hostent.

The file: <lwip/netdb.h>.

7. The function that converts the integer port number in a sequence

of bytes, which is associated with a socket port number: uint32_t

htonl(uint32_t netLong) for the number of type long, uint16_t

htons(uint16_t hostShort) for the number of type short.

The file: <lwip/sockets.h>.

8. The function that performs structure conversion IP-addresses in a

string of characters: char *inet_ntop(int af, const char* src, char* dst,

socklen_t size).

The af indicates the address family. It can take on value:

AF_INET – this is IPv4;

AF_INET6 – this is IPv6;

src – this is a pointer to the address structure;

dst – this is a buffer that will be filled with text;

size – this is the length of this buffer that can be filled. For

AF_INET the buffer must be by length INET_ADDRSTRLEN bytes,

and for AF_INET6 it should be at least INET6_ADDRSTRLEN bytes

long.

The file: <lwip/sockets.h>.

9. The function which is listening incoming connections: int

listen(int socket_fd, int backlog).

The file: <lwip/sockets.h>.

10. The function that performs data acquisition on the net: ssize_t

read(int s, void* mem, size_t len).

It is similar to the function recv().

The file: <lwip/sockets.h>.

11. The function for receiving data over the network: ssize_t

recv(int s, void* mem, size_t len, int flags).

This function returns the number of received bytes. A value of -1

indicates an error. A value of zero indicates that the connection is closed.

Where: s is socket number, which is a bidirectional link; mem is a

memory pointer in which is recorded information that obtained through

the network; len is the amount of memory in bytes in which the

64

2. IoT technology in the problems of analysis and synthesis of CPS

information will be written; flag is a flag that indicates to block

incoming messages. The default is NULL. It may mean:

MSG_DONTWAIT – do not block waiting for a message that has

not yet been received;

MSG_OOB – check that the message is out of range;

MSG_PEEK - get the first message without wasting it from

memory.

The file: <lwip/sockets.h>.

12. The function that sends a byte set through the network: ssize_t

send(int s, const void* dataptr, size_t size, int flags).

The data specified in dataptr for the size size bytes is transmitted

by the network.

The file: <lwip/sockets.h>.

13. The function that implements sending a message through the

network: ssize_t sendmsg(int s, const struct msghdr* msg, int flags).

To send, you must complete the structure msghdr.

The file: <lwip/sockets.h>.

14. The function that performs sending data over UDP protocol:

ssize_t sendto(int sock, const void* dataptr, where size_t size, int

flags, const struct sockaddr* to, socklen_t tolen); sock is a socket

that was created by the function socket(); dataptr is a pointer to the data

to be transmitted; size is a size of the datagrams in bytes (the maximum

size is 64 Kb); flag is a flag that can take on a value

MSG_DONTWAIT or MSG_OOB; to is a pointer to a structure

containing the address of the recipient of the information; tolen is a

length of structure with address.

The file: <lwip/sockets.h>.

15. The socket creation function: int socket(int domain, int type,

int protocol); domain is the default in AF_INET; type is a value

SOCK_STREAM or SOCK_DGRAM or SOCK_RAW; protocol is a

value IPPROTO_IP or IPPROTO_TCP, or IPPROTO_UDP.

The result that is returned is the just created socket. A value less

than zero indicates an error.

The file: <lwip/sockets.h>.

The Practical Part

1. The group is divided into two teams. The first team creates a

program that configures the device to work with the network as an

“access point”. The second team creates a program to work with the

65

2. IoT technology in the problems of analysis and synthesis of CPS

network in the “station” mode (see lab 2). You must compile your

applications and test their performance for network events (device

connectivity, address retrieval, etc.).

2. You must add the socket algorithm to your programs. In each

program it must be one, the number of concurrent requests is not less

than two at a time. Use socket protocol for TCP. The team that develops

the "station" creates a socket for work in client mode. Another team

configures the socket to work in server mode (listening mode).

3. To test the sockets, you can use the Android application "Socket

Protocol".

Fig.2.12 – Socket Protocol main windows

This program works both in client mode and in server mode.

It should be recalled that if your device (test stand) is operating in

access point mode, its default address is 192.168.4.1.

If the device is in "station" mode, then it already needs to know the

address of the device (server or access point) to which it will try to

connect, i.e. in the case of "Socket Protocol" application in server mode,

you need to configure your Android device as an access point and find

out his address on his own network.

4. You must test the performance of your applications by sending

arbitrary bytes from one device to another. If the device works as an

access point, you must display the message as received in the console.

66

2. IoT technology in the problems of analysis and synthesis of CPS

5. The team, whose device works with the network as an access

point, organizes the control of the RGB LED by sending certain

commands over the network. The format of commands is arbitrary. The

number of commands is also arbitrary, but there must be at least three

commands to enable each color.

6. The team, working with a “station”, agrees the format command

with another team and organizes the work of your device so that intervals

of two seconds of fame random command device to device "access

point".

7. Check the work of the created devices. Try to connect to the

access point device at the same time, both from your Android device and

from the "station" device, and at the same time send commands to

control the LED.

Report

Reporting and defense of laboratory work is performed according to

the requirements described in work 2.

Test questions

1. Describe the TCP/IP protocol stack hierarchy?

2. What services does LwIP provide in ESP-IDF for organizing data

exchange in embedded systems?

3. What is the essence of socket technology?

4. Describe the technology for organizing the server with a TCP

connection.

5. Describe the technology for organizing client work with TCP

connections.

Recommended literature
1. "M5Stack Official Store. ESP32 Basic Development Kit Core Expandable

Micro Control Wifi BLE IoT Prototype Board for Arduino-in Industrial

Computer and Accessories from Computer and Office on Aliexpress.com |

Alibaba Group", aliexpress.com, 2019. [Online]. Available:

https://ru.aliexpress.com/item/32837164440.html.

2. "me-no-dev/ESPAsyncWebServer", GitHub, 2019. [Online]. Available:

https://github.com/me-no-dev/ESPAsyncWebServer.

https://github.com/me-no-dev/ESPAsyncWebServer

67

2. IoT technology in the problems of synthesis and analysis of CPS

2.1.5 Applying ESP32 for working with sensors and peripherals in

CPS/IoT projects. GPIO PCF8574 extender for sensor networks

(Laboratory Work № 4)

The aim of the laboratory work: to study the features of using the

I2C interface in ESP32 for data exchange with sensors of various types;

get practical skills in programming sensor networks.

Recommended hardware and software

Pressure and temperature sensors BMP180, light sensor BH1750,

GPIO expander PCF8574, accelerometer and gyroscope MPU-6050,

PWM servo controller on PCA9685, OLED display SSD1306, MAX7

LEDs matrix MAX7219/MAX7221, laboratory research module (LRM),

Eclipse and Arduino IDE programming environment.

Theoretical Information
Physically, the I2C (Inter-Integrated Circuit) interface is a serial

data bus developed by Philips in the early 1980s to control low-speed

electronics peripherals from motherboards, embedded and mobile

systems. In ESP32 I2C is implemented according to the standard scheme

[1]. Devices connected using I2C (Fig.2.13) are divided into one master

device (Master) and the rest of the slave devices (Slaves).

Fig.2.13 – I2C interface wiring diagram

Classical addressing includes a 7-bit address space with 16 reserved

addresses; it allows connecting up to 112 different devices using two

communication lines. When the address is considered by all slave

devices, only the address of one of them must match the one supplied by

the master. Other devices ignore the request.

I2C programming. The ESP-IDF development kit provides a

driver that allows you to control the operation of the I2C interface using

C language functions without resorting to low-level register

manipulation. In ESP32, this interface is implemented in hardware, and

68

2. IoT technology in the problems of synthesis and analysis of CPS

the drivers significantly simplify working with I2C. ESP32 can act both

as a Master and as a Slaves device. It has two independent I2C ports

(I2C_NUM_0 and I2C_NUM_1) so two independent buses can be

simultaneously implemented, being in different or identical roles. In

many microcontrollers, the connectors where a particular interface port is

running are hardware-fixed. In ESP32, there is no such restriction, so

two module pins for the port can be chosen which are more convenient.

To do this, one needs to decide which pin will be responsible for the

SDA line, and which – for SCL.

To configure I2C, we must first call the function i2c_param_config

(), which accepts as the parameters which port we will configure, and the

structure with the configuration. This structure has the following fields:

• mode – the role that our device plays when working with I2C. It can

be I2C_MODE_MASTER for the master or I2C_MODE_SLAVE

for the slave;

• sda_io_num, scl_io_num – determine which contact numbers will

match specific port lines;

• sda_pullup_en, scl_pullup_en – these two fields determine

whether selected contacts are pulled to power, that is, whether they

are set by default to a high signal state on them;

• clk_speed – this field assigns the clock frequency when the device

is Master. A value of 100000 is normal for standard I2C mode at 100

kHz bus frequency; however, ESP32 also supports 400 kHz I2C bus

operation.

Configuration Example:

i2c_config_t conf;

conf.mode = I2C_MODE_MASTER;

conf.sda_io_num = 25;

conf.scl_io_num = 26;

conf.sda_pullup_en = GPIO_PULLUP_ENABLE;

conf.scl_pullup_en = GPIO_PULLUP_ENABLE;

conf.master.clk_speed = 100000;

i2c_param_config(I2C_NUM_0, &conf).

After configuring, the i2c_driver_install () function is called.

While calling, indicate the port, regardless of whether the device is

Master or Slave, and if it is Slave, then use the buffer size:

i2c_driver_install (I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0).

Once we initialize the I2C port, you can perform the necessary

actions. If the device is Master, then you can perform a write/read

69

2. IoT technology in the problems of synthesis and analysis of CPS

operation to the identified Slaves. The read operation is the value “1” of

the eighth bit after the seven-bit address, and the write operation is “0”.

To set this bit, there are constants I2C_MASTER_READ and

I2C_MASTER_WRITE. If you need to read data from the device at the

address 0x12, then the transmitted I2C address will be (0x12 << 1) |

I2C_MASTER_READ, and for writing to the device at 0x12 – the I2C

address (0x12 << 1) | I2C_MASTER_READ.

To send a command, we create the structure of this command and

then transmit it. The command building begins with the

i2c_cmd_link_create() function. Then we call i2c_master_start(cmd),

which means permission to transfer. Now you can associate the data that

you want to send using the i2c_master_write_byte() and/or

i2c_master_write() functions. Next, we indicate that the command

transfer is completed -– i2c_master_stop(). Now you can really ask

ESP32 to execute the command by calling i2c_master_cmd_begin().

This function sends all buffered commands. After calling

i2c_master_cmd_begin() you need to release the command register and

create a new one for subsequent transfer.

This example shows the transfer of 0x34 byte to the Slave-devices

at 0x12 address:

i2c_cmd_handle_t cmd = i2c_cmd_link_create();

i2c_master_start(cmd);

i2c_master_write_byte(cmd, (0x12 << 1) |

I2C_MASTER_WRITE, 1); i2c_master_write_byte(cmd, 0x34, 1);

i2c_master_stop(cmd);

i2c_master_cmd_begin(I2C_NUM_0, cmd,

1000/portTICK_PERIOD_MS); i2c_cmd_link_delete(cmd).

Working with sensors. When implementing CPS/IoT projects, the

main task is to implement the instrumental Interface between the sensors

and the computer component. Now the sensor elements are manufactured

with an integrated digital signal processing module, containing ADC and

registers, making them easier to handle with.

The barometric pressure and temperature sensor BMP180

(Fig.2.14, a) [2] works with a voltage of 3.3 V. Its address when working

on the I2C interface is 0x77. The I2C interface commands for reading

information from the device are described in detail in the BMP180

specification.

70

2. IoT technology in the problems of synthesis and analysis of CPS

а) б)

Fig.2.14 – Sensors of: a) pressure and temperature BMP180; b) the level

of lighting BH1750

According to the specification, BMP180 registers contain certain

parameters; each of them is responsible for certain data for calibration

and further reading of information that will need to be converted into a

familiar representation of pressure and temperature. The address

correspondence of these registers and parameters according to the

specification is given in table 2.5, and a set of ready functions for

working with the BMP180 sensor are shown in Appendix B for

Laboratory Work No. 4.

Table 2.5 – Addressing sensors BMP180 and BH1750
BMP180 BH1750

Parameter Type Register Command Meaning

AC1 short 0xAA, 0xAB 0x00 Turn-off the power

AC2 short 0xAC, 0xAD 0x01 Turn-on the power

AC3 short 0xAE, 0xAF 0x07 Reset

AC4 unsigned short 0xB0, 0xB1 0x10 Mode H

AC5 unsigned short 0xB2, 0xB3 0x11 Mode 2H

AC6 unsigned short 0xB4, 0xB5 0x13 Mode L

B1 short 0xB6, 0xB7 0x20 One time Mode H

B2 short 0xB8, 0xB9 0x21 One time Mode 2H

MB short 0xBA, 0xBB 0x23 One time Mode L

MC short 0xBC, 0xBD

MD short 0xBE, 0xBF

The environmental light sensor BH1750 (Fig.2.14, b) [3] operates

with a voltage of 3.3 V and is based on the dependence of the

semiconductor resistance on the magnitude of the incident light flux. It

71

2. IoT technology in the problems of synthesis and analysis of CPS

has a built-in sixteen-bit ADC, I2C address – 0x23. The list of

commands is shown in Table 2.5, and for programming example, see

Listing 4.1 for Laboratory work No. 4.

Input and output port expander module PCF8574 [4]. In CPS/IoT

projects, it is often necessary to obtain information from dozens and

hundreds of information channels. The ESP32 module has 38 contacts in

total and only contacts number 34-39 are inputs. The PCF8574 chip

operates on the I2C interface, which requires the microprocessor to use

only two contacts, and provides eight additional general-purpose

input/output ports(GPIO) with the corresponding address field extension

(Table 2.6, 2.7). When addressing via the I2C ESP32 interface, the A0-

A2 contacts aren't used and are connected to the ground.

Table 2.6 – Assigning PCF8574 Contacts

Symbol Contact number Appointment

A0-A2 1, 2, 3 Addressing

P0-P7 4, 5, 6, 7, 9, 10, 11, 12 I/O ports

INT 13 Interruption output

SCL 14 Timing line I2C

SDA 15 Data line I2C

VDD 16 Power (2.5 – 6 volt)

Vss 8 Ground

Table 2.7 – Standard PCF8574 pin addressing

A2 A1 A0 Адреса

0 0 0 0х38

0 0 1 0х39

0 1 0 0х3a

0 1 1 0х3b

1 0 0 0х3c

1 0 1 0х3d

1 1 0 0х3e

1 1 1 0х3f

The accelerometer and gyroscope MPU-6050 [5] (Fig.2.15, a)

combines the possibilities of measuring linear acceleration and angular

velocity in three-dimensional space, giving 6-step freedom of

measurement. Measurement resolution is 16 bits, power is 3.3 V. The

72

2. IoT technology in the problems of synthesis and analysis of CPS

MPU-6050 connects to the main ESP32 module using the I2C interface

at 0x68. The device contains a set of registers, which is responsible for

maintaining a certain measured value. The values of these registers and

their descriptions are given in Table 2.8.

a) b)

Fig. 2.15 – Modules: a) MPU-6050 accelerometer and gyroscope;

b) PWM controller

Table 2.8 – Description of MPU-6050 registers

Register Offset Name Description

0x3B 0 ACCEL_XOUT_H AccelX High

0x3C 1 ACCEL_XOUT_L AccelX Low

0x3D 2 ACCEL_YOUT_H AccelY High

0x3E 3 ACCEL_YOUT_L AccelY Low

0x3F 4 ACCEL_ZOUT_H AccelZ High

0x40 5 ACCEL_ZOUT_L AccelZ Low

0x41 6 TEMP_OUT_H Temp High

0x42 7 TEMP_OUT_L Temp Low

0x43 8 GYRO_XOUT_H GyroX High

0x44 9 GYRO_XOUT_L GyroX Low

0x45 10 GYRO_YOUT_H GyroY High

0x46 11 GYRO_YOUT_L GyroY Low

0x47 12 GYRO_ZOUT_H GyroZ High

0x48 13 GYRO_ZOUT_L GyroZ Low

The use of the MPU-6050 accelerometer and gyroscope module in

CPS/IoT projects is especially effective for CPS dynamic physical space.

Such sensors allow predicting the behavior of a physical system and

correcting its trajectory. For this purpose dynamic models of adaptive

systems and a technique for parallelizing computations both on built-in

resources and for Cloud technologies are used.

73

2. IoT technology in the problems of synthesis and analysis of CPS

A PWM controller for servo drive controlling (Fig.2.15, b) is

implemented according to the timer scheme [6]. The essence of such an

approach is that the duration/frequency of the controlled process, as for

example, and the angle of the motor rotor rotation, is determined by the

control pulse duration τ. In turn, τi is set by a digital timer, that is, the

duration of recalculating the number ki of standardized pulses supplied

from a calibrated high-precision generator to the counter's input. The

board of the 16-channel PWM driver PCA9685 (Fig. 2.15, b) is

controlled via the I2C interface at the base address 0x40. ESP32 for

working with the PCA9685 driver in CPS/IoT projects can be

programmed both in the Eclipse environment and in the Arduino IDE.

To work with the Arduino IDE based on the created LRM, we modify

the existing library, which holds two files Adafruit_PWMServoDriver.h

and Adafruit_PWMServoDriver.cpp.

The file with the extension .h to contains macros defining the names

of commands and their digital representation (#define

PCA9685_SUBADR3 0x4, etc.). These commands are responsible for

setting the PWM frequency, selecting a channel, turning PWM on and

off on a particular channel. This information will be useful in the

implementation of PWM-controller control when programming using the

ESP-IDF framework.

In addition to these macros, the header file contains the class

Adafruit_PWMServoDriver, which creates an abstraction between the

I2C interface and the PWM controller. In this class, there is the

setPWMFreq() method, which sets the frequency for the PWM, and the

setPWM() method, which sets the specific PWM channel to a specific

PWM signal. Also in this class there is a single private field of the class

that stores the device address. Let’s add two more private fields to this

class, which will determine the pin numbers for the SDA and SCL lines:

private:

 uint8_t _i2caddr;

 uint8_t _sda_pin;

 uint8_t _scl_pin.

Next, we add two parameters to the prototype of the class

constructor, which will set the values of the class fields:

Adafruit_PWMServoDriver(uint8_t addr = 0x40,

uint8_t sda = -1, uint8_t scl = -1).

In the file with the extension .cpp we will change the body of the

constructor:

74

2. IoT technology in the problems of synthesis and analysis of CPS

Adafruit_PWMServoDriver::Adafruit_PWMServoDriver(uin

t8_t addr,

uint8_t sda = -1, uint8_t scl = -1) {

 _i2caddr = addr;

 _sda_pin = sda;

 _scl_pin = scl;

}

Finally, let's change the function that triggers the I2C interface

enable:

void Adafruit_PWMServoDriver::begin(void) {

 if (_sda_pin == -1 || _scl_pin == -1)

 WIRE.begin();

 else

 WIRE.begin(_sda_pin, _scl_pin);

 reset();

}

Such a modification of the library is sufficient for direct control of

the servomotor. However, since each servomotor model has different

characteristics, the PWM-controller settings are different for them. For

example, when setting up the SG90 servomotor, the frequency of the

PWM signal which it works with, and the minimum and maximum pulse

width of the signal should be specified: frequency 60 Hz, and the

minimum and maximum pulse duration, respectively, 150 and 600 units

for working with this library. That is, the operation algorithm is as

follows:

- declare a class object and specify its address and pin numbers for

the I2C interface:

Adafruit_PWMServoDriver pwm =

Adafruit_PWMServoDriver(0х40, 16, 17);

- enable this object in the setup() function and set the engine speed:

pwm.begin();

pwm.setPWMFreq(60);

- enable in loop() function the appropriate port to which the

servomotor is connected and set the required pulse duration, which in

turn will set the servomotor axle to the appropriate angle:

uint8_t servoNum = 0;

// sets the axle to an angle of 0 degrees

pwm.setPWM(servoNum, 0, 150);

// sets the axle to an angle of 90 degrees

75

2. IoT technology in the problems of synthesis and analysis of CPS

pwm.setPWM(servoNum, 0, 375);

// sets the axle to an angle of 180 degrees

pwm.setPWM(servoNum, 0, 600).

Of course, for other types of engines the settings will be different

too.

The monochrome OLED display is controlled by the SSD1306

driver and has a resolution of 128x64 pixels (Fig. 2.16, a) and is

controlled by SPI and I2C interfaces when working with ESP32 [9].

a) b)

Fig. 2.16 – Information displaying means: a) OLED display

SSD1306; b) LED matrix MAX7219/MAX7221

To simplify image management on the OLED display, let's use the

Arduino graphics core and the source code library for working with this

display [10,11], which will be loaded to the directory C:\Users\<user>

\Documents\Arduino\libraries.

To customize the code for a specific display model and ESP32

module using the I2C interface, we will make certain changes in the

Adafruit_SSD1306.h file. On line number 73, uncomment the macro that

is responsible for supporting the display with a resolution of 128x64

pixels and comment the bottom macro:

#define SSD1306_128_64

//#define SSD1306_128_32

The next step is to change the initialization of the I2C interface in

the Adafruit_SSD1306.cpp file. Since in the laboratory bench

implementation the display is connected via the I2C interface, where the

SDA line corresponds to 25 pin number and the SCL line - to 26, we will

add information about specific connectors to this interface call. To do

this, open the file and go to line number 206 and change the interface

call to the following: Wire.begin (25, 26).

The modified library is ready for use. You can check its

76

2. IoT technology in the problems of synthesis and analysis of CPS

functionality using the project example in the

...\examples\ssd1306_128x64_i2c folder for the Arduino IDE. The

description of functions for working with this graphic core and the

creation of an arbitrary image on this OLED display can be found in the

file C:\Users\User\Documents\Arduino\libraries\Adafruit-GFX-Library-

master\Adafruit_GFX.h.

The LED matrix MAX7219/MAX7221 (Fig. 2.16, b) [12] is

controlled by the SPI drivers of the same name with ESP32 and has a

limited voltage rise rate for segment drivers. Drivers allow cascading and

allow the user to determine the decoding mode of each bit. Each of the

indicator bits has independent addressing and its contents can be updated

without having to overwrite the entire indicator. In addition, these drivers

have a sleep mode with information storage, analog and digital

brightness control of connected indicators and a test mode switching on

all LED segments. The driver can control eight seven-segment indicators

with a dot, or separately 64 LEDs in LED panels with a common

cathode. Thus, these microcircuits are suitable not only for seven-

segment but also for matrix indicators.

Work with this LED matrix comes down to working with its

specific driver. Formatted data (Table 2.9) is sent over the SPI bus from

ESP32 by 16 bits, the most significant bit forward.

Table 2.9 – Data Matrix Format MAX7219/MAX7221

D
1

5

D
1

4

D
1

3

D
1

2

D
1

1

D
1

0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

X X X X ADDRESS DATA

In bits D15...D12, useful information is not transmitted. The

ADDRESS field specifies the instruction for action: 1...8 (0001...1000) –

select a character-place. In this case, in the DATA field, information

about the state of the character-place segments is transmitted: 0

(00000000) – segments do not light up; 255 (11111111) – all segments

of the selected character-place, including point, light up. The ADDRESS

value of 9...15 (1001...1111) indicates the execution of the service

instruction (table 2.10).

77

2. IoT technology in the problems of synthesis and analysis of CPS

Table 2.10 – List of instructions MAX7219/MAX7221 and their meanings

ADDRESS

Command Description

D
1
1

D
1
0

D
9

D
8

H
E

X

C
O

D
E

1 0 0 1 0x09 Decoding mode. The DATA bits select

which character-places to decode and

which not. Dx=1 – decode sign x, Dx=0 –

do not decode sign x.

1 0 1 0 0x0A Glow intensity (brightness). Bits D0...D3

select the brightness of the glow. At

D0=D1=D2=D3=0, the brightness is

minimal. When D0=D1=D2=D3=1, the

brightness is maximum.

1 0 1 1 0x0B Selecting the number of the displayed

character-places. Bits D0...D2 select the

displayed locations. At D0=D1=D2=1 all

eight character-places are displayed

1 1 0 0 0x0C Sleep mode. DATA=0, the microcircuit

goes into sleep mode. DATA=1 – normal

mode.

1 1 0 1 0x0D Not used

1 1 1 0 0x0E Not used

1 1 1 1 0x0F Test. DATA=1 – test activated, DATA=0

– turned off.

For normal operation of the board, after power is supplied, it must

be initialized by running the following commands:

- ADDRESS = 0x0F, DATA = 0x00 – the indicator test is off;

- ADDRESS = 0x0С, DATA = 0x01 – get out of sleep mode;

- ADDRESS = 0x0B, DATA = 0x07 – the number of used characters– 8;

- ADDRESS = 0x09, DATA = 0x00 – the decoder is off;

- ADDRESS = 0x0A, DATA = 0x0F – the maximum brightness.

After these steps, different LEDs can be randomly highlighted on

the matrix. This must be taken into account and immediately cleaned by

setting all LEDs to zero using ADRES=0x01...0x08, DATA=0x00.

78

2. IoT technology in the problems of synthesis and analysis of CPS

Practical part

1. Create and test a program that works with the BMP180 pressure and

temperature sensor. The program should update the sensor

information every second and display it to the console.

2. Complete the program with a light sensor. Modify it so that the

information from two sensors is displayed to the console at the

interval of 5 seconds. Save it.

3. Create a program for networking in the combined mode –

"workstation\access point". The essence of this mode is that, at the

same time, the device acts as an access point for certain outside

connected devices, and for others – as a station. That is, the device is

Master on one's own local subnet, and Slave on another

4. Extend this program with a socket that works in server mode, that is,

it listens to the port for connection. Set up the program for each

device (stand) so that all devices can exchange information with each

other.

5. Add functionality for working with sensors to this program. Organize

the work of programs on devices so that the information about

pressure, temperature and lighting from one stand, with a certain

interval, would be transmitted to another stand. On the other stand at

the time of receiving information, the information from its own

sensors is being read. Check the information from the sensors for

errors (for example, in the indication difference of neighboring

sensors), calculate the arithmetic average of each value and display it

to the console of one (terminal) device.

6. Create a program for the device that establishes communication with

the MPU6050 module, and reads data from the accelerometer and

gyroscope. Arrange the information output on all three axes of the

accelerometer and gyroscope to the console with a frequency of 1

second (note that the first few seconds are necessary for calibrating

the module). Create a program that changes the color of the RGB

LED glow, depending on the inclination angle of the device in space.

7. Install Arduino IDE and configure the environment for the work with

ESP32.

8. Using the Wire class, establish communication with the MPU6050

module and read the data from the accelerometer and display them to

the console.

9. In the Eclipse environment, using the LEDC/PWM driver, organize

the RGB LED glow of different brightness. Each color should

79

2. IoT technology in the problems of synthesis and analysis of CPS

alternately glow from minimum to maximum brightness. The

parameters for the timer are arbitrary.

10. Open “File” -> “Examples” in the Arduino IDE; find the tab

“Examples for ESP32 Dev Module” in the list; open the program

code with the tab “WiFi” -> “SimpleWiFiServer”. Explore this

program working. Modify it so that it exposes the servomotor to the

angle, information about which comes over the network from an

external device. An Android device, or any other device with the

ability to work in a Wi-Fi network, can act as an outside device.

11. In the Arduino IDE, select “File” -> “Examples” -> “Examples from

user libraries” -> “Adafruit SSD1306” -> “ssd1306_128x64_i2c”.

Download this program to the device and check its functionality.

Display the specified animation using the graphic library

"Adafruit_GFX.h".

12. In the Eclipse environment, create a program for static and dynamic

data output from the BMP180 and BH1750 sensors to the LED

matrix. Select image according to variant.

Report

The report and protection of laboratory work is carried out

according to the requirements described in laboratory work 2. Tasks

№№ 1, 3, 5, 8 are obligatory for execution. Other tasks are performed

individually as additional ones.

Test questions

1. What functions can BMP180 and BH1750 modules perform in

CPS/IoT projects? Describe the features of their programming with

ESP32.

2. How to implement a combined "workstation/access point" mode on

ESP32?

3. Make a comparative analysis of Eclipse and Arduino IDE libraries for

ESP32.

4. How to use file sockets to implement file exchange between ESP32

devices?

5. How is the reading of the accelerometer and gyroscope MPU6050

synchronized with LED smart-control?

6. Describe the Wire class and procedure for establishing

communications and exchanging data with the MPU6050 module.

80

2. IoT technology in the problems of synthesis and analysis of CPS

7. Justify with what accuracy and resolution information can be

displayed on the OLED?

8. Describe the functionality of “SimpleWiFiServer”.

9. How is image output implemented in "ssd1306_128x64_i2c"?

10. What is the difference between static and dynamic data output?

Recommended literature
1. "I2C bus description", Itt-ltd.com, 2019. [Online]. Available: http://itt-

ltd.com/reference/ref_i2c.html.

2. "BMP180 Digital pressure sensor. Data sheet", Cdn-shop.adafruit.com,

2019. [Online]. Available: https://cdn-shop.adafruit.com/datasheets/BST-

BMP180-DS000-09.pdf.

3. "Digital 16bit Serial Output Type Ambient Light Sensor IC. BH1750FVI",

Mouser.com, 2019. [Online]. Available: https://www.mouser.com/

ds/2/348/bh1750fvi-e-186247.pdf.

4. "PCF8574; PCF8574A Remote 8-bit I/O expander for I2C-bus with

interrupt", Nxp.com, 2019. [Online]. Available:

https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf.

5. "MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.2",

Invensense.com, 2019. [Online]. Available: https://www.invensense.com/

wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf.

6. "Adafruit PWM Servo Driver Library", Arduinolibraries.info, 2019.

[Online]. Available: https://www.arduinolibraries.info/libraries/adafruit-

pwm-servo-driver-library.

7. "Arduino – Software. Arduino WEB editor ", Arduino.cc, 2019. [Online].

Available: https://www.arduino.cc/en/Main/Software.

8. "Arduino core for ESP32 WiFi chip", GitHub, 2019. [Online]. Available:

https://github.com/espressif/arduino-esp32.

9. "ESP32 OLED Display with Arduino IDE | Random Nerd

Tutorials", Random Nerd Tutorials, 2019. [Online]. Available:

https://randomnerdtutorials.com/esp32-ssd1306-oled-display-arduino-ide/.

10. "adafruit/Adafruit-GFX-Library", GitHub, 2019. [Online]. Available:

https://github.com/adafruit/Adafruit-GFX-Library.

11. "adafruit/Adafruit_SSD1306", GitHub, 2019. [Online]. Available:

https://github.com/adafruit/Adafruit_SSD1306.

12. "MAX7219/MAX7221. Serially Interfaced, 8-Digit LED Display Drivers",

Datasheets.maximintegrated.com, 2019. [Online]. Available:

https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf.

http://itt-ltd.com/reference/ref_i2c.html
http://itt-ltd.com/reference/ref_i2c.html
https://www.mouser.com/
https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf
https://www.invensense.com/
https://www.arduino.cc/en/Main/Software
https://randomnerdtutorials.com/esp32-ssd1306-oled-display-arduino-ide/
https://github.com/adafruit/Adafruit_SSD1306

81

2. IoT technology in the problems of synthesis and analysis of CPS

2.2 Applying reconfigurable environments in CPS/IoT project

synthesis tasks (Laboratory Work №5)

Assoc. Prof., PhD Ya. Klyatchenko (NTUU “KPI”),

Assoc. Prof., PhD H. Vorobets, Assist. of Lect. V. Horditsa (ChNU)

The aim of the laboratory work: mastering the methodology for

implementing modules with integrated information processing in

CPS/IoT projects, improving the practical development skills for

solutions based on FPGA programmable environments.

Recommended hardware and software

Debugging stand based on the programmable logical environment

XC3S700AN; WebPACK ISE CAD software for developing FPGA

projects from Xilinx.

Theoretical Information
The implementation of a comprehensive information processing

project in a configurable FPGA environment significantly expands the

possibilities of the practical CPS application [1]. This approach allows

expanding the application field of CPS/IoT technologies and diversifying

the algorithm sets and types of tasks to be solved. The FPGA projects'

application is particularly effective for high-performance computing,

video processing, and tasks requiring algorithm parallelization. In

particular, for example, such solutions are implemented in modern

ultrasound diagnostics, space technology, and systems of critical

application to increase the reliability and resilience of control systems

[2].

In CPS of ecological monitoring, observation and control of

technological processes, real-time intelligent information analysis, it

often needs to visualize the results, generate additional signals, and make

decisions. Consider an example of implementing a comprehensive

solution using XC3S700AN environments on the Xilinx Spartan 3AN

platform [3]. Of course, there are more powerful tools available now –

Virtex 4/5/6, Spartan-6 [4]. But when choosing a platform for real

CPS/IoT projects, you need to consider cost-effective system

performance as well.

82

2. IoT technology in the problems of synthesis and analysis of CPS

Let's suppose that for a monitoring system it is necessary to monitor

objects distributed in space, to record their proximity to a critical state

and to signal a critical situation. Such a system can be relatively easy

simulated using the signal processing of the VGA video terminal, PS/2

keyboard, and generating modulated acoustic oscillations on the

XC3S700AN chip of the Xilinx platform [3].

Fig. 2.17 – Visualization example of CPS status monitoring results

Fig. 2.18 – PS/2 layout on the Spartan-3AN Starter Kit board [3]

The PS/2 port, located on the Spartan-3AN Starter Kit (Figure

2.18), allows two devices, such as a keyboard and a mouse, to be

connected simultaneously with a splitter (Figure 2.19). The UCF-file for

initialization is as follows:
Main connection

NET "PS2_CLK1" LOC = "W12" | IOSTANDARD = LVCMOS33 | DRIVE =

8 | SLEW = SLOW;

NET "PS2_DATA1" LOC = "V11" | IOSTANDARD = LVCMOS33 | DRIVE =

8 | SLEW = SLOW;

83

2. IoT technology in the problems of synthesis and analysis of CPS

Additional connection

NET "PS2_CLK2" LOC = "U11" | IOSTANDARD = LVCMOS33 | DRIVE = 8

| SLEW = SLOW;

NET "PS2_DATA2" LOC = "Y12" | IOSTANDARD = LVCMOS33 | DRIVE =

8 | SLEW = SLOW;

Fig. 2.19 – Wiring diagram for connecting PS/2 contacts

to the Spartan-3AN Starter Kit

PS/2 protocol operation. Data exchange between the keyboard and

the controller is carried out asynchronously using a serial protocol when

a certain key is activated. Two lines are used for data exchange - KBData

and KBSync. When transmitting scan codes, the keyboard sets the next

bit of data on the KBData line and confirms the transfer by switching the

signal from the “1” to “0” on the KBSync line. When receiving data

from the controller, the keyboard reads bit of data from the KBData line

and issues a confirmation of receipt by transferring the signal on the

KBSync line from "1" to "0". The controller may signal that it is not

ready to transmit/receive by low-level data on the KBSync line. The rest

of the time, when there is no data to transmit, both lines have a high

signal level. The pulse repetition rate of the KBSync line is about 10-25

KHz.

Data transmission order: one start-bit – "0", eight data bits, parity

bit (the sum of all bits +1), one stop-bit – "1". After receiving each byte

of data, the controller sets a low level on the KBSync line signaling that

it is busy processing the received data and is not ready to accept the next.

This can be considered a confirmation of acceptance. The keyboard

confirms every byte of the received command with the 0FAh code. If an

84

2. IoT technology in the problems of synthesis and analysis of CPS

error occurs during transmission, the controller may require the last byte

to be transmitted again by issuing the 0FEh command. The keyboard

behaves differently – it simply ignores errors. Each key of the PS/2

keypad has a unique scanning code (Fig. 2.20), which is sent each time

the corresponding key is pressed [3].

Fig. 2.20 – Keypad scan codes [3]

VGA-port on Spartan-3AN FPGA Starter Kit (Fig.2.21) is made as

standard HD-DB15 connector. Using this port allows connecting most

CRT and LCD monitors that come with a standard VGA cable.

Fig. 2.21 – VGA-port layout on the Spartan-3AN Starter Kit board [3]

The principle of controlling a VGA port is to generate a tape and

frame scan using two counters, which provide pixel-by-pixel scanning of

the image, respectively, by rows and columns. When addressing each

pixel, the RGB signal is activated in a certain proportion, which ensures

the reproduction of the corresponding color cast. FPGA directly controls

the five VGA signals through resistors (Fig. 2.22). Each red, green and

blue signal has four outputs from the FPGA. The resistor values provide

a binary coded output level. Thus, at 4-bit resolution, each base color

85

2. IoT technology in the problems of synthesis and analysis of CPS

generates a 12-bit code or 4096 possible color tones. A series resistor,

combined with a 75 Ohm resistor built into the VGA cable, ensures that

VGA color signals remain in the 0V to 0.7V range. The control of the

signal level VGA_R [3:0], VGA_G [3:0], VGA_B [3:0] provides

generation of the desired color (Fig. 2.23).

Fig.2.22 – VGA-port to FPGA connection scheme [3]

Fig 2.23 – Formation of colors

VGA signal generation is described in detail in Chapter 6 of the

technical documentation of the Spartan-3A/3AN FPGA Starter Kit

Board User Guide [3].

86

2. IoT technology in the problems of synthesis and analysis of CPS

UCF-file example:
NET "VGA_R<3>" LOC = "C8" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
NET "VGA_R<2>" LOC = "B8" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_R<1>" LOC = "B3" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_R<0>" LOC = "A3" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
NET "VGA_G<3>" LOC = "D6" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_G<2>" LOC = "C6" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_G<1>" LOC = "D5" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
NET "VGA_G<0>" LOC = "C5" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_B<3>" LOC = "C9" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_B<2>" LOC = "B9" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;
NET "VGA_B<1>" LOC = "D7" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_B<0>" LOC = "C7" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = FAST ;

NET "VGA_HSYNC" LOC = "C11" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW= FAST;
NET "VGA_VSYNC" LOC = "B11" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW= FAST.

Examples of interfaces with the VGA port for contour formation

and polygon fills can be used as blocks for arbitrary image configuration.

Generation of tone signals is realized through the audio output of

the Spartan-3AN Starter Kit (Fig. 2.24). UCF-file example:

NET "AUD_L" LOC = "Y10" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = SLOW ;

NET "AUD_R" LOC = "V10" | IOSTANDARD = LVCMOS33 | DRIVE = 8 | SLEW = SLOW ;

Fig. 2.24 – Audio output of the Spartan-3AN Starter Kit

The principle of sound generation lays in a multiple division of the

oscillation frequency of the reference high-frequency clock generator to

the sound range. So a single-tone signal can be easily implemented on

the basis of binary counters in FPGA. With a 25 MHz counter, the

87

2. IoT technology in the problems of synthesis and analysis of CPS

frequency can be divided in half, using a 16-bit counter, which counts

from 0 to 65536 different values. Counter switching will occur at a

frequency of 25000000/65536=381 Hz.

Listing of the program of single-tone signal:

module music(clk, speaker);

input clk;

output speaker;

// 16 – bit counter

reg [15:0] counter;

always @(posedge clk) counter <= counter+1;

// at a high level, monophonic sound output

assign speaker = counter[15];

endmodule

Listing of the program of two-tone signal:

module music(clk, speaker);

input clk;

output speaker;

parameter clkdivider = 25000000/440/2;

reg [23:0] tone;

always @(posedge clk) tone <= tone+1;

reg [14:0] counter;

always @(posedge clk) if(counter==0) counter <= (tone[23] ?

clkdivider-1 : clkdivider/2-1); else counter <= counter-1;

reg speaker;

always @(posedge clk) if(counter==0) speaker <= ~speaker;

endmodule.

To generate oscillations of variable tonality let's use the first

example of a simple single-tone sound and 7-bit tonal counters in tone

[21:15] with a shift in the reference point. To switch between the two

signals, we use tone [22]. As soon as the first signal counter reaches 127,

we move to the second signal until the counter goes to 0, and then return

to the first signal.

Listing of the program of multitone signal:

module music(clk, speaker);

input clk;

output speaker;

reg [22:0] tone;

always @(posedge clk) tone <= tone+1;

wire [6:0] ramp = (tone[22] ? tone[21:15] : ~tone[21:15]);

88

2. IoT technology in the problems of synthesis and analysis of CPS

wire [14:0] clkdivider = {2'b01, ramp, 6'b000000};

reg [14:0] counter;

always @(posedge clk) if(counter==0) counter <= clkdivider;

else counter <= counter-1;

reg speaker;

always @(posedge clk) if(counter==0) speaker <= ~speaker;

endmodule.

The Spartan-3AN Starter Kit basic module also has built-in

potentiometers, analog-to-digital converters, and other units that are

programmed in a similar way. projects of varying complexity can be

simulated, combining their functionality. You can check the interaction

correctness of VGA port, mouse, keyboard, and oscillation generation by

downloading the appropriate modules, or example of the ping-pong

program listing from Appendix B.

Report

The report and protection of laboratory work is carried out

according to the requirements described in laboratory work 2.

Practical part

1. Read the technical documentation about working with the VGA port

in the technical description of the Spartan-3A/3AN FPGA Starter Kit

Board User Guide, section 6. Using samples, write a software module

that selects on the screen an area similar to the real one being studied,

and statically clusters it to the observation zones, where the sensors

are located, and paints them.

2. Modify the created module to simulate the dynamic display of

sensor readings in clusters on a color scale.

3. Add a keyboard and mouse control module. Compile and download

presented examples on FPGA. Check its functionality. Tasks by

variants

4. Synthesize the module for generating sound vibrations. Provide for

the possibility of its activation on given conditionally critical states of

clusters.

5. Compile a complex project with all three synthesized software

modules involved. Test it.

89

2. IoT technology in the problems of synthesis and analysis of CPS

Test questions

1. What are the principles of display control in FPGA driver synthesis?

2. What principles are implemented in FPGA for keyboard and mouse

operation?

3. What principles are implemented in the FPGA to generate sound

vibrations?

4. How can the keyboard and VGA monitor function be synchronized in

the FPGA environment when implementing a CPS/IoT project?

5. What are the functionality features of implementing dynamic

visualization management in CPS/IoT projects?

6. Justify with what accuracy and resolution the information can be

outputted using the built-in tools in the Spartan-3A/3AN FPGA

Starter Kit Board User Guide?

7. Give and describe application examples of known to you FPGAs of

Intel/Altera and Xilinx series in CPS/IoT projects?

8. What are the advantages of modern dynamically reconfiguring

FPGAs of the Intel/Altera and Xilinx series?

Recommended literature
1. Xilinx.com, 2019. [Online]. Available: https://www.xilinx.com/support/

documentation/data_sheets/ds557.pdf.

2. F. Vanderhaegen, "Towards increased systems resilience: New challenges

based on dissonance control for human reliability in Cyber-

Physical&Human Systems", 2019. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S1367578817300275

3. Xilinx.com, 2019. [Online]. Available: https://www.xilinx.com/support/

documentation/boards_and_kits/s3astarter_schematic.pdf.

4. Rssp.ru, 2019. [Online]. Available: http://www.rssp.ru/upload/iblock/916/

13_Otladochnie_plati%20f%20nabori.pdf.

https://www.xilinx.com/support/
https://www.xilinx.com/support/
http://www.rssp.ru/upload/iblock/916/

90

2. IoT technology in the problems of synthesis and analysis of CPS

2.3 Methodology for implementation of the CPS/IoT complex project

(Laboratory work № 6)

Assoc. Prof., PhD H. I. Vorobets, Assist. of Lect. O. O. Pshenychnyi,

Bachelor student V. V. Buchakchiyskyi (ChNU)

The aim of the laboratory work: generalization of knowledge

about functional-algorithmic CPS models and application of IoT in

problems of their analysis, synthesis and functionality expansion;

gaining practical skills in applying a complex approach to CPS/IoT

projects.

Recommended hardware and software

Name Link

Arduino Nano https://store.arduino.cc/arduino-nano

Arduino IDE https://www.arduino.cc/en/main/software

USB 2.0 cable type A/B https://store.arduino.cc/usb-2-0-cable-type-a-b

ESP32(DevKit) https://github.com/playelek/pinout-doit-

32devkitv1

ESPAsyncWebServer.h https://github.com/me-no-

dev/ESPAsyncWebServer

Laboratory stand

Theoretical information and example of work execution
This laboratory work is proposed as a final lesson in the module

"IoT technology in the problems of synthesis and analysis of CPS".

Based on the results of its implementation, a holistic view should be

formed on the features of the structure and functional-algorithmic

organization of CPS, their classification and fundamental differences

from automation and mechatronics systems, the role of IoT technologies

both in expanding the functionality of CPS and in solving problems of

their analysis and synthesis.

As a final example, it is proposed to consider the synthesis of

information-analytical CPS spectroscopy of physical objects and

bioactive environments for scientific research, the structural and

functional-algorithmic analysis of which is given in paragraph 1.1.1. The

synthesis of such a system involves the implementation of three stages:

1) synthesis of a minimally- or fully-functional automaton for controlling

physical processes in the optoelectronic channel of a standard

https://store.arduino.cc/arduino-nano
https://www.arduino.cc/en/main/software
https://store.arduino.cc/usb-2-0-cable-type-a-b
https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/playelek/pinout-doit-32devkitv1
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer

91

2. IoT technology in the problems of synthesis and analysis of CPS

spectrophotometer of the SF series; 2) the justification and

implementation of cyber components for the intellectualization of the

functionality of the control automaton and/or the creation of an

autonomous version of CPS; 3) the use of IoT technology to expand the

functionality and implementation of open-type CPS.

To implement the first stage in the form of an automaton with the

minimum required set of functionality:

Mmin={λ0, λi, λf, ni(Δλi), Uis0, Uis, Uisf, mj(ΔUj), km},

it is necessary to provide controlling over the sweep of the wavelength

spectrum in the range from λmin=180 nm to λmax=1100 nm with a given

step nmin, controlling the geometric dimensions of the optical window

from minimum to maximum value with a step mmin, commuting km

calibration/measurement mode, and ensuring potential measurements Uis

on the photosensor minimum Uis0 to maximum Uisf value with the

analog-to-digital converter (ADC).

To sweep the spectrum and adjust the size of the optical window,

one can use unipolar stepper motors of various types, for example EM-

211, 42SIM-24Dxxx, etc. (Fig. 2.25, a, b), with additional mechanical

gearboxes [1, 2]. The formation of control pulses with the necessary

parameters for the engines is provided by Darlington assemblies

ULN203xx, ULN2803A or the like. The calibration mode of the optical

channel is carried out when there is no sample in it and in two positions

– closed and open channel, that is provided by a curtain with an

electromagnetic drive (Fig. 2.25, c). The feed into the optical channel of

the carriage with the samples under study is automated by means of a

worm gear driven by an EM142 engine, where the control signals are

formed by the A4988 driver [3].

Thus, for a minimum set of physical object automation, 12 digital

lines are required to control the engines, one – for the curtain, one analog

input for measuring the photopotential on the sensor, and 2 single-bit

inputs for fixing zero states n0 and m0, A minimal set of the Arduino

Nano module is enough for this. The connection of the digital lines of

the Arduino board with the power drives of the stepper motors is

implemented using optocouplers (Fig. 2.25, d). The software is formed

as a set of management functions that can be activated according to the

algorithm of the main control program. Arduino Nano built-in memory is

enough for it and no additional resources are required.

92

2. IoT technology in the problems of synthesis and analysis of CPS

a) b)

c) d)

Fig. 2.25 – An example of providing the minimum required level of PO

automation for its integration into a CPS/IoT project; the photo shows

the control modules: a) spectrum sweep along λ; b) the size of the optical

window; c) a carriage with a test sample and an optical window curtain;

d) Arduino Nano with A4988 driver and optical connection of power

drives.

The cyber component for the implementation of the CPS/IoT

project can be built in several versions. The simplest approach is to use a

universal PC switched with Arduino Nano via a USB port and an

additional interface board. Installed on a PC, the Arduino IDE allows

programming the Arduino Nano for performing basic management

functions. PC applications are enough to implement the mechatronic

ACS model in the form of standard measurement algorithms. For

example, to work with Arduino modules in this system, one needs to

install the CH340/CH341SER driver and the termite-3.1/3.3 or any other

remote access program. Measurement data is accumulated in the form of

text files, which are then processed by other application software.

For the synthesis of stand-alone CPS, which implements

“intelligent” branched algorithms for modeling processes and

93

2. IoT technology in the problems of synthesis and analysis of CPS

characteristics of POs, controlling POs and processes, and processing

data on PC, object-oriented programming (OOP) tools (C++, Java#,

JavaScript) and other universal software packages (MatLab2011,

MathCad, etc.) are used.

Using ESP32 in this CPS/IoT project also has certain features. The

basic variant involves the implementation of the CS-PS interaction

model according to the scheme (Fig. 2.26): Arduino Nano as controller

of mechanical part and ESP32 as a web server and a device for

implementing an "intelligent" measurement control algorithm.

Fig. 2.26 – An example of CPS/IoT project – Arduino Nano as controller

of mechanical part and ESP32 as a web server

The Arduino "Source code" software module performs the

following functions:

• monitoring and control of the mechanical servos of the

spectrophotometer according to the specified CPS functional

program;

• measurement of the potential of Uis on the photosensor using the

built-in ADC;

• Transmit Uis and λ data through the serial port (UART) according to

the protocol of the basic algorithm.

94

2. IoT technology in the problems of synthesis and analysis of CPS

To create the programs-functions of the Arduino Nano module, the

SerialCommand.h library, which simplifies the development of programs

using the serial port, and Servo.h library, which allows easy servos

control, were used.

The Arduino controller accepts/identifies the following basic

commands on the serial port:

• Init – starts the device initialization algorithm, and puts all

mechanisms in the starting position;

• Go xxxx yyyy zz n - launches the standard algorithm for measuring

the spectrum in the range Δλ from xxxx (nm) to yyyy (nm) with a

step zz (nm) for the sample in the n-th carriage;

• GoFi xx m – launches a non-standard spectrum measurement

algorithm with scanning by λ, but with a step xx (%) by ΔUis;

• GoDm xxxx yyyy zz nm – launches a non-standard algorithm for

measuring the spectrum with dynamic correction of the scan step by λ

using the results of the dynamics evaluating (Sm=ΔUis/Δλi).

The execution of the main algorithm is initialized from ESP32 by

the Start command. The measurement results are recorded on an SD card

or streamed in parallel to a host computer via Wi-Fi network.

The EPS32 controller also plays the role of a web server. The

following libraries were used for this purpose: ESPAsyncWebServer.h –

to run an asynchronous web server based on a microcontroller; FS.h –

for interacting with the file system; SPI.h – for interaction with the SPI

interface; HardwareSerial.h – for interacting with the serial port. The

web server created on EPS32 is identified by the local IP address of the

router and allows to have access to measurement data or to start new

measurements without having physical access to the CPS PO.

The advantage of this solution is the low cost, and the disadvantage

is the relatively high development complexity. It's also required to

investigate the reliability of the ESP32 with two or more end-devices due

to its limited resources.

The CPS/IoT model has advanced capabilities when it's

implemented according to the scheme: Arduino Nano as a mechanical

part controller and Raspberry Pi as a web server and a device for

implementing an “intelligent” measurement control algorithm.

In this case, the role of the functions of the Arduino module remains

unchanged, while the functions of measurement management and web

services (nginx etc.) are performed by the Raspberry Pi module.

Requirements for the last one do not have much significance since each

95

2. IoT technology in the problems of synthesis and analysis of CPS

of them has enough memory to start and run UNIX-based RTOS [4]. The

advantage of this solution is the high reliability of the CPS/IoT project

due to the lack of user web-server libraries, which are necessary in the

case of ESP32. In addition, edge computing features can be implemented

on the Raspberry Pi, reducing Wi-Fi traffic in complex CPS/IoT

solutions. For relatively simple tasks, the question of the

appropriateness/cost-effectiveness of using excess Raspberry Pi

resources in CPS/IoT projects arises.

Notes for practical work

When performing a practical task on programming and setting up a

laboratory bench of a spectrophotometer with a control system based on

Arduino Nano and ESP32 (DevKit), REMEMBER that the serial port of

Arduino is used both for communication with another controller and for

communication with a computer. Therefore, in order to avoid collisions,

the RX0 and TX0 lines that are used for ESP32–Arduino

communications must be broken when programming the ESP32. That is,

the ESP32–Arduino system configuration algorithm can be as follows:

• disconnect the RX0 and TX0 lines which connect the ESP32–

Arduino;

• program the Arduino Nano using the Arduino IDE;

• program ESP32 using Arduino IDE;

• Switch the RX0 and TX0 lines that connect the ESP32–Arduino to

enable them to exchange information.

Note that in this case, we only download measurement algorithms

and spectrophotometer control subprograms to the Arduino Nano, and all

the control functions are assumed by ESP32.

Tasks for individual execution

The practical tasks that students have to complete consist of two

parts.

Part A - development of intelligent measurement control and data

processing algorithm for CPS/IoT based on the laboratory stand of an

automated spectrophotometer, or its simulation model. The following

algorithms are offered:

1. Quick search for the extrema of the function Uis=f(λ), the selection of

three points λi with the maximum value of Uis among them and

additional scanning of the spectrum in the vicinity of Δλi10 nm for

the selected points.

96

2. IoT technology in the problems of synthesis and analysis of CPS

2. Scanning the spectrum Uis=f(λ) with a given step Δλi, searching for

all maxima and minima of the function Uis=f(λ) and establishing the

maximum similarity of the test sample to the known teacher-defined

tables.

3. Search for all maxima of the function Uis=f(λ) and determine the

groups with the largest and smallest absolute values of Uis.

4. Identification of sections of the function Uis=f(λ), which can be

approximated by piecewise-linear approximations, and transitions

between sections with different angular coefficients.

5. The selection of areas with adjacent maxima or minima at a distance

no farther than the specified value Δλ, and the study of the "fine

structure" of the spectrum in these areas.

6. Differential processing of the 1st and 2nd order spectra in the given

ranges Δλ.

7. Software noise filtering in the measurement and graphic display of

spectra.

8. Fourier analysis of the spectra in the selected range Δλ.

9. Creating user interfaces for displaying control and measurement

results on a network PC.

10. Development of additional dynamic measurement control commands

for the Arduino controller.

11. Investigation of the fine structure of the spectra at points of local

extrema weakly expressed in ΔUis.

12. Determination of the inflection points of the function Uis=f(λ) and

investigation of their fine structure of the spectra.

Part B - substantiation and simulation of the CPS/IoT project

technical solution and the development of an intelligent algorithm of its

functionality according to the options for practical tasks given in 1.1.2.

As an example of development, the approach described above in a

theoretical review is proposed.

Report

An individual task is performed at the expense of non-audit hours

for independent work of students. The report is formulated as an

appendix to the report on the practical task in paragraph 1.1.,and the

results in the form of a software product, tables, justifications are

protected and demonstrated by students during a laboratory workshop in

the audience.

97

2. IoT technology in the problems of synthesis and analysis of CPS

Test questions

1. How can you justify the choice of the minimum required function set

of the projected CPS?

2. What technical means are required to implement the selected function

set?

3. What type of signals is used to control the PO in the projected CPS?

4. Justify the specifications requirements for the automation base

module of the appropriate variant of PO.

5. Describe the block diagram of the intelligent control and data

processing algorithm of the selected CPS/IoT variant.

6. What type of CPS/IoT project is appropriate to implement by cost-

effectiveness for a given option?

7. Describe the set of commands for the basic PO-control module based

on the selected Arduino/ESP32 platform required for its functionality.

8. What libraries in the Arduino IDE are included for developing

Arduino Nano functional algorithms?

9. What libraries in the Arduino IDE are enabled for the development of

ESP32 functional algorithms?

10. How to create an ESP32-based web server to implement IoT?

Recommended literature
1. "uln203 datasheet pdf, Datasheet4U.com", Datasheet4u.com, 2019. [Online].

Available: https://datasheet4u.com/share_search.php?sWord=uln203.

2. "Hack Stepper Motor EM-211 and EM-210", blog.zerokol.com, 2019.

[Online]. Available: https://blog.zerokol.com/2012/09/hack-stepper-motor-

em-210-and-em-211.html.

3. A4988. DMOS Microstepping Driver with Translator and Overcurrent

Protection. Pololu.com, 2019. [Online]. Available:

https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_wi

th_translator.pdf.

4. Internet of Things for Industry and Human Application. In Volumes 1-3.

Volume 1. Fundamentals and Technologies / V. S. Kharchenko (ed.) –

Ministry of Education and Science of Ukraine, National Aerospace

University KhAI, 2019. - 605p.

https://datasheet4u.com/share_search.php?sWord=uln203
https://blog.zerokol.com/2012/09/hack-stepper-motor-em-210-and-em-211.html
https://blog.zerokol.com/2012/09/hack-stepper-motor-em-210-and-em-211.html

98

3. Power-Over-Ethernet Based Transducer Networks For Cyber Physical Systems

3 POWER-OVER-ETHERNET BASED TRANSDUCER

NETWORKS FOR CYBER PHYSICAL SYSTEMS (SEMINAR 2)

I. M. Lobachev, DrS, Assoc. Prof. M.V. Lobachev (ONPU), DrS,

Prof. V. Kharchenko (KhAI), Assoc. Prof., PhD H. Vorobets (ChNU)

The aim of the seminar: study the features of Power over Ethernet

(PoE) architecture and technology as a hybrid CPS/IoT model, get

acquainted with the concepts of configuring and adapting the system to

different PoE scenarios.

Learning tasks:

 mastering the analysis methodology and technical implementation of

the concept of hierarchically modular PoE architecture as a smart

CPS/IoT system;

 gaining practical skills in determining the requirements for network

infrastructure components when using them to implement a hybrid

CPS/IoT system with PoE technology;

 studying ways to automate the process of accounting data about

switches, hubs and sensors in an Ethernet PoE network;

 familiarization with the methodology of intelligent processing and

storage of data from sensors in branched networks with PoE

technology;

 study of architectural features and methods of the practical

application of neural networks in PoE implementation of CPS/IoT;

 mastering testing methods for architecture and technical solutions of

intelligent PoE network.

Preparation for the seminar includes the following steps:

1) familiarization with the purpose and objectives for the seminar;

2) a thorough study of theoretical material at a lecture course [1],

recommended and independently processed literature;

3) analysis of the general list of questions for the seminar, as well as for

the individual task in the context of the concept of PoE technology as

a hybrid CPS/IoT model;

4) implementation and preparation of the report on an individual task

according to the recommendations given in paragraph 1.1.2;

5) presentation at the seminar and public discussion of the report.

99

3. Power-Over-Ethernet Based Transducer Networks For Cyber Physical Systems

Basic recommendations for theoretical material

When studying theoretical material on this topic, first of all,

attention should be paid to the goal of PoE technology implementation –

reducing the complexity level of hybrid CPS/IoT models for

implementing smart urban modern infrastructure projects [2, 3]. The

method that is proposed to be taken as a basis is to diversify [4] existing

technical solutions and expand their functionality [5, 6]. Similar

approaches were previously used, for example, in the field of radio

communications and telecommunications. However, the modern

possibilities of using high-performance computing on embedded and

distributed resources, as well as network technologies [7, 8], allow

increasing the amount of information transmitted between infrastructure

objects by several orders of magnitude, and intellectualizing its

processing. The use of Raspberry Pi, BeagleBone, and the like modules

allow optimizing the computational load distribution between edge

devices and cloud resources, optimizing data marshaling and improve the

energy efficiency of smart systems. A unique solution, in this regard, is

the application of the potential of neural networks. This approach allows

to implement complex algorithms for data analysis and to adapt and

reconfigure the system in various scenarios, depending on the

information obtained. The results of modeling the proposed solutions are

also interesting and significant.

Recommendations for the seminar preparation

In order to form students' holistic view about the generalized

CPS/IoT model using PoE technology, it is recommended to familiarize

the full list of self-study questions at the lectures [1] and the

recommendations of this section and find short answers to them. The

recommendations in [9, 10] will also be useful. The individual task for

the seminar requires a thorough study of the material and preparation for

a 5-7 minutes report and a presentation of 12-15 slides.

For better seminar preparing, it is suggested to study the following

questions:

1. What problems were reviewed in the conceptual development of the

PoE architecture as a smart CPS/IoT system?

2. What hardware and software have different authors used to test the

validity and feasibility of the PoE concept?

3. What are the advantages and disadvantages of the PoE method?

100

3. Power-Over-Ethernet Based Transducer Networks For Cyber Physical Systems

4. What is the essence of computing load optimization when using the

concept of hierarchically-modular implementation of PoE

architecture?

5. Justify what are the component requirements when using them to

implement a hybrid CPS/IoT system using PoE technology?

6. Describe how to classify the sensor hubs in the PoE architecture?

What is the functionality of the Master Master Slave class?

7. Describe the features of the PoE-system configuring. How is the main

PoE-system configuration file formed and where is it stored?

8. What is called a logical cluster of sensors? How is it formed?

9. What are the functions of the server, how is it implemented and

where is it located?

10. Describe the modes for adapting the system to any PoE scenario.

Compare their advantages and disadvantages.

11. What is the difference between the algorithms of adaptative modes

and system reconfiguration?

12. How is the data processing on the web site organized?

13. How to automate the process of accounting data from a configuration

file containing information about switches, hubs, and sensors?

14. What tasks does CRON perform in PoE technology? Describe

possible scenarios.

15. What format is the data stored in? Analyze the features of data

storage technology used.

16. What is the essence of a hierarchical data format? How can this affect

the speed of data access?

17. Describe a high-level diagram that describes the hierarchy of the PoE

system.

18. What parameters of the Movidius (Intel) mobile neural computing

chip provide it with advantages for implementing the neural network

concept based on it?

19. Describe the architecture and method used to optimize the PoE neural

network.

20. Describe the methodology for PoE network testing. How were the

network scaling capabilities tested?

21. Which sensors and which conceptual issues of system energy

efficiency were inspected during testing?

22. Justify the recommendations for deploying an intelligent PoE

network.

101

3. Power-Over-Ethernet Based Transducer Networks For Cyber Physical Systems

Requirements and recommendations for the preparation and

execution of the report are similar to the requirements described in

paragraph 1.1.2. for the practical work.

Recommended literature
1. Internet of Things for Industry and Human Application. In Volumes 1-3.

Volume 1. Fundamentals and Technologies / V. S. Kharchenko (ed.) –

Ministry of Education and Science of Ukraine, National Aerospace

University KhAI, 2019. - 605p

2. R. Goldstein and D. Neuman, “Mega-buildings: Benefits and opportunities

of renewal and reused the essential role of existing buildings in a carbon

neutral world,” in Proceedings of the American Institute of Architects

National Convention and Design Exposition held in Miami, Florida, USA,

10-12 June, 2010.

3. M. Magno, T. Polonelli, L. Benini, and E. Popovici, “A low cost, highly

scalable wireless sensor network solution to achieve smart led light control

for green buildings,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2963–2973,

2015.

4. U. M. Kulkarni, D. V. Kulkarni, and H. H. Kenchannavar, “Neural network

based energy conservation for wireless sensor network,” in 2017

International Conference On Smart Technologies For Smart Nation

(SmartTechCon). IEEE, aug 2017.

5. N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R.

Govindan, and D. Estrin, “A wireless sensor network for structural

monitoring,” in Proceedings of the 2nd international conference on

Embedded networked sensor systems. ACM, 2004, pp. 13–24.

6. Cisco Catalyst 4500E Supervisor Engine 8-E Configuration Guide

(Wireless), Cisco IOS XE Release 3.7E, 2nd ed. Cisco INC, 2014. [Online].

Available: http://www.cisco.com/c/en/us/td/docs/switches /lan/-

catalyst4500/ XE3-7-0E/wireless/configuration-guide/b_37e_

4500sup8e_cg.html

7. Cisco Systems INC, Cisco Catalyst UPOE Power Splitter, 2015. [Online].

Available: https://-developer.cisco.com/fileMedia/download /99c67d92-

8089-44b9-980a-9bc304abf739

8. Related Programmes to Embedded Systems and Internet of Things (ES-IoT)

MSc [https://www.ncl.ac.uk/postgraduate/courses /degrees/embedded-

systems-internet-of-things-msc/relateddegrees.html]

9. Master's programme in Information and Network Engineering

[https://www.kth.se/en/studies/master/information-and-network-

engineering/master-s-programme-in-information-and-network-engineering-

1.673817]

http://www.cisco.com/c/en/us/td/docs/switches
https://-developer.cisco.com/fileMedia/download%20/99c67d92-8089-44b9-980a-9bc304abf739
https://-developer.cisco.com/fileMedia/download%20/99c67d92-8089-44b9-980a-9bc304abf739
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817

102

4. Model-Based Systems Engineering for the Cyber-Physical Systems

4. MODEL-BASED SYSTEMS ENGINEERING FOR THE

CYBER-PHYSICAL SYSTEMS

Assoc. Prof., Dr. R. K. Kudermetov, Assoc. Prof. Dr.

M. Yu. Tiahunova, Senior Lecturer O. V. Polska (ZNTU)

4.1 Model based design of CPS using UML 2 and MARTE profile

(Laboratory Work № 7)

The aim of the laboratory work: to learn and gain the skills in a

model-based design approach, learn how to use the UML 2 and the

MARTE profile for specification of CPS components, in particular its

temporal characteristics and resources, which implement functional and

non-functional requirements for CPS.

Training participants: lecturers, scientists, technical staff, MSc

students department of the university.

Theoretical information

Model-Based Design (MBD) is a powerful design technology for

CPS. The basis of this technology is the models that specify the basic

structural, behavioral, operational, qualitative, parametric and other

properties of the system. Models can have different degrees of

abstraction, complexity and detail, depending on the stage of

development. Consequently, models can evoluate along with system

evolve or system development stadies. Therefore, models can be used for

early project analysis; assist in the separation of problems, traceability,

tracking, impact analysis and synthesis. Using models, it is possible to

identify structural defects earlier than at the prototyping stage, with a

much higher cost. In the later stages of development the model are the

basis for testing, verification and validation of the system. MBD is part

of an even more fundamental methodology for creating complex systems

– model-based systems engeneering (MBSE).

UML was developed to support the modeling of software

applications with a program-oriented "logical" view of the world and

with little attention paid to the characteristics of underlyin computing

technologies. [1]. In the domains of real-time embedded systems and

CPS which have more stringent requirements for quality of service, due

attention should be paid to technological problems, since they can play a

fundamental role in the design. MARTE has been designed to meet this

103

4. Model-Based Systems Engineering for the Cyber-Physical Systems

need. MARTE supplements the standard UML with the following main

features, which are of great importance in the design of real-time

embedded systems, but are not sufficiently supported in the UML

standard [1]:

- the ability to define and specify different types of quantitative and

qualitative measures associated with a UML model and its various

elements, as well as any functional relationships that may exist

between them, g.e. the worst-case execution time of a code or

required throughput;

- a precise, comprehensive, and flexible model of time, which can be

adapted to suit application needs, including physically distributed

systems;

- the ability to accurately model hardware resources, that is, model

elements that represent entities with a physical underpinning, such as

processors, memory, input and output devices, networks, and so forth;

- the ability to accurately model hardware resources, that is, model

elements that represent entities with a physical underpinning, such as

processors, memory, input and output devices, networks, and so forth;

- the ability to accurately model software resources specific to real-

time and embedded software, such as threads, processes, or mutexes;

- the ability to accurately capture the relationships between software

applications and the computing platforms that support them.

With these added capabilities and appropriate formal analysis

methods and corresponding tools, it is possible to automatically or semi-

automatically predict or validate key performance indicators of a

proposed design, long before committing to its implementation. This

enables early detection of design flaws thereby greatly reducing

engineering risk.

MARTE [2] replaces an earlier standardized UML profile called the

UML Profile for Scheduling, Performance, and Time (SPT) [3].

Because MARTE is defined as a proper profile of UML, it can in

principle be used with any UML tool. Moreover it can be combined with

other complementary profiles, such as the SysML profile for system

engineering.

Example of work execution

In this laboratory work the Pedestrian Traffic Light is considered as

an example of CPS. Our simple Pedestrian Traffic Light (PTL) model

includes a controller that controls the work of the PTL, three Light-

104

4. Model-Based Systems Engineering for the Cyber-Physical Systems

emitted diode (LED) traffic signal modules (LSM) and LED Countdown

Display (LCD). Thus, the object-oriented UML model of the system can

consist of three classes: TrafficLightController,

LightTrafficSignalModule and CountdownDisplay.

The UML class-diagram is shown in Fig. 4.1. This is a very simple class-

diagram, suitable only for studying the basic properties of PTL. It carries

information to the developer of the system only about the basic

properties and functions of the elements of the system. When developing

such a system, the developer needs to know many other properties of the

system, for example, what speed the controller should have, the sequence

of switching on and off of LSM and LCD, the power consumption of

system components, etc.

The PTL system is a simple example of CPS as it contains a cyber-

part (controller) and a physical part (LSM and LCD). The task of the

designer is to design these parts and design a system from these parts or

design the system using off-the-shelf components. For this, it is

necessary to take into account and coordinate many dissimilar and even

articulate requirements for cyber and physical parts in order to synthesize

a full-featured system. For this, it is necessary to take into account and

harmonize many heterogeneous and even contradiction requirements for

cyber and physical parts in order to synthesize a full-featured system.

PTL is a built-in real-time system, since it contains embedded

intellectual components that hardware or software implement the

specified system operation algorithms that respond to changes in

operating conditions (time of day, traffic intensity of vehicles and

pedestrians, the need for constant self-diagnosis of the system). Taking

into account these arguments, the design of such, in nature

interdisciplinary system should be carried out using the system

engineering approaches, which are advisable to carry out using the

methodology of designing systems based on models.

PTL is only part of a wider vehicle and pedestrian control system

and can be part of smart city control systems. Various modifications of

the PTL elements can be included to automotive, rail, sea and air vehicle

control systems, parking systems, lighting control systems, etc. For

fixing and reusing models of the controller, embedded computer, LSM

and LCD, it is advisable to create a profile with the stereotypes of these

components. A variant of the profile, which the stereotypes of the listed

components and was created with the help UML 2, is shown in Fig. 4.2.

105

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.1 – Simple class UML- diagram of PTL

This profile includes stereotypes of «TrafficController»,

«Computer», «TrafficLighter» and «CountdownDisplay». Some

constraints are defined for these stereotypes, for example, «name must

be unique», «architecture=x86» and others. These constraints

must be true and can be verified by the automated modelling tools. The

optional tags are defined for the stereotypes, for example, «power» and

«minTemperature», which can be assigned specific values when the

instantiation, i.e. the creation of instances of components. The

constraints and the tags introduced will now always be the properties of

classes and instances of classes that will be stereotyped by stereotypes

from this profile.

The disadvantage of stereotypes introduced in the profile in Fig. 4.2,

is that tag types do not carry useful information. Almost all of them are

of type String. This choice is due to the fact that when creating

instances of classes stereotyped by these stereotypes, it is necessary in

addition to determination tags values to define the units of measure of

these tags.

106

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.2 – Profile for PTL domain

UML 2 and profile MARTE allow to introducing new physical data

types. MARTE provides standardized mechanisms for determining

physical quantities, which are called non-functional properties (NFP).

For this MARTE provides the following features:

- a standard library of physical data types that represent physical

dimensions, such as volume, energy, duration, mass, and so on; the

ability to specify concrete literal values for physical data types, e.g.,

"500 ms";

- the ability to extend the library of physical data types with new

domain-specific and application specific types.

In addition, MARTE has its own Value Specification Language

(VSL) for expressing physical units. Using the physical units predefined

in MARTE, it is possible to create units derived from them. For this, the

MARTE profile has the «Unit» stereotype to identify the enumeration

literals that represent the measurement units. This stereotype has three

optional attributes: baseUnit – attribute representing a unit that serves

as a base for this unit; offsetFactor – attribute specifying a numerical

107

4. Model-Based Systems Engineering for the Cyber-Physical Systems

offset for computing the value of this unit relative to the base unit;

convFactor – optional attribute representing the quantitative

relationship to the baseUnit.

Figure 4.3 demonstrates the using of MARTE standard physical unit

types and the adding of new physical data types. Here we have created

new units of measurement for the specification of such quantities as the

wavelength and luminous intensity of LSM, the allowable ambient

temperature of the instruments. To express the time characteristics of the

PTL algorithm, we divided the time units into seconds and milliseconds

using standard MARTE units of time.

Fig. 4.3 – Adding new physical data types

Using the new physical data types introduced, we can specify the

tag dimensions for traffic light stereotypes. Now all tags will have

uniquely defined dimensions. The new version of the traffic light profile

is shown in Fig. 4.4.

MARTE has one of the fundamental mechanisms for specifying a

platform that provides system implementation. This mechanism is

provided with a resource concept. It is known that any resource of the

108

4. Model-Based Systems Engineering for the Cyber-Physical Systems

system or device may be exhausted. Engineers should answer the

question: will there be enough resources available to meet system

requirements? That is, will the supply of resources meet the demand?

MARTE uses the well-known client-server pattern for modeling the

relationship between an application and the underlying platform. The

MARTE «Resource» stereotype is the common predecessor (parent) of

a very large variety of specializations based on nature and purpose of the

resource: processing resources, storage resources, communication

resources, concurrency resources, mutual exclusions resources, device

resources, timing resources. These types can be applied to model

elements: classifiers as well as to elements that represent instances

(objects and links, lifelines in sequence, etc.). Many resource stereotypes

are related by relation of "inheritance" (generalization). Resource

stereotypes have many specific for each of them restrictions and tags that

allow you to specify the requirements (properties) to the platforms that

are necessary to ensure the feasibility of systems.

Fig. 4.4 – New version profile for traffic light domain

109

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Using the MARTE resource stereotypes we additionally stereotyped

the stereotypes of profile TrafficLight. As can be seen from the

diagram in Fig. 4.4, we used the «HwResource», «HwProcessor»,

«HwActuator» stereotypes. Thus, the stereotypes of the

TrafficLight profile have the constraints and tags introduced by us,

as well as the constraints and the tags of the MARTE stereotypes.

Now we can use the created profile for stereotyping the classes of

our model. The class diagram created using the new profile is shown in

Fig. 4.5. This can be seen from the class headings, where the stereotypes

used are indicated above the class name. Although stereotype tags are

not displayed in the diagram, they are intrinsic parts of stereotyped

classes. We will use these tags explicitly to specify properties when

creating instances of classes.

Fig. 4.5 – Class-diagram using Traffic Light profile

System analysis cannot always be accurately performed using

common qualitative models, such as class diagrams. It is not enough to

know that a certain class of applied tasks is deployed on a certain class of

hardware nodes. Instead, you need to know not only the number of

instances of these tasks and nodes, but also how individual task instances

are distributed across specific node instances. In fact, the vast majority of

engineering analyzes are performed on instance-based models. One way

110

4. Model-Based Systems Engineering for the Cyber-Physical Systems

to represent instance-based models is through an object diagram. Object

diagram of PTL is shown in Fig. 4.6. Due to the presence of tags

introduced using stereotypes, we are able to specify non-functional

properties of the system, such as power consumption, voltage, etc. Also,

thanks to the MARTE concept of resources, we have identified specific

platforms for the system components that, according to the engineer’s

calculations, satisfy the system requirements.

Fig. 4.6 – Object-diagram of PTL model

111

4. Model-Based Systems Engineering for the Cyber-Physical Systems

To modeling the behaviour of a traffic light system, we first

consider in what working states the traffic light can be. It has only four

simple states that represent the phases of a traffic light system in which

different colours (or colour combinations) are displayed. The state

machine reacts to "switching" events. The flow of the finite state

machine will start from the initial pseudo state and then switching to the

"Red" state. When the "switch to red-yellow" signal is received, the

"Red" state will finished and the "Red-yellow" state will be executed.

When the "switch to green" signal is received, the "Red-yellow" state is

finished and the "Green" state is entered and executed. When the "switch

to yellow" signal is received, the "Green" state is finished and the

"Yellow" state is entered and executed. When the state machine receives

"switch to red", the state "Yellow" will be finished and in the next state

the "Red" will be active again. The representation of a traffic light

system as finite state machine is shown in Fig. 4.7.

Fig. 4.7 – State machine diagram of PTL

To further refine the behavioural properties of the PTL system, we

will perform modelling using an activity diagram. Activity diagram

precisely specify behaviour and can depict behaviour without explicit

reference to which structural elements are responsible for performing the

behaviour. The activity diagram for PTL system is shown in Fig. 4.8.

This diagram represents the behaviour of the LSM and LCD

components. i.e. what they do and how they react to the receipt of signals

arriving on their inputs. Such modeling facilitates for schedulability

analysis.

112

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.8 – Activity diagram PTL

In this diagram, we have shown the relationship between activities

and the flow of their control, details of the sequential and parallel

operation of the PTL components, without explicitly indicating which

component is responsible for the activity. This gives us the opportunity

to focus on the analysis of events occurring in the system. In addition,

we decided on the temporal sequence of events, and marked the

moments of the occurrence of events with the time events. Specifying the

time events (t1, t1+t2, etc.) allows us to determine the time intervals

113

4. Model-Based Systems Engineering for the Cyber-Physical Systems

during which one or another activity occurs (activity "Red Light",

activity "Yellow Light", etc.).

Now we have sufficiently studied the structure, behaviour and logic

of the PTL. The PMT logic is implemented by software that runs on a

computer embedded in the controller. MARTE has the means to more

accurately simulate properties that are typical of many real-time software

applications, but which are usually under-served by general-purpose

modeling languages, including UML.

In particular, MARTE offers concepts for modeling properties such

as concurrency, timeliness, asynchrony and interaction with physical

components, resource limitations. For the problems of real-time

application modeling in MARTE, the concept of a software resource has

been introduced, which serves as the basis for the many different

manifestations required when modeling applications. In MARTE,

software resources are represented by the «SwResource» stereotype,

which is a refinement of the general «Resource» stereotype. The core

«SwResource» stereotype is refined further to represent various

specialized resource types, such as concurrent tasks, mutual exclusion

devices, memory buffers, communication channels, etc. Software

resources are usually created by a program that, after all, requires real

physical processors and real physical memory. However, this physical

basis is hidden behind the levels of software, the purpose of which is to

provide a more abstract or "logical" view of hardware. This provides a

more convenient view of the resource and the portability of the

application to different hardware platforms. «SwResource» stereotype

is an abstract stereotype, so it is necessary to use its heirs. In our case, we

will not analyze PTL software more deeply, because in this PTL model

we do not use the properties of concurrency or timeliness. Although in

the deep design of the PTL software, it may be necessary to simulate the

multi-thread software that runs concurrently tasks such as traffic light

control, diagnosis, and communication with the city traffic management

service.

We will consider PTL software as a sequential program. In the

activity diagram (Fig. 4.8), we determined the times at which the

program should generate traffic light switching events. Similarly the

stereotypes introduced above, we create a stereotype of the controller

software «TrafficLightSoftware». In this stereotype, we define the

time interval tags (t1, t2, t3, t4) for each traffic light states and for the

allowable time interval of the switching process "dt", as well as the

114

4. Model-Based Systems Engineering for the Cyber-Physical Systems

constraint associated with this interval {dt<=300}. The stereotype, class

and particular instantiation of this class are shown in the diagram

(Fig. 4.9).

Fig. 4.9 – Stereotype, class and instantiation of software

Fig. 4.10 – The sequence of interaction of LSM and LCD

Now we focus on modeling the sequence of time events and the

relationship between them. To do this, first consider the sequence

diagram, which represents the interaction of the LSM and LCD. As

indicated in the note in Fig. 4.1, LCD must be integrated self-learning

system that automatically sets the duration of the red/green time

intervals. This means that the countdown counter should start when the

red and green LSMs turns on. The sequence diagram of interaction LCD

and LSM is shown in Fig. 4.10. Note that there are other variants of the

115

4. Model-Based Systems Engineering for the Cyber-Physical Systems

LCD scheme in which the interval value is transmitted from the

controller via the RS-485 or RS-232 interface. The sequence diagram of

interaction of controller and LSMs is shown in Fig. 4.11 (interaction

with LCD is not presented here).

Fig. 4.11 – The sequence of interaction of controller and LSMs

Tasks for individual execution

Performing this work involves basis knowledge of the UML

language. Modeling can be performed manually or using tool

environments such as Modelio, Papyrus, MagicDraw, etc.

1. In this laboratory work develop your own model of the PTL

system, which additionally includes pedestrian audible device (PAD).

Switching on and off the PAD should be performed in parallel with

turning on and off the green signal of PTL.

2. The PAD model should take into account the following PAD

parameters:

- supply voltage – 220 V;

- maximum power consumption – 6 W;

116

4. Model-Based Systems Engineering for the Cyber-Physical Systems

- operating temperature – -45/+45 ºС;

- the sound signal (otherwise known as a rapid tick) should be a

percussion sound with a frequency of 500 Hz which repeats from 8 to

10 times per second;

- the sound level of the signal should be in the range 30..90 dBA and

should be more 5 dBA than ambient sound;

- the source of sound signals should be located at a height of 0.9–3.5 m

from the ground level.

3. In the model, you must reproduce all the above diagrams with the

added device PAD.

4. Based on the sequence diagram shown in Fig. 4.11 develop the

algorithm of the controller and the program (on language C / C ++, Java,

Pyton, etc).

Test questions

1. What means the abbreviation MARTE?

2. What is the purpose of developing an MARTE profile?

3. Why can the MARTE profile be combined with other UML profiles,

for example with the SysML profile?

4. What entities can be included in a profile?

5. What are the stereotypes in UML used for?

6. What does MARTE add to UML?

7. What does non-functional quality of the system mean?

8. How to define new physical data types in MARTE?

9. What does the term "resource" mean in MARTE?

10. Is it possible to use stereotypes MARTE to stereotypize other

stereotypes?

11. What means in UML and MARTE do you know for modeling system

behaviour?

Report

The report should contain: a title page with the name of the

laboratory work; goal of the work; statement of the task for individual

execution; answers to test questions; results and analysis of work on an

individual task; a brief analysis of the recommended literature and

conclusions.

117

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Recommended literature
1. Selic, S. Gérard, S. Modeling and Analysis of Real-Time and Embedded

Systems with UML and MARTE: Developing Cyber-Physical Systems.

Morgan Kaufmann, Burlington, 2013.

2. "About the UML Profile for MARTE Specification Version 1.0", omg.org,

2009. [Online]. Available: https://www.omg.org/spec/ MARTE/1.0.

[Accessed: 26- Jul- 2018].

3. P. Douglass. Real-Time UML Workshop for Embedded Systems, Second

Edition, Newnes, Newton, MA, 2013.

4. A. Silvestre, S. S. Soares. Modeling Road Traffic Signals Control Using

UML and the MARTE Profile. in Proceedings of the International

Conference on Computational Science and Its Applications, ICCSA 2012,

pp. 1-15.

4.2 Model based design CPS using SysML

(Laboratory Work № 8)

The aim of the laboratory work: to learn and gain the skills in a

model-based design approach with SysML, learn how to use the SysML

for specification requrements for the CPS, CPS components and its inner

structures, parametric analisys of the CPS.

You will learn how to organize a set of model elements in a project

with package diagram, how to model the CPS structure using a block

definition diagram, how to specify the internal structure of a single block

with internal block diagram, how you can model and specify the

requirements for the CPS, how to bind the CPS parameters and

constraints using a parametric diagram, etc. As an example, the model

uses PTL, whose work was analyzed in laboratory work № 7 of this

module.

Training participants: lecturers, scientists, technical staff, MSc

students department of the university.

Theoretical information
SysML is defined by Object Management Group (OMG) as ‘a

general purpose graphical modeling language for specifying, analyzing,

designing, and verifying complex systems that may include hardware,

software, information, personnel, procedures, and facilities. In

particular, the language provides graphical representations with a

semantic foundation for modeling system requirements, behaviour,

118

4. Model-Based Systems Engineering for the Cyber-Physical Systems

structure, and parametrics, which is used to integrate with other

engineering analysis models [1,2]. The SysML is based on the UML.

Two types of profiles can be constructed: language profiles add new

concepts to UML, or, in some cases, displace corresponding UML

concepts, while annotation profiles are used to provide domain specific

reinterpretations of UML models. The SysML is a language profile; it

designed to be used as a full-fledged, self-contained language by systems

engineers for modeling at the system level [3]. SysML uses and extends

many of the features of UML 2 in such a way that it can be used to

develop all kinds of technical systems. In particular, in SysML diagrams

of requirements, blocks, parameters were introduced, activity diagrams

were changed, the properties of standard ports were expanded (Fig.

4.12).

Fig. 4.12 – Relationship between SysML and UML

SysML extensions include [1]:

- the block is the basic unit of structure in SysML and can be used to

represent hardware, software, facilities, personnel, or any other

system element. The system structure is represented by block

definition diagrams and internal block diagrams. A block definition

diagram describes the system hierarchy and system/component

classifications. The internal block diagram describes the internal

structure of a system in terms of its parts, ports, and connectors. The

package diagram is used to organize the model;

- requirements diagram captures requirements hierarchies and

119

4. Model-Based Systems Engineering for the Cyber-Physical Systems

requirements derivation. It allows a requirement to be related to

model elements that satisfy or verify the requirement;

- parametric diagram represents constraints on system property

values, allowing engineering analysis models to be produced as well

as defining complex constraint relationships that can be used in

verification and validation of activities.

- allocation relationship to represent various types of allocation,

including allocation of functions to components, logical to physical

components, and software to hardware.

Example of work execution
Since SysML is designed to model technical systems in any

application area, in order to feel the difference between SysML and

UML, consider the concept of a block. On the one hand, the concept of a

block in SysML is similar to the concept of a class in UML. On the other

hand, the concept of a class is more adapted to modeling software, and

the concept of a block allows you to simulate not only DataType

elements, but also the types of things that can flow, such as matter and

energy, which is more natural for technical systems.

The block definition diagram (BDD) is used to represent elements

such as blocks, value types, relationships between them (e.g. association,

generalization and dependency). Value types are used to determine the

types of things that can exist in the system. BDD is typically used to

display system hierarchy trees and classification trees.

The PTL classification tree represented by BDD shown in Fig. 4.13.

It is important to build and show BDD at the very beginning of the

modeling, because the elements defined in this diagram form the basis of

everything else in the model of our system. The structure of the PTL

with the specification of elements, types of values, constraints and the

relationship between them is shown in Fig. 4.14. Note that the units of

values are taken from the SysML SI Value Type Library. This library

provides a common set of units for use throughout the model. In

addition, in SysML, you can create modules derived from these types, as

well as create your own types of modules used in a particular domain.

Recall that in order to use standard UML, SysML, MARTE or other

native libraries you have previously developed, or model library

elements, you need to import packages that define these libraries and

elements.

120

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.13 – Block definition diagram represents the PTL and its

components

A system model in MBSE can consist of hundreds, thousands, or

more elements. For convenient navigation between model elements, the

ability to reuse model elements, model configuration management, it is

important to ensure effective organization of the model. For organizing

model in SysML are used the packages. Packages are used to partition

elements of the model into coherent units that can be subject to access

control, model navigation and configuration management. Note that the

package defines the namespace for the various elements of the model.

The package is a model element, i.e. it may have other model elements

nested in it according to the model hierarchy. The most significant kinds

of packages used to organize models in SysML are models, packages,

model libraries, and views.

The package diagram example in Fig. 4.15 describes the

organization for model PTL. The packages in this diagram are primarily

organized based on the types of artifacts that are planned to be developed

during the design of the system based on the MBSE, including

requirements, use cases, structural and behavioural models.

121

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.14 – BDD diagram of PTL structure

The "Value Types" package imports the "SI Value Type

Library" package, which is a reusable model library package available

in SysML. The "Value Types" package uses the imported definitions

of units and quantity kinds to create specific value types, which are then

applied to value properties with consistent units throughout the model.

122

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.15 – Package diagram of the organization of the PTL model

Package "Traffic Light Requirements" contains a

hierarchical structure of the requirements for PTL. A feature of SysML is

the presentation of system requirements in the form of model elements

that have their own identifiers and requirements text. This makes it

possible to organize the traceability of satisfying each requirement by

other elements of the model, for example, by blocks. The requirements

for the PTL system need to be captured and traced in the system model.

A mission statement set provides the basis for more specific mission

requirements. These mission requirements are used to identify

performance measures, and then through analysis lead to a

comprehensive set of system requirements for the specification of the

PTL. The set of mission statements contains the statements about the

paramount importance of ensuring the safety of pedestrians, who and

how should ensure the safety of pedestrians, the definitions of a

pedestrian, a pedestrian traffic light, etc. Figure 4.16 shows an example

of the top level of the "Mission Requirements" package structure.

Note that this is only a demo diagram, and it does not cover the entire set

of system requirements, it shows only some possible examples of

requirements.

123

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.16 – Mission requirements package with requirements examples

For the presentation and modeling of the internal structure of a

separate unit, SysML provides a feature internal block diagram (IBD).

Like a BDD, an IBD is a structural view of the system or one of its parts.

Unlike a BDD, an IBD does not display blocks; it displays usages of

blocks, i.e. the part properties of the block that is named in the header of

the IBD. IBD enables you to convey additional information that you

can’t convey on a BDD: the connections among part properties and

reference properties; the types of matter, energy, or data that flow across

the connections; and the services that are provided and required across

the connections. So, a BDD and an IBD provide complementary views

of a block [5]. Example of IBD diagram of PTL is shown in Fig. 4.17. In

124

4. Model-Based Systems Engineering for the Cyber-Physical Systems

this diagram the components of PTL are presented. In addition, you can

see that the components are interconnected using ports. The concept of

port for is used to model interfaces. SysML allows modelers to specify a

diverse set of interfaces, including mechanical, electrical, software, and

human-machine interfaces. Ports are shown as rectangles intersecting the

boundary of their block.

Fig. 4.17 – Internal block diagram of PTL

Another example of an IBD diagram is shown in Fig.4.18. The

simple internal structure of the controller block is shown here. The

computer runs the PTL operation algorithm and outputs the necessary

signals to the power switches that commute the line voltage to the power

circuit outputs.

Unlike UML and MARTE, SysML allows you to represent the

properties of a system in the form of mathematical equations, which is

very important for various types of engineering analysis and simulations.

SysML introduces a constraint block, which is a special kind of block

used to define equations so that they can be reused and interconnected.

The parameters of the equations in these constraints are related to the

125

4. Model-Based Systems Engineering for the Cyber-Physical Systems

properties of the system that is being modeled. Constraint blocks have

two main features: a set of parameters and an expression that constrains

those parameters. Constraint block is shown as a round-cornered

rectangle known as a constraint property. The small rectangles attached

to the inside edge of the constraint property represent each constraint

parameter and their names correspond to the parameters defined for the

constraint block in its definition.

Fig. 4.18 – Internal block diagram of PTL controller

The definition of constraint blocks is performed in the BDD

diagram, and the use of these blocks is carried out in a parametric

diagram. An example of a block definition diagram containing constraint

blocks is shown in Fig. 4.19. This diagram shows four constraint blocks.

"Joule-Lenz Law", "Total Power" and "Peek Power" constraint

blocks define the equations and its parameters. "Power Consumption"

is a more complex constraint block; it includes "Joule-Lenz Law",

"Total Power" and "Peek Power" constraint blocks.

Constraint parameters provide connection points that can be

connected, via connectors, to other constraint parameters on the same or

other constraint properties (e.g. in Fig. 4.20 constraint parameter "P"

connected to "tp" an "pp" constraint parameters).

126

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.19 – Definition constraint blocks for power analysis

Figure 4.20 shows a parametric diagram for "Power

Consumption" constraint block originally introduced in Fig. 19. This

block depicted as context of a parametric diagram. The diagram shows

how the parameters of constraint properties "tp", a usage of "Total

Power", "pp", a usage of "Peak Power" and "P", a usage of "Joule-

Lenz Law", are bound together.

The block definition diagram does not show all the required

information needed to interconnect its constraint properties. Particularly,

it does not show the relationship between the parameters of constraint

properties and the parameters of their parent and siblings. This

information is provided on the parametric diagram using binding

connectors, which signify equality relationships between their two ends.

In a parametric diagram, the block is designated by the enclosing frame

127

4. Model-Based Systems Engineering for the Cyber-Physical Systems

and the constraint properties represent usages of the constraint blocks.

The parameters of the constraint properties are bound to the value

properties of the block using binding connectors. A value property is

depicted as a rectangle displaying its name, type, and multiplicity.

Fig. 4.20 – Parametric diagram for "Power Consumption" constraint

block

In Fig. 4.21 the constraint on total power is shown. The "Total

Power" constraint block is used, via a constraint property demand

equation. The power demand values of all the powered devices are

bound to corresponded requisite parameters of demand equation.

Figure 4.22 shows a parametric diagram for the "Peek Power"

limitation. The equation determines the possible range of peak power,

which can be only with simultaneous power consumption of the

controller, red and yellow LSMs.

128

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.21 – Parametric diagram for "Total Power" constraint block

Fig. 4.22 – Parametric diagram for "Peek Power" constraint block

129

4. Model-Based Systems Engineering for the Cyber-Physical Systems

The parameters of the constraint properties "pC" (power of

controller), "pR" (power of red LSM) and "pY" (power of yellow LSM)

are bounded to the value property "power" of the corresponding blocks

using binding connectors.

BDD diagram in Fig. 4.23 and the parametric diagram in Fig. 4.24

illustrate the use of a constraint that defines a requirement for a PTL

algorithm. On BDD diagram, constraint parameters "t1", "t2", "t3" and

"t4'' in the "Algorithm" constraint block are coupled by demand

algorithm. For these parameters are correspond the values "t1", "t2",

"t3" and "t4" in "Software" block. The "Software" block has its

own constraints {SW must be implemented in C language} and

constraint, which defines a delay() function. On parametric diagram

the relationships between these constraint parameters and the values of

"Software" block constraint parameters "t1", "t2", "t3" and "t4" are

specified. In addition, note that this diagram shows the time source for

the "Software" block in the form of an arrow on the connector, which is

called, conveyed information.

SysML introduced a very useful relationship between system model

elements called allocation. Allocations can be considered in the

following contexts: allocating requirements to structures, allocating

behaviours to structures, allocating logical structures to physical

structures, and allocating resources to structures [5]. An allocate

relationship is a kind of dependency used to allocate one model element

to another. An allocate relationship may be established between any two

named model elements and provides a general purpose assignment

mechanism [4].

In BDD diagram (Fig. 4.23) model element "Algorithm" is said to

be "allocated to" model element "Software" and model element

"Software" "allocated to" model element "Computer". In this case,

allocation is similar to the concept of deployment in UML. An indication

of the deployment of software components to equipment nodes is a

general need for the development of systems such as CPS.

Thus, parametric diagrams allow you to limit the properties and

behaviour of the system and can be invaluable in understanding the often

complex relationships between the properties of the system. Modeling

such relationships allows decisions to be made on analysis and design,

and can also be used to verify whether requirements have been met or

can actually be met [3].

130

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Fig. 4.23 – Definition "Algorithm" constraint block

Fig. 4.24 – Parametric diagram for "Algorithm" constraint block

131

4. Model-Based Systems Engineering for the Cyber-Physical Systems

Tasks for individual execution

Performing this work involves basis knowledge of the UML

language. Modeling can be performed manually or using tool

environments such as Modelio, Papyrus, MagicDraw, etc.

1. In this laboratory work develop your own model of the PTL system,

which additionally includes pedestrian audible device (PAD).

Switching on and off the PAD should be performed in parallel with

turning on and off the green signal of PTL.

2. Given the introduced device:

2.1. Design the BDD diagram for PTL model analogous to Fig. 4.14;

2.2. Design the IBD diagram for PTL model analogous to Fig. 4.17;

2.3. Design the IBD diagram for PTL controller model analogous to Fig.

18;

2.4. Design the IBD diagram for the PAD;

2.5. Develop requirements to the PAD and represent them in

requirement diagram;

2.6. Extend the constraint block Total Power with constraint parameter

"p_PAD", and design new parametric diagram for Total Power

constraint block.

3. Suppose a PAD is controlled by PTL controller. Design:

3.1. Activity diagram PTL;

3.2. Sequence diagram interaction controller and PAD;

3.3. Develop the algorithm of the controller and the program (on

language C/C ++, Java, Pyton, etc).

Test questions

1. What is the difference between the type of SysML profile and the

type of MARTE profile?

2. What is a namespace and how is it provided in SysML?

3. What types of model elements can be represented on the block

definition diagram?

4. What types of model elements can be represented on the internal

block diagram?

5. What is the difference between a value and a part in a block

representation?

6. How are constraint parameters represented on a block definition

diagram?

7. What types of model elements can a parametric diagram represent?

132

4. Model-Based Systems Engineering for the Cyber-Physical Systems

8. What are the semantics of a binding connector?

9. How can constraint blocks be used to constrain the value properties

of blocks?

10. Which standard properties are expressed in a SysML requirement?

11. What types of relationships can exist between requirements?

Report

The report should contain: a title page with the name of the

laboratory work; goal of the work; statement of the task for individual

execution; answers to test questions; results and analysis of work on an

individual task; a brief analysis of the recommended literature and

conclusions.

Recommended literature
1. "What is SysML", omg.org, 2018. [Online]. Available:

https://www.omg.org/what-is-sysml.htm. [Accessed: 12- Apr- 2019].

2. "SysML Specifications - Current Version: OMG SysML 1.5", SysML.org,

2017. [Online]. Available: https://sysml.org/sysml-specifications/.

[Accessed: 18- Jul- 2018].

3. J. Holt and S. Perry, SysML for Systems Engineering: A model-based

approach (2nd Edition), The Institution of Engineering and Technology,

2014.

4. S. Friedenthal, A. Moore, and S. Rick, A Practical Guide to SysML: The

Systems Modeling Language (3rd Edition), Morgan Kaufmann Publishers,

Inc.: San Francisco, CA, 2012.

5. L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling

Language, Addison-Wesley, 2013.

133

Appendix А. Teaching program of the course MC4

APPENDIX А

TEACHING PROGRAM OF THE COURSE MC4 “IOT

TECHNOLOGIES FOR CYBER PHYSICAL SYSTEMS”

DESCRIPTION OF THE COURSE

TITLE OF THE COURSE Code

IoT Technologies for Cyber Physical Systems MC4

Teacher(s) Department

Coordinating: Assoc. Prof., Dr. H. I. Vorobets

Others: Assist.of Lect. V. E. Horditsa,

Assist.of Lect. O. O. Pshenychnyi

Coordinating: Prof., DrS. V. S. Kharchenko

Coordinating: Assoc. Prof., Dr. R. K. Kudermetov

Others: Assoc. Prof., Dr. M. Yu. Tiahunova,

Senior Lecturer O. V. Polska

Computer Systems and

Networks

Computer Systems,

Networks and Cybersecurity

Computer Systems and

Networks

Study cycle Level of the module Type of the module

MsS A Bounden

Form of delivery Duration Langage(s)

Full-time tuition One semester English

Prerequisites

Prerequisites:
Computer Electronics; Computer

circuitry; Microcontrollers; Computer

Networks; Architecture of Computers

Co-requisites (if necessary):

Cryptography; Means of Artificial

Intelligence; Protection of information

& Cybersecurity

Credits of the

course

Total student

workload

Contact hours Individual work

hours

4 120 60 60

134

Appendix А. Teaching program of the course MC4

Aim of the course: competences foreseen by the study program

The purpose of the course is: deep understanding of the peculiarities of Cyber-

Physical Systems and the Internet of Things technologies as specialized

computer systems and networks; gaining new theoretical knowledge and

practical skills of independent scientific activity and the development of new

ideas in the field of IoT and CPS; mastering the methods of design, analysis and

synthesis of intelligent computer systems. Acquiring relevant knowledge and

skills is based on the assimilation and application of modern methods and

technologies of system analysis, machine learning, teamwork, multi-criteria

decision making. Attention is focused on the practical application of modern

network information IoT technologies and distributed information resources

(cloud, fog, edge computing) for solving scientific and applied tasks both in

information support and in the modeling and design of complex CPS. A separate

sub-task is the programming of computer networks for general and specialized

purposes (sensor networks, mesh networks, etc.), the functioning of

telecommunication and telemetric data transmission systems, and intellectual

analysis and information processing. As a result of studying this course, a base

of knowledge and skills for decision making and project management is formed

to create complex self-organizing, self-configuring intelligent CPS based on IoT

technologies application.

Learning outcomes of course
Teaching/learning

methods

Assessment

methods

At the end of course, the

successful student will be able

to:

1. Justify the basic criteria for

choosing a platform, tools and

technical solutions for the

development of CPS/IoT

projects.

Interactive lectures,

Learning in

laboratories,

Just-in-Time

Teaching

Course Evaluation

Questionnaire

Testing based on

alternative method

of assessment

2. Analyze physical objects and

processes and justify the

selection of optimal algorithms

for the CPS/IoT technical

solutions implementation.

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire

3. Evaluate the necessary

hardware and software resources

for the CPS/IoT project

implementation.

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire

4. Select the technical base,

hardware-software tools, and

platforms for preliminary

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire

135

Appendix А. Teaching program of the course MC4

prototyping and construction of

CPS/IoT systems.

5. Evaluate the feasibility and

technical-economic efficiency of

the proposed solutions.

Interactive lectures,

Just-in-Time

Teaching

Course Evaluation

Questionnaire,

6. Optimize projects based on a

systematic approach to the

CPS/IoT analysis and synthesis.

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire

7. Identify CPS information

models, describe their

functionality and limitations,

using existing tools, means, and

technologies.

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire,

Testing based on

alternative method

of assessment

8. Carry out modeling and

simulating of individual

algorithms, modules and systems

of CPS/IoT using Model-Based

Systems Engineering for the

Cyber-Physical Systems

technologies - UML, MARTE,

SysML.

Interactive lectures,

Learning in

laboratories,

Just-in-Time

Teaching

Course Evaluation

Questionnaire

9. Analyze cybersecurity

methods and technologies of

CPS/IoT systems.

Interactive lectures,

Learning in

laboratories

Course Evaluation

Questionnaire

10. Evaluate and choose

protocols and standards for the

implementation of

communications, processing and

data transmitting for the designed

CPS/IoT system using cloud,

fog, edge computing.

Interactive lectures,

Just-in-Time

Teaching

Testing based on

alternative method

of assessment

11 Propose technical solutions

and apply PoE technologies to

create distributed smart CPS/IoT

systems.

Interactive lectures,

Just-in-Time

Teaching

Course Evaluation

Questionnaire

12. Manage the development and

implementation of modern smart

CPS/IoT systems in various

problem-oriented industries.

Interactive lectures,

Just-in-Time

Teaching

Testing based on

alternative method

of assessment

136

Appendix А. Teaching program of the course MC4

Themes

Contact work hours

Time and tasks

for individual

work

L
ec

tu
re

s

C
o

n
su

lt
at

io
n

s

S
em

in
ar

s

P
ra

ct
ic

al
 w

o
rk

(t
ra

in
in

g
)

L
ab

o
ra

to
ry

 w
o

rk

P
la

ce
m

en
ts

T
o

ta
l

co
n

ta
ct

 w
o

rk

In
d

iv
id

u
a

l
w

o
rk

Tasks

1. CPS and IoT as a basis

Industry 4.0. Basic principles

for the organization and

functioning of IoT and CPS

ecosystems

1.1. Evolution, Standards,

Development Prospects for

IoT and CPS

1.2. Conceptual diagrams

of IoT and CPS

1.3. Motivation and

examples of IoT and CPS

for industry and the human

applications

1.4 IoT services and

technologies for CPS

2 2 4 4 1.5. Opera-

tion of the

CPS in

conditions of

uncertainty

of input data

1.6. Built-in

computer

facilities

reconfigu-

rable CPS

1.7.Evolutio

n of the

cyber-

component

of mechatro-

nic systems

2. System approach for the

analysis and synthesis of IoT

and CPS structures

2.1 Setting problem-

oriented tasks

2.2 Definition and study of

the target function of the

CPS synthesis problem

2.3. Self-organization

principles of CPSs

2.4. 3S model of CPS

2.5. Examples of structural

solutions

2 2 4 4 2.6. Linear

and branched

algorithms

for

conditionally

defined input

data

2.7. Methods

for finding

optimal

trajectories

3. Data processing in the CPS

3.1. Estimation of

2 2 2 6 4 3.4

Assessment

137

Appendix А. Teaching program of the course MC4

computing resources

3.2 Transmission,

processing, display, storage

of data

3.3. Parallel, cloud, fog,

edge calculations and

resources

of the

effectiveness

of artificial

intelligence

4 Mathematical and

informational support of IoT

and CPS technologies

4.1. Stages and tasks of

modeling of information

processing

4.2. Functional IoT and

CPS algorithms (in terms

of application)

4.3. Mathematical models

of CPS

4.4 Information models of

mass service systems

(MSS) in CPS

4.5 Models of Petri

Networks for IoT and CPS

technologies

2 2 4 5 4.6. Software

package

Symulink

4.7.Genetic

Algorithms

4.8. Neural

Networks

4.9 Methods

of fuzzy

logic

4.10 Bio-

inspiring and

bio-

integrated

CPS and IoT

technologies

5. IoT technology in the

problems of synthesis and

analysis of CPS. Modern

elemental and technological

base for CPS and IoT

5.1. Evolution of

microcontroller facilities

and systems. 32- and 64-bit

ARM architecture

5.2. Principles of synthesis

of CPS based on industrial

microprocessor modules

5.3. Principles of synthesis

of CPS on the basis of

programmable logic

environments CPLD,

FPGA

2 4 6 6 5.4. Architec-

tural decisions

of

reconfigurable

CPS

5.5. Means

of artificial

intelligence

in CPS

5.6. Dynamic

redistribution

of computing

load

6. Interfaces of open systems 2 4 6 7 6.5. Methods

138

Appendix А. Teaching program of the course MC4

and network protocols IoT

6.1 Sensor networks,

nonstandard protocols of

physical level in CPS

6.2. Mesh networks,

Zigbee protocols in CPS

6.3. IR, Bluetooth, RFID

for local data transmit in

CPS

6.4. Network protocols and

computer network

programming for CPS

of

information

protection in

IoT

technology

for CPS

7. Specialized software

packages for simulation and

synthesis of IoT and CPS

7.1. RTOS

7.2. Features of FPGA

programming by Altera

7.3 Features of FPGA

Programming by Xilinx

7.4 Means for the synthesis

and analysis of analog and

digital circuits Altium

Designer

2 4 6 6 7.5. Software

package

Ptolemy II

7.6. Linux

RTOS

8.1 IoT and scalability of CPS

8.2 Conception and

advantages of Power over

Ethernet

8.2.1 Conception of PoE

method. State of the art

8.2.2 Advantages of the

PoE method

2 2 0 4 4 8.3

Examples of

PoE

applications

9. System Power of Ethernet

based architecture

9.1 General architecture

view

9.2 System requirements

9.3 Sensor hub classes

9.4 Configuration and

operation modes of the

system

9.5 Parameters,

2 2 4 4 9.6 Data

processing

and

presentation

9.7 The

systems

hierarchy

139

Appendix А. Teaching program of the course MC4

organization and data

processing

10. Neural networks

incorporation, network

testing, general integration

flow

10.1 Incorporation of neural

networks

10.2 Testing of the network

10.3 General integration

flow

2 2 4 4

11. Model-based systems

engineering for CPS.

Modeling methodologies for

CPS

11.1 Rationale MBSE

approaches for analysis,

specification, design, and

verification of CPS

11.2 An overview of the

general-purpose modeling

languages and its benefits for

CPS

11.3 Technology platforms

for CPS modeling

2 2 4 4

12. MARTE profile of UML

foundations

12.1 An introduction to

UML profiles

12.2 Specifying non-

functional properties

12.3 Modeling time and

resources

2 2 4 4

13. Modeling CPS with

SysML and MARTE

13.1 The SysML profile

13.2 Methods of combining

SysML and MARTE for

modeling CPS

13.3 Basics of model-based

analysis of CPS

2 2 4 4

On the whole 26 8 4 22 60 60

140

Appendix А. Teaching program of the course MC4

Assessment

strategy

Weight

in %

Deadli

nes
Assessment criteria

Lecture activity,

including

fulfilling special

self-tasks

10 7,14 85% – 100% Outstanding work, showing

a full grasp of all the questions

answered.

70% – 84% Perfect or near perfect

answers to a high proportion of the

questions answered. There should be a

thorough understanding and appreciation

of the material.

60% – 69% A very good knowledge of

much of the important material, possibly

excellent in places, but with a limited

account of some significant topics.

50% – 59% There should be a good

grasp of several important topics, but

with only a limited understanding or

ability in places. There may be

significant omissions.

45% – 49% Students will show some

relevant knowledge of some of the issues

involved, but with a good grasp of only a

minority of the material. Some topics

may be answered well, but others will be

either omitted or incorrect.

40% – 44% There should be some work

of some merit. There may be a few

topics answered partly or there may be

scattered or perfunctory knowledge

across a larger range.

20% – 39% There should be substantial

deficiencies, or no answers, across large

parts of the topics set, but with a little

relevant and correct material in places.

0% – 19% Very little or nothing that is

correct and relevant.

Learning in

laboratories

30 7,14 85% – 100% An outstanding piece of

work, superbly organized and presented,

excellent achievement of the objectives,

evidence of original thought.

70% – 84% Students will show a

thorough understanding and appreciation

141

Appendix А. Teaching program of the course MC4

of the material, producing work without

significant error or omission. Objectives

achieved well. Excellent organization

and presentation.

60% – 69% Students will show a clear

understanding of the issues involved and

the work should be well written and well

organized. Good work towards the

objectives.

The exercise should show evidence that

the student has thought about the topic

and has not simply reproduced standard

solutions or arguments.

50% – 59% The work should show

evidence that the student has a

reasonable understanding of the basic

material. There may be some signs of

weakness, but overall the grasp of the

topic should be sound. The presentation

and organization should be reasonably

clear, and the objectives should at least

be partially achieved.

45% – 49% Students will show some

appreciation of the issues involved. The

exercise will indicate a basic

understanding of the topic, but will not

have gone beyond this, and there may

well be signs of confusion about more

complex material. There should be fair

work towards the laboratory work

objectives.

40% – 44% There should be some work

towards the laboratory work objectives,

but significant issues are likely to be

neglected, and there will be little or no

appreciation of the complexity of the

problem.

20% – 39% The work may contain some

correct and relevant material, but most

issues are neglected or are covered

incorrectly. There should be some signs

of appreciation of the laboratory work

requirements.

142

Appendix А. Teaching program of the course MC4

0% – 19% Very little or nothing that is

correct and relevant and no real

appreciation of the laboratory work

requirements.

Course Evaluation

Quest

60 8,16 The score corresponds to the percentage

of correct answers to the test questions

Author

Year

of

issue

Title

No of

periodical

or volume

Place of printing.

Printing house or

internet link

Compulsory literature

I. Kalyaev,

V. Lohin,

I. Makarov

et al.

2007 Intelligent robots:

a manual for

universities

(Russian)

 Moscow :

Mashinostroenie,

(Mechanical

Engineering),
D. Robbins

and

M. Tanik

2014 Cyber-Physical

Ecosystems: App-

Centric Software

Ecosystems in

Cyber-Physical

Environments

 Springer

Science+Business

Media New York

D. Moldovan,

G. Copil and

S. Dustdar

2018 Elastic systems:

Towards cyber-

physical

ecosystems of

people, processes,

and things

vol. 57 Computer Standards

& Interfaces

https://www.infosys.t

uwien.ac.at/Staff/sd/p

apers

/Zeitschriftenartikel_2

018_D_Moldovan_El

astic.pdf

C. Greer,

M. Burns,

 D. Wollman

and

E. Griffor

2019 Cyber-Physical

Systems and

Internet of Things

 NIST Special

Publication 1900-202

https://nvlpubs.nist.go

v/nistpubs/

SpecialPublications/N

IST.SP.1900-202.pdf

E. Lee

and

S. Seshia

2019 Introduction to

Embedded

Systems - A

Cyber-Physical

Systems

Approach

https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://www.infosys.tuwien.ac.at/Staff/sd/papers%20/Zeitschriftenartikel_2018_D_Moldovan_Elastic.pdf
https://nvlpubs.nist.gov/nistpubs/%20SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/%20SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/%20SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/%20SpecialPublications/NIST.SP.1900-202.pdf

143

Appendix А. Teaching program of the course MC4

N. Wiener

2013 Cybernetics or

control and

communication in

the animal and the

machine

 Mansfield Centre, CT:

Martino

E. Lee

2006 Cyber-Physical

Systems - Are

Computing

Foundations

Adequate

 Ptolemy.eecs.berkeley

.edu

https://ptolemy.eecs.b

erkeley.edu/publicatio

ns/papers/06/CPSPosi

tionPaper/Lee_CPS_P

ositionPaper.pdf

S. Sarma,

D. Brock

and

K. Ashton

2001 white paper The

Networked

Physical World

Proposals for

Engineering the

Next Generation

of Computing,

Commerce &

Automatic-

Identification",

 Semanticscholar.org

https://www.semantic

scholar.org/paper/The

-Networked-Physical-

World-Proposals-for-

the-Next-Sarma-

Brock/88b4a255082d

91b3c88261976c85a2

4f2f92c5c3

J. Morra, 2019 Xilinx Adapts to

an Adaptive

Future of

Computing

 Electronic Design

https://www.electroni

cdesign.com/industria

l-automation/xilinx-

adapts-adaptive-

future-computing

B. Bagheri,

S. Yang,

H. Kao

and

J. Lee

2015 Cyber-physical

Systems

Architecture for

Self-Aware

Machines in

Industry 4.0

Environment

vol. 48,

no. 3

IFAC-PapersOnLine

N. Suda 2016 Reconfigurable

Architectures and

Systems for IoT

Applications

(Partial

Fulfillment of the

Requirements for

 Dissertation Presented

in

Repository.asu.edu,

https://repository.asu.

edu/attachments/

164110/

https://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf
https://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf
https://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf
https://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf
https://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3
https://www.semanticscholar.org/paper/The-Networked-Physical-World-Proposals-for-the-Next-Sarma-Brock/88b4a255082d91b3c88261976c85a24f2f92c5c3

144

Appendix А. Teaching program of the course MC4

the Degree Doctor

of Philosophy.

Arizona state

university)

content/Suda_asu_001

0E_15651.pdf

R. D. Sriram 2019 Toward Internet

of Everything:

IoT, CPS, and

SNSS

 Ontologforum.org

http://ontologforum.or

g/index.php/Conferen

ceCall_2015_03_12

V. Harchenko,

N. Zahorodna

and

R. Kozak

2017 Fundamentals of

security and

resilient

computing

 Diit.edu.ua

http://diit.edu.ua/sites/

tempus/files/full/1%2

0(1).pdf

 2013 CyPhERS. Cyber-

Physical

European

Roadmap &

Strategy.

Research Agenda

and

Recommendation

s for Action

 Cyphers.eu

http://cyphers.eu/sites/

default/files/ d6.1+2-

report.pdf

 Edge computing

primer: IoT

intelligence starts

at the edge

 Processonline.com.au

https://www.processo

nline.com.au/content/i

ndustrial-networks-

buses/article/edge-

computing-primer-iot-

intelligence-starts-at-

the-edge-736246826

S. Lin 2019 FPGAs, SoCs,

Microcontrollers

– A Quick

Rundown of IoT

Devices

 Bitcoin Insider

https://www.bitcoinin

sider.org/article/5312

5/fpgas-socs-

microcontrollers-

quick-rundown-iot-

devices

I. Horváth

and

B. Gerritsen

2019 Cyber-Physical

Systems:

Concepts,

Technologies and

Implementation

Principles

 https://www.academia

.edu/14501665/Cyber-

Physical_Systems_Co

ncepts

_technologies_and_im

plementation_principl

https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.processonline.com.au/content/industrial-networks-buses/article/edge-computing-primer-iot-intelligence-starts-at-the-edge-736246826
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices
https://www.bitcoininsider.org/article/53125/fpgas-socs-microcontrollers-quick-rundown-iot-devices

145

Appendix А. Teaching program of the course MC4

es

 2019 IoT – Using

Cloud IoT Core to

connect a

microcontroller

(ESP32) to the

Google Cloud

Platform

 Nilhcem.com

http://nilhcem.com/iot

/cloud-iot-core-with-

the-esp32-and-arduino

P. Papcun,

E. Kajáti,

C. Liu,

R. Zhong

and

I. Zolotová

2019 Cloud-Based

Control of

Industrial Cyber-

Physical Systems

 https://www.researchg

ate.net/publication/33

2606551 _Cloud-

based_Control_of_Ind

ustrial_Cyber-

Physical_Systems

 2019 Zybo Zynq-7000

ARM/FPGA SoC

Trainer Board

(RETIRED)

 Digilent

https://store.digilentin

c.com/zybo-zynq-

7000-arm-fpga-soc-

trainer-board/

 2015 Laying the

groundwork for a

new level of

Power over

Ethernet

 COMMSCOPE INC

http://www.commsco

pe.com/Docs/POE_Gr

oundwork_WP-

107291.pdf

M. Magno,

T. Polonelli,

L. Benini,

and

E. Popovici

2015 A low cost, highly

scalable wireless

sensor network

solution to

achieve smart led

light control for

green buildings

vol. 15,

no. 5

IEEE Sensors Journal

K.

Chintalapudi,

T. Fu, J. Paek,

N. Kothari,

S. Rangwala,

J. Caffrey, R.

Govindan,

E. Johnson,

 and S. Masri

2006 Monitoring civil

structures with a

wireless sensor

network

vol. 10,

no. 2

Internet Computing,

IEEE

U. M.

Kulkarni,

2017 Neural network

based energy

 International Conference

On Smart Technologies

http://nilhcem.com/iot/cloud-iot-core-with-the-esp32-and-arduino
http://nilhcem.com/iot/cloud-iot-core-with-the-esp32-and-arduino
http://nilhcem.com/iot/cloud-iot-core-with-the-esp32-and-arduino
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
http://www.commscope.com/Docs/POE_Groundwork_WP-107291.pdf
http://www.commscope.com/Docs/POE_Groundwork_WP-107291.pdf
http://www.commscope.com/Docs/POE_Groundwork_WP-107291.pdf
http://www.commscope.com/Docs/POE_Groundwork_WP-107291.pdf

146

Appendix А. Teaching program of the course MC4

D. V. Kulkarni,

and H. H.

Kenchannavar

conservation for

wireless sensor

network

For Smart Nation

(SmartTechCon). IEEE

F. G. Osorio,

M. Xinran,

Y. Liu,

P. Lusina,

and E. Cretu

2015 Sensor network

using power-over-

ethernet

 Computing and

Communication

(IEMCON),

International

Conference and

Workshop on. IEEE.

I. Quadri,

A. Bagnato,

E. Brosse,

and

A. Sadovykh

2015 Modeling

methodologies for

Cyber-physical

Systems: research

field study on

inherent and

future challenges

vol. 36,

no. 4

Ada User Journal

J. C. Jensen,

D. H. Chang,

and

E. A. Lee

2011 A Model-Based

Design

Methodology for

Cyber-Physical

Systems

 7th International

Wireless

Communications and

Mobile Computing

Conference (IWCMC

2011), Istanbul,

Turkey

H. Posadas,

P. Peñil,

A. Nicolás,

and

E. Villar

2013. System synthesis

from

UML/MARTE

models: the

PHARAON

approach

 Proceedings of the

2013 Electronic

System Level

Synthesis Conference

(ESLsyn), Austin,

TX, USA

 Object

Management

Group (OMG):

Modeling and

Analysis of Real

Time and

Embedded

systems, version

1.1 (MARTE).

 http://www.omg.org/s

pec/MARTE/1.1/

F. Boutekkouk,

M.

Benmohammed

S. Bilavarn,

2009 UML2.0 profiles

for embedded

systems and

systems on a chip

vol. 8,

no. 1

Journal of Object

Technology

http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/

147

Appendix А. Teaching program of the course MC4

and M. Auguin (SoCs)

F. Mallet,

E. Villar,

and

F. Herrera

2017 MARTE for CPS

and CPSoS:

present and

future,

methodology and

tools

 Springer

J. Sztipanovits

et al.

2018 Model and Tool

Integration

Platforms for

Cyber–Physical

System Design

vol.

106,

no. 9

Proceedings of the

IEEE

Additional literature

В. V.

Glushkov

1964 Introduction to

Cybernetics

(Russian)

 Kiev: Publishing

House of the

Ukrainian SSR

Academy of Sciences

 2019 Opto22 - 2173

Your IoT Primer:

Bridge the Gap

between OT and

IT

 Opto22.com

https://www.opto22.

com/support/resources

-

tools/documents/2173

-your-iot-primer-

bridge-the-gap-ot-

and-it.

G. Chen 2010 Internet of Things

towards

Ubiquitous and

Mobile

Computing

 https://www.microsoft

.com/en-

us/research/wp-

content/uploads/

2010/07 /Guihai-

Chen_Oct19.pdf

Nam Yong

Kim,

Shailendra

Rathore, Jung

Hyun Ryu,

Jin Ho Park

and Jong

Hyuk Park

2018 A Survey on

Cyber Physical

System Security

for IoT: Issues,

Challenges,

Threats, Solutions

vol. 14,

no. 6

J,Inf Process Syst.

D. Ratasich, 2019 A Roadmap vol. 7 IEEE

148

Appendix А. Teaching program of the course MC4

F. Khalid,

F. Geissler,

R. Grosu,

M. Shafique

and E. Bartocci

Toward the

Resilient Internet

of Things for

Cyber-Physical

Systems

https://publik.tuwien.a

c.at/files/publik_

275267.pdf

J. Wan,

M. Chen,

F. Xia, L. Di

and

K. Zhou

 From machine-to-

machine

communications

towards cyber-

physical systems

vol. 10,

no. 3

Computer Science and

Information Systems

https://pdfs.semantics

cholar.org/

3902/a278567a7f2966

0e9a46ea4377c66d34

14c0.pdf

J. Deshmukh How can CPS

education provide

what the industry

needs?

 https://www.kth.se/po

lopoly_fs/1.518392.15

50156534!/

CPS%20Ed%20Work

shop_JyoDeshmukh.p

df

M.

Grimheden

 Mechatronics

Education at KTH

(and Embedded

Systems)

 https://www.kth.se/po

lopoly_fs/1.518408.15

50157760!

/CPSED2014_Berkele

y_MartinGrimheden.p

df

H. Vorobets

and

V. Tarasenko

2016 Self-configuring

computer tools

(Ukrainian)

 Cyberphysical

Systems:

Achievements and

Challenges:

Proceedings of the

Second Science

Seminar, Lviv

http://195.22.112.37/b

itstream/ntb/39386/1/

20-114-120.pdf

V. Golembo

and

O. Bochkaryov

2017 Approaches to

Building

Conceptual

Models of

Cyberphysical

Systems

(Ukrainian)

vol. 864,

no. 1

Ukrainian Journal of

Information

Technology

http://science.lpnu.ua/

uk/scsit/vsi-

vypusky/vypusk-864-

nomer-1-

2017/pidhody-do-

http://195.22.112.37/bitstream/ntb/39386/1/20-114-120.pdf
http://195.22.112.37/bitstream/ntb/39386/1/20-114-120.pdf
http://195.22.112.37/bitstream/ntb/39386/1/20-114-120.pdf
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh

149

Appendix А. Teaching program of the course MC4

pobudovy-

konceptualnyh-

modeley-

kiberfizychnyh

V. Melnyk,

I. Lopit

and

A. Keith

2016 Information

exchange protocol

for computer

devices automatic

creation in

reconfigurable

hardware

platforms of the

cyber-physical

systems

computing nodes

(Ukrainian)

 Cyberphysical

Systems:

Achievements and

Challenges:

Proceedings of the

Second Science

Seminar, Lviv.

L. Chen,

L. Shi and

W. Tan

2012 Modeling and

Performance

Evaluation of

Internet of Things

based on Petri

Nets and

Behavior

Expression

vol. 4,

no. 18

Research Journal of

Applied Sciences,

Engineering and

Technology

https://maxwellsci.co

m/print/rjaset/v4-

3381-3385.pdf

 2019 Intel® SoC

FPGAs

Programmable

Devices

 Intel

https://www.intel.com

/content/www/us/en/p

roducts/programmable

/soc.html

 2019 Intel® Quartus®

Prime Standard

Edition Handbook

Volume 3

 People.ece.cornell.edu

https://people.ece.corn

ell.edu/land/courses/e

ce5760/DE1_SOC/Po

wer_Estimation/qts-

qps-5v3.pdf

 2019 FPGA Xilinx.com

https://www.xilinx.co

m/support/documentat

ion-

navigation/silicon-

devices/fpga.html

H. Vorobets, 2015 The computerized vol. 2, Eastern-European

http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
http://science.lpnu.ua/uk/scsit/vsi-vypusky/vypusk-864-nomer-1-2017/pidhody-do-pobudovy-konceptualnyh-modeley-kiberfizychnyh
https://maxwellsci.com/print/rjaset/v4-3381-3385.pdf
https://maxwellsci.com/print/rjaset/v4-3381-3385.pdf
https://maxwellsci.com/print/rjaset/v4-3381-3385.pdf
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Power_Estimation/qts-qps-5v3.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Power_Estimation/qts-qps-5v3.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Power_Estimation/qts-qps-5v3.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Power_Estimation/qts-qps-5v3.pdf
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Power_Estimation/qts-qps-5v3.pdf
https://www.xilinx.com/support/documentation-navigation/silicon-devices/fpga.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/fpga.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/fpga.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/fpga.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/fpga.html

150

Appendix А. Teaching program of the course MC4

R. Hurzhui

and

M. Kuz

system with the

reconfigurable

architecture for

monitoring

environmental

parameters

no. 674 Journal of Enterprise

Technologies

 2019 Ptolemy Project

Home Page

 Ptolemy.berkeley.edu

https://ptolemy.berkel

ey.edu/

Edward A. Lee System Design,

Modeling, and

Simulation using

Ptolemy II

 https://ptolemy.berkel

ey.edu/books/Systems

/chapters/IGettingStar

ting.pdf

 2019 Why RTOS and

What is RTOS?

 FreeRTOS

https://www.freertos.

org/about-RTOS.html

 2019 Altera Quartus II |

IT Department

 Information-

technology.web.cern.c

h,

http://information-

technology.web.cern.c

h/services/software/qu

artus-ii

 2019 ISE Design Suite Xilinx.com

https://www.xilinx.co

m/products/design-

tools/ise-design-

suite.html

 2019 Altium Designer

19 - Best PCB

Design Software

for Engineers

 Computer Aided PCB

Design Software

https://www.altium.co

m/altium-designer/

 2019 Altium Designer

Documentation |

Altium Designer

19.0 User Guide |

Documentation

 Altium.com

https://www.altium.co

m/documentation/ru/1

9.0/display/ADES/Alt

ium+Designer+Docu

mentation

 2014 Cisco Catalyst

4500E Supervisor

Engine 8-E

Configuration

 Cisco INC

http://¬www.cisco.co

m/¬c/¬en/¬us/¬td/¬do

cs/¬switches/¬lan/-

https://ptolemy.berkeley.edu/
https://ptolemy.berkeley.edu/
https://ptolemy.berkeley.edu/books/Systems/chapters/IGettingStarting.pdf
https://ptolemy.berkeley.edu/books/Systems/chapters/IGettingStarting.pdf
https://ptolemy.berkeley.edu/books/Systems/chapters/IGettingStarting.pdf
https://ptolemy.berkeley.edu/books/Systems/chapters/IGettingStarting.pdf
https://www.freertos.org/about-RTOS.html
https://www.freertos.org/about-RTOS.html
http://information-technology.web.cern.ch/services/software/quartus-ii
http://information-technology.web.cern.ch/services/software/quartus-ii
http://information-technology.web.cern.ch/services/software/quartus-ii
http://information-technology.web.cern.ch/services/software/quartus-ii
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.altium.com/altium-designer/
https://www.altium.com/altium-designer/
https://www.altium.com/documentation/ru/19.0/display/ADES/Altium+Designer+Documentation
https://www.altium.com/documentation/ru/19.0/display/ADES/Altium+Designer+Documentation
https://www.altium.com/documentation/ru/19.0/display/ADES/Altium+Designer+Documentation
https://www.altium.com/documentation/ru/19.0/display/ADES/Altium+Designer+Documentation
https://www.altium.com/documentation/ru/19.0/display/ADES/Altium+Designer+Documentation

151

Appendix А. Teaching program of the course MC4

Guide (Wireless),

Cisco IOS XE

Release 3.7E, 2nd

ed

catalyst4500/¬XE3-7-

0E/¬wireless/¬config

uration-

guide/¬b_37e_4500su

p8e_cg.html

 2015 Cisco Systems

INC, Cisco

Catalyst UPOE

Power Splitter

 https://-

developer.cisco.com/¬

fileMedia/¬download/

¬99c67d92-8089-

44b9-980a-

9bc304abf739

J. Fitzgerald

et al.

2016 Collaborative

model-based

systems

engineering for

cyber-physical

systems, with a

building

automation case

study

vol. 26 INCOSE International

Symposium

P. G. Larsen

et al.

2016 Integrated tool

chain for model-

based design of

Cyber-Physical

Systems: the

INTO-CPS

project

 2nd International

Workshop on

Modelling, Analysis,

and Control of

Complex CPS (CPS

Data), Vienna, Austria

S.

Friedenthal,

A. Moore,

and S. Rick

2012 A practical guide

to SysML: the

systems modeling

language.

 San Francisco, CA:

Morgan Kaufmann

Publishers, Inc.

B. Selic

and S. Gérard

2013 Modeling and

Analysis of Real-

Time and

Embedded

Systems with

UML and

MARTE:

developing

Cyber-Physical

Systems

 Burlington: Morgan

Kaufmann

152

Appendix B Code of the programs for laboratory work

APPENDIX B

Appendix B Code of the programs for laboratory work
1. Listing for laboratory work № 1.1

#include "driver/gpio.h"
static QueueHandle_t q1;
#define TEST_GPIO (25)
static void handler(void *args)
{
gpio_num_t gpio;
gpio = TEST_GPIO;
xQueueSendToBackFromISR(q1, &gpio, NULL);
}
void test1_task(void *ignore)
{
ESP_LOGD(tag, ">> test1_task");
gpio_num_t gpio;
q1 = xQueueCreate(10, sizeof(gpio_num_t));
gpio_config_t gpioConfig;
gpioConfig.pin_bit_mask = GPIO_SEL_25;
gpioConfig.mode = GPIO_MODE_INPUT;
gpioConfig.pull_up_en = GPIO_PULLUP_DISABLE;
gpioConfig.pull_down_en = GPIO_PULLDOWN_ENABLE;
gpioConfig.intr_type = GPIO_INTR_POSEDGE;
gpio_config(&gpioConfig);
gpio_install_isr_service(0);
gpio_isr_handler_add(TEST_GPIO, handler, NULL);
while(1)
{
ESP_LOGD(tag, "Waiting on queue");
BaseType_t rc = xQueueReceive(q1, &gpio, portMAX_DELAY);
ESP_LOGD(tag, "Woke from queue wait: %d", rc);
}
vTaskDelete(NULL);
}
void app_main()
{
 xTaskCreate(&test1_task, "test1_task", configMINIMAL_STACK_SIZE, NULL,
5, NULL);
}

153

Appendix B Code of the programs for laboratory work

2. Listing for laboratory work № 1.2
///
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "sdkconfig.h"
void first_task(void *pvParameter)
{
while(1)
{
// some actions
}
vTaskDelete(NULL);
}
void second_task(void *pvParameter)
{
while(1)
{
// some actions
}
vTaskDelete(NULL);
}
void app_main()
{
 xTaskCreate(&first_task, "first_task", configMINIMAL_STACK_SIZE, NULL, 5,
NULL);
xTaskCreate(&second_task, "second_task", configMINIMAL_STACK_SIZE, NULL,
5, NULL);
}

3. Listing for laboratory work №2.1
#include "sdkconfig.h"
#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
esp_err_t event_handler(void *ctx, system_event_t *event)
{
if (event->event_id == SYSTEM_EVENT_SCAN_DONE)

154

Appendix B Code of the programs for laboratory work

{
printf("Number of access points found: %d\n", event-
>event_info.scan_done.number);
uint16_t apCount = event->event_info.scan_done.number;
if (apCount == 0)
{
return ESP_OK;
}
wifi_ap_record_t *list = (wifi_ap_record_t *)malloc(sizeof(wifi_ap_record_t) *
apCount);
ESP_ERROR_CHECK(esp_wifi_scan_get_ap_records(&apCount, list));
int i;
for (i=0; i<apCount; i++)
{
char *authmode;
switch(list[i].authmode)
{
case WIFI_AUTH_OPEN:
authmode = "WIFI_AUTH_OPEN";
break;
case WIFI_AUTH_WEP:
authmode = "WIFI_AUTH_WEP";
break;
case WIFI_AUTH_WPA_PSK:
authmode = "WIFI_AUTH_WPA_PSK";
break;
case WIFI_AUTH_WPA2_PSK:
authmode = "WIFI_AUTH_WPA2_PSK";
break;
case WIFI_AUTH_WPA_WPA2_PSK:
authmode = "WIFI_AUTH_WPA_WPA2_PSK";
break;
default:
authmode = "Unknown";
break;
}
printf("ssid=%s, rssi=%d, authmode=%s\n", list[i].ssid, list[i].rssi, authmode);
}
free(list);
}

155

Appendix B Code of the programs for laboratory work

return ESP_OK;
}
int app_main(void)
{
nvs_flash_init();
tcpip_adapter_init();
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
// Let us test a WiFi scan ...
wifi_scan_config_t scanConf = {
.ssid = NULL,
.bssid = NULL,
.channel = 0,
.show_hidden = 1
};
ESP_ERROR_CHECK(esp_wifi_scan_start(&scanConf, 0));
return 0;
}

4. Listing for laboratory work №4.1
#include <driver/i2c.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <math.h>
#include "sdkconfig.h"
#define PIN_SDA 21
#define PIN_CLK 22
#define I2C_ADDRESS 0x23
// No active state
#define BH1750_POWER_DOWN 0x00
// Wating for measurment command
#define BH1750_POWER_ON 0x01
// Reset data register value - not accepted in POWER_DOWN mode
#define BH1750_RESET 0x07
// Start measurement at 1lx resolution. Measurement time is approx 120ms.
#define BH1750_CONTINUOUS_HIGH_RES_MODE 0x10

156

Appendix B Code of the programs for laboratory work

// Start measurement at 0.5lx resolution. Measurement time is approx 120ms.
#define BH1750_CONTINUOUS_HIGH_RES_MODE_2 0x11
// Start measurement at 4lx resolution. Measurement time is approx 16ms.
#define BH1750_CONTINUOUS_LOW_RES_MODE 0x13
// Start measurement at 1lx resolution. Measurement time is approx 120ms.
// Device is automatically set to Power Down after measurement.
#define BH1750_ONE_TIME_HIGH_RES_MODE 0x20
// Start measurement at 0.5lx resolution. Measurement time is approx 120ms.
// Device is automatically set to Power Down after measurement.
#define BH1750_ONE_TIME_HIGH_RES_MODE_2 0x21
// Start measurement at 1lx resolution. Measurement time is approx 120ms.
// Device is automatically set to Power Down after measurement.
#define BH1750_ONE_TIME_LOW_RES_MODE 0x23
static char tag[] = "bh1750fvi";
#undef ESP_ERROR_CHECK
#define ESP_ERROR_CHECK(x) do { esp_err_t rc = (x); if (rc != ESP_OK) {
ESP_LOGE("err", "esp_err_t = %d", rc); assert(0 && #x);} } while(0);
void task_bh1750fvi(void *ignore) {
printf(">> bh1750fvi");
i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = GPIO_NUM_23;
conf.scl_io_num = GPIO_NUM_22;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = 100000;
ESP_ERROR_CHECK(i2c_param_config(I2C_NUM_0, &conf));
ESP_ERROR_CHECK(i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0,
0));

uint8_t data[2];
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) | I2C_MASTER_WRITE, 1);
i2c_master_write_byte(cmd, BH1750_CONTINUOUS_HIGH_RES_MODE, 1);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);
while(1) {
cmd = i2c_cmd_link_create();

157

Appendix B Code of the programs for laboratory work

ESP_ERROR_CHECK(i2c_master_start(cmd));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) |
I2C_MASTER_READ, 1));
i2c_master_read_byte(cmd, data, 0);
i2c_master_read_byte(cmd, data+1, 1);
ESP_ERROR_CHECK(i2c_master_stop(cmd));
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd,
100/portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd);
int value = ((data[0] << 8) | data[1])/1.2;
printf("lx value: %d\n", value);
vTaskDelay(200/portTICK_PERIOD_MS);
}
vTaskDelete(NULL);
} // task_hmc5883l

5. Listing for laboratory work №4.2
#include <driver/i2c.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <math.h>
#include "sdkconfig.h"
#define PIN_SDA 21
#define PIN_CLK 22
#define I2C_ADDRESS 0x68 // I2C address of MPU6050
#define MPU6050_ACCEL_XOUT_H 0x3B
#define MPU6050_PWR_MGMT_1 0x6B
/*
 * The following registers contain the primary data we are interested in
 * 0x3B MPU6050_ACCEL_XOUT_H
 * 0x3C MPU6050_ACCEL_XOUT_L
 * 0x3D MPU6050_ACCEL_YOUT_H
 * 0x3E MPU6050_ACCEL_YOUT_L
 * 0x3F MPU6050_ACCEL_ZOUT_H
 * 0x50 MPU6050_ACCEL_ZOUT_L
 * 0x41 MPU6050_TEMP_OUT_H
 * 0x42 MPU6050_TEMP_OUT_L
 * 0x43 MPU6050_GYRO_XOUT_H
 * 0x44 MPU6050_GYRO_XOUT_L

158

Appendix B Code of the programs for laboratory work

 * 0x45 MPU6050_GYRO_YOUT_H
 * 0x46 MPU6050_GYRO_YOUT_L
 * 0x47 MPU6050_GYRO_ZOUT_H
 * 0x48 MPU6050_GYRO_ZOUT_L
 */
static char tag[] = "mpu6050";
#undef ESP_ERROR_CHECK
#define ESP_ERROR_CHECK(x) do { esp_err_t rc = (x); if (rc != ESP_OK) {
ESP_LOGE("err", "esp_err_t = %d", rc); assert(0 && #x);} } while(0);
void task_mpu6050(void *ignore) {
ESP_LOGD(tag, ">> mpu6050");
i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = GPIO_NUM_21;
conf.scl_io_num = GPIO_NUM_22;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = 100000;
ESP_ERROR_CHECK(i2c_param_config(I2C_NUM_0, &conf));
ESP_ERROR_CHECK(i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0,
0));
i2c_cmd_handle_t cmd;
vTaskDelay(200/portTICK_PERIOD_MS);
cmd = i2c_cmd_link_create();
ESP_ERROR_CHECK(i2c_master_start(cmd));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) |
I2C_MASTER_WRITE, 1));
i2c_master_write_byte(cmd, MPU6050_ACCEL_XOUT_H, 1);
ESP_ERROR_CHECK(i2c_master_stop(cmd));
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);

cmd = i2c_cmd_link_create();
ESP_ERROR_CHECK(i2c_master_start(cmd));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) |
I2C_MASTER_WRITE, 1));
i2c_master_write_byte(cmd, MPU6050_PWR_MGMT_1, 1);
i2c_master_write_byte(cmd, 0, 1);
ESP_ERROR_CHECK(i2c_master_stop(cmd));
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000/portTICK_PERIOD_MS);

159

Appendix B Code of the programs for laboratory work

i2c_cmd_link_delete(cmd);
uint8_t data[14];
short accel_x;
short accel_y;
short accel_z;

while(1) {
// Tell the MPU6050 to position the internal register pointer to register
// MPU6050_ACCEL_XOUT_H.
cmd = i2c_cmd_link_create();
ESP_ERROR_CHECK(i2c_master_start(cmd));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) |
I2C_MASTER_WRITE, 1));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, MPU6050_ACCEL_XOUT_H,
1));
ESP_ERROR_CHECK(i2c_master_stop(cmd));
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd,
1000/portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd);
cmd = i2c_cmd_link_create();
ESP_ERROR_CHECK(i2c_master_start(cmd));
ESP_ERROR_CHECK(i2c_master_write_byte(cmd, (I2C_ADDRESS << 1) |
I2C_MASTER_READ, 1));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data, 0));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data+1, 0));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data+2, 0));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data+3, 0));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data+4, 0));
ESP_ERROR_CHECK(i2c_master_read_byte(cmd, data+5, 1));
//i2c_master_read(cmd, data, sizeof(data), 1);
ESP_ERROR_CHECK(i2c_master_stop(cmd));
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd,
1000/portTICK_PERIOD_MS));
i2c_cmd_link_delete(cmd);
accel_x = (data[0] << 8) | data[1];
accel_y = (data[2] << 8) | data[3];
accel_z = (data[4] << 8) | data[5];
printf("accel_x: %d, accel_y: %d, accel_z: %d\n", accel_x, accel_y, accel_z);
vTaskDelay(500/portTICK_PERIOD_MS);
}

160

Appendix B Code of the programs for laboratory work

vTaskDelete(NULL);
} // task_hmc5883l

6. Listing for laboratory work №4.3
#include <driver/spi_master.h>
void test_spi_task(void *ignore)
{
ESP_LOGD(tag, ">> test_spi_task");
spi_bus_config_t bus_config;
bus_config.sclk_io_num = clkPin; // CLK
bus_config.mosi_io_num = mosiPin; // MOSI
bus_config.miso_io_num = misoPin; // MISO
bus_config.quadwp_io_num = -1; // Not used
bus_config.quadhd_io_num = -1; // Not used
ESP_LOGI(tag, "... Initializing bus.");
ESP_ERROR_CHECK(spi_bus_initialize(HSPI_HOST, &bus_config, 1));
spi_device_handle_t handle;
spi_device_interface_config_t dev_config;
dev_config.address_bits = 0;
dev_config.command_bits = 0;
dev_config.dummy_bits = 0;
dev_config.mode = 0;
dev_config.duty_cycle_pos = 0;
dev_config.cs_ena_posttrans = 0;
dev_config.cs_ena_pretrans = 0;
dev_config.clock_speed_hz = 10000;
dev_config.spics_io_num = csPin;
dev_config.flags = 0;
dev_config.queue_size = 1;
dev_config.pre_cb = NULL;
dev_config.post_cb = NULL;
ESP_LOGI(tag, "... Adding device bus.");
ESP_ERROR_CHECK(spi_bus_add_device(HSPI_HOST, &dev_config, &handle));
char data[3];
spi_transaction_t trans_desc;
trans_desc.address = 0;
trans_desc.command = 0;
trans_desc.flags = 0;
trans_desc.length = 3 * 8;
trans_desc.rxlength = 0;

161

Appendix B Code of the programs for laboratory work

trans_desc.tx_buffer = data;
trans_desc.rx_buffer = data;
data[0] = 0x12;
data[1] = 0x34;
data[2] = 0x56;
ESP_LOGI(tag, "... Transmitting.");
ESP_ERROR_CHECK(spi_device_transmit(handle, &trans_desc));
ESP_LOGI(tag, "... Removing device.");
ESP_ERROR_CHECK(spi_bus_remove_device(handle));
ESP_LOGI(tag, "... Freeing bus.");
ESP_ERROR_CHECK(spi_bus_free(HSPI_HOST));
ESP_LOGD(tag, "<< test_spi_task");
vTaskDelete(NULL);

7. Listing for laboratory work №5.1
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity vga is
port(clk50_in : in std_logic;
 red_out : out std_logic;
 green_out : out std_logic;
 blue_out : out std_logic;
 hs_out : out std_logic;
 vs_out : out std_logic);
end vga;

architecture Behavioral of vga is

signal clk25 : std_logic;
signal horizontal_counter : std_logic_vector (9 downto 0);
signal vertical_counter : std_logic_vector (9 downto 0);

begin

-- generate a 25Mhz clock
process (clk50_in)
begin

162

Appendix B Code of the programs for laboratory work

if clk50_in'event and clk50_in='1' then
if (clk25 = '0') then
clk25 <= '1';
else
 clk25 <= '0';
end if;
end if;
end process;

 process (clk25)
 begin
 if clk25'event and clk25 = '1' then
 if (horizontal_counter >= "0010010000") -- 144
and (horizontal_counter < "1100010000") -- 784
and (vertical_counter >= "0000100111") -- 39
and (vertical_counter < "1000000111") -- 519
then
--here you paint!!
red_out <= '1';
green_out <= '0';
blue_out <= '0';
else
red_out <= '0';
green_out <= '0';
blue_out <= '0';
 end if;
 if (horizontal_counter > "0000000000")
and (horizontal_counter < "0001100001") -- 96+1
then
hs_out <= '0';
else
hs_out <= '1';
 end if;
 if (vertical_counter > "0000000000")
and (vertical_counter < "0000000011") -- 2+1
then
vs_out <= '0';
else
vs_out <= '1';
 end if;

163

Appendix B Code of the programs for laboratory work

horizontal_counter <= horizontal_counter+"0000000001";

 if (horizontal_counter="1100100000") then
 vertical_counter <= vertical_counter+"0000000001";
 horizontal_counter <= "0000000000";
 end if;

 if (vertical_counter="1000001001") then
 vertical_counter <= "0000000000";
 end if;
 end if;
 end process;

 end Behavioral;

The following example shows the output of 8-pixel squares. In the middle of
each square there are other multicolored squares.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity square is
 port(clk50_in : in std_logic;
 red_out : out std_logic;
 green_out : out std_logic;
 blue_out : out std_logic;
 hs_out : out std_logic;
 vs_out : out std_logic);
end square;

architecture Behavioral of square is

signal clk25 : std_logic; -- the 25Mhz clock
signal horizontal_counter : std_logic_vector (9 downto 0);
signal vertical_counter : std_logic_vector (9 downto 0);

begin

164

Appendix B Code of the programs for laboratory work

-- generate a 25Mhz clock
process (clk50_in)
begin
 if clk50_in'event and clk50_in='1' then
 if (clk25 = '0') then
 clk25 <= '1';
 else
 clk25 <= '0';
 end if;
 end if;
end process;

process (clk25)
begin
 if clk25'event and clk25 = '1' then
 if (horizontal_counter >= "0010010000") -- 144
 and (horizontal_counter < "1100010000") -- 784
 and (vertical_counter >= "0000100111") -- 39
 and (vertical_counter < "1000000111") -- 519
 then
 red_out <= horizontal_counter(3)
 and vertical_counter(3);
 green_out <= horizontal_counter(4)
 and vertical_counter(4);
 blue_out <= horizontal_counter(5)
 and vertical_counter(5);
 else
 red_out <= '0';
 green_out <= '0';
 blue_out <= '0';
 end if;
 if (horizontal_counter > "0000000000")
 and (horizontal_counter < "0001100001") -- 96+1
 then
 hs_out <= '0';
 else
 hs_out <= '1';
 end if;
 if (vertical_counter > "0000000000")
 and (vertical_counter < "0000000011") -- 2+1

165

Appendix B Code of the programs for laboratory work

 then
 vs_out <= '0';
 else
 vs_out <= '1';
 end if;
 horizontal_counter <= horizontal_counter+"0000000001";
 if (horizontal_counter="1100100000") then
 vertical_counter <= vertical_counter+"0000000001";
 horizontal_counter <= "0000000000";
 end if;
 if (vertical_counter="1000001001") then
 vertical_counter <= "0000000000";
 end if;
 end if;
end process;

end Behavioral;

8. Listing for laboratory work №5.2

{Keyboard controller}
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity KeyboardController is
 Port (Clock : in STD_LOGIC;
 KeyboardClock : in STD_LOGIC;
 KeyboardData : in STD_LOGIC;
 LeftPaddleDirection : buffer integer;
 RightPaddleDirection : buffer integer
);
end KeyboardController;

architecture Behavioral of KeyboardController is

signal bitCount : integer range 0 to 100 := 0;
signal scancodeReady : STD_LOGIC := '0';
signal scancode : STD_LOGIC_VECTOR(7 downto 0);
signal breakReceived : STD_LOGIC := '0';

166

Appendix B Code of the programs for laboratory work

constant keyboardA : STD_LOGIC_VECTOR(7 downto 0) := "00011100";
constant keyboardY : STD_LOGIC_VECTOR(7 downto 0) := "00011010";
constant keyboardK : STD_LOGIC_VECTOR(7 downto 0) := "01000010";
constant keyboardM : STD_LOGIC_VECTOR(7 downto 0) := "00111010";

begin

keksfabrik : process(KeyboardClock)
begin
if falling_edge(KeyboardClock) then
if bitCount = 0 and KeyboardData = '0' then --keyboard wants to send data
scancodeReady <= '0';
bitCount <= bitCount + 1;
elsif bitCount > 0 and bitCount < 9 then -- shift one bit into the scancode from
the left
scancode <= KeyboardData & scancode (7 downto 1);
bitCount <= bitCount + 1;
elsif bitCount = 9 then -- parity bit
bitCount <= bitCount + 1;
elsif bitCount = 10 then -- end of message
scancodeReady <= '1';
bitCount <= 0;
end if;
end if;
end process keksfabrik;

kruemelfabrik : process(scancodeReady, scancode)
begin
if scancodeReady'event and scancodeReady = '1' then
-- breakcode breaks the current scancode
if breakReceived = '1' then
breakReceived <= '0';
if scancode = keyboardA or scancode = keyboardY then
LeftPaddleDirection <= 0;
elsif scancode = keyboardK or scancode = keyboardM then
RightPaddleDirection <= 0;
end if;
elsif breakReceived = '0' then
-- scancode processing

167

Appendix B Code of the programs for laboratory work

if scancode = "11110000" then -- mark break for next scancode
breakReceived <= '1';
end if;

if scancode = keyboardA then
LeftPaddleDirection <= -1;
elsif scancode = keyboardY then
LeftPaddleDirection <= 1;
elsif scancode = keyboardK then
RightPaddleDirection <= -1;
elsif scancode = keyboardM then
RightPaddleDirection <= 1;
end if;
end if;
end if;
end process kruemelfabrik;
end Behavioral;

168

Анотація та зміст

АНОТАЦІЯ

УДК 004.415/.416:004.89](076.5)=111

Воробець Г. І., Харченко В. С., Кудерметов Р. К.,

Клятченко Я. М., Гордіца В. Е., Пшеничний О. О., Хамула І. С.,

Лобачев І. М., Лобачев М. В., Тягунова М. Ю., Польська О. В.

Технології Інтернету Речей для кіберфізичних систем. Практикум /

За ред. Г. І. Воробця та В. С. Харченко – МОН України,

Чернівецький національний університет імені Юрія Федьковича,

Національний аерокосмічний університет “ХАІ”, Запорізький

національний технічний університет, 2019. – 172 с.

Викладено матеріали практичної частини курсу МC4

“Технології інтернету речей для кіберфізичних систем”,

підготовленого в рамках проекту ERASMUS+ ALIOT “Internet of

Things: Emerging Curriculum for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP).

Наведено структуру курсу, навчальні матеріали, приклади

завдань для семінарів, практичних і лабораторних робіт, а також

методичні рекомендації для самопідготовки і перевірки знань з

дисципліни, та критерії їх оцінювання. Матеріал подається

послідовно для формування цілісної картини сучасного стану,

синергії, перспектив розвитку та досліджень технологій інтернету

речей і кіберфізичних систем. Увага акцентується на

концептуальних питаннях моделювання, аналізу, синтезу і

практичного впровадження КФС, та ролі ІоТ на всіх етапах

життєвого циклу складних комп‘ютеризованих систем.

Призначено для магістрів університетів у галузі інформаційних

технологій: комп‘ютерних наук та інформаційних систем і

технологій, кібербезпеки, системного аналізу, програмної та

комп'ютерної інженерії, а також викладачів відповідних курсів,

інженерів та науковців, які займаються розробкою та

впровадженням технологій КФС та IoT.

Бібл. – 81, рисунків – 51, таблиць – 10.

169

Анотація та зміст

ЗМІСТ

СКОРОЧЕННЯ 5

ВСТУП 6

1. ОСНОВНІ ПРИНЦИПИ ОРГАНІЗАЦІЇ ТА ФУНКЦІОНУВАННЯ

ЕКОСИСТЕМ ІНТЕРНЕТУ РЕЧЕЙ ТА КІБЕРФІЗИЧНИХ СИСТЕМ
9

1.1 Особливості структурної та функціональної синергії IoT та CPS

(Практична робота)
9

1.1.1 Теоретичні аспекти комплексного підходу до аналізу і синтезу IoT

та КФС
10

1.1.2 Рекомендації до виконання індивідуального практичного завдання 18

1.2 Багатоконтурна взаємодія кібернетичного та фізичного простору в

моделі КФС/IoT. Оцінка обчислювальних ресурсів (Семінар 1)
24

1.2.1 Основні рекомендації до теоретичного матеріалу 25

1.2.2 Рекомендації до практичного завдання 25

2. IOT ТЕХНОЛОГІЇ В ЗАДАЧАХ СИНТЕЗУ ТА АНАЛІЗУ КФС 27

2.1 Основні принципи, апаратні рішення та застосування технології ІоТ в

задачах синтезу КФС
27

2.1.1 Основні модулі для структурного синтезу та тестування технології

КФС/ІоТ
27

2.1.2 Модуль ESP32 в проектах КФС/IoT. Середовище розробки

програмного забезпечення IoT Development Framework (Лабораторна

робота № 1)

34

2.1.3 Створення локальної мережі WiFi на основі модуля ESP32

(Лабораторна робота № 2)
48

2.1.4 Застосування стеку протоколів TCP/IP для передачі даних через

WiFi у вбудованих системах LWIP. Технологія сокетів (Лабораторна

робота № 3)

58

2.1.5 Застосування ESP32 для роботи з сенсорами у проектах КФС/IoT.

Розширювач GPIO PCF8574 для сенсорних мереж (Лабораторна робота

№ 4)

67

2.2 Застосування реконфігуровних середовищ у задачах синтезу проектів

КФС/IoT (Лабораторна робота № 5)
81

2.3 Методологія реалізації комплексних проектів КФС/IoT (Лабораторна

робота № 6)
90

3 МЕРЕЖЕВІ ТЕХНОЛОГІЇ POWER-OVER-ETHERNET ДЛЯ

КІБЕРФІЗИЧНИХ СИСТЕМ (Семінар 2)
98

4 ЗАСОБИ МОДЕЛЬ-ОРІЄНТОВАНОГО ПРОЕКТУВАННЯ ДЛЯ

КІБЕРФІЗИЧНИХ СИСТЕМ
102

4.1 Модель-орієнтоване проектування КФС на основі використання

профілю UML 2 та MARTE (Лабораторна робота № 7)
102

4.2 Модель-орієнтоване проектування КФС на основі використання

SysML (Лабораторна робота № 8)
117

ДОДАТОК А. НАВЧАЛЬНА ПРОГРАМА З КУРСУ MC4 “ТЕХНОЛОГІЇ

ІНТЕРНЕТУ РЕЧЕЙ ДЛЯ КІБЕРФІЗИЧНИХ СИСТЕМ”
133

ДОДАТОК B. 152

АНОТАЦІЯ ТА ЗМІСТ 168

170

Abstract and contents

ABSTRACT

UDС 004.415/.416:004.89](076.5)=111

Vorobets H. I., Kharchenko V. S., Kudermetov R. K.,

Klyatchenko Ya. M., Horditsa V. E., Pshenychnyi O. O., Khamula I.

S., Lobachev I. M., Lobachev M. V., Tiahunova M. Yu., Polska O. V.

Internet of Things Technologies for Cyber Physical Systems:

Practicum / Vorobets H. I. and Kharchenko V. S. (Eds.) – Ministry of

Education and Science of Ukraine, Yuriy Fedkovych Chernivtsi

National University, National Aerospace University “KhAI”,

Zaporizhzhia National Technical University, 2019. – 172 p.

The materials of the practical part of the study course MC4 “IoT

Technologies for Cyber Physical Systems”, developed in the

framework of the ERASMUS+ ALIOT project “Internet of Things:

Emerging Curriculum for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP) are presented.

The course structure, teaching materials, examples of tasks for

seminars, practical and laboratory works, as well as methodological

recommendations for self-preparation and knowledge testing in the

discipline, and criteria for their assessment are given. The material is

submitted sequentially to form a holistic picture of the current state,

synergy, prospects for research and development of Internet of Things

and Cyber-Physical Systems technologies. The focus is on the

conceptual issues of modeling, analysis, synthesis and practical

implementation of CPS, and the role of IoT at all stages of the life

cycle of complex computerized systems.

Designed for Masters of Universities in Information Technology:

Computer Science and Information Systems, Cybersecurity, Systems

Analysis, Software and Computer Engineering, as well as teachers of

relevant faculties, engineers and scientists involved in the development and

implementation of CPS and IoT technologies.

Ref. – 81 items, figures – 51, tables – 10.

171

Abstract and contents

CONTENTS
ABBREVIATIONS 5

INTRODUCTION 6

1. BASIC PRINCIPLES FOR THE ORGANIZATION AND FUNCTIONING

OF ECOSYSTEMS OF THE INTERNET OF THINGS AND CYBER-

PHYSICAL SYSTEMS

9

1.1 Features of structural and functional synergy of IoT and CPS

(Practical work)
9

1.1.1 Theoretical aspects of a complex approach to the analysis and

synthesis of IoT and CPS
10

1.1.2 Recommendations for completing an individual practical task 18

1.2 Multi-contour interaction of cybernetic and physical space in the

CPS/IoT model. Assessment of CPS computing resources (Seminar 1)
24

1.2.1 Basic recommendations on theoretical material 25

1.2.2 Recommendations for the practical task 25

2. IOT TECHNOLOGY IN THE PROBLEMS OF SYNTHESIS AND

ANALYSIS OF CPS
27

2.1 Basic principles, hardware solutions and application of IoT

technologies in CPS synthesis tasks
27

2.1.1 Basic modules for structure synthesis and CPS/IoT technology

testing
27

2.1.2 ESP32 module in CPS/IoT projects. Espressif IoT Development

Framework SDE (Laboratory work № 1)
34

2.1.3 Creating a local WiFi network based on the ESP32 module

(Laboratory work № 2)
48

2.1.4 Implementation of the TCP/IP protocol stack for Wi-Fi data transfer

in embedded LWIP systems. Socket technology (Laboratory work № 3)
58

2.1.5 Applying ESP32 for working with sensors in CPS/IoT projects.

GPIO PCF8574 extender for sensor networks (Laboratory work № 4)
67

2.2 Applying reconfigurable environments in CPS/IoT project synthesis

tasks (Laboratory work №5)
81

2.3 Methodology for implementation of the CPS/IoT complex project

(Laboratory work № 6)
90

3 POWER-OVER-ETHERNET BASED TRANSDUCER NETWORKS

FOR CYBER PHYSICAL SYSTEMS (SEMINAR 2)
98

4. MODEL-BASED SYSTEMS ENGINEERING FOR THE CYBER-

PHYSICAL SYSTEMS
102

4.1 Model-based design of CPS using UML 2 and MARTE profile

(Laboratory work № 7)
102

4.2 Model-based design of CPS using SysML (Laboratory work № 8) 117

APPENDIX А. TEACHING PROGRAM OF THE COURSE MC4 “IOT

TECHNOLOGIES FOR CYBER PHYSICAL SYSTEMS”
133

APPENDIX B. 152

ABSTRACT AND CONTENTS 168

Воробець Георгій Іванович
Харченко В‘ячеслав Сергійович
Кудерметов Равіль Камілович

Клятченко Ярослав Михайлович
Гордіца Валентина Емануїлівна

Пшеничний Олексій Олександрович
Хамула Ілля Сергійович

Лобачев Михайло Вікторович
Лобачев Іван Михайлович
Тягунова Марія Юріївна

Польська Ольга Володимирівна

ТЕХНОЛОГІЇ ІНТЕРНЕТУ РЕЧЕЙ

ДЛЯ КІБЕРФІЗИЧНИХ СИСТЕМ

Практикум
(англійською мовою)

Редактори Воробець Г. І., Харченко В. С.

Комп'ютерна верстка
Г. І. Воробець,
В. Е. Гордіца

Зв. план, 2019
Підписаний до друку 27.08.2019

Формат 60х84 1/16. Папір офс. No2. Офс. друк.
Умов. друк. арк. 9,88. Уч.-вид. л. 10,62. Наклад 150 прим.

Замовлення 270819-9.
__

_
Національний аерокосмічний університет ім. М. Є. Жуковського

"Х а р к і в с ь к и й а в і а ц і й н и й і н с т и т у т"
61070, Харків-70, вул. Чкалова, 17

http://www.khai.edu

Випускаючий редактор: ФОП Голембовська О.О.
03049, Київ, Повітрофлотський пр-кт, б. 3, к. 32.

Свідоцтво про внесення суб'єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 5120 від 08.06.2016 р.

Видавець: ТОВ «Видавництво Юстон»
01034, м. Київ, вул.. О. Гончара, 36-а, тел.: +38 044 360 22 66

www.yuston.com.ua
Свідоцтво про внесення суб‟єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 497 від 09.09.2015 р.

	ALIOT_MC4_IoT Tech for CPS_cover
	ALIOT_MC4_IoT Tech for CPS
	MC4_IoT Tech for CPS

