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For notational convenience most variable names have been limited to a single character. 
Subscripts have been used to differentiate related variables. Subscripts i, j, and k have 
been used exclusively as running integers and are interchangeable. Other subscript let-
ters are used to differentiate closely related names. For example, pm and pc are used for 
the market price and calculated price of a security, respectively. When these subscripts 
are mixed with running subscripts, a comma is inserted between them (e.g. pm,i or pc,k).

SUBSCRIPTS

b Bond specific – e.g., yb 
is the yield of a bond

c Constant – e.g., a constant or a fixed coupon rate
Credit – e.g., yt c,  

is the credit yield calculated from the term structure of credit rates
e Effective – e.g., ye 

is the effective yield
f Forward – e.g., yf

 
is the forward yield

Floating – e.g., cf
 
is the floating coupon

g Government or risk-free rate or simply interest rate
i Usually, index of cash flows, e.g., ti 

is the time to the ith cash flow of a bond
j Usually, index number of a bond, e.g., pt j,

 
is the term calculated price of bond j

k kth component of the term structure or risk, e.g., ψk

l Libor 
m Market – e.g. pm 

is the market price
n Inflation

an i,  
is the ith component of the term structure of inflation rates

tin  
time to the inflation reference point of cash flow i.

yr in,  real yield of cash flow i at its inflation reference point.
p Principal – e.g., cp is the principal cash flow of a bond
r Real – e.g., yr is the real yield of a bond; yt r,  is the term structure real yield
s Spot – e.g., ys 

is the spot yield
t Term structure – e.g., yt 

is the term structure yield
v Volatility related – ψv k,  is the kth component of volatility risk

Notation
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VARIABLE NAMES

a Term structure component
ai ith component of the term structure of interest rates
ac i,  ith component of the term structure of credit rates
ag i,  ith component of the term structure of interest rates or government rates
al i,  ith component of the term structure of Libor rates
an i,  ith component of the term structure of inflation expectations
ar i,  ith component of the term structure of real rates

bi ith component of the term structure of interest rates using key rate basis functions or 
the ith component of the term structure of yield volatility

c Cash flow or coupon
cc i,  ith fixed or constant cash flow of a bond
ce i,  ith effective cash flow of a bond
cf i,  ith forward or floating cash flow of a bond
cf c i, ,  ith forward or floating cash flow of a credit security
cg i,  guaranteed cash flow of a bond
ci ith cash flow of a bond
ci j,  ith cash flow of bond j in a portfolio or index
cp i,  principal cash flow component of the ith cash flow of a bond
cr i,  recovery cash flow component of the ith cash flow of a bond

cij cij  conversion matrix elements for changing basis functions 
d Discount function

dc i,  discount function for the ith cash flow of a credit bond
di discount function for the ith cash flow of a bond

D Duration, distance
Dc credit duration of a bond
Di j,  ith duration component of bond j in a portfolio or index
Dk kth duration component of the term structure of interest rates
Dm Macaulay duration of a bond
Dv duration of volatility

Δyk Change in yield due to the change in the kth component of the TSIR

eij Conversion matrix elements to convert from polynomial to key rate basis functions

f t( ) Instantaneous forward rate as a function of time

fc Calculated forward rate as a function of time

fs Market expected forward rate as a function of time

gk Parameter representing the components of the term structure of interest rates or term 
structure of volatility

gi ith component of cash flow guarantee

Ki Contribution to duration of the ith term structure in key rate basis functions

L Number of basis functions for the term structure of volatility
M Market value
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n Count or number of cash flows
N Number of observations

NB Number of business days in a year

p Price
pc calculated or model price based on the term structure
pc i,  calculated price of security i
pj price of security j
Δpij change in price due to the change in the (i, j)th convexity
Δpk change in price due to the change in the kth component
pm market price plus accrued interest
pm i,  market price plus accrued interest for security i
pr price of a risky bond
pt  term structure price

qa Contribution to performance due to factor a

Q Recovery ratio of a defaulted bond as a fraction of its market price

rc Constant recovery rate of a defaulted bond as a fraction of its principal

ri Recovery rate for cash flow i

r t( ) Default rate per unit time at t

s Spread 
s spread over the term structure of interest rate for a security
s t( ) spot or credit spread as a function of time
sb spread of a bond or a security over its curve
sc calculated or implied spread or spot default probability
sd i,  spread of a credit (default-possible) security at ith cash flow 
sl i,  Libor spread of at ith cash flow.
ss spot or market observed spread, adjusted for convexity 

t Time
ti time to ith cash flow
tij time to ith cash flow of bond j in a portfolio or index
tm time to maturity
tin  time to inflation reference point for the cash flow at time ti

ui Face value weight of ith security in optimization for calculating the components of the 
TSIR

V Velocity or speed; cash flow per unit of time
v Volatility

vy relative yield volatility
vp price volatility

w Absolute yield volatility; equal to relative yield volatility times yield

wi Weight of ith security

X Overall convexity

Xkl Cross-convexity of the kth and lth components of the term structure of rates



xxii NOTATION

Trim:  170  x  244 mm FM.indd 03/31/2015 Page xxii

y Yield
yc credit yield 
yc i,  credit yield at time ti

yf  forward; modifies all other yields to forwards
yf c i, ,  forward credit at time ti

yi yield at time ti

yl i,  Libor yield at time ti

yl in,  Libor yield at inflation reference point for cash flow at time ti

yn i,  inflation yield at time ti

yr i,  real yield at time ti

ys i,  spot yield adjusted for convexity at time ti

ys c i, ,  spot credit yield at time ti

ys l i, ,  spot Libor yield at time ti

ys r i, ,  spot real yield at time ti

yt i,  term structure (calculated) yield at time ti

yt c i, ,  term structure credit yield at time ti

yx yield due to convexity
y( )0  short term yield
y( )∞  long term yield

Z Optimization function

Zi Derivative of the optimization function relative to the ith variable

Zλ Derivative of the optimization function relative to λ

Zij Second derivative of the optimization function relative to the (i, j)th variables

Ziλ Second derivative of the optimization function relative to the ith variable and λ

α Decay coefficient

αcf Decay coefficient estimated from cash flow

αdw Decay coefficient estimated from duration weighting

αpv Decay coefficient estimated from present value

β Market decay coefficient

Δi Optimization weight for calculating components of the TSIR

εv Absolute inflation volatility

zi ith basis function for the term structure of volatility

ηi ith orthogonal basis function

λ Lagrange multiplier

μ Fraction of a floating rate payment for a floating rate coupon bond

ϖ Vega, price sensitivity relative to yield volatility

ϖs Vega, price sensitivity relative to spread volatility

ρ(t) Survival probability of a risky bond by time t

ρuv Correlation coefficient between real rates and inflation expectations

σs Relative spread volatility

σu Relative real yield volatility

σv Relative inflation volatility
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σy Relative yield volatility

τ Time unit in the EDTF

τm Time to maturity in EDTF

φi ith forward rate basis function

χi ith KRD basis function 

χik ith KRD basis function evaluated at the maturity of the kth key rate

ψi ith basis function for the TSIR
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Fixed income management has become significantly more quantitative and competitive 
over the last 20 years or so, and the days where fund managers could make very large 
duration bets are mostly over. Most clients prefer portfolios with diversified sources of 
alpha and duration targets that are comparable to the risk profiles of their liabilities or 
their intended risk/return expectations. Developments of strategies that are quantifiable 
and repeatable are essential for the success of fixed income business. 

Understanding the factors that contribute to risk and return are essential, in order 
to structure a sound portfolio. Risk management and return attribution require the 
quantification of sources of risk and return and thus are math intensive. A portfolio 
manager who is familiar with linear programming can structure an optimum portfolio 
based on analysts’ recommendations, portfolios policies and guidelines as well as his 
own views of the markets that is likely to have a superior return than another portfolio 
of similar weights and risk profiles.

This book provides a comprehensive framework for the management of fixed 
income, both horizontally and vertically. It covers in detail all sectors of fixed income, 
including treasuries, mortgages, international bonds, swaps, inflation linked securities, 
credits and currencies and their respective derivatives. We develop a methodology for 
decomposing valuation metrics and risks into common components that can easily 
be understood and managed. Valuation, risk measurement and management, perfor-
mance attribution, hedging and cheap/rich analysis are the natural byproducts of the 
framework.

Nearly all the concepts in the book were developed out of necessity over more 
than 20 years as a fund manager at DuPont Capital Management, Putnam Investments, 
Banc of America Capital Management and Nuveen Investments. Even though the book 
is rich in theory and mathematical derivations, the primary focus is alpha generation, 
understanding valuations and exploiting market opportunities. 

The intended audience of the book includes the following:

 ▪ Portfolio managers – Throughout the book there are numerous strategies and valu-
ation formulas to help portfolio managers structure optimal portfolios and identify 
value opportunities without changing their intended risk profile.

 ▪ Analysts – Estimation of default probability and recovery value from market prices 
of securities as well as recovery adjusted yield and duration can help analysts com-
pare securities on a level playing field.

Preface
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 ▪ Traders – Throughout the book there are numerous examples of cheap/rich analysis 
of securities to help traders identify trading opportunities. Synthetic securities can 
be constructed when a security that provides the necessary exposure does not exist 
or is not available for trading.

 ▪ Hedge funds – There is coverage for nearly all liquid fixed income derivatives 
together with methods for the identification of value and hedging the risks of deriv-
atives. Several backtests demonstrate the efficacy of value identification and pro-
vide systematic approaches to long/short and leveraged strategies.

 ▪ Proprietary trading desks – There is broad coverage of risk decomposition and 
hedging for all securities and their derivatives, including credit securities and credit 
default swaps.

 ▪ Risk measurement/management – The risks of all securities are decomposed into 
components that can be separately measured or hedged by both the back office and 
portfolio managers.

 ▪ Performance attribution – Performance attribution and contribution at the security 
and portfolio levels for all asset classes and derivatives is performed using the same 
methodology. The performance of a treasury portfolio can be measured to within 1 
basis point on an annual basis, with similar accuracy for other sectors.

 ▪ Central bankers – The analysis of default probability and recovery for sovereign 
countries based on the traded price of their securities and precise calculations of 
the term structure of inflation expectations provide methods for the measurements 
of systemic risk in global markets.

 ▪ Academics – There are a few concepts covered in the book that have not been pub-
lished elsewhere, including:
 ▪ proof that long term yields cannot change;
 ▪ structural problems of swaps and why they are subject to arbitrage;
 ▪ why corporate bonds violate the efficient market hypothesis;
 ▪ real rates cannot have log-normal distribution.

 ▪ Finance and financial engineering textbook – This book can serve as an advanced 
book for graduate students in finance or financial engineering.

Many of the mathematical derivations are followed by practical examples or back-
tests to show how the analysis can be used to uncover value or measure risks in fixed 
income portfolios. 

This book assumes that the reader is familiar with basic fixed income securities and 
their analysis. Knowledge of calculus, linear algebra and matrix operations is necessary 
to follow many of the quantitative aspects of the book. Some of the math concepts that 
are not covered in calculus can be easily found in online sources such as Wikipedia, 
including Chebyshev polynomials, the gamma function, principal components analysis, 
and eigenvalues and eigenvectors.

Most of the derivations in the book are original and therefore only a few external 
references have been mentioned. For some areas that have been extensively studied in 
the market, we provide comprehensive coverage within our framework, including:

 ▪ Mortgage valuations – We provide very detailed measurements of sensitivity to 
the term structure of volatility and rates by matching volatility across its surface 
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precisely and using a method similar to a closed form solution. We show that hedg-
ing the volatility of mortgages requires multiple swaptions.

 ▪ Corporate bonds – We estimate the recovery value from the market price of securi-
ties and calculate the recovery adjusted spread and credit and interest rate dura-
tions. We show that option adjusted spread is not the best measure of value for 
corporate bonds.

 ▪ Bond futures – A self-consistent probability weighted method for the valuation and 
risk measurement is developed. The valuation result is used in backtests for long/
short strategies that produce very respectable information ratios.

 ▪ Inflation linked – The decomposition of risks of inflation linked bonds and infla-
tion swaps into the respective components of real and nominal along with seasonal 
adjustments provides very accurate hedging and valuations.

 ▪ Bond options – It is argued that Black-76 model is not arbitrage-free for bond 
options and we develop a model for pricing American bond options with the accu-
racy of a closed form solution, if one existed. In the options chapter we show that 
the most widely used platform to value American bond options is sometimes off by 
a factor of more than 2 at the time of this analysis.

The backbone of our framework is the term structure of rates, including inter-
est rates, real rates, swap rates (Libor), credit rates and volatility. Through principal 
components analysis we show that the market’s own modes of fluctuations of interest 
rates are nearly identical to the components of our term structure of interest rates. 
Essentially, our term structure model speaks the language of the markets. Thus, the 
model requires the minimum number of components to explain all changes in interest 
rates. Five components can price all zero coupon treasuries within 2 basis points (bps) 
of market rates. More importantly, a different number of components can be used for 
risk management than for valuation without loss of generality. Exact pricing of all 
interest rate swaps that is provided by our methodology can be used for valuation of 
swap transactions.

The components of the term structure model represent weakly correlated sectors 
of the yield curve and can be used for structuring and risk measurement of portfolios. 
The first component, level, is associated with the duration of the portfolio. The second 
component, slope, is associated with the flattening/steepening structure and can be used 
to structure a barbell trade. The third component, bend, represents the exposure of a 
portfolio at the long and short ends relative to the middle of the curve and is used to 
structure a butterfly trade.

Valuation metrics along with the term structure durations for the identification of 
sources of alpha and risk are provided for all asset classes. We introduce the concept of 
partial yields as a way to decompose the contribution of different sectors to the yield 
of a portfolio. It is not reasonable to aggregate the yield of a security that has a high 
probability of default in a portfolio, since the resulting portfolio yield is not likely to 
be realized. Partial yield addresses this issue, by calculating the default probability and 
decomposing the yield into components that can be used to aggregate a portfolio’s 
yield.

The valuation metrics and term structure durations along with linear programming 
provide tools for portfolio construction at the security level. This is also known as the 
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bottom-up approach to portfolio construction and is useful for daily maintenance of a 
portfolio. Sector allocations and analysis of the portfolio’s mix of assets and durations 
and correlation among different asset classes are the subject of the top-down method 
of portfolio construction in fixed income. The two methods are complementary to each 
other; however, top-down is usually analyzed on a monthly or quarterly basis.

There is a step-by-step outline of building a spreadsheet based tool for design-
ing new products or maintaining an existing portfolio. This tool provides the tracking 
error, marginal contribution to risk, and can be used for what-if analysis or to see how 
the portfolio would have performed during prior financial crises or how additions of 
new asset classes or sectors alter the risk profile of the portfolio. There is also a method 
to identify the structure of the competitive universe and design a product that could 
compete in that space. 

We have provided detailed steps and formulation for the implementation of the 
framework that is outlined in the book. Many of the components can be built in spread-
sheets; however, reliable and efficient analytics require the development of the necessary 
tools as separate programs. The benefits of such a framework and the potential perfor-
mance improvements significantly outweigh its development costs. 
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You might think that following some of the seven hundred or so formulas in the book 
is not a trivial task, let alone deriving them. Kris Kowal, Managing Director and Chief 
Investment Officer of DuPont Capital Management, Fixed Income Division, offered to 
review the manuscript and re-derive nearly all the formulas in the book. Kris provided 
numerous helpful suggestions and comments that were instrumental in reshaping the 
book into its present form. In many cases, following Kris’s recommendations addi-
tional steps were added to the derivations to make it easier for the reader to follow. 
Thanks Kris.
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In 1998, shortly after arriving at Putnam Investments, Saied Simozar began work on a 
model for the term structure of interest rates that was to become a cornerstone of an 
entire complex of portfolio management tools and infrastructure. It was fortuitous tim-
ing because that rate model had the dual benefits of being derived through current mar-
ket pricing structure (rather than historical regressions) and the flexibility to quickly 
incorporate new security types.

The late 1990s marked something of a sea change in the fixed income markets. The 
years leading up to that period had been defined by big global themes and trends like 
receding global inflation rates and the development of out of benchmark sectors like 
high yield corporate bonds and emerging market debt, as well as global interest rate 
convergence under the nascent stages of European Monetary Union. Under these broad 
trends, return opportunities, portfolio positioning, and risk could easily be character-
ized in terms of duration and sector allocation percentages.

Much of that changed in 1998 when the combination of increasingly complex secu-
rity types, rapid globalization of financial markets, and large mobile pools of capital 
set the stage for a series of rolling financial crises that rocked global financial markets 
and eventually led to the collapse of one of the most sophisticated hedge funds of that 
era – Long Term Capital Management. In the aftermath, it became clear that traditional 
methods of monitoring portfolio positioning and risk were insufficient to manage all 
the moving parts in modern fixed income portfolios.

Fortuitously, that term model (and the portfolio management tools built around 
it) allowed Putnam to effectively navigate through that financial storm. Perhaps more 
importantly, it provided the basis for an infrastructure that could easily adapt and 
change with the ever evolving fixed income landscape. Today, while many of the origi-
nal components of that infrastructure have been augmented and updated, the basic 
tenants of the philosophical approach remains in place.

In his book, Saied lays out a blueprint for a set of integrated tools that can be used in 
all aspects of fixed income portfolio management from term structure positioning, analy-
sis of spread product, security valuation, risk measurement, and performance attribution. 
While the work is firmly grounded in mathematical theory, it is conceptually intuitive and 
imminently practical to implement. Whether you are currently involved in the manage-
ment of fixed income portfolios or are looking to get a better understanding of all the 
inherent complexities, you won’t find a more comprehensive and flexible approach.

D. William Kohli
Co-Head of Fixed Income

Putnam Investments

Foreword 
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xxxv

One of the keys to managing investment portfolios is identification and measurement 
of sources of risk and return. In fixed income, the most important source is the move-
ment of interest rates. Even though changes in interest rates at different maturities are 
not perfectly correlated, diversifying a portfolio across the maturity spectrum will not 
lead to interest rate risk reduction. In general, a portfolio of one security that matches 
the duration of a benchmark tends to have a lower tracking error with the benchmark 
than a well-diversified portfolio that ignores duration.

Historically, portfolio managers have used Macaulay or modified duration to 
measure the sensitivity of a portfolio to changes in interest rates. With the increased 
efficiency of the markets and clients’ demands for better risk measurement and manage-
ment, several approaches for modeling the movements of the term structure of interest 
rates (TSIR) have been introduced.

A few TSIR models are based on theoretical considerations and have focused on 
the time evolution or stochastic nature of interest rates. These models have traditionally 
been used for building interest rate trees and for pricing contingent claims. For a review 
of these models, see Boero and Torricelli [1].

Another class of TSIR models is based on parametric variables, which may or may 
not have a theoretical basis, and their primary emphasis is to explain the shape of the 
TSIR. An analytical solution of the theoretical models would also lead to a parametric 
solution of the TSIR; see Ferguson and Raymar for a review [2]. Parametric models can 
be easily used for risk management and they almost always lead to an improvement 
over the traditional duration measurement. Willner [3] has applied the term structure 
model proposed by Nelson and Siegel [4] to measure level, slope and curvature dura-
tions of securities.

Key rate duration (KRD) proposed by Ho [5] is another attempt to account for 
non-parallel movements of the TSIR. A major shortcoming of KRD is that the optimum 
number and maturity of key rates are not known, and often on-the-run treasuries are 
used for this purpose. Additionally, key rates tend to have very high correlations with 
one another, especially at long maturities, and it is difficult to attach much significance 
to individual KRDs. The most important feature of KRD is that the duration contribu-
tion of a key rate represents the correct hedge for that part of the curve.

Another approach that has recently received some attention for risk management 
is the principal components analysis (PCA) developed by Litterman and Scheinkman 
[6]. In PCA, the most significant components of the yield curve movements are calcu-
lated through the statistical analysis of historical yields at various maturities. A very 

Introduction
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attractive feature of principal components, as far as risk management is concerned, is 
that they are orthogonal to each other (on the basis of historical data). The first three 
components of PCA usually account for more than 98% of the movements of the yield 
curve.

Another class of yield curve models is based on splines. Cubic splines are widely 
used for fitting the yield curve and are useful for valuation purposes, to the extent that 
the yield curve is smooth. Cubic splines can be unstable, especially if the number of 
bonds is relatively low. For a review of different yield curve models, see Advanced Fixed 
Income Analysis by Moorad Choudhry [7].

All of the above models are useful either for risk management or pricing, but not 
for both. For portfolio management applications, it is quite difficult to translate either 
KRDs or PCA durations into positions in a portfolio. Likewise, it is not straightforward 
to convert valuations from a cubic spline curve into risk metrics. For global portfolios, 
it would be impossible to compare the relative value of securities or the cheapness/rich-
ness of the areas of global yield curves using KRDs, PCA or cubic splines. Each currency 
requires a separate PCA, which in turn requires the availability of historical data.

In this book we will develop a market driven framework for fixed income manage-
ment that addresses all aspects of fixed income portfolio management, including risk 
measurement, performance attribution, security selection, trading, hedging and analysis 
of spread products. For risk management, the model is as accurate as PCA and its first 
three components are very similar to those of PCA. For trading and hedging, the model 
can be easily transformed into KRDs. This framework has been successfully applied to 
the management of global portfolios, risk measurement and management, credit and 
emerging markets securities, derivatives, mortgage bonds and prepayment models, and 
for the construction of replicating portfolios.

The movements of interest rates are decomposed into components that are weakly 
correlated with each other and can be viewed as independent and diversifying compo-
nents of a fixed income portfolio strategy. These interest rate components can be viewed 
as different sectors of the treasury curve. However, TSIR components tend to be more 
weakly correlated with one another in the medium term horizon than typical sectors of 
the equity market and therefore can offer better diversification potential.

First, we develop a parametric term structure model that can price the treasury 
curve very accurately. The model is highly flexible and stable and its movements are 
very intuitive. The components of the model represent the modes of fluctuations of the 
yield curve, namely, level, slope, bend etc. and in well behaved markets all bonds can be 
priced with an average error of less than 2 bps. The components of the yield curve or 
the basis functions, as we call them, can be converted to other basis functions such as 
Key Rate components. We will also compare the components of our model to PCA and 
to an economic indicator.

The model is then applied to risk measurement and management for treasuries. 
The components of the term structure directly translate into trades that fixed income 
practitioners are accustomed to such as bullets, barbells and butterfly trades of the yield 
curve. The level duration of a portfolio measures the net duration or bullet duration, 
while the slope duration measures the barbell strategies and bend duration measures 
the butterfly strategies. We also compare historical data using different basis functions.

In the performance attribution section, we show that the performance of a trea-
sury portfolio can be measured with an accuracy of less than 1 basis point per year, by 
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decomposing performance yield, duration and convexity and security selection com-
ponents. We will further delineate the difference between various representations of 
the yield curve and provide some evidence associated with the weaknesses of Key Rate 
basis functions.

A few characteristics of the TSIR model are as follows:

 ▪ It is driven by current market prices and accurately prices treasuries using only five 
parameters.

 ▪ Risk measurement and portfolio replication do not require a historical correlation 
matrix for a country where the information is not available.

 ▪ Risk management, valuation, performance attribution and portfolio management 
can be integrated.

 ▪ It can be easily expanded if a higher number of components are desired without 
changing the value of primary components significantly.

 ▪ It is intuitive, is easy to use, implement and manipulate. Its components are readily 
identified with portfolio positions of duration, flattening/steepening, butterfly, etc.

 ▪ It is flexible and can be easily applied to mortgage prepayment models, emerging 
markets, multi-currency portfolios, inflation linked bonds, derivatives analysis, etc.

 ▪ It can be used as an indicator of relative value or relative curve positions in a con-
sistent way across currencies and credits.

 ▪ The model is easily applied to all global rates, term structure of Libor, term struc-
ture of real rates and term structure of credit rates.

 ▪ The model is very stable and, unlike cubic splines, can be easily differentiated mul-
tiple times if necessary.

Throughout this book we have provided detailed examples of the applications of 
our model to risk measurement, performance attribution and portfolio management. 
We first introduce the concept of linear and non-linear time space and then construct 
the components of our term structure model and forward rates. Next, we derive dura-
tion and convexity components and calculate performance attribution from duration 
components.

In Chapter 6 Libor and interest rate swaps are covered and the model is applied to 
the term structure of Libor rates. It is shown that interest rate swaps have a structural 
problem that makes them subject to arbitrage. In Chapters 7 and 8 trading and portfo-
lio optimization and security selection are examined. In Chapter 9 a model for the term 
structure of volatility surface is developed, and in Chapter 10 the effects of convexity 
and volatility on the shape of the TSIR are analyzed and the convexity adjusted TSIR 
model is developed. The convexity adjustment to eurodollar futures is also covered and 
potential arbitrage opportunities are pointed out. In Chapter 11 there is a very detailed 
and precise coverage of inflation linked bonds along with the application of the term 
structure of real rates to global inflation linked bonds as well as inflation swaps.

In Chapter 12 credit securities are analyzed and the term structure of credit rates 
(TSCR) with its application to performance attribution and risk measurement is ana-
lyzed. In Chapter 13 default and recovery or cash flow guarantees of credit securities 
are analyzed and for the first time the TSCR is used to estimate the market implied 
recovery rate. The application of the TSCR to credit default swaps and construction of 
performance attribution for complex portfolios are also analyzed in this chapter.
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Analysis of global bond futures and their hedging, replication, arbitrage and perfor-
mance attribution are covered in Chapter 14. Bond options and callable bonds are cov-
ered in Chapter 15 along with a very detailed analysis of American bond options with 
accuracy approaching closed form solutions. The weaknesses of the Black-76 model are 
pointed out and the model is applied to corporate bond options and exotic securities. It 
is shown that credit bond prices cannot follow the efficient market hypothesis and there 
are long term opportunities in the credit markets for fund managers.

In Chapter 16 currencies as an asset class along with their options and futures are 
covered and models to take advantage of currencies in a portfolio are explored. Chap-
ters 17 and 18 cover the application of the TSIR to prepayments and development of 
mortgage analysis. In Chapter 19 product design and portfolio construction are covered 
and a method is developed to analyze the competitive universe of a bond fund. Chapter 
20 covers detailed mathematical derivations of the parameters of the TSIR and TSCR 
and estimation of recovery value, and Chapter 21 covers implementation notes and 
short-cuts. 
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CHAPTER 1
Review of Market Analytics

This chapter reviews some of the basic analytics for fixed income securities and pro-
vides evidence for the inadequacies of the existing models. The simplest and most 

straightforward fixed income instrument is a bond. A bond is a security that pays inter-
est at prescribed intervals, called coupon dates, and pays back the principal and final 
coupon on the maturity date.

Consider a company or a government that borrows $100 million for a period of 
5 years at a rate of 7% per year payable at semi-annual intervals. The borrower, also 
known as the bond issuer, will have to make coupon payments equal to 3.5% of the 
borrowed amount or $3.5 million every 6 months to lenders, also known as bond hold-
ers or investors. At the end of 5 years, the borrower pays $3.5 million of interest plus 
the $100 million principal back to the lenders.

The above example is a typical bond, where the borrower, unlike mortgage bor-
rowers, cannot pay back the principal earlier than scheduled. The bond holder can usu-
ally sell the bond in the secondary market and receive a fair price for it.

The primary risk of a bond holder, other than default, is a rise in interest rates. If 
inflation expectations increase, bond investors demand higher interest rates to compen-
sate them for anticipated inflation that will lower their future buying power. Likewise, 
if inflationary expectations fall, interest rates are likely to fall as well. During rapid 
economic growth, demand for money rises, which can lead to higher interest rates. 
During recessions or low economic activity, demand for money falls, usually resulting 
in lower interest rates. 

1.1 BOND VALUATION

If interest rates fall, the value of an existing bond increases since investors will pay a 
premium price for a bond that has a higher coupon payment than a newly issued bond 
with a lower coupon. This brings us to the simplest and most fundamental of all pricing 
formulas in the fixed income market, namely the present value of a bond, defined with 
a principal amount of 100 as
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where p is the present value of the bond, ym is the market yield or effective interest 
rate of the bond, m  is the frequency of coupon payment (if the bond pays semi-
annual interest, then m = 2, if it pays quarterly, then m = 4), c is the periodic coupon 
payment, and n is the number of interest payments. It can be easily shown that if the 
present value of the bond on issue date is equal to 100, then the following relation-
ship holds: 

c
y
m
m= 100 (1.2) 

In our prior example, the semi-annual coupon payment per 100 of principal would be 
3.5. Inserting this value for c, and using m = 2, leads to a yield of 0.07 or 7%. Thus, 
on issue date, the yield of a bond priced at 100 (par) is equal to the annual coupon 
payment of the bond per 100 principal amount divided by 100. At all other times, the 
price/yield function of a bond is a little more complicated. 

Nearly all bonds in the market are traded on the basis of what is known as the clean 
price. The clean price does not include the amount of interest that has been accrued 
but not paid to the bond holder. Accrued interest is the pro rata share of the next cou-
pon payment that is due the seller at the time of the trade settlement. In our previous 
example, if after 3 months the bond holder sells his bonds, then the buyer has to pay 
half of the next coupon payment to the seller for holding the bonds for half the period 
of coupon payment.

Different bond markets have different conventions on how the accrued interest 
is calculated. Accrued interest for US treasuries is calculated on an actual/actual basis 
with semi-annual payments. For example, a bond that pays coupon on February 15 and 
August 15, if it is purchased on March 15 of a non-leap year, the amount of accrued 
interest would be calculated by the ratio 28/181 multiplied by the amount of semi-
annual coupon payment. This ratio is the number of days between February 15 and 
March 15 (28) divided by the number of days in the period between February 15 and 
August 15 (181).

Corporate or agency bond markets use the 30/360 convention, implying that a 
month is 30 days and a year is 360. In the above example, the number of days between 
February 15 and March 15 would be 30 and the number of days from February 15 to 
August 15 would be 180.

If we denote the fractional accrual period by x, our present value formula will 
change to
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In this equation, 1 − x is the fractional period to the next cash flow or coupon payment. 
We can convert it to the fraction of a year by multiplying it by m. Thus, 

p xc
c

y m y mm
mt

m
mt

i

n

i n
+ =

+( )
+

+( )=
∑

1

100

11

(1.4)



Review of Market Analytics 3

c01.indd 03/24/2015 Page 3Trim:  170  x  244 mm 

If we denote the cash flow at time ti by ci and the invoice price by pm, we can simplify 
the above equation to
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Equation (1.5) is a generalization of (1.4) and allows for cash flows to be different. 
It can be used for bonds with step coupons or sinking or capitalizing principals. As can 
be seen, the market yield of a security depends on the accrual frequency. For example, 
German government bonds (Bunds) accrue on an annual basis while US treasuries pay 
coupon semi-annually. If you buy 100 units of a Bund at a yield of 6%, after 1 year the 
value of principal and interest will be 106. For US treasuries with the same yield, there 
is a semi-annual interest payment of 3%, which if reinvested at the same rate will result 
in 106.09. The effective yield of the US treasury is 6.09%. We therefore need to analyze 
all bonds on the same footing to be able to make fair comparisons.

1.2 SIMPLE BOND ANALYTICS

A problem that bond managers are faced with on a regular basis is the impact of 
changes in interest rates on the price of a bond. For a small change in interest rates, we 
can expand the pricing function using Taylor series as follows:
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After some simplification, the first term in the expansion is
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The expression within the summation is the weighted average time to future cash flows 
multiplied by the price and is called the Macaulay duration. The negative sign implies 
that the price of bonds falls if interest rates rise. The modified duration of a bond is 
defined as
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where D is the Macaulay duration of the bond. Modified duration measures the price 
sensitivity of a bond to changes in interest rates. For example, if the modified dura-
tion of a bond that is priced at 104 is 11 years, for a change of 10 bps in interest rates 
(10/10,000 = 0.001 = 0.1%), the change in the price of the bond is expected to be 
0.001 × 11 × 104 = 1.144.
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The second order term in (1.6) can be simplified to
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(1.9)

This expression, denoting convexity multiplied by price, is always positive for bonds 
with fixed coupon payments. Market yield, modified duration, and convexity of bonds 
depend on coupon frequency and therefore cannot be used to compare bonds with 
different coupon frequencies. For example, the duration of a corporate bond that pays 
quarterly coupons cannot be combined with the duration of a treasury bond that pays 
semi-annually in a portfolio. We need to do all the calculations using the same accrual 
convention. Our solution is to use a continuously compounded framework. 

Consider a bond with principal continuously growing at a rate of y per year. The 
change in the principal after a short time dt is

dp pydt= (1.10)

Integrating the above equation leads to

p p eyt= 0 (1.11)

where p is the future value of an initial investment of p0. Likewise, the present value of 
a future cash flow p will be

p pe yt
0 = − (1.12)

The present value of a number of cash flows discounted by the same yield will be

p c ei yt

i

n

i= −

=
∑

1

(1.13)

Comparing (1.13) with (1.5), we find that they are identical if we make the following 
substitutions:
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We can derive the continuously compounded yield and durations in the limit as 
m → ∞ :

lim lim
m

m
m

m

y yy
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e em

→∞ →∞
+
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⎝
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⎞
⎠
⎟⎟⎟ = =1 (1.15)
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In the continuously compounded framework, duration (D) and convexity (X) become 
much simpler to handle, and modified duration and Macaulay duration converge to the 
same value:

D
p

c t ei i
yt

i

n

i= −

=
∑1

1

(1.16)

X
p

c t ei i
yt

i

n

i= −

=
∑1 2

1

(1.17)

The change in the price of a security due to a small change in its yield in the continu-
ously compounded framework is

Δ Δ Δp pD y pX y= − + ( ) +
1
2

2 … (1.18)

1.3 PORTFOLIO ANALYTICS

A bond portfolio can be composed of many bonds along the maturity, credit quality, 
and currency spectrums. For regulatory, policy, or strategy purposes, the portfolio man-
ager needs to know the duration of the portfolio. Since different market sectors may 
have different coupon frequencies, it is important that all calculations for the duration 
be done on a consistent basis. 

Most bond portfolios are managed against a benchmark. The benchmark can be an 
index or it can be the peer group. In the cases of indices, such as the Barclays Aggregate 
Bond Index, the composition of the index is known on or before the last business day 
of a month for the following month. Portfolio managers can adjust the duration of the 
portfolio in relation to the changes in the duration of the index. A benchmark can be a 
peer group where the duration of the benchmark cannot be measured, but can be esti-
mated through market movements. We will cover this issue in more detail in Chapter 19.

Before we calculate the duration of a portfolio, we introduce the concept of the 
value of a basis point (VBP) or dollar value of a basis point (DV01), which is the change 
in the market value of a portfolio resulting from the change of 1 basis point in the level 
of interest rates: 

VBP DV
M D

j j
j j= =01

10 000,
(1.19)

where Mj and Dj are the market value and duration of a bond j in the portfolio. Con-
sider a portfolio of N securities, each with multiple cash flows. The total market value 
of the portfolio can be written as 

M w p w c ej j

j

N

j

j

N

ij
y t

i

j ij= =
= =
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1 1

(1.20)
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where pj is the price of security j, wj is the weight or face amount of security j, cij is 
the ith cash flow of security j and tij is the time to that cash flow. For a small uniform 
change in the yield of all bonds in the portfolio, it can easily be shown that the change 
in the market value will be

Δ Δ ΔM w p D y M D yj j j

j

N

j j

j

N

= − = −
= =

∑ ∑
1 1

(1.21)

Alternatively,

Δ Δ ΔM y VBP yVBPj

j

N

= − = −
=

∑10 000 10 000
1

, , (1.22)

If D is the duration of the portfolio, the change in market value for a change of Δy  in 
yield will be

Δ ΔM DM y= − (1.23)

The duration of the portfolio is

D
M

w p D
M

M D
VBP

Mj j j

j

n

j j

j

n

= = =
= =

∑ ∑1 1
10 000

1 1

, (1.24)

Thus, the duration of a portfolio is the market value weighted sum of the duration of 
all bonds in the portfolio. Alternatively, the duration of a portfolio is the sum of all the 
VBPs divided by the market value and multiplied by 10,000. 

To estimate the yield of the portfolio, we note that the market value of the portfolio 
can be calculated by discounting all bonds in the portfolio by their respective yields or 
by discounting all the cash flows in the portfolio by the portfolio yield:

M w c e w c ej
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j

j
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ij j ij= =∑ ∑ ∑ ∑− −
(1.25)

where y is the overall yield of the portfolio and yj is the yield of bond j. Subtracting the 
summations and expanding the resulting difference by Taylor series and retaining only 
the first two components leads to

0 1= −( ) ≈ −( )∑ ∑ ∑− − −( ) −w c e e w c e y y tj
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The portfolio yield can now be calculated:
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The yield of a portfolio as calculated by (1.27) can be significantly different from the 
market value weighted yield in a non-flat yield curve environment.

The conventional duration of a portfolio also requires some adjustments in a non-
flat yield curve environment. If M and D are the market value and duration of a portfo-
lio respectively, and Dj and Xi are the duration and convexity of a security, then 

MD M D w c t e

w c t e

j j

j

j

j

ij ij
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j

j

j

ij ij
y t y y t

i

ij

j ij j ij

= =

=
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∑ ∑
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− − −( )
(1.28)

Expanding the summation using Taylor series and keeping only the first two compo-
nents leads to

MD w p D w y y p Xj j j

j

j j j j

j

≈ + −∑ ∑ ( ) (1.29)

For a portfolio of two zero coupon bonds, (1.29) simplifies to

MD M D M D
M D M D y y D D

M D M D
= + +

− −
+1 1 2 2

1 1 2 2 2 1 2 1

1 1 2 22
( )( )

( )
(1.30)

TABLE 1.1 Yield and duration of a portfolio

Line Instrument Duration Yield Face Price Market Value

1 A  2.00 1.000% 10,202,013 98.020 10,000,000

2 B 18.00 4.000% 20,544,332 48.675 10,000,000

3 Average 10.00 2.500% 20,000,000

4 Duration Weighted 10.43 3.700% 20,000,000

5 A + B One Security 10.42 3.714% 20,000,000

6 A + B Two Securities 10.00 3.700% 20,000,000

Table 1.1 shows an example of the yield and duration of a portfolio of two zero 
coupon bonds. The market value weighted yield of the portfolio is 2.5% (line 3) which 
is significantly below the actual yield (3.714%). The actual yield is calculated by itera-
tively finding the yield that correctly reproduces the market value of the portfolio. The 
duration weighted yield on line 4 (3.7%) is very close to the actual yield of the portfolio 
in line 5.

The correct method for calculating the duration of A + B as one security is by discount-
ing each cash flow by its respective discount yield and then summing the contributions 
from all cash flows, resulting in a duration of 10 years. Calculating the duration of the 
combined securities by discounting all the cash flows by a yield of 3.714% on line 5 will 
result in a duration measurement that is off by about 0.42 years from the correct duration. 
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The weighted duration calculated from equation (1.30), shown on line 4, is very close to 
the market convention duration of the combined securities. 

When we combine two securities into one, in a steep yield curve environment, the 
yield of the combined security will be lower than the yield of the longer duration secu-
rity. Therefore, the market value of the longer duration security will be higher than if it 
was discounted by its correct yield. On the other hand, the market value of the shorter 
duration security will be lower than its actual market value, resulting in the market 
value of the combined security being equal to the sum of individual securities. In the 
combined security, the calculated duration is overestimated in a steep yield curve envi-
ronment and underestimated in an inverted yield curve environment. 

This example suggests that the duration of a 20-year coupon bond, in a steep yield 
curve environment, will be higher than the duration of a portfolio of zero coupon 
bonds with exactly the same cash flows. The correct method for calculating the dura-
tion of a portfolio is to discount all cash flows by their actual discount yield. In our 
example, the correct duration for the portfolio is the market value weighted average, 
which is equal to 10 years.

Since in a steep yield curve environment the durations of all bonds are overesti-
mated, a portfolio manager who structures a portfolio using zero coupon bonds is likely 
to construct a portfolio that is longer than he desires for the respective index. Portfolios 
composed of coupon bonds will also overestimate the duration and the two overesti-
mates offset each other. In 2012, the duration of the Barclays Treasury Bond Index was 
overestimated by about 0.09 years. This is a much larger uncertainty than most portfolio 
managers are willing to accept and is the extra duration that a portfolio manager who 
uses zero coupon bonds will have in his portfolio. For example, if the duration of the 
benchmark is 5.6 years and the portfolio manager desires to be long 0.20 years, he will 
target a duration of 5.8 years and rebalance at the end of the month when the index 
changes or when a transaction takes place to maintain 0.20 years’ relative duration.

The mismatch in duration measurement can be significantly larger for credit secu-
rities, in particular high yield and emerging markets and at times when the spreads 
widen. We will see in Section 12.4 that the duration mismatch for credit securities can 
be longer than 1 year and hedging with coupon securities will not offset the duration 
mismatch. Using modified duration, the duration mismatch will be even larger, since the 
duration is scaled by the yield, which is larger for zero coupon bonds in a steep yield 
curve environment than the combined durations of the security.

1.4 KEY RATE DURATIONS

Key rate duration, proposed by Ho [5], is an attempt to measure the risks of a portfolio 
across the yield curve. The key rate is usually referred to a very liquid security such as 
an on-the-run treasury. Usually the yield curve is broken into about 10 duration buck-
ets, each representing one key rate. The most widely used key rates are the 6 month,  
1 year, 2, 3, 4, 5, 7, 10, 20, and 30 year points on the curve. To calculate the exposure 
of a security to a key rate, the yield of the security is shifted at the respective key rate by 
a small amount, while maintaining all other key rates constant, and the impact of the 
changes in the price of the security is calculated. The yield shift is linearly interpolated 
between the key rate and the preceding or following key rates. For example, to calculate 
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the 5-year key rate duration of a security, if we shift the 5-year yield by 10 bps, the shift 
for a cash flow that is at 5.50 years will be

7 5 5
7 5

10 7 5
−
−

=
.

. bps

While key rates address the exposure of a portfolio to different parts of the curve, 
they have many shortcomings for complex securities and some derivatives. Addition-
ally, they do not address the incorrect duration calculation that was mentioned in the 
previous section. Table 1.2 lists the KRDs of the combined security that was shown in 
Table 1.1 along with the correct KRDs based on individual securities.

TABLE 1.2 Key rate duration of a portfolio

Key Rate Combined KRD Individual KRD

2.00 0.947 1.000

10.00 1.895 1.800

20.00 7.580 7.200

10.423 10.000

Key rate duration is a good measure of the risk of a security or a portfolio to 
interest rates. However, the curve exposure of credit and inflation linked securities and 
many derivatives is either not measured by key rates or the exposure cannot be used 
effectively. For example, knowing ten key rate credit durations of a security is not useful 
for hedging its risks. 

One of the biggest shortcomings of the KRD is its relation to performance attribu-
tion and return calculation. To calculate the performance of a security from its KRDs, 
we need to multiply the changes in the key rates by the respective durations. This implies 
that we must have an unbiased measurement of the change in the yields of the key rates. 
On-the-run securities, due to their liquidity, are often very rich relative to the rest of 
the treasury market and cannot be used as unbiased indicators of the level of interest 
rates at a given maturity. As on-the-run securities season, they underperform the rest 
of the market. For example, if the yield of a newly issued 10-year bond with 8 years of 
duration is 5 bps below the previously issued 10-year bond, over time, as its yield nor-
malizes, it will have a negative cumulative performance of 0.0005 × 8 = 0.4%. Thus, a 
security whose yield does not change will benefit from an apparent gain in performance 
as a result of the underperformance of the key rate security. Therefore, the use of KRDs 
requires calculation of a smoothed curve for the treasury market. The smoothed curve 
has to be derived from a pool of treasuries that do not have a liquidity premium and 
thus cannot include on-the-run securities.

Positive relative KRDs can also be an issue for a portfolio that cannot use deriva-
tives. If the relative exposure of a portfolio at the 10-year part of the curve is –0.2 years, 
it can be hedged by buying 0.2 years of the 10-year zero coupon bond. However, if the 
portfolio is long duration, then selling 0.2 years of the 10-year zero coupon bond may 
not be practical if it is not already part of the portfolio, without changing the structure 
of the portfolio.
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Since KRDs are based on localized changes in the yield curve, it is very difficult 
to compare competing trades that have similar goals. For example, there is no way 
to compare a barbell trade that is overweight 10-year, underweight 2-year treasuries 
with a similar trade that is overweight 20-year, underweight 2-year treasuries. Similarly, 
there is no way to compare a 2–5–10-year butterfly trade with a 2–10–30-year but-
terfly. Hedging the risks of credit securities where only a few bonds are available is not 
practical by using key rate credit exposures. Some derivative securities can have interest 
rate exposures that require treasuries that are longer than 30 years for their effective 
hedging. Likewise, long dated inflation linked bonds have a small exposure to nominal 
rates due to the inflation lag which may require longer than 30-year treasuries for their 
hedging.

Linear time interpolation of key rates can be a source of overestimation or under-
estimation of duration at some key rates. The correlation between 2-year and 4-year 
rates (2, 4) is significantly lower than the correlation between (18, 20). For a constant 
difference in the maturity of two key rates, the longer their maturity, the higher their 
correlation is. Historical correlation of (18,  20) rates is very similar to correlations 
of (2, 2.25) year maturities. Similarly, the correlation between (18, 20) is higher than 
the correlations between (10, 12), (12, 14), (14, 16), and (16, 18) maturities. We now 
return to the above example and calculate the 20-year KRD of the combined security 
in Table 1.2. We assumed that for a change of 5 bps in the yield of the 20-year key rate, 
the yield of the 18-year cash flow changed proportionally by 18 10

20 10 5 4−
− × = bps. Like-

wise, for a change of 5 bps in the yield of the 10-year key rate, the yield of the same 
cash flow changed by 20 18

20 10 5 1−
− × =  basis point. Based on our argument, for a change 

of 5 bps in the yield of the 20-year key rate, the change in the yield of the 18-year cash 
flow should be slightly higher than 4 bps due to its higher correlation. Assume that for 
a change of 5 bps in the yields of 20-year and 10-year key rates, the yield of the cash 
flow at 18 years changes by respectively 4.2 and 0.8 bps (their sum has to add up to 5 
bps). Based on this change the 10- and 20-year KRDs in Table 1.2 would change to 1.44 
and 7.56 respectively, resulting in a lower exposure to the 10-year rate, as we suspected. 
We will review this issue in more detail in Section 4.5 and show that the KRD based 
on the term structure of rates provides a better hedge than ordinary KRDs. In Section 
8.3 we will see that only five components of duration provide the same tracking error 
as ten KRDs. Additionally, KRD can have unintended performance biases which could 
adversely affect a portfolio. Fewer duration components provides flexibility to enhance 
performance by hedging in both long or short portfolios. 
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Term Structure of Rates

In the previous chapter, we briefly discussed some of the shortcomings of the traditional 
measurements of risk and return in the treasury markets. Analysis of more complex 

fixed income instruments such as options and futures, credit products and mortgages 
requires more elaborate mathematical analysis and cannot be handled using the simple 
price/yield formulas. As we discussed previously, the result of yield or duration calcula-
tion of a portfolio was path dependent, that is, the calculated yield and duration were 
different if we treated all cash flows as one security or calculated the yield and dura-
tion for each cash flow separately and then combined the results. The primary reason 
for this path dependency was the use of different discount yields in one path versus 
another. Our primary objective in this chapter is to develop a term structure of interest 
rates (TSIR) model that provides a basis for discounting all cash flows at the correct 
discount yield. We will then provide examples of market derived yield curves based on 
our methodology.

2.1 LINEAR AND NON-LINEAR SPACE

Perhaps the most important issue in developing a TSIR model is the choice of reference 
frame. To motivate the development of a logical reference frame, we will compare an 
investment instrument to a pedestrian.

Consider a fixed income instrument that pays or receives a constant cash flow of 
c at regular intervals such as a fixed rate bond or a home mortgage loan. Likewise, 
consider a pedestrian who walks with a uniform step size of c. After n steps, the sum of 
cash flows or the traveled distance for the pedestrian is

D cn= (2.1)

CHAPTER 2

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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Since long term cash flows are worth less than near term ones, the value of cash flows 
is different from the sum of cash flows. Using a continuous compounding method, we 
can calculate the present value of cash flows discounted by a yield of y as

p ce yt

i

n

i= −

=
∑

1

(2.2)

Equations (2.1) and (2.2) are examples of discrete processes. We can also write equiva-
lent equations in a continuous form. If the pedestrian walks at a speed of v per unit of 
time or a fixed income instrument has a cash flow of v per unit of time, we can write 
(2.1) as either

D vt= (2.3)

or

D v dt
t

= ∫0
(2.4)

Likewise, (2.2) can be written as

p ve dtyt
t

= −∫0
(2.5)

Equation (2.4) is the integral form of (2.3); for our example (2.3) and (2.4) are identical. 
The most important difference between (2.4) and (2.5) is that (2.4) is linear and (2.5) is 
non-linear (exponentially decaying). The marginal value of a step in the linear case is the 
same whether it is at the beginning of the walk process or at the end of it. On the other 
hand, the marginal value of a cash flow in the future is less than the present cash flow.

Let us define the function u as 

u
y

e yt=
− −1

(2.6)

so that

du e dtyt= − (2.7)

By substituting the integrand in (2.5) using (2.7), we have

p v du
t

= ∫0
(2.8)

The similarity between (2.8) and (2.4) is striking. Equation (2.4) is linear in the normal 
time space t, while (2.8) is linear in the exponentially decaying time space u. The mar-
ginal value of a cash flow, such as an interest payment, is an exponentially decaying 
function of time; however, it is linear in the exponentially decaying time frame. On this 
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basis, we expect measuring the yield level would also have a closer linear  relationship 
in an exponentially decaying time frame (EDTF) than in a linear time frame.

If we use a normal time frame to model the TSIR, all areas of the yield curve will be 
given similar significance, while in practice the front end of the yield curve tends to have 
much more structure and importance than the long end. The concentration of cash flows, 
macro-economic fundamentals and inflation expectations all have more influence at the 
front end of the yield curve. Therefore, any logical yield curve model has to give greater 
weight to the short end of the yield curve than the long end. An easy and efficient way 
to achieve this objective is through the use of the EDTF. It is possible to use an EDTF 
u in such a way that the yield curve has a comparable structure in all subintervals of u.

Thus, we will use an EDTF as the reference frame to model the TSIR. The choice 
of the decay coefficient and the functional form of the yield curve will be discussed in 
the following sections.

2.2 BASIS FUNCTIONS 

In the EDTF, the importance of cash flows and the changes in the yield of 25–30-year 
maturities are significantly less than those for 0–5-year maturities. In such a frame, we 
will represent the yield curve in a polynomial form as follows:

y a b a b b x a b b x b x= + + + + + +0 00 1 10 11 2 20 21 22
2( ) ( ) � (2.9)

Where, x is an exponentially decaying function of time, similar to u, bij is the jth coef-
ficient of the ith component of the yield curve ai and is the strength of that component. 
The decay coefficient for x is selected in such a way that is consistent with historical 
market behavior. We will refer to each one of the polynomials in parenthesis as a Basis 
Function (BF). We simply write x as

x e t= −α (2.10)

In equation (2.9), each basis function represents one of the movements or modes of 
fluctuations of the TSIR. The first component of the yield curve represents the level of 
interest rates or a parallel shift of one unit for the entire curve, thus b00 = 1. The second 
component represents the slope of the yield curve, which we will show by short rates 
falling by one unit and long spot rates rising by one unit in EDTF, that is,

b b x
t x

t x10 11
1 0 1

1 0
+ =

− = =
+ = ∞ =

⎧
⎨
⎪⎪
⎩⎪⎪

, ,

, ,
(2.11)

This leads to

b

b
10

11

1

2

=
= −

(2.12)

Equation (2.9) can now be written as

y a a x a b b x b x a b= + − + + + + + +0 1 2 20 21 22
2

3 301 2( ) ( ) ( )� � (2.13)
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Likewise, we can represent the third component as the hump, bend or the butterfly of 
the yield curve or the simultaneous rise of one unit for the long and short end of the 
curve and a fall of one unit for the middle part of the curve. Specifically, we require that 
the minimum value of the hump in the range of (x = 0, x = 1) be equal to −1:

b b x b x
t x

t x

b b x b

20 21 22
2

20 21 22

1 0 1

1 0
+ + =

+ = =
+ = ∞ =

⎧
⎨
⎪⎪
⎩⎪⎪

+ +

, ,

, ,

min( xx2 1) = −

(2.14)

This leads to

b

b

b

20

21

22

1

8

8

= +
= −
= +

(2.15)

We can construct other components of the yield curve, piece by piece, in a similar fash-
ion, by requiring that the minimum and maximum amplitudes for each basis function 
be equal to ±1.

Let us define a new variable τ as

τ α= − = − −1 2 1 2x e t (2.16)

For t in [0,∞) the corresponding range for variable τ is [−1,+1) and the midpoint 
 corresponds to τ = 0. It can be shown by iteration that our process of constructing the 
components of the yield curve leads to Chebyshev polynomials in τ space. Expanding 
(2.13) in τ space in Chebyshev basis functions results in

y a a a a a= + + − + − + − + +0 1 2
2

3
3

4
4 22 1 4 3 8 8 1τ τ τ τ τ τ( ) ( ) ( ) � (2.17)

We will refer to a0, a1, … as the components of the TSIR, and 1, τ and the functions in 
parentheses as basis functions. We denote the basis functions by ψ and write the term 
structure function as 

y t a ti i

i

n

( ) ( )=
=

−

∑ ψ
0

1

(2.18)

where

ψ
ψ τ

ψ τ

ψ τ τ

ψ τ τ

0

1

2
2

3
3

4
4 2

1

2 1

4 3

8 8 1

=
=
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= − +

(2.19)
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In general, Chebyshev polynomials satisfy the recursion formula

ψ τψ ψi i i= −− −2 1 2 (2.20)

Chebyshev polynomials can be represented in trigonometric form as 

ψ τn n= cos( arccos( )) (2.21)

It is easy to see from this formulation that the short and long rates are calculated 
respectively as follows:

y a a a a( )0 0 1 2 3= − + − +� (2.22)

y a a a a( )∞ = + + + +0 1 2 3 � (2.23)

Equation (2.18) represents our standard TSIR model, and we will use it extensively 
throughout the remainder of the book for its applications and the derivation of our 
generalized TSIR model. Only the first three components are necessary for most 
applications.

For the purpose of calculations in this book, we will use α = 0.13 in (2.16). See 
Section 2.9 for a semi-empirical derivation of the time decay coefficient α. In Chapter 5 
we will show that a relatively wide range of decay coefficients provide reasonable 
accuracy as long as it is applied consistently.

Figures 2.1 and 2.2 show the shapes of basis functions in τ space and in time space, 
respectively. We have named the basis functions by the order of their polynomials as 
level (0th), slope (twist) (1st), bend (butterfly, quadratic) (2nd), cubic (3rd), quartic 
(4th), quintic (5th), etc. For notational as well as computational convenience, we use 
continuously compounded yield in this book (1.14). 
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FIGURE 2.1 Chebyshev term structure components in τ space
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Chebyshev polynomials are orthogonal to each other relative to the weighting 
function 1 1 2− τ :

ψ ψ

τ
τ π

π

i j d

i j

i j

i j
1

0

0

2
0

21

1

−
=

≠
= =

= ≠

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

−∫ (2.24)

It is also possible to represent the TSIR in basis functions that are orthogonal to each 
other without a weighting function; we will cover different basis functions in Chapter 3.

Mathematically speaking, Chebyshev and orthogonal polynomials are identical to 
any other polynomial representation of basis functions in τ space. The advantages of 
Chebyshev and orthogonal polynomials are that they provide an easy framework for 
portfolio structuring, risk management, performance attribution, communication, and 
near orthogonality of the basis functions. In Chapters 3–5 we will show why the choice 
of Chebyshev or orthogonal polynomials provides the most compact form of basis 
functions for risk measurement and performance attribution. 

2.3 DECAY COEFFICIENT

The decay coefficient is a measure of the pivot point or the symmetry point of the yield 
curve. The decay coefficient defines the point in time where the slope is zero. Setting 
τ = 0 in (2.16), we have

t =
ln(2)

α
(2.25)

Therefore α is related to the half-life of the distribution. For α = 0.13, the pivot point 
of the distribution will be about 5.3 years, which is close to the duration of most bond 
indexes. Higher values of the decay coefficient correspond to shorter time horizons 
and higher emphasis on shorter cash flows, while lower values of the decay coefficient 
emphasize longer cash flows.
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2.4 FORWARD RATES

If we define yf  (t) to be the instantaneous forward rate, the relationship between the spot 
and forward rate is

y t t y t dtf

t

( ) ( )= ∫0
(2.26)

The forward yield curve can be calculated by differentiating the above equation:

y t y t t
y t
tf ( ) ( )
( )

= +
∂

∂
(2.27)

Substituting (2.18) in (2.27), the components of the term structure of forward rates can 
be calculated as

y a tf i i

i

n

=
=

−

∑ ϕ ( )
0

1

(2.28)

where

ϕ ψ ψ

ϕ ψ ψ τ α τ

ϕ ψ ψ τ α

0 0
0

1 1
1

2 2
2 2

1

1

2 1 4

= +
∂
∂

=

= +
∂
∂

= + −

= +
∂
∂

= − +

t
t

t
t

t

t
t

t

( )

ττ τ

ϕ ψ ψ τ τ α τ τ

ϕ ψ ψ τ
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1
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4 4

−

= +
∂
∂

= − + − −

= +
∂
∂

=

t
t

t

t
t

−− + + − −8 1 1 32 162 2τ α τ τ τt ( )( )

(2.29)

Figures 2.3 and 2.4 show the shapes of forward rate basis functions in τ space and in 
time space.
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FIGURE 2.3 Forward rate components in τ space
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FIGURE 2.4 Forward rate components in time space

2.5 PAR CURVE

If we define the par curve to be the current coupon curve, we can calculate the constant 
continuously compounded coupon of a bond with maturity tm as

100 1000

0

+ = +−

=

−∑ct ce ey t t

i

N
y t ti i m m( ) ( ) (2.30)

where c is the coupon rate and t0 is the interval from the dated date to the present time. 
We can solve the above equation for the coupon rate.

2.6 APPLICATION TO THE US YIELD CURVE

The yield curve of the US and other government bonds can be fitted to our TSIR model 
very accurately. Figure 2.5 shows the calculated US spot curve as well as coupon and 
principal Strips (separate trading of registered interest and principal of securities) yields 
calculated from market prices using the first five components of the TSIR. The calcu-
lated curve is very close to the coupon Strips curve. The average yield error between the 
calculated yield curve and the coupon Strips curve is about 2 bps.

The term structure is very useful for identifying pricing errors and/or cheap/rich 
analysis of securities. Securities that are below the calculated curve are rich and those 
above it are cheap. The spread of a security to the curve is a very good quantitative 
measure of the cheapness/richness of a security.

Figure 2.6 shows the contribution of level, slope, bend, cubic and quartic compo-
nents to the calculated TSIR. The value of the level component for this calculation is 
1.83%. The slope of the yield curve is 2.09% and the maximum contribution from 
other components is less than 0.4%. Figures 2.7–2.9 show the change in the shape of 
the yield curve both in time and in τ space for the level, slope and bend components 
when they are shifted by 50 bps.



Term Structure of Rates 19

c02.indd 03/24/2015 Page 19Trim:  170  x  244 mm 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

0 5 10 15 20 25 30

Years

Strips

Calculated

FIGURE 2.5 US term structure of interest rates for September 30, 2010

–2.5%

–2.0%

–1.5%

–1.0%

–0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 5 10 15 20 25 30

Years

Level

Slope

Bend

Cubic

Quartic

FIGURE 2.6 Components of US yield curve for September 30, 2010

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

0 5 10 15 20 25 30

Years

Strips
Calculated
Level+50 bps

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

τ

Strips
Calculated
Level+50 bps

FIGURE 2.7 Level of yield curve shifted by 50 bps.



20 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c02.indd 03/24/2015 Page 20

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

0 5 10 15 20 25 30

Years

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

τ

Strips
Calculated
Slope-50 bps

Strips
Calculated
Slope-50 bps

FIGURE 2.8 Slope of yield curve shifted by 50 bps.
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FIGURE 2.9 Bend of yield curve shifted by 50 bps.

2.7 HISTORICAL YIELD CURVE COMPONENTS

Table 2.1 shows the annual components of the TSIR from 1992 to 2011. The compo-
nents are calculated by price-yield optimization (see Chapter 20) of US government 
bonds. The annualized volatility of the components of the TSIR, measured in terms 
of standard deviation of changes, is the highest for the level of interest rates and falls 
rapidly for each successive component.

The error column is the standard deviation of the calculated yield from the term 
structure versus the market yield for each respective year. The error component is a 
stronger function of the stability of the market than the goodness of the fit. During 
the tumultuous year of 2008, with the bankruptcy of Lehman Brothers, where the 
yield difference between on-the-run bonds and older bonds was about 40 bps, the 
error term was very large. Likewise, during 1998, with the collapse of LTCM, and 
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TABLE 2.1 US historical term structure components

Level Slope Bend Cubic Quartic Error

12/31/91 5.94% 2.16% −0.18% −0.03% 0.06% 0.048%

12/31/92 5.70% 2.59% −0.47% 0.13% 0.05% 0.047%

12/31/93 5.14% 1.94% −0.13% 0.05% 0.00% 0.037%

12/30/94 7.44% 0.65% −0.39% 0.23% −0.15% 0.034%

12/29/95 5.51% 0.61% 0.12% 0.02% −0.03% 0.037%

12/31/96 6.05% 0.89% −0.20% 0.12% −0.09% 0.030%

12/31/97 5.69% 0.34% −0.03% 0.05% −0.05% 0.045%

12/31/98 4.70% 0.81% −0.13% 0.19% −0.24% 0.073%

12/31/99 6.21% 0.63% −0.35% 0.07% −0.20% 0.047%

12/29/00 5.32% 0.16% 0.21% −0.04% −0.10% 0.051%

12/31/01 3.71% 3.01% −1.17% 0.38% −0.35% 0.057%

12/31/02 2.85% 2.77% −0.25% 0.08% −0.22% 0.054%

12/31/03 3.05% 2.94% −0.41% 0.13% −0.16% 0.041%

12/31/04 3.67% 1.61% −0.13% 0.12% −0.16% 0.028%

12/30/05 4.35% 0.24% −0.04% 0.07% −0.11% 0.027%

12/29/06 4.77% 0.00% −0.10% −0.02% −0.09% 0.028%

12/31/07 3.69% 0.91% −0.10% −0.20% −0.12% 0.082%

12/31/08 1.37% 2.02% −0.60% −0.10% −0.44% 0.081%

12/31/09 2.62% 2.66% −0.26% −0.19% −0.07% 0.031%

12/31/10 2.29% 2.46% −0.18% −0.26% 0.03% 0.021%

12/31/11 1.36% 1.57% −0.38% −0.13% −0.04% 0.015%

AVG 4.34% 1.49% −0.13% 0.03% −0.11%

StdeV 0.82% 0.55%    0.42% 0.22% 0.16%

the widening of spreads, the error term was relatively large. The dispersions were the 
results of premiums that traders were willing to pay for liquidity, creating bonds that 
were in very high demand for borrowing. Such bonds are said to be on-special.

A bond that is on-special can be borrowed at much lower interest rates than Libor 
or prevailing short rates. For example, if the overnight deposit rate is 5%, a bond that 
is on-special can be borrowed at 2%. The holder of the bond lends it at a rate of 2% for 
1 week and receives cash equivalent to its market value minus a small variance, which 
can be invested at 5%, earning the holder of such a bond an additional return. When 
a bond goes on-special, its yield falls to compensate for the financing disparity. Even 
though in the long run the financing incentive does not compensate the bond holder for 
its lower yield, traders prefer such bonds since they have much lower transaction costs 
to trade. This is especially true in times of distress.
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Figure 2.10 shows the yield curve for December 11, 2008 along with constituent 
coupon bonds. After the collapse of Lehman Brothers and the associated liquidity crisis, 
bond futures traded at a premium due to liquidity. Likewise, bonds that qualified as 
deliverable into the bond futures contracts traded at a premium relative to other bonds. 
For example, the yield of the treasury 9%, 11/15/2018 traded at a yield premium of 
about 0.75% compared to the yield of the treasury 3.75% of 11/15/2018 which was 
deliverable into the futures contract. The marked areas on the graph show treasury 
bonds that are deliverable into one of the futures contracts. Needless to say, it is not 
possible to calculate a discount function that would price both bonds correctly or to 
argue which one has the correct price. 

The calculated curve attempts to price the universe of bonds as efficiently as pos-
sible. It is very easy to screen the bonds that are on-special or have bad pricing, by 
excluding bonds that have an error of more than three standard deviations from the 
curve to obtain a more efficient curve. Such a procedure lowers the error term signifi-
cantly and is very useful for calculating an efficient curve most of the time.

Table 2.1 shows that during calm periods, the yield of all bonds can be calculated 
within 2 bps. We will see when we discuss performance attribution in Chapter 5 that, 
even at times of crisis, we can calculate the performance of nearly all portfolios with an 
error of less than 1 basis point per year. 

Table 2.2 shows the historical volatility of the components of the TSIR for US from 
1992 through 2012 for varying values of the decay coefficient. The mean error is the 
average of the daily yield error of calculated versus market yield of bonds which, as 
Figure 2.10 shows, included market inefficiencies during times of crises. 

The Stdev Error column in Table 2.2 is the standard deviation of the daily changes 
in the error term. The fact that this error is smaller by a factor of 20 than the mean 
error points to the persistence and large serial correlation of daily error values. In other 
words, the daily error values were not random deviations of the calculated versus mar-
ket prices, but rather were results of persistent cheap or rich pricing of certain bonds, 
as is evidenced in Figure 2.10.
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TABLE 2.2 US historical volatility of term structure components

Decay Level Slope Bend Cubic Quartic Mean 
Error

Stdev 
Error

Ratio

0.09 0.802% 0.513% 0.407% 0.213% 0.177% 0.037% 0.0020% 4.536

0.1 0.806% 0.516% 0.401% 0.209% 0.167% 0.039% 0.0020% 4.838

0.11 0.809% 0.526% 0.403% 0.210% 0.161% 0.040% 0.0020% 5.029

0.12 0.812% 0.539% 0.410% 0.215% 0.158% 0.042% 0.0020% 5.134

0.13 0.815% 0.554% 0.420% 0.221% 0.158% 0.044% 0.0020% 5.174

0.14 0.819% 0.572% 0.433% 0.231% 0.158% 0.045% 0.0020% 5.168

0.15 0.822% 0.592% 0.449% 0.242% 0.160% 0.046% 0.0021% 5.125

0.16 0.825% 0.616% 0.468% 0.255% 0.163% 0.047% 0.0021% 5.051

0.17 0.829% 0.643% 0.492% 0.270% 0.167% 0.048% 0.0021% 4.948

0.18 0.832% 0.676% 0.520% 0.287% 0.173% 0.048% 0.0022% 4.818

0.19 0.836% 0.716% 0.554% 0.306% 0.179% 0.048% 0.0022% 4.666

0.20 0.840% 0.765% 0.594% 0.329% 0.187% 0.048% 0.0022% 4.497

0.21 0.846% 0.823% 0.642% 0.354% 0.196% 0.048% 0.0023% 4.317

A relatively large range of decay coefficients results in a similar goodness of fit for 
the TSIR with consistent error values. The volatility of components shows a steadily 
decreasing pattern for all decay coefficients which, as we will see in later chapters, is 
very beneficial for risk management and performance attribution. The Ratio column in 
Table 2.2 is the ratio of the volatility of the level to quartic component and is a measure 
of the steepness of the decline in the volatility of components. This ratio is highest for 
a decay coefficient of 0.13.

For the year 2012, the average yield error was about 1 basis point for most decay 
coefficients in the middle of the above range. The difference between calculated and 
market prices is very small for all decay coefficients from 0.11 to 0.16 corresponding 
to 6.3 to 4.3 years at which the slope is zero. In this book we use a decay coefficient of 
0.13 for all calculations.

2.8 SIGNIFICANCE OF THE TERM STRUCTURE COMPONENTS

The level of interest rates is associated with the general level of inflation and growth 
expectations. During periods of rising or high (falling or low) inflation, the level of 
interest rates rises (falls). 

The slope of interest rates is a measure of the future path of interest rates. At times, 
when the Federal Reserve or central bank lowers interest rates, the slope increases, and 
during a period of rate hikes, the slope decreases. Oftentimes, a steepening or flattening of 
the yield curve takes place in anticipation of action by the Fed. During recessions, the slope 
of the yield curve rises, and during recovery, when inflation falls, the level of rates falls.
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The bend of the yield curve is a more subtle property and has to do with the 
performance of the 5-year part of the curve relative to the long and short rates. When 
market participants expect lower rates in the future, but the central bank has not started 
cutting rates, the middle part of the curve outperforms the market. This behavior will be 
reflected in the yield curve as a rise in the curvature or bend of the yield curve. Likewise, 
when the market participants expect higher rates in the medium to long future, the 
5-year rates rise more than the average of short and long rates. This will result in a fall 
in the bend of the yield curve.

The Institute of Supply Management (ISM) manufacturing index is based on a 
monthly survey of purchasing managers who are asked to describe their business 
activity as better, worse or about the same. The responses are weighted according to 
the size of the manufacturing companies and combined and seasonally adjusted to 
calculate the monthly index values. The ISM is a diffusion index with a range of 0–100, 
but it is mostly in the range of 40–60. It is closely followed by market participants as a 
leading indicator of manufacturing activity.

Figure 2.11 is a chart of the monthly ISM survey on the left axis as well as the 
monthly average of the bend component of the Libor (LBR) curve on the right axis. 
The correlation between the two series is about 40%. The correlation has been weaker 
in the last few years, partly due to high unemployment rates and market participants’ 
assumption that the central bank is not likely to raise rates any time soon and therefore 
the 5-year part of the curve has been rich. It should be noted that the ISM index is by 
definition highly mean reverting. If the index is at 45 and in the following month’s 
surveys the average response is “no change”, the index jumps to 50 even though 
economic activity is at weak levels. Likewise, if the index is at 60 and the following 
month’s survey response is “no change” in activity, the index drops to 50. However, 
the similarity between the seemingly unrelated data is very interesting and points to the 
importance of the components of the term structure of rates.
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2.9 ESTIMATING THE VALUE OF THE DECAY COEFFICIENT

The objective of the decay coefficient, as explained in Section 2.1, is to create a refer-
ence frame in which all the subintervals have similar significance. In order to preserve 
simplicity and practicality, we limit the choice of reference frames to exponentially 
decaying time functions.

We first try to model the cash flow structure of the market, which is front loaded due 
to the maturity of older issues and concentration of issuance in the 2–5-year maturities. 
We now assume that the cash flow structure in the market can be approximated by an 
exponentially decaying function of time,

c t c e t( ) = −
0

β (2.31)

The Barclays Aggregate Bond Index provides a relatively good measure of the cash 
flow structure of the market. One measure of this cash flow is the duration to worst 
value, which is not very sensitive to daily interest rate movements and provides a rea-
sonable estimate of the duration of callable bonds and mortgages.

Assuming that the term structure of interest rates is flat, we can calculate the dura-
tion of the market as 

D
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c e dt
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y t

y t

= =
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− +
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− +
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∫
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0
0

0
0

1
( )

( )

β

β β
(2.32)

Knowing the duration and yield of Barclays Aggregate, we can estimate the value of 
cash flow decay coefficient β. It can be easily shown that the present value of all cash 
flows in a subinterval dτ, defined as

d e dt e dtsy t tτ β α= =− + −( ) (2.33)

are equal. If we assume that in a reference frame where the present value of cash flows 
are uniformly distributed the yield curve would have close to linear behavior, the decay 
coefficient α in (2.16) based on present value arguments will be equal to

α βpv y= + (2.34)

It can also be argued that, for equal present values, the yield curve would be more 
sensitive to a future cash flow than to a present one. If we assume that the yield curve 
sensitivity is related to the duration impact of a cash flow, then the yield curve reference 
frame would have the form

d te dty tτ β= − +( ) (2.35)
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Equation (2.35) is not a true exponentially decaying reference frame; it also implies 
that the yield curve sensitivity to short term cash flows is almost zero. To get an idea of 
the average decay coefficient that (2.35) implies, we will calculate the duration of the 
impact of cash flows and equate it to the duration of an exponentially decaying refer-
ence frame, that is, 

td

d

e tdt

e dt

t

t

τ

τ

α

α

∫
∫

∫
∫

=

−

−
(2.36)

α β
dw

y
=

+
2

(2.37)

The estimated duration weighted decay coefficient in (2.37) is half that of (2.34) and, as 
expected, gives a higher weight to longer term cash flows. Equations (2.34) and (2.37) 
should serve as upper and lower ends of the range for the decay coefficient.

One can also argue that the yield sensitivity should be related to the available cash 
flows. For this scenario, the decay coefficient would be

α βcf = (2.38)

Figure 2.12 shows the calculated implied historical decay coefficients based on 
present value (2.34), duration weighted (2.37), and cash flow (2.38) for the Barclays 
Bond index.

We can use a similar argument using the treasury market. Figure 2.13 shows 
the implied decay coefficient using treasury market data and issuance. The average 
calculated cash flow decay coefficient from 12/1991 through 12/2012 is 0.134, with 
a standard deviation of 0.017. In the following chapters we will see that any α in the 
range of 0.09–0.21 can be used for risk measurement and performance attribution of 
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FIGURE 2.12 Implied historical decay coefficient
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a portfolio with comparable accuracy. We have used α = 0.13 throughout this book, 
which implies a middle point for the term structure of rates of about 5.3 years. 

For practical applications, α should be a constant. Changing the value of α results 
in shifting the relative risks, especially slope, quadratic and higher components of risk, 
which becomes impractical for portfolio management applications. Given that a range 
of decay coefficients can be used with similar risk management accuracy, it is best to fix 
the value of decay coefficient for all currencies and asset classes.
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FIGURE 2.13 Implied historical decay coefficient from treasury market
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As suggested in the previous chapter, Chebyshev polynomials are just one set of basis 
functions that we could use to represent the term structure components. In practice, 

there are infinite number of functions that can be used with the same overall math-
ematical accuracy. The choice of basis functions is more a matter of practical applica-
tion than mathematical accuracy. Different basis functions have different applications 
when it comes to portfolio management and understanding how market forces affect 
different components. In this chapter we will show the implications of different basis 
functions and how they can be used for trading or portfolio management and how to 
transform from one set of basis functions to another.

3.1 POLYNOMIAL BASIS FUNCTIONS

Let us first examine how we can transform Chebyshev basis functions (CBFs) to poly-
nomial basis functions (PBFs). Consider a five-parameter term structure model

y a a a a a= + + − + − + − +0 1 2
2

3
3

4
4 22 1 4 3 8 8 1τ τ τ τ τ τ( ) ( ) ( ) (3.1)

We can write equation (3.1) in PBF form as

y b b b b b= + + + +0 1 2
2

3
3

4
4τ τ τ τ (3.2)

with

 

b a a a

b a a

b a a

b a

b a

0 0 2 4

1 1 3

2 2 4

3 3

4 4

3

2 8

4

8

= − +
= −
= −
=
=

CHAPTER 3 
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Equations (3.1) and (3.2) are two mathematical representations of the same underlying 
yield curve and are mathematically identical.

3.2 EXPONENTIAL BASIS FUNCTIONS

The next set of basis functions that we use are exponential basis functions (EBFs). From 
the definition of τ in (2.16), we can write

 e t− =
−α τ1
2

 (3.3)

The ith component of the EBF is defined as

 χ τ τ α
i

i
ite( ) =

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −1

2
 (3.4)

3.3 ORTHOGONAL BASIS FUNCTIONS

Another set of basis functions can be constructed in such a way that they are orthogo-
nal to each other in the interval (–τ, τ). As mentioned in Section 2.2, Chebyshev poly-
nomials are orthogonal relative to a weighting function. The orthogonal basis functions 
(OBFs) can be constructed by an iterative process, similar to the derivation of Che-
byshev polynomials. This is accomplished by requiring that every basis function is 
orthogonal to all the lower order basis functions. Thus, if ηn is the nth orthogonal basis 
function, we can write

 η η τn i d i n
−

+

∫ = = −
1

1

0 0 1 1, , , ,…  (3.5)

Additionally, we require that the maximum amplitude of each basis function be equal 
to 1. The first two components of orthogonal polynomials are identical to Chebyshev 
basis functions. The remaining components are somewhat different. The orthogonal 
basis functions can be written as

 

η
η τ

η τ

η τ τ

η τ τ

0

1

2
3
2

2 1
2

3
5
2

3 3
2

4
35
8

4 15
4

2 3
8

1=
=

= −

= −

= − +

 (3.6)

Figure 3.1 shows the components of the orthogonal basis functions.
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The minimum value of the bend component for orthogonal and Chebyshev basis 
functions is respectively −0.5 and −1.0, while the maximum value for both functions 
is 1.0. The orthogonal model thus defines a simultaneous rise of one unit for long and 
short rates and a fall of half a unit in medium rates as a unit of bend of the yield curve. 
In Chebyshev polynomials, the positive and negative amplitudes of each component are 
equal. On the other hand, in the orthogonal model, the positive and negative areas of 
each component are equal.

3.4 KEY BASIS FUNCTIONS

Our final set of basis functions is the key basis functions (KBFs). These are based on 
points on the yield curve called key rates, such that at any key rate only one of the basis 
functions contributes to the yield and the value of all other key rates is zero. To illus-
trate how we can change the basis functions, we start with a simple example. Consider 
a two-parameter term structure model, that is, level and slope components of the TSIR. 
From (2.18) we can write

 
y t a a

a a a a

( )

( )( ) ( )( )

= +

= − − + + +
0 0 1 1

0
1
2 1

1
2 0 1 0

1
2 1

1
2 0 1

ψ ψ

ψ ψ ψ ψ
 (3.7)

or

 y t b b b b( ) ( ) ( )= − + + = +0
1
2 0 1 1

1
2 0 1 0 0 1 1ψ ψ ψ ψ χ χ  (3.8)

where

 

χ ψ ψ

χ ψ ψ

0
1
2 0 1

1
1
2 0 1

0 0
1
2 1

1 0
1
2 1

= −

= +

= −

= +

b a a

b a a

 (3.9)

FIGURE 3.1 Orthogonal term structure components in τ space
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From (2.19) we know that ψ0 1= . For ψ1
1
2= −  in (3.8) the yield is equal to y = b0 

and for ψ1
1
2=  the yield is y = b1. The yield curve is thus explained by the new basis 

functions χ0 and χ1 and the yields of two points b0 and b1, instead of the usual level and 
slope components. The key rates using a decay coefficient of 0.13 will be at

 
ψ τ

ψ τ

α

α

0 0
1
2 0

1 1
1
2 1

1 2 2 21

1 2 10 66

0

1

= = − = − → =

= = + = − → =

−

−

e t

e t

t

t

.

.
 (3.10)

In general the following basis functions define one set of key rates:

 
χi

i j

j i

n

j

j i

n
( )

( )

( )

τ

τ τ

τ τ

=

−

−

≠

−

≠

−

∏

∏

1

1
 (3.11)

For example, the third key rate basis function (i = 2) will be

 χ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ2

0 1 3 4

2 0 2 1 2 3 2 4
( )

( )( )( )( )
( )( )( )( )

=
− − − −

− − − −
 (3.12)

We can also see that for two components, (3.11) results in

 
χ τ

χ τ

0
1
2

1
1
2

= −

= +
 (3.13)

By simple examination it is clear that at every key rate τk ≠ τi, one of the factors in the 
numerator of (3.11) is zero, except at τk = τi, where χi = 1. Therefore, the coefficient of 
the basis function at every key rate is simply equal to the yield of the key rate.

The natural set of key rates that we choose are the points where a Chebyshev 
polynomial of order equal to the number of key rates is zero. For example, for a five-
parameter yield curve, we choose a Chebyshev polynomial of degree 5, find the zeros 
and use those values for the maturity of key rates. From equation (2.21) we can write

 τ π
j n

j= − +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟cos

2
( )1 2  (3.14)

For a five-parameter curve, the optimal key rate points will be at τ = –0.951, –0.588, 
0, 0.588, and 0.951. 

Having established the five different basis functions, we will analyze the properties 
of historical yield curves based on each basis function in Section 3.8.

3.5 TRANSFORMATION OF BASIS FUNCTIONS

In the previous section we showed how we could derive the PBF from the CBF. We will 
now derive the formal transformation process from polynomial to Chebyshev, orthogo-
nal and exponential basis functions.
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In general, we can define a new set of basis functions as a linear combination of an 
existing set of basis functions:

 y a bi i

i

k k

k

( ) ( ) ( )τ ψ τ χ τ= =∑ ∑  (3.15)

and

 χ ψj ji i

i

m= ∑  (3.16)

Consider the case of key rate basis functions. We will expand the yield curve y as 
a linear combination of functions χ such that at key rate maturity τk (expressed in τ 
space), χi is defined as 

 

χ τ χ δ

δ

i k ik ik

ik
i k

i k

( )

,

,

= =

=
=
≠

⎧
⎨
⎪⎪
⎩⎪⎪

1

0

 (3.17)

Substituting for χ from (3.17) into (3.15) and evaluating the latter at key rate maturity 
τk leads to

 b y a ak k i i k

i

i ik

i

= = =∑ ∑( ) ( )τ ψ τ ψ  (3.18)

Substituting for χ from (3.16) into (3.15) leads to

 y a b mj j

j

k

k

kj

j

j= =∑ ∑ ∑ψ ψ  (3.19)

Equation (3.19) implies that

 a b mj k kj

k

= ∑  (3.20)

Substituting for bk in (3.20) from (3.18), we arrive at

 a a m a mj i ik kj

ki

i ik

i

kj

k

= =
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟∑∑ ∑∑ψ ψ  (3.21)

Thus,

 M I[ ][ ]= [ ]Ψ  (3.22)

where the (j, k)th element Ψjk of matrix Ψ is defined in (3.18) and the (j, k)th element 
mjk of matrix M is defined in (3.16). By inverting Ψ matrix, the coefficients of the trans-
formation matrix M can be calculated. We can then use (3.16) to calculate key rate 
basis functions.



34 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c03.indd 03/28/2015 Page 34

For a three-parameter term structure model, at key rate points τ = 0 and τ = ± τ0, 
the transformation matrix M is

 M =
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
4

1 2 2 1 1

2 0 2

1 2 10
2

0
2

0 0τ

τ
τ τ

( )

 (3.23)

In general, transforming from PBFs to KBFs is more straightforward and the 
matrix elements can be calculated analytically. We will show that the trial yield curve 
yt(τ) defined as 

 
y yt i
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j i
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⎛
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≠

∏

∏
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

∑
i  (3.24)

is equal to the calculated yield curve y(t). We can see by inspection that the right hand 
side of (3.24) is a polynomial whose value is equal to y(τi) for every key rate maturity 
τi. For example, if there are three key rates at maturities corresponding to τ0, τ1, and τ2, 
yt(τ) will be equal to

y y yt ( ) ( )
( )( )

( )( )
( )

( )( )
(

τ τ τ τ τ τ
τ τ τ τ

τ τ τ τ τ
τ

=
− −
− −

+
− −

0
1 2

0 1 0 2
1

0 2

1 −− −
+

− −
− −τ τ τ

τ τ τ τ τ
τ τ τ τ0 1 2

2
0 1

2 0 2 1)( )
( )

( )( )
( )( )

y

It is clear that at τ = τ1, yt(τ) = y(τ1). Thus yt(τ) intersects y(τ) at all key rate maturi-
ties. Since there is one and only one polynomial of order n – 1 that would go through 
n different points, yt(τ) = y(τ). From (3.24) we can write the basis functions in KBFs as
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 (3.25)

Equation (3.25) satisfies (3.17) at all key rate maturities. Expanding the numerator 
of the right hand side of (3.25) leads to

( )
( )

τ τ τ τ τ τ τ τ τ− = − + + +
≠
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− −
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je

1 1

τ  (3.26)
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where
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Combining (3.25) and (3.26) leads to

 
χ τ
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τ τ
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 (3.28)

In the polynomial basis notation, if we replace Ψj by τj in (3.16) and equate the 
resulting equation to (3.28), we find that

 
c

e
ij

ij

i j

j i

=
−

≠
∏( )τ τ  (3.29)

Equation (3.29) is the analytical solution for the transformation matrix to convert from 
PBFs to KBFs.

To transform from CBFs or OBFs to PBFs and vice versa, we can write

 y a bj j

j

j
j

j

= =∑ ∑ψ τ  (3.30)

where

 ψ τj ji

i

j
ic=

=
∑

0

 

 

(3.31)

Since the matrix C for the CBF or OBF coefficients is triangular, the transformation 
coefficients can be easily calculated using the formula

 b a ci j ji

j i

n

=
=

−

∑
1

 (3.32)
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Likewise, to transform from PBFs to CBFs or OBFs, we can use the recursive formula

 a

b a c

ci

i j ji

j i

n

ii
=

−
= +

−

∑
1

1

 (3.33)

To transform from PBFs to EBFs we note the relationship

 τ αi t i i j j j

j

i

e x
i

j
x= −( ) = −( ) =
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∑1 2 1 2 1 2

0

( )  (3.34)

Thus, PBFs can be considered as a special set of basis functions of the exponential rep-
resentation of the TSIR. To transform from PBFs to EBFs we use the same equation that 
we used for transforming from CBFs or OBFs to PBFs and vice versa.

The matrices [CP], [OP], [CE], and [PE] in equations (3.35)–(3.38) are used for 
CBF–PBF, OBF–PBF, CBF–EBF, and PBF–EBF conversions, respectively:
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 (3.36)
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 (3.38)

For example, to transform from CBFs to PBFs, we use the following matrix opera-
tion for five components:
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 (3.39)

To transform from PBFs to CBFs, we can either use the inverse of (3.35) or solve it 
recursively from highest order to lowest order components respectively. The inverse of 
(3.35) is
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Given that the matrices (3.35)–(3.40) are triangular, the transformation coefficients can be 
calculated recursively instead of using the inverse matrix as in (3.40). For example, to cal-
culate the CBF coefficients (ai) from PBF coefficients (bi) using matrix Cji in (3.35), we write
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b d
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d C a

i
i i

ii

i ji j

j i

n
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For example, d2 is calculated as

 d C a C a a2 32 3 42 4 48= + = −  

Thus,
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2
2 48

2
=

+  

The transformation to and from KBFs is not as straightforward as for other cases. 
The key maturities can be arbitrarily selected and in practice they are selected in such 
a way that they coincide with on-the-run treasuries. We define the natural key rates as 
the points where the roots of Chebyshev polynomials are zero. The respective τs are 
calculated from (2.21) as
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The negative sign is required to provide a sequence of increasing τ from the most nega-
tive to the most positive. The natural key maturities will be defined from (2.16):
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To convert from PBFs to KBFs, for n = 5, τi = 0, ±0.95106, ±0.58779, we create 
the following matrix based on (3.18):
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− −
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. . . .
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0 81814 0 11936 0

.

. . . .

. .

− −
00 11936 0 81814. .
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⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.44)

If the PBF coefficients of the TSIR are

 aj = −[ ]0 0174 0 021 0 0028 0 004 0 0032. . . . .  (3.45)
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the KBF coefficients from (3.18) will be

b ak j jk

j

= = [ ]∑ ψ 0 00602 0 00722 0 0174 0 03028 0 03908. . . . .  (3.46)

The coefficients bk are the value of spot yields at the respective key rate maturities. 
Inverting the above matrix, we will find that the KBF coefficients are

 mki =

− −
−

0 0 32492 0 34164 0 94046 0 98885

0 1 37638 2 34164 1 52169

. . . .

. . . 22 58885

1 0 4 0 3 2

0 1 37638 2 34164 1 52169 2 58885

0 0 32492 0

.

.

. . . .

. .

−
−

− − 334164 0 94046 0 98885. .

.

⎡
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⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.47)

3.6 COMPARISON WITH THE PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) is a statistical/linear algebra method of analyzing 
a large number of correlated variables and identifying the most significant components. 
For example, there are many economic indicators that are used to gauge the state of the 
economy such as unemployment rate, durable goods orders, inflation rate, S&P earn-
ings, and manufacturing indexes. In many econometric models an average of a sample 
of important economic factors is calculated as a gauge of economic activity, and its 
relation with economic downturns and upturns is analyzed to predict future recessions 
or recoveries. PCA can be used to identify the best unbiased sets of variables based on 
historical data that describe economic factors.

The process of performing PCA is to first calculate the correlation matrix of the 
changes of all relevant variables. Suppose we take monthly time series of unemployment 
rates and durable goods orders. We then calculate the monthly changes of each time 
series and calculate the correlation of the changes. Thus, if we have 50 economic time 
series, we will construct a 50 × 50 correlation matrix. The principal components are 
equal to the eigenvectors of the correlation matrix, and the weights of the eigenvectors 
are equal to the eigenvalues of the matrix. An eigenvector of a matrix A is defined as a 
vector that when multiplied by the matrix, will result in itself multiplied by a constant: 

 A
� �
v v= λ  (3.48)

In this equation λ is called the eigenvalue and 
�
v is called the eigenvector. The eigenval-

ues can be calculated by introducing the identity matrix I into the right hand side of the 
above equation,
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 (3.49)



40 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c03.indd 03/28/2015 Page 40

For example, suppose that we are analyzing the ISM manufacturing index and 
housing starts and do not know which one to use if we have room for just one more 
indicator. Assume that the two series have a correlation of 0.5. We will then construct 
the correlation matrix as

 A =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0 5

0 5 1

.

.
 

Eigenvalues can be calculated from

 det
1−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

λ
λ

0 5

0 5 1
0

.

.
 

giving λ1 = 1.5 and λ1 = 0.5. Once the eigenvalues are calculated, we can solve for eigen-
vectors using the set of linear equations in (3.49). The corresponding eigenvectors are 
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The value of each element of an eigenvector corresponds to the weight of the corre-
sponding variable. In our example, the first eigenvector has equal weights of the original 
variables, namely, ISM manufacturing index and housing starts. The absolute value of an 
eigenvalue is an indication of the importance of the corresponding eigenvector. The larg-
est eigenvalue corresponds to the first principal component, the second largest eigenvalue 
to the second principal component, etc. Thus, the first eigenvector which corresponds to 
using equal weights for ISM manufacturing index and housing starts is a superior indica-
tor compared to using either one of them or any other combination of the two variables.

Eigenvectors of a matrix are uncorrelated and their multiplication leads to zero. In the 
above example, 

� �
v vT

1 2 0× = . It is standard practice to normalize an eigenvector by scaling 
it to a unit vector. When the correlation matrix is constructed, each variable is scaled by its 
standard deviation. Similarly, the weights of variables in the eigenvectors have to be scaled 
by their respective standard deviations before analysis. In the above example, if housing 
starts is four times as volatile as the ISM manufacturing index, it has to be scaled back so 
that both have similar contributions, on average, to the  principal components.

PCA can be used for the analysis of components of the term structure of rates. The 
variables used for such an analysis are the spot yields of different points on the treasury 
curve. Since all yields are highly correlated, PCA is a very useful method to estimate the 
principal modes of fluctuations of the term structure of rates. However, the choice of 
maturities affects the resulting eigenvectors, and thus there is no unique set of principal 
components. For example, if we assume that the first principal component is equal to 
the level of rates, the average value of the elements of the second component has to be 
zero in order for it to be orthogonal to the first component. If we use many points at the 
long end of the curve, then the second principal component will have a different shape 
than if we use fewer points at long maturities.

The maturities of the spot curve used for the calculation of the principal  components 
act like a weighting function that will affect the shape of the principal components to 
ensure their orthogonality. Orthogonal basis functions are orthogonal to each other 
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without a weighting function (or a weighting function of unity) and Chebyshev basis 
functions are orthogonal to each other with a weighting function of 1 1 2− τ , as was 
mentioned in Section 2.2. The implied weighting function for PCA is a discrete function 
of the selected maturities of the spot yields.

Considering that the average maturity of most market benchmarks is around 5 years, 
we constructed a set of maturities that represented the market structure by having 
an  equal number of points with maturities below and above the 5-year part of the 
curve. One way of selecting the maturities is to use equally spaced maturities of the spot 
yields in the τ space. If we used equally spaced maturities in time, the long end of the 
curve would be overemphasized. For example, using quarterly maturities, there will be 
100 maturities between 5 years and 30 years, and only 20 between the zero and 5-year 
part of the curve. Figure 3.2 shows the calculated principal components as well as the 
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FIGURE 3.2 Orthogonal term structure and principal components in τ space, 1992–2012
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orthogonal basis functions of the term structure of interest rates in the US. The PCA was 
performed for the period 1992–2012. The first three components are almost identical 
and the last two components have very similar shapes and peaks and valleys. The fifth 
principal component is almost identical to the fifth component of the term structure in 
Chebyshev basis functions and thus can be obtained by linear transformation.

Since each vector of the principal components had a different scale from our term 
structure components, we simply divided even numbered components, level, bend, and 
quartic, by a constant number equal to the average value of all the vector elements to be 
equal to one. For odd numbered components (slope and cubic) we divided all elements 
by half the range of values.

Figure 3.3 shows the orthogonal basis functions and the volatility adjusted 
 principal components in tau space. These graphs show that the modes of fluctuations 
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FIGURE 3.3 Term structure and volatility adjusted principal components in τ space, 1992–2012
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of the term structure of interest rates can be best approximated by our term struc-
ture model in the τ space. Not only are the shapes very similar to the Chebyshev or 
orthogonal basis functions, but also the peaks and valleys are nearly at the same 
points. We have already learned in this chapter that the basis functions can be trans-
formed to each other without loss of generality. Likewise, we can construct linear 
transformations that would construct the fourth and fifth principal components 
almost exactly. In essence, our term structure of interest rates speaks the language 
of the markets. 

For the calculation of the principal components we used maturities in such a way 
that they were linear in τ space. This implied that the resulting principal components 
would be closer to orthogonal basis functions than to Chebyshev. Recall that in the 
orthogonal basis functions all components are orthogonal to each other, while Cheby-
shev requires a weighting function for orthogonality. For example, the bend component 
is orthogonal to the level which is equal to one, and thus

 ( )3
2

2 1
2

1

1

0τ τ− =
−∫ d  

The third principal component is similarly orthogonal to the first one, which is almost 
a constant. Thus, the shape of the third principal component must be closer to the bend 
component of the orthogonal basis function than to Chebyshev. The first three compo-
nents account for more than 99% of the variations in the shape of the yield curve. Table 
3.1 shows the weight of principal components that is proportional to the value of the 
eigenvalues of the principal components.

The orthogonality of basis functions is a very useful feature to construct a portfo-
lio of uncorrelated strategies. In practice, this does not work because correlations are 
very unstable and volatility of the market changes. At times of stress, when the volatil-
ity is highest and a portfolio could benefit most from diversification, the correlations 
approach 1 or –1. At other times, depending on the level of inflation and the actions 
of the central bank, the correlations can be positive or negative. For example, during 
tightening of monetary policy, the curve tends to flatten while at the same time the level 
of rates rise (slope falling, level rising), leading to a negative correlation. During recov-
ery periods, when inflation is falling, both the level and slope of the curve are likely to 
fall, leading to positive correlation. In the long run, these positive and negative correla-
tions can cancel each other out, but during a typical investment horizon of 3 months to  
1 year, correlations tend to be persistent. 

TABLE 3.1 Weights of principal components, 1992–2012

Weight Total

1st 92.32 92.32

2nd 7.19 99.51

3rd 0.32 99.83

4th 0.10 99.93

5th 0.03 99.96
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3.7 MEAN REVERSION

Mean reversion refers to the property of a distribution that is more likely to have 
changes in the direction of its long term mean than away from it. A random walk 
does not have a statistically significant mean reversion tendency. In our term structure 
model, the bend parameter tends to have a mean reversion tendency. If the bend is large 
and positive, the 5-year part of the curve becomes very rich. Fund managers structure 
barbell portfolios to take advantage of the superior yields below and above 5-year trea-
suries, leading to the underperformance of the 5-year area of the curve. Likewise, when 
the bend is large and negative, the 5-year part of the curve will be cheap relative to the 
short and long ends and the opposite dynamic works to revert it to mean.

A simple way of modeling a mean reverting process is to note that changes in the 
dependent variable u are proportional to the distance of the variable from its mean, 
thus

 du m u u dt= − −( )  (3.50)

where m is the proportionality constant and is a positive number. This equation is simi-
lar to a spring function, where the tendency to revert to the mean position is stronger, 
the farther the spring is from its mean. Solving for this equation, we obtain

 ln
u u
u u

mt
−
−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = −

0
 (3.51)

We define the half-life as the time that it takes for a distribution to retrace half of its 
distance from its long term mean by setting the value of the argument in ln to 0.5: 

 t
m1/2

ln(2)
=  (3.52)

Table 3.2 shows the half-life of the term structure components in different basis func-
tions. Table 3.3 shows the t-test for the validity of calculating the half-life for each of 
the basis functions. A t-test value greater than 2 is statistically significant. 

For the CBF, the first component (level) has a half-life of 14.1 years and a t-statistic 
of 0.47. Obviously, this is not statistically significant. Also considering that we used  
21 years of data, a half-life of 10 years or more would not provide enough instances of 

TABLE 3.2  Historical half-life (mean reversion) of US treasury term structure components

First Second Third Fourth Fifth

CBF 14.10 3.51 0.68 0.48 0.67

OBF 12.27 3.63 0.67 0.48 0.67

PBF 7.79 2.06 0.66 0.48 0.67

EBF 4.13 0.93 0.84 0.75 0.67

KBF 7.89 15.60 7.79 4.98 4.36
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mean reversion for the data to be significant. Looking at the third component (bend), 
we can see a half-life of 0.68 years and a t-statistic of 3.18. Given that the mean rever-
sion is very significant, we can use a mean reversion trade, for example, when the bend 
component is more than one standard deviation from its mean. 

The exponential basis function provides a mean reversion trade on the slope of the 
yield curve with a reasonable half-life of 0.93 years and a t-statistic of 2.83.

For a mean reversion process to be statistically significant, there have to be many 
oscillations in the data and the mean has to be crossed multiple times. Figure 3.4 is an 
example of a bend component of the US treasury curve in CBF which is mean reverting. 
The mean of the distribution is −0.14% and there are multiple oscillations around the 
mean.

TABLE 3.3  t-test of half-life of US treasury term structure components

First Second Third Fourth Fifth

CBF 0.47 1.49 3.18 4.02 3.49

OBF 0.50 1.47 3.18 4.02 3.49

PBF 0.70 1.92 3.53 4.02 3.49

EBF 1.28 2.83 3.10 3.32 3.49

KBF 0.83 0.45 0.70 0.94 1.18
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FIGURE 3.4 Historical bend of the Chebyshev basis function

3.8 HISTORICAL TABLES OF BASIS FUNCTIONS

Table 3.4 lists the average of the components of the US treasury term structure data in 
the period 1991–2012 for different basis functions. Notice how the absolute value of 
each component becomes smaller for CBF than the previous one (except for the fifth). 
This is one of the very attractive properties of CBF and we will cover this in more detail 
in Chapters 4 and 5.
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Table 3.5 provides the annualized volatility of components of the US treasury term 
structure for different basis functions. Note that the CBF volatility falls steadily for 
each successive component. This is another very attractive property of CBF for risk 
measurement and risk management. Additionally, for most portfolios, the duration 
exposure of the term structure of rates falls for each successive component, leading to a 
rapid decline in contribution to risk for each successive component of CBF. None of the 
other basis functions has such a strong declining contribution to risk property.

TABLE 3.4  Average value of US treasury term structure components

First Second Third Fourth Fifth

Cheby 4.34% 1.49% −0.13% 0.03% −0.11%

Ortho 4.39% 1.47% −0.10% 0.04% −0.20%

Poly 4.37% 1.41% 0.60% 0.10% −0.87%

Exp 5.61% 1.12% −17.22% 26.97% −13.89%

Key 2.77% 3.62% 4.37% 5.32% 5.63%

TABLE 3.5  Annualized absolute volatility of US treasury term structure components

First Second Third Fourth Fifth

Cheby 1.03% 0.75% 0.17% 0.14% 0.03%

Ortho 0.98% 0.23% 0.13% 0.07% 0.03%

Poly 1.31% 2.11% 1.06% 1.54% 0.05%

Exp 9.95% 22.47% 23.10% 8.61% 0.13%

Key 0.04% 0.83% 1.71% 2.15% 0.90%
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There are many sources of risk in a fixed income portfolio, including interest rate risk, 
credit risk, liquidity risk, currency risk, prepayment risk, and market risk. In this 

chapter we cover the most straightforward risk to measure and manage (hedge), namely 
interest rate risks. Other risks will be covered in later chapters.

4.1 INTEREST RATE RISKS

The calculated price of a risk-free non-contingent bond can be written as

p c e c et i
y t t
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i
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(4.1)

Duration is defined as the present value weighted average time to cash flows of a bond:
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Mathematically, duration can be defined as the derivative of the logarithm of price with 
respect to yield. Using the term structure model, we can calculate duration and convex-
ity relative to changes in the level, slope, bend, etc. components of the yield curve, by 
calculating the first and second derivatives relative to a0, a1, etc. Thus,
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Equation (4.3) represents the vector of duration components of a bond relative to the 
TSIR, and (4.4) is the matrix of term structure cross-convexities. In the above equa-
tions, pt is the calculated price of the security based on the TSIR. Using the calculated 
price is preferable to the market price to ensure that identical cash flows will have iden-
tical duration measurements, regardless of their market prices.

The first three duration components obtained by substituting k=0, 1, and 2 in (4.3) 
are the level, slope, and bend duration components, respectively.

Substituting ψ0 = 1 from (2.19) into (4.3), it is evident that the level duration is close 
to the modified or Macaulay duration of a bond, which are identical to each other when 
using continuous compounding of the yield. Chapter 5 provides some evidence that the 
level duration of a typical portfolio is the largest source of return and risk. The importance 
of higher order components falls significantly to the point, where the contributions from 
the fourth or fifth component become practically zero for risk management.

Aside from the curve exposure, the duration components of the TSIR provide a 
consistent measure of duration at all aggregate levels. Since every cash flow is discounted 
by the market discount function, aggregation of cash flows into securities does not 
impact the duration contribution of individual cash flows. A fundamental weakness of 
the conventional duration measurement is that all cash flows in a security are discounted 
by the same average yield, which in a non-flat yield curve environment results in internal 
inconsistencies. In Chapter 1 we showed that the conventional measure of duration for a 
portfolio requires adjustments which are not easy to make.

Since the volatility of the level component of the TSIR is the largest, X00 is likely to be 
the most important contributor to the overall convexity. Unlike ordinary convexity, cross-
convexity components are not positive all the time. If the level, slope, and other components 
of the TSIR are weakly correlated, the contribution from cross-convexity will be very small.

The following is a representation of the cross-convexity matrix:
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 (4.5)

The convexity contribution of diagonal components defined below will always be positive: 
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For portfolio structuring and risk management, the first component of the TSIR 
duration defines the sensitivity to the changes in the level of interest rates. For example, 
a portfolio that is overweight in level sensitivity outperforms the market when interest 
rates fall.

The second component, slope, measures the sensitivity to the slope of the yield 
curve. In portfolio management jargon, it is called a flattening or a steepening trade; 
an overweight in slope sensitivity results in outperformance relative to the market in a 
flattening environment and vice versa.
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The third component, bend, measures the sensitivity to the curvature of the yield 
curve or a butterfly trade. A portfolio that is long the butterfly will outperform the mar-
ket if the yields at the two ends of the yield curve fall compared to the middle part of the 
curve. In this case the curvature of the yield curve falls in value or becomes more negative.

Since successive components of Chebyshev basis functions have more oscillations, 
their volatility and overlap with the prior components tend to be rapidly declining. 
Likewise, in a typical portfolio, exposure to higher order duration components tends to 
be small due to the even distribution of cash flows and lower volatility of those interest 
rate components. This implies that higher order duration parameters would have lower 
and lower impact on the performance of a portfolio when using CBFs.

For a five-parameter term structure, there are 15 independent convexity com-
ponents. In CBFs, the contribution of each successive component of cross-convexity 
declines significantly relative to the previous component. This is not the case for all 
other basis functions. For example, in key basis functions, all components have compa-
rable volatility and average (see Tables 3.4 and 3.5). For most applications, only four 
components of convexity capture about 98% of convexity contribution to risk and 
return; these components are: X00, X01, X02 and X11.

 The decline in the volatility and contribution of risk of successive components of 
the CBF is very important to integrate risk measurement and valuation. For example, 
the value of individual securities can be measured by using the first five components 
of the TSIR, while the first three components may be sufficient for risk management. 

Applying the term structure risk measurement across all fixed income asset classes 
can provide for a very powerful platform for portfolio applications and hedging. This is 
especially true of derivatives securities such as eurodollar futures contracts and floating 
rate notes that have a constant or zero sensitivity to the level of interest rates but have 
very strong exposure to the slope or bend components of the curve.

The application of this model to more complex securities such as spread products 
and derivatives is also quite straightforward. One can easily overlay a term structure 
of credit spreads on the risk-free term structure of interest rates and discount complex 
cash flows such as credit default swaps or Brady bonds using the respective treasury or 
credit discount functions.

The exponential nature of the basis functions leads to easy differentiation for 
 calculating forwards or higher order derivatives of risk components. 

To illustrate the use and interpretation of duration components we will provide a 
few examples.

4.2 ZERO COUPON BONDS EXAMPLES

The calculation of duration components for a zero coupon bond is very easy, since the 
summation in (4.3) is replaced with the single cash flow at maturity: 
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where tm  and τm  are time and τ to maturity for the zero coupon bond. Table 4.1 shows 
the duration components of zero coupon bonds maturing in 1.22, 5.33, and 14.78 
years. The durations of these zero coupon bonds correspond to the approximate dura-
tion of 1-year, 5–7-year, and 30-year coupon treasuries corresponding to the short end, 
middle and long end of the yield curve, respectively. 

Consider three separate portfolios, A, B and C, each with a level duration of 6 
years, and each constructed by using zero coupon bonds maturing in 1.22, 5.33, or 
14.78 years. The portfolios have the same market values; however, they can borrow or 
lend cash at overnight rates to meet their duration targets. Table 4.2 shows the structure 
of these portfolios. Let us examine the performance of these portfolios under different 
interest rate scenarios.

Since the level duration of all portfolios is the same (6.00 years), they all respond 
in the same way to changes in the level of interest rates or parallel shifts of the yield 
curve. For example, if the yield levels rise by 10 bps, each portfolio loses 60 bps of 
market value.

The interpretation of the slope change is similar to the level change. When the slope 
of the yield curve falls, a portfolio that is long the slope duration outperforms the market. 
If the slope of the yield curve falls by 10 bps, then portfolio A loses 10 × 4.24 = 42.4 
bps, while portfolio C gains 42.4 bps and portfolio B does not change. Intuitively, this 
is what we expect. When the slope falls, the yield curve flattens and the long bond 
outperforms the 1-year treasury bill.

To quantify further the meaning of slope change, recall that the slope of the yield 
curve is represented by τ (equation (2.19)). The interpretation of a fall of 10 bps in the 
slope is a fall of long rates (τ = 1, t = ∞) by 10 bps and a rise of short rates (τ = −1, 
t = 0) by 10 bps. This would translate into a fall of 7.07 bps (10 bps × τ at t = 14.78) 
in interest rates at a maturity of 14.78 years and a rise of 7.07 bps in rates at a maturity 
of 1.22 years. The performance of portfolios A and C, each with a duration of 6 years, 
is expected to be 6 × (−7.07) = −42.4 and 42.4 bps, respectively. By buying one unit of 

TABLE 4.1 Duration components of zero coupon bonds

Maturity Years Level Duration Slope Duration Bend Duration

1.22 1.22 −0.86 0.00

5.33 5.33 0.00 −5.33

14.78 14.78 10.45 0.00

TABLE 4.2 Curve exposure of portfolios of zero coupon bonds

Portfolio Level Duration Slope Duration Bend Duration

A 6.00 −4.24 0.00

B 6.00 0.00 −6.00

C 6.00 4.24 0.00
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portfolio A and selling one unit of portfolio C, we can create a portfolio that is exposed 
only to the slope of the yield curve.

The bend component is a representative of the curvature or hump of the yield 
curve. When the bend component of the yield curve falls by 10 bps, the yield of long 
(τ = 1, t = ∞) and short (τ = −1, t = 0) term securities falls by 10 bps and the yield 
of medium (τ = 0, t = 5.3) term securities rises by 10 bps. Consider a portfolio D 
that is constructed by buying one unit of each A and C and selling two units of B. 
This portfolio is called a long butterfly or a long barbell–short bullet. Portfolio D will 
exhibit positive performance if short and long term yields fall relative to medium term 
yields. When the bend component of the yield curve falls a butterfly trade exhibits 
positive outperformance and vice versa. The bend duration provides a convenient way 
to compare the magnitude and effectiveness of various butterfly trades.

4.3 EURODOLLAR FUTURES CONTRACTS EXAMPLES

Eurodollar futures contracts (EDFCs) trade on the basis of expected futures deposit 
(certificate of deposit) rates; for example, EDH21 (March 2021) contract trades on 
the expected 3-month deposit rate in March 2021. The traded price of a eurodollar 
contract is 100 minus the implied future deposit rate, so that when rates fall, prices 
appreciate and vice versa.

Since the contracts are based on 3-month deposit rates, their assumed duration 
is 0.25 years. Obviously, such a simple classification of the duration for all EDFCs is 
inaccurate, since EDH21 (March 2021) depends on short term rates in 2021 while 
EDH15 depends on rates in 2015. We can use the TSIR model to calculate the sensitivity 
of these contracts.

The first task in calculating the duration components of EDFCs is to understand 
their cash flows. Consider a 3-month (0.25-year) certificate of deposit for $1 million. It 
involves investing $1 million for 3 months and receiving the principal plus interest after 
3 months. For EDFCs, no up-front cash is required; cash investment at the inception 
of the certificate of deposit is implied. This means that each EDFC is a combination of 
two cash flows as follows:

p c t c t= − +1 1 2 2( ) ( ) (4.8)

Cash flows c1 and c2 are selected in such a way that the present value of each is equal 
to $1 million and t2 = t1 + 0.25 years. The net price of any EDFC at initiation is zero 
(i.e., only margin requirements must be met). We can write the previous equation as

p c e c ey s t y s t= − +− + − +
1 21 1 1 2 2 2( ) ( ) (4.9)

where s1 and s2 are the EDFC credit spread over treasuries at t1 and t2. Since the market 
value of an EDFC is zero, its duration is undefined. However, the interest rate risk of 
these contracts can be represented in terms of the value of a basis point (VBP). The VBP 
of an EDFC is $25, that is, for a change of 1 basis point in yield the value of an EDFC 
changes by $25, which is realized in the form of daily margin movement. The VBP 
components of the TSIR for EDFCs are simplified as follows:
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Figure 4.1 shows the VBP for different components of the term structure sensitivity of 
EDFC.

Table 4.3 shows the VBP sensitivity of three selected EDFCs to level, slope and 
bend components of the TSIR. These sensitivities can also be obtained from Figure 
4.1. By comparing Tables 4.2 and 4.3, it is evident that the risk profiles of EDFCs with 
expiration dates of 0.45, 2.3, and 7.77 years are similar to those for zero coupon bonds 
with maturities of 1.2, 5.3, and 14.8 years, respectively.

The EDFC risk profile in Table 4.3 is a simplified version of the risk. More accurate 
risks are provided in Section 10.4 along with the convexity bias of eurodollar futures.

FIGURE 4.1 Eurodollar futures contracts VBP
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TABLE 4.3 Curve exposure of eurodollar futures contracts

Contract Expiration  
In Years

Level VBP Slope VBP Bend VBP

0.45 25.0 −18.0 0.0

2.30 25.0 0.0 −35.5

7.77 25.0 25.7 0.0

4.4 CONVENTIONAL DURATION OF A PORTFOLIO

Consider a steep yield curve environment such as existed in early 1993 or 2011 in the 
US. We construct a portfolio A + B of two zero coupon bonds similar to the example in 
Section 1.4 as shown in Table 4.4.
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The market value weighted average yield of this portfolio is 6.11%; however, 
discounting the cash flows by this yield results in a market value of $111,192,409! The 
correct way to estimate the yield of this portfolio is by market value duration weighting 
as explained in Chapter 1. This results in a yield and market value of respectively 
7.08% and $100,247,769 (the accurate yield is 7.1%).

Likewise, the market value weighted duration of this portfolio is 10 years 
while the aggregate duration, using the same discount rate for both cash flows, is 
10.48 years. 

In conventional duration measurements, the calculated value of duration for 
a portfolio depends on how cash flows are aggregated. The inconsistency of these 
duration measurements is due to the non-uniqueness of the yield as it is applied to 
different cash flow aggregates.

Using the TSIR model, the level duration of a portfolio is equal to the calculated 
market value weighted duration of different securities. Since each cash flow is 
discounted by its specific yield, different aggregation methods would not impact the 
overall duration measurement and a unique duration value is calculated regardless of 
the aggregation method.

4.5 RISKS AND BASIS FUNCTIONS

The concepts of partial duration and key rate duration (see Ho [5]) are very closely 
related. These concepts have been introduced to analyze the sensitivity of portfolios to 
the shape of the TSIR.

The key rate duration measures the sensitivity to the curve by analyzing the impact 
of localized changes in the yield of a security on its price. In order to measure the 
sensitivity of a security to the 2-year part of the curve, the yield of the 2-year cash 
flows is moved up or down by 1 basis point. The resulting change in the yield is used 
to discount the cash flows and to calculate the changes in the security’s market value. 
To confine the changes to the 2-year part of the curve, the impact of the plus or minus 
1 basis point change is linearly interpolated to zero at the neighboring 1- and 3-year 
parts of the curve. For example, if we use 1-, 2-, and 3-year key rates to calculate the 

TABLE 4.4 Conventional yield and duration of portfolios of securities

Portfolio Face Amount Maturity 
Years

Yield Price Implied  
Market Value

Duration

A 57,623,070 3 4.73% 86.7708 50,000,000 3

B 178,631,139 17 7.49% 27.9906 50,000,000 17

A+B MV 
Weighted

17 6.11% 111,192,409 10

A+B MVD 
Weighted

17 7.08% 100,247,769 10

A+B Actual 17 7.10% 100,000,000 10.48
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key rate duration of a cash flow at 1.5 years, for a change of 1 basis point in the yield 
of the 2-year curve, the change in yield of the cash flow will be 0.5 bps.

In practice, most applications that use or calculate KRD, use modified duration 
at selective maturities or the maturities of on-the-run bonds. Using continuously 
compounded yield as in our methodology, the modified and Macaulay durations are 
the same and are very close to the level of the TSIR. Typically key rates at 6 months, 1, 
2, 3, 4, 5, 7, 10, 20, and 30 years are used for the calculation. 

The relationship between modified duration and Macaulay duration for a bond 
with no contingent cash flow is

D
D

y mmod
mac=

+1 (4.11)

where Dmod is the modified duration of the bond, Dmac is the Macaulay duration of the 
bond, y is market yield and m is the coupon frequency of the bond (for US treasuries 
m = 2, and for European bonds m = 1).

We can transform the basis functions of the vector of durations using the matrices 
that were developed in Section 3.5. The key rate basis functions provide a natural way to 
calculate yield curve sensitivity to various points on the yield curve. While the concepts 
of level, slope, bend, etc. are very useful for portfolio construction, they are somewhat 
abstract and hard to visualize. For hedging purposes, it may not be intuitively clear 
how best to hedge the bend duration component of a portfolio. Given the flexibility of 
the model, it is possible to define interest rate sensitivity on any arbitrary set of points 
on the curve and to transform one set of risk sensitivity into another by using linear 
transformations.

 From (4.3) we note that a duration component is the weighted time average of the 
respective basis function:

D t tk k= ψ ( ) (4.12)

Defining a new basis function χ  as in (3.16) and substituting it in the above equation, 
we can write the duration components in the new basis function as

D t t t m m t m Dk k kj j

j

kj

j

j kj j

j

χ χ ψ ψ= = = =∑ ∑ ∑( ) (4.13)

Given the transformation matrix mij  and the vector of durations Dj , we can calculate 
the durations in a different set of basis functions as

D M Di ij j
χ⎢

⎣⎢
⎥
⎦⎥ = ⎡

⎣⎢
⎤
⎦⎥ ×

⎡
⎣⎢

⎤
⎦⎥ (4.14)

Recall from (3.22) that the matrix M is simply the inverse of the matrix of the basis 
functions. The first two duration components of PBFs, CBFs and OBFs are identical.

To illustrate how we can change the basis functions, we start with a simple exam-
ple. Consider a two-parameter term structure model as we did in Section 3.4. The 
 duration components K0 and K1 at points b0  and b1  are given by 



Risk Measurement 55

c04.indd 03/30/2015 Page 55Trim:  170  x  244 mm 

K
p

p
b

c t e t

t t D D

i i

i

t bi j jj
0

0
0 0

1
2 0 1

1
2 0 1

1
= −

∂
∂

= ∑ =

= − = −

∑ −χ χ

ψ ψ

χ

(4.15)

K
p

p
b

c t e t

t t D D

i i

i

t bi j jj
1

1
1 1

1
2 0 1

1
2 0 1

1
= −

∂
∂

= ∑ =

= + = +

∑ −χ χ

ψ ψ

χ

(4.16)

where we have substituted for χ from (3.9) and used (4.3) to replace the brackets 
with duration components. K0  is the contribution to the duration of a bond for a unit 
move of the yield curve at a yield of b0  while anchoring the yield curve at a yield of 
b1.  Effectively, K0  and K1  are the key rate duration components of the two-parameter 
term structure model. 

The choice of maturity for key rates is up to us. For any given set of key rate 
maturities, we can find the corresponding key rate duration components. 

Term structure key rate duration (TSKRD) components provide an explicit hedge 
for the exposure of a security or a portfolio. In our framework, at any given key rate 
maturity, the contributions of all other key rates to duration are zero. This implies that 
to hedge the curve exposure of a portfolio, we just need to buy or sell the equivalent 
duration contributions of its key rate components. For example, if the 10-year KRD 
of a portfolio is 2 years, we can sell 2 years of the duration of the 10-year zero coupon 
bond to hedge its duration.

Figure 4.2 show the contribution of TSKRD components for a three-parameter 
term structure model. We chose key rate duration components at the 1-, 5.3-, and 
16-year parts of the curve. One interpretation of a TSKRD component is that of a curve 
that is anchored at all other key interest rates. For example, the 5.3-year component 

FIGURE 4.2 Key rate contribution to duration, time space
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is anchored at 1- and 16-year maturities. The continuity requirements force this curve 
to move in the opposite directions outside 1–16 years than inside it. This results in the 
duration contribution of this component being negative for short or long maturities. 
When a key rate contribution is one, the remaining key rate contributions are zero.

In the conventional KRD models, the impact of a key rate change is localized. This 
creates yield curve shapes that are not realistic and can result in risk measures that are not 
accurately captured for a security that matures between two key rates. In our model, the 
yield curve maintains its continuity while a change to one of the key rates affects the entire 
yield curve with the maximum impact near the key rate maturity and zero impact at any 
other key rate point. The sum of all TSKRD contributions is equal to the level duration. 

4.6 APPLICATION TO KEY RATE DURATION 

In the two-parameter model of the TSIR, if the level and slope durations of a portfolio 
are 10 and 3 years respectively, the key rate duration components of the model that was 
developed in Section 4.5, based on (4.15) and (4.16), can be calculated as

K D D

K D D

0
1
2 0 1

10
2

1
1
2 0 1

10
2

3 2

3 8

= − = − =

= + = + =

The maturity of key rates in this case would be at ψ ψ1
1
2 0= ±  or τ = ± = =1

2 2 2 10 7, . , .t t  
years. The contribution to duration of this portfolio at 2.2 and 10.7 years’ maturity are 
respectively 2 and 8 years. Likewise, to hedge this portfolio, we have to sell 2 years 
of duration using a 2.2-year zero coupon bond and sell 8 years of duration using a  
10.7-year zero coupon bond.

In practice, key rate securities are selected on the basis of liquidity or convenience. 
Assume that the risks of a portfolio are measured by a third party that provides the 
durations at selected key rates of 3 months, 6 months, 1 year, etc. Table 4.5 shows the 
weights of each of the key rates along with the CBF duration components of each key 
rate. The modified durations and level durations of zero coupon bonds are identical by 
using continuously compounded yield.

We know that we need only five components of the TSIR to capture the risks of 
a portfolio. We now show how to convert the risks of the portfolio into the selected 
five key rates. We use the five key rates shaded in Table 4.5 as basis functions for our 
purpose. We then transpose the matrix and divide all elements of the transposed matrix 
by the value of the first row, to create a matrix with unit values of the level duration. 
This step is not necessary, but will result in actual key rate durations rather than the 
weight of each key rate.

The steps to convert from key rate durations to term structure durations (TSDs) 
are as follows:

 ▪ Identify key rate securities (KRSs) and calculate their conventional TSD and KRD 
from (4.14). KRSs can be coupon bonds.

 ▪ For each KRD of a security, divide it by the KRD of its respective KRS and use the 
ratio to scale all TSDs of the securities.

 ▪ Add TSDs for all KRDs to calculate the total TSD.
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For example, suppose that a third party has provided the key rate durations of a security 
S, and we would like to calculate the corresponding term structure durations. Assume 
that the third party has used coupon bonds as key securities and the 10-year KRS is a 
bond with duration of 7.6 years (modified duration). We calculate the TSDs of the key 
security and find a level duration of 7.9 and slope duration of 2.1. If the 10-year KRD 
of security S is 3.2 years, then the contribution to the level and slope of the security 
from this KRD can be calculated as 3 2

7 6 7 9.
. .×  and 3 2

7 6 2 1.
. .×  respectively.

If the number of key rates is equal to or greater than the number of parameters 
in the TSIR model, there will be a unique solution to the conversion. However, if 
there are fewer key rates than TSIR components, we need to use other techniques (see 
Section 8.2).

To convert from TSD to TSKRDs, we take the KRS in Table 4.5 and divide each 
TSD by its level duration and transpose the matrix to arrive at Table 4.6. 

TABLE 4.5 Duration components of key rate securities

Level Slope Bend Cubic Quartic Weight

3 Mo 0.238 −0.224 0.182 −0.118 0.040 5

6 Mo 0.545 −0.470 0.267 0.009 −0.283 10

1 Yr 0.980 −0.745 0.154  0.511 −0.931 10

2 Yr 1.942 −1.067 −0.766 1.902 −1.317 10

3 Yr 2.903 −1.056 −2.125 2.580 0.256 10

5 Yr 4.702 −0.300 −4.596 0.801 4.400 10

7 Yr 6.723 1.212 −6.201 −3.494 4.760 10

10 Yr 9.085 3.777 −5.643 −8.406 −1.947 10

15 Yr 12.353 8.367 0.771 −5.001 −8.035 10

20 Yr 15.849 12.559 6.309 1.212 −2.762 10

30 Yr 19.443 16.641 11.289 6.780 2.931 5

Total 6.492 3.049 −0.609 −0.656 −0.437

TABLE 4.6 Transposed and scaled duration components of key rate securities

6Mo 2Yr 5Yr 10Yr 30Yr

Level 1.0000 1.0000 1.0000 1.0000 1.0000

Slope −0.8632 −0.5496 −0.0638 0.4158 0.8559

Bend 0.4904 −0.3944 −0.9774 −0.6212 0.5806

Cubic 0.0166 0.9792 0.1703 −0.9253 0.3487

Quartic −0.5191 −0.6783 0.9358 −0.2143 0.1507
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From (3.22), we can calculate the matrix M by inverting this matrix. Multiplying 
by the vector of total TSDs from Table 4.5, we can calculate the vector of TSKRDs as 
follows:

0 3213 0 6271 0 5135 0 3279 0 2099

0 0311 0 1413 0 4236 0 5110

. . . . .

. . . .

− −
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Thus, the key durations of the portfolio at key maturities of 6 months, 2 years, … are 
respectively −0.0155, 0.8002, ….

We now return to the example in Section 1.4 and calculate the TSKRDs. Knowing 
the yields at 2 and 18 years of 1% and 4%, we can write the yield curve in KBF terms as

y b b

b
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= − + −

=
−

=
−

0 2 1 18

0
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0 04

0 01

( ) ( )

.

.

τ τ τ τ

τ τ

τ τ

We construct a table of the risks of the key rates at 2, 10, and 20 years (zero coupon 
keys), similar to Table 4.6 in PBFs as follows:

Time 2 10 20
1 1 1

τ −0.542 0.455 0.851
τ2 0.294 0.207 0.725

From (3.22) we calculate the transformation matrix by inverting the above matrix of 
risks as

M[ ]=
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢

0 279 0 940 0 720

1 168 0 782 2 529

0 446 0 158 1 810
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⎦

⎥
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⎥
⎥

The calculated durations in PBFs of the portfolio A + B in Table 1.1 are
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For example, the bend duration of the portfolio is calculated as
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The key rate durations can now be calculated as
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that is,
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6.16

The calculated TSKRDs of 0.9, 1.35, and 7.75 years for the 2-, 10-, and 20-year 
key rates are somewhat different from the calculated values in Section 1.4. We first 
note that, unlike ordinary key rate durations, the calculated result is independent of 
how the cash flows are aggregated and the sum of durations is exactly 10 years in this 
example, as it should be. Additionally, the higher correlations for longer maturity key 
rates manifest themselves in a higher duration for the 20-year key rate than standard 
key rate calculations. The decay coefficient is the parameter that facilitates compressing 
longer dated times to account for higher correlations. If we repeat this exercise and use 
only two key rates of 2 and 18 years, the resulting key rate durations will be 1 and 9 
years respectively. The cash flows that coincide with key rate maturities have no effect 
on other key rates. In our example, the cash flow at 18 years is not at a key rate and 
thus it impacts the key rate at the 2-year part of the curve, to maintain continuity of the 
yield curve, lowering it by 0.1 years.

We took the portfolio of 2- and 18-year treasuries and hedged it using 2-, 10-, and 
20 year key rates using standard key rate durations as well as key rates based on the 
TSIR on a historical basis. Zero coupon Strips were used from 1998 through 2012 and 
the results were analyzed on a monthly basis. The tracking errors between the standard 
key rate and term structure based key rate hedges and the portfolio were respectively 
63 and 58 bps. Most of the tracking error is due to the changes in cheapness or richness 
of the key rate securities. The security specific risks cannot be hedged; while they are a 
source of tracking error and risk, they can also be a source of return, as we will see in 
the next chapter. If we assume that the spreads of the key rate securities relative to the 
curve remain unchanged, the tracking error falls by more than 50%. 

Due to the higher weights of 2- and 10-year key securities in the standard key rate 
hedges, the sum of the market values of the hedges was about 4% higher than the port-
folio’s market value. To balance the market value, a short position of 1-month Libor 
was added to the hedge positions to match their market value with that of the port-
folio. Similar adjustments were made for the TSIR based key rate durations; however, 
the adjustments were smaller and were positive by about 2%. The market values of 
term structure hedges are close and usually below the market values of the underlying 
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securities, while the opposite is true for key rate durations. The additional 4% capital 
that is required for hedging can result in leverage for cash portfolios. 

We need at most five TSKRDs to have similar or better tracking error than con-
ventional KRDs for hedging the interest rate exposure of a portfolio, which ordinarily 
requires about 10 KRDs. In Section 8.3 we will compare KRD and TSD in more detail 
and show that five duration components of the TSIR offer the same tracking error as 10 
KRDs, with significant advantages for performance contribution. We will see in Section 
12.1 that the measurement of the KRD can be off by more than 1 year for corporate 
securities.

The relative performances of the key rate and term structure hedges were very 
close, and in both cases were about an order of magnitude less than the tracking error. 

Alternatively, we can calculate the weight of key rates by interpolation in τ space 
instead of linear interpolation. Thus, the 20- and 10-year key rate durations of the 
18-year treasury will be calculated as

D20
18 10
20 10

10
0 807 0 455
0 851 0 455

10 8 89=
−
−

=
−
−

=
τ τ
τ τ

( ) ( )
( ) ( )

. .

. .
.

DD10 1 11= .

The above analysis was based on the duration of individual zero coupon bonds. 
For aggregated securities where the duration is overestimated (see Section 1.4 or Sec-
tion 4.4) in an upward sloping yield curve, the tracking error of the key rate duration 
hedge is higher than in the above example. 

4.7 RISK MEASUREMENT OF A TREASURY INDEX

The term structure risk of a portfolio is calculated by aggregating the market value 
weighted duration components of all securities. We will now provide analysis of the 
risks of a custom treasury index.

We created a custom treasury index by equally weighting all outstanding US 
treasury coupon bonds with a minimum maturity of 1 year, excluding callable bonds. 
We then calculated the duration components and the continuously compounded yield 
of the index, as well as the carry (yield plus rolldown of the curve) on a monthly basis. 
Table 4.7 shows the average annual durations and yields. 

Due to the treasury surplus and buy-back program in the US in the late 1990s 
and early 2000s, the weight of treasuries in the 5-year part of the curve was lowered 
significantly. In Table 4.7 we can see the bend duration of the index in 2001 at its 
peak of −0.95, implying the least exposure to the 5-year part of the curve. Subsequent 
issuance at the long end of the maturity spectrum resulted in significant gains in the level 
and slope durations as well as large exposures to the cubic and quartic components in 
the period 2001–2007. 

Table 4.8 shows the average duration contributions of the treasury index in 
different basis functions. For this purpose, we used the natural maturities of 0.19, 1.77, 
5.3, 12.1, and 28.5 years.

Table 4.9 shows a sample of duration components for global securities sorted 
by maturity. The level duration generally increases with maturity; however, for lower 
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TABLE 4.7 Duration components and yield of an equal weighted treasury index

1st 2nd 3rd 4th 5th Carry Yield

1992 4.46 0.70 −2.05 −0.02 0.21 6.88% 5.98%

1993 4.73 0.94 −1.97 −0.01 0.27 5.79% 5.06%

1994 4.58 0.82 −1.93 0.16 0.26 6.97% 6.51%

1995 4.72 0.97 −1.79 0.18 0.13 6.54% 6.42%

1996 4.75 1.04 −1.68 0.19 0.01 6.43% 6.23%

1997 4.87 1.19 −1.55 0.17 −0.12 6.35% 6.22%

1998 5.26 1.57 −1.34 0.11 −0.33 5.36% 5.34%

1999 5.35 1.71 −1.19 0.04 −0.57 5.81% 5.70%

2000 5.77 2.14 −1.00 −0.22 −0.96 6.07% 6.22%

2001 6.09 2.44 −0.95 −0.56 −1.32 5.15% 4.74%

2002 6.36 2.65 −1.05 −0.95 −1.60 4.78% 4.04%

2003 6.58 2.78 −1.28 −1.39 −1.77 4.19% 3.38%

2004 6.38 2.46 −1.66 −1.45 −1.50 4.48% 3.74%

2005 6.32 2.35 −1.85 −1.49 −1.38 4.38% 4.18%

2006 5.91 1.94 −2.01 −1.27 −1.08 4.79% 4.83%

2007 5.60 1.67 −2.04 −1.09 −0.85 4.64% 4.59%

2008 5.65 1.67 −2.13 −1.04 −0.54 3.71% 3.02%

2009 5.65 1.60 −2.23 −0.86 −0.20 3.39% 2.34%

2010 5.48 1.41 −2.28 −0.60 0.18 3.14% 2.05%

2011 5.52 1.45 −2.22 −0.40 0.44 2.67% 1.65%

2012 5.85 1.76 −1.99 −0.20 0.53 1.73% 1.05%

coupon bonds the maturity is longer than a comparable higher coupon bond. For 
example, HKD 2.39% 8/20/25 has a level duration of 11.014, while PEN 8.2% 8/12/26 
has a duration of 8.683.

The slope duration is negative for short duration bonds, becomes positive at about 
a level duration of 5 years, and rises after that. The bend duration is positive for very 

TABLE 4.8 Average duration components of an equal weighted treasury index

First Second Third Fourth Fifth

Cheby 5.52 1.68 −1.72 −0.51 −0.48

Ortho 5.52 1.68 0.09 0.31 −0.03

Poly 5.52 1.68 1.90 1.13 1.15

Exp 5.52 1.92 1.01 0.63 0.43

Key −0.03 0.88 1.60 2.06 1.01



62 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c04.indd 03/30/2015 Page 62

short duration securities and becomes negative in the middle of the curve, becoming 
positive at long maturities. Likewise, cubic and quartic components change sign four 
and five times, respectively.

The slope duration at the long end of the curve is always less than the level duration. 
Only for derivative securities can the slope duration be higher than the level duration, 
as is shown in Table 4.3 and Figure 4.1.

TABLE 4.9 Duration components of global treasuries, January 3, 2013

Country Currency cpn Maturity Level Slope Bend Cubic Quartic

US USD 0 4/4/13 0.238 −0.224 0.182 −0.118 0.040

JP JPY 1.3 12/20/14 1.930 −1.069 −0.744 1.890 −1.346

US USD 0.125 12/31/14 1.978 −1.081 −0.797 1.951 −1.335

AU AUD 4.75 10/21/15 2.616 −1.060 −1.739 2.430 −0.211

AU AUD 4.75 10/21/15 2.616 −1.060 −1.739 2.430 −0.211

IL ILS 6.5 1/31/16 2.737 −0.985 −2.001 2.368 0.311

GB GBP 8.75 8/25/17 3.919 −0.549 −3.638 1.384 3.116

DK DKK 4 11/15/17 4.509 −0.395 −4.357 1.050 4.063

US USD 0.625 11/30/17 4.825 −0.301 −4.770 0.876 4.639

CA CAD 1.25 3/1/18 4.981 −0.170 −4.932 0.462 4.845

DE EUR 6.25 1/4/24 8.697 3.692 −4.690 −7.300 −3.108

HK HKD 2.39 8/20/25 11.014 6.217 −3.378 −9.574 −8.299

PE PEN 8.2 8/12/26 8.683 4.210 −3.076 −6.052 −4.769

AU AUD 4.75 4/21/27 10.548 6.080 −2.210 −7.444 −7.804

SE SEK 2.25 6/1/32 15.559 11.995 4.215 −3.634 −9.687

US USD 0 11/15/42 29.860 28.629 25.037 19.380 12.126

EU EUR 2.5 7/4/44 21.397 18.884 13.959 9.545 5.585

CA CAD 3.5 12/1/45 20.757 18.085 13.000 8.792 5.333

JP JPY 2 3/20/52 26.042 23.925 19.850 16.441 13.649

GB GBP 4 1/22/60 20.727 17.875 12.893 9.696 7.879
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Performance attribution is a very important and one of the most challenging areas 
of investment management business. Quite often a portfolio is managed against a 

benchmark which can be an index or peer group. Relative performance compared to an 
index is usually a better measure of the capability of a portfolio manager than absolute 
performance. For example, if the bond market is down 3% and a portfolio manager is 
down only 2%, he is outperforming the benchmark by 100 bps (1%), which is consid-
ered more favorably by his supervisor than a portfolio manager who underperforms by 
1% in a market that is up 7%.

The performance of a portfolio is governed by several factors/people:

 ▪ The universe of securities or broad maturity/duration ranges of a portfolio is 
decided by policy or prospectus of the fund or portfolio.

 ▪ The relative duration is generally decided by the investment policy committee or 
the portfolio manager.

 ▪ The curve positioning is done by the portfolio manager.
 ▪ Security selection, especially for corporate bonds is performed by analysts.
 ▪ Trading by traders/portfolio managers.

While the overall performance of a portfolio is measured very easily, the breakdown of 
individual contributions is very difficult and many investment management companies 
have devoted considerable resources to drawing up an accurate account of individual 
contributions. For multi-sector portfolios where derivatives such as options, futures 
and credit default swaps are used, the task of performance attribution is even more 
difficult. We will discuss performance attribution of credit securities and derivatives 
in the future chapters. In this chapter we focus on the performance attribution of 
treasuries.

CHAPTER 5
Performance Attribution 

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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5.1 CURVE PERFORMANCE

The change in the performance of a security due to changes in the TSIR (term change) 
can be calculated as
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After expanding the above equation by Taylor series, we have
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Substituting from (4.3) and (4.4) and simplifying the result, we can write equation  
(5.2) as

 Δ Δ Δ Δp p a D p a a Xt t k k

k

t k l kl
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= − + +∑ ∑∑1
2

…  (5.3)

Thus, the first order change in the performance of a security or a portfolio of securities 
due to changes in interest rates is calculated by multiplying the duration components of 
the security by the changes in the components of the TSIR. Specifically,

 q
p
p

D ad i
i

i i, = = −
Δ

Δ  (5.4)

where Δpi is the change in price due to the ith component of the TSIR and Di and Δai 
are the respective duration and change in the interest rate components and qd,i is the 
contribution to performance of the ith component of duration. For example, if the 
slope duration of a security is 5 years and the slope component of the TSIR falls from 
0.011 to 0.010, then the expected performance gain from the slope component of the 
yield curve will be 5 × 0.001 = 0.5%.

The performance contribution from convexity can be calculated by considering 
all the cross-convexity components. However, in most cases, convexity can be ignored 
or can be accounted for primarily through the first two components of the TSIR. The 
general formula to account for convexity is
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where Xij is the cross-convexity matrix as defined in (4.4) and qx,ij is the contribution 
to performance of Xij. As a substitute, we can use the following formula for calculating 
the contribution of convexity to performance:
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where yb is the calculated continuously compounded yield to maturity of the bond or 
security calculated from

 c e c ei

i

y t t
i

i

y ti b i∑ ∑− −=( )  (5.7)

5.2 YIELD PERFORMANCE

We now calculate the contribution to performance due to the passage of time. It is 
standard practice to use the yield of a security and multiply it by time to calculate the 
contribution of yield to performance. For our analysis, we start by taking the price of a 
security (4.1) and shift the time slightly:
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The right hand side of (5.8) is derived from Taylor expansion of the left hand side to 
the first order of Δt and yi = yi(ti). Substituting (2.27) in the above equation leads to

 q p t y c e y t ty f i i
y t

i

f ii i= = = =−∑Δ Δ Δ Δ, , θ  (5.9)

Thus, the contribution of yield to performance qy is proportional to the present value 
cash flow weighted average of the instantaneous forward rates. In traditional fixed 
income, where we use a constant yield, the derivative of the yield relative to time is 
zero, resulting in y yf = .  In analogy with the options market, we call the yield plus 
rolldown the θ of a bond.

5.3 SECURITY PERFORMANCE

The next factor to consider for performance is the change in the spread of a security 
relative to the curve. The components of the TSIR are calculated in such a way as to 
minimize the yield or price error (the difference between the market price and the cal-
culated price squared) for all securities in the market. Since the fit is not perfect, there 
will be a difference between the market and the calculated prices of all securities. The 
calculated price of a security can be written as

 p c et i

i

y t ti i= ∑ − ( )  (5.10)

We can assume that the market price is calculated by a yield curve that has an implied 
spread compared to the calculated TSIR. Thus,
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where pm is the market price and sb is the implied spread of the bond relative to the 
TSIR. For example, if the curve does not change but the spread of a security falls, its 
price increases. We call the change due to such movements the security selection perfor-
mance. If pm and pt are relatively close to each other, as is usually the case, for a level 
duration of D0, we can approximately calculate the implied spread as 
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 (5.12)

The change in the price due to a change in the spread of the security relative to its 
curve can be calculated similarly to the calculation that we did for changes in the yield as 
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The contribution to performance due to security selection is thus

 q D sb b= − 0Δ  (5.14)

There are convexity components for the security performance, which can be impor-
tant if a security has a relatively large spread such as we saw in Figure 2.10. For this 
purpose we rewrite (5.1) to include security spread:
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After expansion and some simplification of the above equation, we arrive at
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where Δpa is the change in price due to changes in the components of the TSIR, simi-
larly to (5.3), defined as
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Noting that ψ0 = 1, we can simplify equation (5.16) as
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The last two contributions in equation (5.18) are related to the convexity of the spread 
of the security. The spread of a security is significantly less volatile than the level of 
interest rates. A rich security or a security that has a negative spread relative to the 
curve is often very liquid and tends to stay rich; likewise, a cheap security tends to stay 
cheap. We can ignore the contribution of the convexity of the security to the overall 
performance and simplify equation (5.18) as
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The constant spread sb relative to the calculated TSIR represents the security 
 specific component of our analysis. The spread is a very good measure of richness 
(negative spread, expensive security) or cheapness (positive spread) of a security. When 
the spread falls, the security outperforms the curve by an amount equal to (−ΔsD0). 
For example, if the spread of a bond with a duration of 10 years changes from 12 to 7 
bps, the expected excess return will be 50 bps. 

5.4 PORTFOLIO PERFORMANCE

The performance of a security can be calculated by combining the contributions from 
duration, convexity, security selection (5.19) and yield (5.9) respectively as follows:
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The performance contribution from duration components is calculated by multi-
plying the duration components and the change in the respective components of the 
TSIR. With five components of the TSIR, there are 15 independent components of con-
vexity and cross-convexity. For our analysis, we use only the four largest components of 
convexity, namely X00, X01, X11 and X02. The remaining components are related to the 
volatility of higher order components of the TSIR as well as the respective convexities, 
which are usually small.

The contribution from yield is calculated by the weighted average carry as defined 
by (5.9) multiplied by the number of days divided by the number of days in a year. Years 
that are divisible by 4 are leap years, except for years that are divisible by 100, unless 
divisible by 400. For example, the year 1900 was not a leap year by but 2000 was. The 
average number of days in a year will be 365.2425.

The performance of a portfolio can be calculated by maintaining aggregate risks 
and yield parameters, rather than individual security information. For the duration 
contribution of the portfolio, we can calculate the aggregate VBP or simply the market 
value weighted duration components. If a portfolio has N securities, each with a weight 
or face value w, the aggregated duration contribution will be

 Δ ΔM D a w p Dk k j m j k j
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=

∑
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where ΔM is the change in the market value of the portfolio from changes in the kth 
component of the TSIR. Convexity, security spread and contribution to carry can also be 
aggregated the same way. In order to calculate the performance of a treasury portfolio 
we just need to store the components – five duration, four convexity, one carry and one 
security spread – on a daily basis, regardless of the number of securities in the portfolio.
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We analyzed the performance of a custom treasury index by equally weighting all 
treasury bonds with a maturity of longer than 1 year from 1992 to 2012 on a daily 
basis and provide the aggregate annual data in Table 5.1.

The security selection contribution is calculated by multiplying the changes in the 
spread of securities by their level duration and ignoring the convexity of the security 
spread. The term structure of rates is calculated in such a way as to create a balance 
between the positive and negative spreads (see Chapter 20). Therefore, the contribu-
tion of security selection to performance should be zero. In Table 5.1, we see a negative 
performance of security selection averaging about 7 bps (–0.07%) per year.

With the calculated term structure components the market value of the aggregate 
index matches the actual market value exactly and implies a zero spread for the overall 
index. In fact, on all days, except for the last business day of the month, the contri-
bution of security selection to performance is zero. Due to index rebalancing, at the 
end of the month, newly issued bonds enter the index and the bonds with maturities 
of less than 1 year drop out. As such, either the incoming or outgoing index can be 
priced exactly. The new bonds, due to high liquidity, tend to be in high demand and 
rich compared to the curve, and the older bonds tend to be on the cheap side, result-
ing in the new TSIR having a slightly lower level than if the newly issued bonds were 
excluded. The implied spread of existing bonds widens slightly with the inclusion of the 
newly issued bonds, resulting in a slightly negative performance for the existing index. 
In 2008 and most other years, the entire underperformance of the index, which was 
0.07%, was accounted for by the performance of the last business day of the refunding 
months (February, May, August, November) as the treasury issued new bonds.

The effect of rebalancing is well known in the investment management business; 
however, we are not aware of any prior calculations that showed the underperformance 
of the treasury index. In corporate bond or emerging market indexes, sometimes the 
opposite takes place. A rich security is dropped out of the index, causing the index to 
outperform the broad market and portfolio managers who had underweighted that 
security to underperform the index.

The “Total” column in Table 5.1 is the sum of contributions to performance from 
durations, convexity, carry and security. The error between calculated and realized per-
formance using daily data was less than 1 basis point annually and is shown in the last 
column labeled “Diff”. The last two rows of the table are the average annual contribu-
tions to performance and the annualized standard deviations of those contributions. 
The steady decline in the volatility of the performance of components is a very attrac-
tive feature of our TSIR model. Using other basis functions, such as KBFs, the contribu-
tion to performance of successive components is much less regular.

For this analysis, we calculated the TSIR from coupon bonds. For the US and coun-
tries where Strips are available, it might be easier to calculate the TSIR from Strips 
data. For efficient markets, there should not be any difference between coupon bonds 
or Strips. Coupons can be reconstituted by combining Strips or they can be stripped to 
the respective zero coupons. 

In the fall of 2008, after the Lehman bankruptcy, most treasury coupon bonds 
outperformed coupon Strips. If we used Strips to calculate the TSIR, we would see a 
sizable security outperformance relative to the market in 2008 and a relatively negative 
performance in 2009. Table 5.2 is a reconstruction of Table 5.1, except using coupon 
Strips to construct the TSIR.
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TABLE 5.3  Decay coefficient and contribution to performance, 1992–2012

Decay 1st 2nd 3rd 4th 5th Vex Carr Securit Market Diff

0.09 1.14% −0.09% 0.10% −0.01% −0.01% 0.27% 4.90% −0.06% 6.25% 0.007%

0.10 1.14% −0.09% 0.10% −0.01% −0.01% 0.27% 4.91% −0.06% 6.25% 0.006%

0.11 1.15% −0.09% 0.10% −0.01% 0.00% 0.27% 4.91% −0.07% 6.25% 0.005%

0.12 1.15% −0.09% 0.09% −0.01% 0.00% 0.27% 4.91% −0.07% 6.25% 0.004%

0.13 1.16% −0.09% 0.08% −0.01% 0.00% 0.27% 4.92% −0.07% 6.25% 0.002%

0.14 1.17% −0.09% 0.07% −0.01% 0.00% 0.27% 4.92% −0.08% 6.25% 0.000%

0.15 1.17% −0.09% 0.06% −0.01% 0.00% 0.28% 4.92% −0.08% 6.25% −0.004%

0.16 1.18% −0.09% 0.05% −0.01% 0.00% 0.28% 4.92% −0.08% 6.25% −0.009%

0.17 1.19% −0.08% 0.03% 0.00% 0.00% 0.29% 4.92% −0.07% 6.25% −0.015%

0.18 1.19% −0.08% 0.02% 0.00% 0.00% 0.30% 4.92% −0.07% 6.25% −0.024%

0.19 1.19% −0.07% 0.01% 0.00% 0.00% 0.31% 4.92% −0.07% 6.25% −0.035%

0.20 1.19% −0.07% 0.00% 0.00% 0.00% 0.32% 4.91% −0.07% 6.25% −0.049%

0.21 1.19% −0.06% −0.01% 0.00% 0.00% 0.34% 4.91% −0.06% 6.25% −0.068%

It is clear from Tables 5.1 and 5.2 that the carry (yield) and the first three dura-
tion components of the TSIR account for nearly all the performance contribution of 
the index. Additionally, the contribution of level duration to performance is largest, 
followed by slope, bend, etc. This important result almost universally applies to all 
fixed income portfolios. It emphasizes what we suggested earlier – that the first three 
components of duration are sufficient for risk measurement and management and per-
formance attribution.

The standard deviation of the security selection, based on the daily data, is very 
large for the yield curve based on zero coupon bonds. Due to market inefficiencies 
and volatility of spread between coupon bonds and Strips, the contribution of security 
selection to performance is very volatile on a daily basis, but due to mean reversion the 
monthly volatility is significantly less.

The larger tracking error of performance attribution using Strips is due to the con-
vexity effects of the security selection and higher order components of convexity that 
we have ignored.

Tables 5.1 and 5.2 show the annual performance of the components of the TSIR. 
It is clear that in most years the contributions of the fourth and fifth components of 
performance are very small and can be ignored as a first order approximation. The first 
three components of the TSIR account for more than 98% of the risk of the index for a 
wide range of decay coefficients. It is instructive to look at the pattern of contribution 
to performance and risk of different components. 

Table 5.3 shows the aggregated historical performance using different decay coef-
ficients. A relatively wide range of decay coefficients (2.16) result in comparable accu-
racies, provided that they are used in a consistent manner. The table shows the average 
annual contribution to performance for the components of the TSIR for the period 
1992–2012, calculated on a daily basis and aggregated. In the table, decay coefficients 
ranging from 0.09 to 0.16, corresponding to the point where the slope component of 
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the yield curve (τ) crosses zero in the range of 7.7 to 4.3 years respectively, have average 
errors of less than 1 basis point per year.

Table 5.4 shows the annualized volatility of contribution to performance for the 
period 1992–2012. The decay coefficient represents how the cash flows are weighted. 
Cash flows that are longer than the pivot point (see Section 2.9) contribute positively 
to the slope and other cash flows contribute negatively. Since a lower decay coefficient 
implies a longer pivot point, there will be fewer cash flows that are longer than the 
pivot point and therefore the slope duration will be less. In Table 5.4, as the value of the 
decay coefficient increases, so will the contribution of slope to the risk. In the middle 
range of the decay coefficients we can see a steadily decreasing contribution to risks of 
the components of the term structure combined with very low tracking error.

Table 5.5 compares the performance of different basis functions on an annual basis. 
The aggregated contributions to performance of durations, for all basis functions, are 
identical and equal to 1.14%. The difference in performance is only related to the con-
tribution of convexity and security selection. We used only four out of 15 components 
of convexity to calculate its impact on performance. For Chebyshev basis functions, 
it captures nearly all the contribution of convexity to performance. For exponential 
basis functions, those same components (matrix elements 00, 01, 11, 02) significantly 
overestimate the convexity, and for key basis functions they underestimate convexity. 
Additionally, none of the basis functions compares favorably to Chebyshev for its suc-
cessive decline in contribution to performance for each component of the term struc-
ture of rates.

The security selection performance was calculated from the spread of the security 
relative to the first component of the yield curve. For all basis functions except for key, 
this represents a parallel shift of the yield curve; for key, it represents a parallel shift of 

TABLE 5.4  Decay coefficient and volatility of performance, 1992–2012

Decay 1st 2nd 3rd 4th 5th Vex Carr Security Market Diff

0.09 4.46% 0.37% 1.14% 0.18% 0.17% 0.03% 0.22% 0.03% 5.15% 0.007%

0.10 4.48% 0.54% 1.03% 0.18% 0.17% 0.03% 0.22% 0.03% 5.15% 0.006%

0.11 4.50% 0.70% 0.93% 0.19% 0.16% 0.03% 0.22% 0.03% 5.15% 0.006%

0.12 4.52% 0.87% 0.84% 0.18% 0.15% 0.03% 0.22% 0.04% 5.15% 0.005%

0.13 4.54% 1.03% 0.75% 0.17% 0.14% 0.03% 0.22% 0.04% 5.15% 0.005%

0.14 4.56% 1.19% 0.67% 0.16% 0.12% 0.03% 0.22% 0.04% 5.15% 0.005%

0.15 4.58% 1.35% 0.60% 0.16% 0.10% 0.03% 0.22% 0.04% 5.15% 0.006%

0.16 4.59% 1.51% 0.54% 0.15% 0.09% 0.03% 0.22% 0.04% 5.15% 0.007%

0.17 4.61% 1.69% 0.49% 0.15% 0.08% 0.03% 0.22% 0.04% 5.15% 0.008%

0.18 4.63% 1.87% 0.45% 0.15% 0.07% 0.04% 0.22% 0.04% 5.15% 0.010%

0.19 4.65% 2.07% 0.44% 0.16% 0.08% 0.04% 0.22% 0.04% 5.15% 0.012%

0.20 4.67% 2.30% 0.45% 0.18% 0.09% 0.04% 0.22% 0.04% 5.15% 0.015%

0.21 4.70% 2.57% 0.49% 0.21% 0.10% 0.04% 0.22% 0.04% 5.15% 0.018%
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the first key rate. Since the average contribution to duration of the first key rate is very 
small, as can be seen in Table 4.8, the adjustment to the first key rate can be very large 
and requires security selection convexity to calculate its contribution to performance. 
Since we are not performing this last step, the security selection performance in key rate 
basis functions will not be accurate.

Table 5.6 compares the annualized volatility of the performance of each compo-
nent for different basis functions. Even though the performance volatility of the third 
component for Chebyshev is comparable to the slope component, due to strong mean 
reversion of the bend component, the annualized contribution to performance is signifi-
cantly lower than would be expected from the volatility. 

5.5 AGGREGATION OF CONTRIBUTION TO PERFORMANCE

It is a well-known issue that the sum of individual security returns, when compounded 
and added together, will be different from a portfolio return. The difference is due to 
cross-terms across time horizons. Here we provide a methodology to calculate the con-
tribution to performance of individual securities so that, when summed, the result is the 
total portfolio return.

Let qij, wij and rij be respectively the return, weight and contribution to perfor-
mance of security i in the period from j – 1 to j. Then

 r w qij ij ij=  (5.22)

TABLE 5.5  Comparison of aggregated daily performance by basis function, 1992–2012

1st 2nd 3rd 4th 5th Vex Carry Security Diff

Cheby 1.16% −0.09% 0.08% −0.01% 0.00% 0.27% 4.92% −0.07% 0.002%

Ortho 1.20% −0.09% 0.03% −0.01% 0.01% 0.27% 4.92% −0.07% 0.006%

Poly 1.32% −0.09% −0.17% −0.01% 0.09% 0.25% 4.92% −0.07% 0.023%

Exp 1.09% −0.05% 0.83% −1.14% 0.40% 0.84% 4.92% −0.07% −0.569%

Key 0.00% 0.19% 0.40% 0.39% 0.15% 0.01% 4.92% −0.01% 0.196%

TABLE 5.6  Comparison of annualized volatility by basis function

1st 2nd 3rd 4th 5th Vex Carry Security Diff

Cheby 4.54% 1.03% 0.75% 0.17% 0.14% 0.03% 0.22% 0.04% 0.005%

Ortho 4.94% 0.98% 0.23% 0.13% 0.07% 0.03% 0.22% 0.04% 0.006%

Poly 5.87% 1.31% 2.11% 1.06% 1.54% 0.05% 0.22% 0.04% 0.031%

Exp 4.91% 9.95% 22.47% 23.10% 8.61% 0.13% 0.22% 0.04% 0.116%

Key 0.04% 0.83% 1.71% 2.15% 0.90% 0.00% 0.22% 0.00% 0.048%
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Let k be the number of periods. The performance of security i through time k is 
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∏ 1 1
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 (5.23)

The return of the portfolio of N securities in the period from j − 1 to j is given by

 Q rj ij

i

N

= ∑  (5.24)

and the total performance of the portfolio through time k is
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The unit value of the portfolio at time k is
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It is clear that

 Q qk ik

i

0 ≠ ∑ �  (5.27)

To see the effects of the market on performance, consider a portfolio manager who 
makes an active bet that has an excess return of 10% after 1 day. Starting from a value 
of $100, the portfolio’s market value will be $110, while the index will be $100. Assume 
that he indexes his portfolio thereafter. If at the end of 1 year, the market appreciates 
100%, the market value of the portfolio will be $220 and that of the market $200, thus 
the portfolio manager exhibits an active performance of (220 – 200)/100 = 20%. Like-
wise, if the market depreciates by 50%, the active performance of the manager will be 
(55 – 50)/100 = 5%. To accurately calculate performance at the security level, we have 
to take into account the impact of future market movements and compounding of the 
original performance.

We can write the performance of the total portfolio as 
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Substituting for Qj, we have
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From this equation, we can see that the contribution to performance of security i 
from the beginning to time k is 
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The contribution to performance of security i in the interval k – 1 to k is
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The sum of contributions of each security to performance through period k from (5.31) 
should be equal to the unit value of the portfolio minus one, that is,
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The London Inter-Bank Offered Rate (Libor), as its name implies, is the rate that banks 
charge each other for short term transactions. As such, the implied risk of short term 

Libor is the credit risk of banks. For example, if an institution deposits $100 million in 
a 1-week time deposit in a bank, it will receive a rate very close to 1-week Libor. If the 
bank files for bankruptcy during that week, all the deposit could be lost.

An interest rate swap (IRS) is a transaction where a party receives a fixed rate 
coupon for the life of the swap and pays floating Libor at predetermined intervals. The 
value of the floating Libor is usually very close to par (100), but the value of the fixed 
rate can fall if rates rise or increase if rates fall. A swap transaction is usually considered 
to be risk-free, since if rates fall, the fixed rate receiver will demand collateral from the 
floating rate receiver and vice versa. However, since the floating rate is established by 
Libor, there is an implied banking credit spread for the floating coupon, and since the 
present value of the fixed rate leg of the swap must be equal to the present value of the 
future floating rates, the fixed rate must have an embedded banking spread. 

The IRS market has become very liquid globally and there are many countries 
where the swap market is more liquid than in government issued bonds. Considering 
that an IRS is symmetric and you can take a position in either direction with mini-
mum capital requirements, in recent years long term swap rates have traded at a pre-
mium with respect to government rates in many countries, including the US.  Eurodollar 
futures contracts and certificates of deposits are also considered to have similar quality 
as Libor.

The daily trading volume of swap related transactions is by far the largest segment 
of the global capital markets and covers the following areas: 

 ▪ Interest rate swaps and swaptions.
 ▪ Asset swaps.
 ▪ Over-the-counter forward currency contracts.
 ▪ Credit default swaps.
 ▪ Inflation swaps.

CHAPTER 6
Libor and Swaps

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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A swap transaction is usually cashless, that is, the value of the swap is zero at inception. 
Like a note or a bond, if interest rates fall, after the initiation of the swap, the value 
of the fixed leg rises and vice versa. The value of the floating leg is usually very close 
to par but changes a little if short rates rise or fall significantly. A swap is sometimes 
a long term contract between two counterparties, and there can potentially be credit 
related events or default risk during its life. Therefore, before a swap transaction takes 
place the two counterparties must have a master agreement to govern the mechanics of 
transaction and its future maintenance. Such agreements have become largely standard-
ized and are called ISDA (International Swaps and Derivatives Association) agreements. 

The standardization of the swap agreements has been instrumental in the liquid-
ity of swaps. Nearly all major banks/dealers accept each other’s swap agreements. For 
example, if you have a swap transaction with Bank A, you can sell or assign it to Bank 
B, as if your swap was with Bank B to begin with. This means that if you get into a long 
term swap transaction and want to unwind it, you will not be limited to the original 
party to provide pricing and you can get competitive bids to terminate the agreement 
by assigning it to a third party. 

The introduction of swap futures on many exchanges has increased liquidity and 
price transparency of IRSs. Futures contracts usually trade with price increments or 
bid–ask spreads of 1/32 or 0.03 of 100 notional. The bid–ask spreads on over the coun-
ter IRSs have tightened significantly in the past several years and in liquid markets they 
are about 0.5 bps of yield. For example, to trade $20 million of 10-year swaps in the 
US, the bid–offer coupons can be 2.345%−2.34%, respectively.

If rates fall, the fixed rate receiver (floating rate payer) usually demands collateral 
for the net market value of the swap to cover it, in case of a credit related event for the 
floating rate receiver. Likewise, if rates rise, the floating rate receiver (fixed rate payer) 
will demand collateral for the net value of the swap. The requirement to post collateral 
as well as the liquidity and security of swaps, especially in the wake of the banking crisis 
of 2008, where few investors lost money due to bankruptcy or default, has made IRSs 
very attractive vehicles for fund managers to use for hedging and speculating in the 
interest rate and currency markets.

 At the initiation of a swap transaction, the parties agree on the coupon rate and 
term of the IRS; market conventions govern the additional details such as the frequency 
of coupon payment and accrual convention.

The floating coupon of a swap contract is fixed by the organization in charge of 
maintaining the benchmark rate; this was formerly the British Bankers Association, 
which published the rate daily at 11:30 a.m. London time, after polling large member 
banks and averaging their rates after dropping the highest and lowest rates. In the wake 
the turmoil of 2008 and allegations of collusion among member banks, the governing 
body for the administration and publication of Libor was changed in January 2014 to 
NYSE Euronext.

A swap transaction usually settles in two or three business days, and the first cou-
pon of the floating leg will also be fixed. For the US, the floating coupon frequency is 
generally once every 3 months, but payments are once every 6 months. Two business 
days before a coupon payment, the following coupon is also fixed, so that accrual for 
transactions that need to settle after coupon payment can be calculated. Historical 
floating coupon rates of a swap transaction can thus be derived from historical Libor 
fixings two or three business days prior to coupon payment depending on the currency.
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The coupon rate of fixed rate Libor is set in such a way that the prices of both fixed 
and floating legs of Libor at initiation would be par (100). At each coupon payment, only 
the net amount will be paid. For example, if the fixed rate is 5% and the floating rate 
3% for semi-annual payments, the fixed rate receiver will receive 5 3 16

12−( ) = % of the 
notional amount at coupon payment date. However, it is possible to agree on a different 
coupon rate and a premium or discount price for the transaction. One such transac-
tion is the zero coupon swap for the fixed leg. The floating coupon will also accrue and 
compound until maturity and the net value of the transaction will be settled at maturity. 

The popularity of swaps goes beyond investment managers and banks. Many cor-
porations and sovereign countries issue floating rate bonds, with the coupon based on a 
spread to floating Libor rates. The spread between short term treasury rates and Libor 
or treasury–eurodollar (TED) spread is often used by central banks as a gauge of the 
health of the banking system. In the fall of 2008, when US treasury bill rates were at a 
yield of 0.1%, short term Libor reached rates of more than 4%. 

The short end of Libor is influenced by many variables, including global liquidity, 
the health of the banking system and other cyclical factors in the economy, and tends 
to be highly volatile. Also, demand for deposits by banks that need to meet end of year 
reserve requirements for regulatory reasons tends to be higher, leading to higher deposit 
rates and short term Libor at the end of the year compared to other times.

6.1 TERM STRUCTURE OF LIBOR

Figure 6.1 shows the spot and coupon swap curve along with the corresponding trea-
sury curve. The coupon swap and treasury data are calculated by taking the maturity of 
the coupon bond and calculating its spread relative to the curve. The spread is simply 
added to the spot curve to show where the coupon bond would lie relative to the spot 
(zero coupon) curve. 
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FIGURE 6.1 Term structure of swap curve, May 25, 2012
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TABLE 6.1 Selected term structure of swaps, July 30, 2012

Currency Ticker Decay Level Slope Bend Cubic Quartic

USD LBR 0.13 1.199% 1.144% 0.201% 0.011% −0.133%

USD TSY 0.13 1.088% 1.504% 0.242% 0.011% −0.133%

EUR LBR 0.13 1.346% 1.004% 0.113% −0.103% −0.127%

EUR TSY 0.13 0.870% 1.429% 0.271% −0.103% −0.127%

JPY LBR 0.13 0.742% 0.673% 0.335% 0.072% −0.025%

GBP LBR 0.13 1.717% 1.091% 0.552% −0.100% 0.086%

CHF LBR 0.13 0.600% 0.818% 0.172%

CAD LBR 0.13 1.852% 0.838% 0.070% 0.059% −0.088%

AUD LBR 0.13 3.644% 0.423% 0.058%

MXN LBR 0.13 5.905% 1.759% 0.868% 0.297% 0.188%

ZAR LBR 0.13 5.822% 1.302% −0.050%

CZK LBR 0.13 1.578% 0.551% 0.228%

DKK LBR 0.13 1.356% 1.091% 0.225% −0.149% −0.048%

HUF LBR 0.13 6.459% −0.463% 0.170% −0.070% 0.028%

ILS LBR 0.13 3.261% 1.797% 0.538%

NOK LBR 0.13 2.757% 0.653% 0.001%

NZD LBR 0.13 3.309% 0.939% 0.030%

PLN LBR 0.13 4.465% −0.201% 0.130%

SEK LBR 0.13 2.413% 0.515% 0.463% 0.000% −0.002%

SGD LBR 0.13 1.397% 1.233% 0.426%

Using three parameters, the calculated swap curve matches market rates with an 
error of about 2–3 bps. The error is significantly larger at the front end of the yield curve 
where time deposit rates can be volatile. Eliminating short term time deposit rates with 
maturities of less than 1 year leads to a significant improvement in the fit of the data.

Table 6.1 shows a sample of the term structure of Libor rates (TSLR) for different 
currencies. Only the first three components of the curve were calculated. For countries 
where there was a liquid treasury market, the fourth and fifth components of the TSLR 
were matched to the TSIR. For comparison, the TSIR for the US and the euro region 
using German government bonds as benchmark are also provided. The slope of the 
treasury curve in both the US and the euro region is about 35 bps steeper than the 
respective TSLR.

6.2 ADJUSTMENT TABLE FOR RATES

For risk measurement and management, one or two basis points of error in the TSLR 
is acceptable; however, for pricing and valuation purposes, more accurate algorithms 
are needed.
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Accurate pricing of all IRSs can be achieved by using a table of adjustments that 
would enable one to price all swaps exactly. The table is constructed by taking the 
shortest maturity bond and calculating the yield adjustment that is needed to match its 
calculated price with the market. Then the yield of the next shortest bond is adjusted, 
and so on until all swaps are priced exactly, by using the prior adjustments to calculate 
the market discount rate for each cash flow. For cash flows between two adjustment 
points, linear interpolation is used.

Using an adjustment table consisting of 24 points is enough to price every swap 
exactly using the term structure model; this method can be used for treasuries as well. 
Due to the fragmentation of the treasury market at times of crisis (see Figure 2.10), one 
should use a set of unbiased treasuries such as coupon Strips which are all fungible. 
Table 6.2 lists the adjustment table and Table 6.3 provides the valuation parameters for 
Israeli shekel (ILS) swaps.

The fair price in Table 6.3 is calculated using the TSLR in addition to the adjust-
ment table and “Trm Price” is calculated by using the TSLR only. The spread part of 
the table represents the relative value or cheapness/richness of individual swaps. Spread 
relative to “Tsy Mkt” is the spread of the swap relative to the treasury market calcu-
lated by using the treasury term structure and adjustment table. The spread relative to 
“Tsy Trm” is the spread relative to the TSIR and the spread relative to “Lbr Trm” is 
the spread of the swap relative to the TSLR. We can see from the table that the heav-
ily traded 10-year swap (1-Aug-22) is rich by about 2 bps while the 8-year and 7-year 
swaps are cheap relative to the curve.

The liquidity and popularity of swaps have led many to consider the swap curve 
to be the fundamental determinant of interest rates. In many countries, where the gov-
ernment curve is not well established, swaps are the primary definers of interest rates. 
They can be traded globally without local government interference or barriers. There 

TABLE 6.2 Selected adjustment table for TSLR, July 30, 2012

Currency Ticker Maturity Spread

ILS LBR 0.090 0.0412%

ILS LBR 0.504 0.0159%

ILS LBR 0.747 0.0034%

ILS LBR 0.999 0.0022%

ILS LBR 1.999 −0.0335%

ILS LBR 3.003 −0.0245%

ILS LBR 4.000 0.0026%

ILS LBR 4.999 −0.0066%

ILS LBR 5.999 0.0092%

ILS LBR 6.998 0.0293%

ILS LBR 8.006 0.0124%

ILS LBR 9.002 −0.0057%

ILS LBR 9.999 −0.0203%
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are several countries where there are two separate markets for swaps, called on-shore 
and off-shore rates. The off-shore curve tends to be much more transparent and liquid 
than the on-shore curve which is governed by the level of interest rates as well as capital 
flow restrictions imposed by the government.

In countries where there is a well-established risk-free government curve such as 
the US, UK and Japan, swap rates are considered to be Libor based and as such have the 
implied credit risk of banks. Therefore swaps have a risk premium relative to treasuries 
and therefore their level depends not only on the level of the risk-free rate, but also on 
the level of risk premium or spread.

In the past, it was assumed that swap rates could never be below treasury rates 
in countries with free economies and well-established policies. After all, if the govern-
ment had unlimited resources to print money and pay off investors, its borrowings 
were risk-free, but banks did not have such an authority and therefore required a risk 
premium.

The financial crisis of 2008 changed the notion that swap spreads could not be 
negative. Many investors or fund managers who needed to extend their duration found 
swaps very attractive. They were willing to pay a premium and receive fixed rate swaps 
and still have access to their cash for liquidity reasons or for other investments. The fact 
that long dated swaps traded through treasuries for most developed countries is also a 
testament to the economic stability of those countries where investors have confidence 
in governments not to freeze the collateral of swaps. A swap transaction in developed 
countries is considered to be a quasi-risk-free transaction. 

One can also argue that investors have more confidence in the long run security of 
a swap contract than long run government’s willingness and ability to service its debt. 
For example, if Congress does not extend the debt ceiling in the US, the treasury can 
potentially default on its debt. 

The phasing out of proprietary desk traders and weakening of hedge funds has also 
been a large contributor to the negative swap spreads. In the past negative rates would 
be arbitraged by proprietary desks and in particular by banks.

TABLE 6.3 Swap valuation table, July 30, 2012

Price Spread

Currency Cpn Maturity Market Fair Trm Tsy Mkt Tsy Trm Lbr Trm

ILS 2 1-Aug-13 100 100.00 100.002 −0.003% −0.003% 0.002%

ILS 2.05 1-Aug-14 100 100.00 99.935 0.036% 0.036% −0.033%

ILS 2.22 1-Aug-15 100 100.00 99.928 0.001% 0.001% −0.024%

ILS 2.44 1-Aug-16 100 100.00 100.006 −0.070% −0.068% −0.002%

ILS 2.65 1-Aug-17 100 100.00 99.967 −0.182% −0.184% −0.007%

ILS 2.89 1-Aug-18 100 100.00 100.043 −0.254% −0.267% −0.008%

ILS 3.13 1-Aug-19 100 100.00 100.167 −0.326% −0.325% −0.026%

ILS 3.33 1-Aug-20 100 100.00 100.080 −0.409% −0.395% −0.011%

ILS 3.51 1-Aug-21 100 100.00 99.967 −0.442% −0.442% −0.004%

ILS 3.6775 1-Aug-22 100 100.00 99.859 −0.461% −0.467% −0.017%
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In the US, where states cannot tax the income of a federal government issued bond, 
there is an arbitrage possibility by banks if swap spreads are negative or below a certain 
amount. For example, consider a bank operating in a state that has an annual income 
of $4 million that is taxable at the rate of 10% at the state level. Assume for simplicity 
that 5-year treasury bonds have a yield of 5% and 5-year swaps have a yield of 4%. The 
bank can borrow $100 million from other banks at a rate of 4% and purchase treasury 
bonds at a yield of 5%. The bank would then have an interest expense of $4 million for 
the money that it borrowed and will receive $5 million in treasury coupon that is not tax-
able at the state level. Not only will the bank avoid state income tax, but its income will 
increase by $1 million with very little duration risk. This arbitrage can take place even if 
swap rates are the same as treasury rates. It is only when the ratio of swap spread to swap 
rate is more than or equal to the marginal state tax rate that this arbitrage is not possible.

6.3  RISK MEASUREMENT AND PERFORMANCE  
ATTRIBUTION OF SWAPS

We assume that treasuries are the fundamental determinant of rates and swaps, and 
Libor trades at a spread to treasuries. The swap curve can also be represented by a set 
of basis functions similar to treasury rates (2.18). The TSLR can be written 
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where yl,i(ti) is the spot calculated yield of Libor at time ti, al,j is the jth component of 
the TSLR, and ψj(ti) is the jth component of the basis function.

With treasury rates as the fundamental driver of interest rates, Libor can be con-
sidered to depend on the level of interest rates plus a spread, called swaps spread, Libor 
spread or TED spread. We write the term structure of swap spread yls as
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The calculated (term) price of a swap for a security with N cash flows can be 
 written as
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where als,j is the jth component of the term structure of Libor spread. In order to match 
the price of the security with market prices, we need to add the spread of the security 
relative to the Libor curve, similar to (5.11), as follows:
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Interest rate and swap spread durations will be defined by:
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As we see for swaps, interest rate and Libor durations are identical. Nevertheless, we need 
to calculate both separately, since in a portfolio context there can be many securities with 
different interest rate and Libor durations and they need to be aggregated separately.

The convexity components of swaps are similar to treasuries; however, there are 
cross-convexity components which, computationally, can be too resource intensive for 
the marginal benefits of performance attribution. We have
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Performance attribution for swaps involves the contribution from changes in inter-
est rates as well as Libor spread and yield of the security. Generalizing (5.20) to include 
Libor spread, we can write performance as
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where
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6.4 FLOATING LIBOR VALUATION AND RISKS

The TSLR with associated adjustments can price the swap curve perfectly. We now use 
the curve to calculate the implied forward floating coupon of a swap. If cf,i is the cou-
pon amount of a time deposit with a face value of 100 initiated at time ti−1, for maturity 
ti, then its price at time ti will be

 p ci f i= +100 ,  (6.10)
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The present value of the investment at ti−1 and ti must be equal, leading to
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Thus, the floating coupon of a Libor bond at time ti will be given by

 c ef i
y y s t y y s ti ls i b i i i ls i b i i

,
( ) ( )( ), , , ,= −+ + − + +− − − −100 11 1 1 1  (6.12)

Define the market Libor yield, yl,i, as the interest rate plus Libor spread plus secu-
rity spread at a given time:

 y y y sl i i ls i b i, , ,= + +  (6.13)

Thus,

 c ef i
y t y tl i i l i i

, ( ), ,= −− − −100 11 1  (6.14)

For a sinking bond, if the remaining principal of a bond is μi, we can modify equation 
(6.14) as

 c ef i i
y t y tl i i l i i

, ( ), ,= −− − −μ 1 1 1  (6.15)

This is our generalized formula for the coupon of a security that is based on floating 
Libor. The price function of a floating bond with N cash flows is thus

 p c em f i
y t

i

l i i= −∑ ,
,  (6.16)

where the market Libor yield yl,i is equal to the interest rate plus Libor spread plus 
security spread at a given time.

It is a trivial exercise to show that the price function of a Libor floater will become

 p em
y t

t
l= =−

=μ μ0 0
0 0

0
,  

(6.17)

If the remaining principal of the security is μ = 100, then the present value of a float-
ing Libor bond will be equal to par. There are many corporate securities whose cou-
pons are based on floating Libor and therefore have to be discounted by the corporate 
curve. For those securities, the price of the floating coupon will not be equal to par.

If the first coupon of the floater has been fixed, the price function will become

 p c em
y tl= + −( ) ,100 1

1 1 (6.18)

The duration components will be
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The floating coupon of a bond can contribute to duration risk if the discount function 
is different from the function that generates the floating coupon. For example, if a 
corporation issues a bond with a coupon rate that is based on Libor, the impact of the 
floating coupon on the duration is not zero. In general, the duration of a security that 
has floating as well as fixed coupon rates is
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Equation (6.20) is similar to (6.6) plus the contribution to duration of the floating cou-
pon. Note that if the coupon is fixed then ∂ ∂ =c ai k 0. From (6.15),
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Again from (6.15),

 μ μi f i i
y t y tc e l i i l i i+ = − − −

,
, , 1 1 (6.22)

Substituting into (6.21), we can then write (6.20) as
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Equation (6.23) can be further simplified, but then loses its intuitive form, and we will 
use it to capture durations of floating rate bonds.

6.5 REPO AND FINANCING RATE

The repo or repurchase rate is the interest rate that a borrower of a security pays the 
lender. A trading desk that owns a treasury bond or treasury bill can lend it and receive 
cash for trading. The borrower of the security may have sold short the security and 
need to borrow it on a temporary basis or have short term cash that he needs to invest. 
A repo is safer than a time deposit, since in case of default the borrower of the secu-
rity is entitled to sell it and recover his money. The lender receives cash for lending the 
securities and can invest cash in short term time deposits or other liquid transactions.

Since there is usually a limited supply of a security, if there are too many short sell-
ers, they have to compete to borrow the security and demand a lower interest rate than 
Libor or overnight rate. If a security is in deep demand by short sellers, the repo rate 
can become negative, that is, the lender of the security receives both cash and interest 
for lending his security and can invest cash to earn additional interest. The repo rate can 
rarely exceed the overnight rate, since lenders have no incentive to lend their security 
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if they cannot earn a higher interest than their cost. If the repo rate is lower than the 
overnight rate, the security is said to be on-special.

Some central banks use the repo or reverse repo as one of the primary tools for mon-
etary operations. Member banks can lend their securities and receive cash to increase 
liquidity in the system, or the central bank can lend securities and drain liquidity from 
the banks. When central banks raise the repo rate, borrowing costs for member banks 
increase and they will be less likely to borrow at higher rates, thereby lowering liquidity 
in the economy. The reverse repo is the rate at which banks earn interest on their excess 
liquidity deposited in the central bank.

Financing a position is almost exactly like repo, except that it is usually used to 
increase leverage. For example, you purchase a security, but you want to borrow funds 
to pay for its purchase, similar to buying a home and borrowing to pay for it. The rate 
to finance a position is usually higher than Libor or overnight rate. Lenders usually 
want some protection for market volatility and therefore finance only part of any pur-
chase. The difference between the market value of a security and the amount of loan 
that can be borrowed against it is called the “haircut”. For liquid securities, the haircut 
is usually about 2%, but can vary depending on market volatility and security type.

6.6 STRUCTURAL PROBLEM OF SWAPS

The floating leg of an IRS contract is based on Libor which is based on time deposit 
rates in a member bank. A time deposit has the credit risk of the bank; if the bank 
becomes bankrupt, the deposit can be lost. However, all IRSs have zero market value 
at initiation and have no principal risk. Only when the market moves one leg of an 
IRS gain value relative to the other. It is the market practice that once a leg of a swap 
is in-the-money, the holder of that leg will demand collateral from the counterparty. 
With this practice, the counterparty credit risk of a swap is eliminated and the swap 
becomes quasi-risk-free. Since the floating leg of a swap has a risk premium relative 
to treasuries and also due to tax advantages of treasuries in the US, the floating leg of 
swaps will always be at a premium to short term government bonds or treasury bills. 
The present value of future floating rates of a swap must have the same value as the 
fixed rate swap, thus we conclude that fixed rate swaps can never have a yield below 
treasuries.

In practice, as we see in Figure 6.1, the long end of fixed rate swaps has yields 
below treasuries. The fact that this is the case points to either IRS inefficiency or the 
market assuming that the long term counterparty risk is better than the credit rating of 
the US or other major countries. Figure 6.1 is subject to long term arbitrage, assuming 
that the treasury rates are indeed risk-free. An asset manager with extra cash to invest 
can buy long term treasuries and pay fixed rate swap with the same duration and curve 
risk. Instead of investing the cash at the risk-free rate, he will receive floating Libor with 
a premium over treasuries and at the long end he pays the fixed rate from the proceeds 
of the long treasury. The trade is risk-free in the long run and has positive return at both 
ends of the curve.

Given the current structure of swaps and their dependence on Libor, they will bear 
the risk premium embedded in Libor and as such will remain subject to long term 
arbitrage.



88 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c06.indd 03/28/2015 Page 88

This points to a flaw in the structure of IRSs for using Libor to establish the float-
ing coupon of swaps and thus including the risk premium of banks into the swap. 
The floating rate of an IRS has to be based on a rate that eliminates or mitigates the 
counterparty or banking credit risk. As such, the repo rate is a much better candidate 
for establishing the floating leg of an IRS than is Libor. Figure 6.2 shows the average 
weekly spreads of repo rate and 3-month Libor over 3-month treasury bills.

The spread of overnight repo over treasury bills is close to zero most of the time 
and is always below the spread of Libor over 3-month treasury bills. Since the repo 
market is collateralized, it is a better proxy for swaps that are also collateralized and 
have no principal risk.

Given the popularity of Libor as a benchmark for floating rate notes and bonds, 
why should a borrower be exposed to the credit risk of banks in addition to its own 
credit risk? Historically, most central banks have protected large banks from default to 
ensure the continuation of economic activity. However, in 2008 Lehman was allowed 
to fail and it led to a widespread banking crisis and widening of banking spreads. Simi-
lar widening happened in the 1995–1996 banking crisis in Japan. Since banks are not 
explicitly or implicitly protected by central banks, the use of Libor is not appropriate as 
a benchmark for IRSs and other borrowing institutions.

Establishing a new benchmark for floating swaps contracts will not be easy. There 
are many outstanding long term swap contracts that are based on Libor floaters. One 
solution for the transition is to initiate the new swaps with repo floaters that will be 
obtained from member banks, just like Libor. A window can be established in the future 
where the spread between Libor and repo can be used for a onetime adjustment to long 
term swaps to be converted to repo based floaters. For example, if a 6-month window 
is established and the spread of Libor over repo is 10 bps, then the fixed coupon of the 
swap will be adjusted downward by 10 bps and the swap will be permanently con-
verted to a repo floater. Since swaps are used for hedging and liquidity management, 
most parties are likely to agree to the transition, knowing that Libor based floater 
liquidity will likely fall.
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If repo based swaps are adopted, the following list explains how the adjustment 
should be made to the existing swap contracts:

Interest rate swaps. The fixed coupon of the swap needs to be adjusted based on the 
spread of Libor and repo.

Inflation swaps. No adjustment is necessary. The fixed leg represents a fixed amount 
in the future and the floating leg is the cumulative inflation. Both have implicit 
Libor exposures that cancel each other out.

Asset swaps. Many asset swaps have a spread to floating Libor. Thus, the spread of 
the floating Libor needs to be adjusted; if the spread is zero, then the floater will 
receive repo plus the adjustment. 

Credit default swaps. Both parties are assumed to receive floating Libor and these 
cancel each other out. No adjustment is needed.

Currency forwards. No adjustment is necessary as the forward points are already 
known.

Multi-currency swaps. The adjustment for each currency is based on the spread of 
Libor minus the repo of that currency.
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In fixed income, trading is an extension of the portfolio management job. A trader 
has to understand how to identify cheap securities and trade them efficiently but also 

understand all market conventions and forward markets and be able to manage the 
overall liquidity of a portfolio. Since most securities in fixed income are very highly 
correlated, there are numerous ways to structure a portfolio for the same risk profile. 
From the previous chapters, we know that only three to five parameters of the TSIR 
are needed to match all the duration components of a portfolio and to manage its risks. 
With so many securities to choose from in a single currency treasury portfolio, it is the 
task of the trader to anticipate and maintain sufficient liquidity to manage portfolio 
durations if need be.

Trading and settlement rules vary by security and currency. For US treasuries, a 
trade settles the next business day, implying that to buy US treasuries in the secondary 
market, the price that was agreed upon will be paid in the next business day and the 
securities will be received at the same time. Most institutions deposit their securities 
with a custodian that will maintain all the positions and can support transactions. 
Settlement is usually done through a clearing house that acts as an escrow agent. The 
buyer sends funds to the clearing house and the seller sends the securities, at which 
point they are exchanged. 

Most securities are settled T+3, that is, three business days after trade date. A trade 
that is executed on a Thursday is typically not settled until the next Tuesday. For long 
weekends, another day is added.

In this chapter we will discuss how a trader can add significant value to a portfolio.

7.1 LIQUIDITY MANAGEMENT 

As we showed in the previous chapters, only five parameters are necessary to manage 
the durations of a treasury portfolio. There are numerous combinations of securities 
that would achieve the desired measure of duration components. A trader has a critical 
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role in understanding the philosophy and style of portfolio managers and anticipating 
trading requirements. The following is a list of some of the times when a trader needs 
to maintain or manage a portfolio:

 ▪ End of month rebalancing.
 ▪ Fund flow.
 ▪ Asset allocation.
 ▪ Coupon flow.
 ▪ Active duration management.
 ▪ Derivatives collateral.
 ▪ Margin flow.

Most indexes, such as the Barclays Bond Aggregate or Citi’s Bond Index, rebalance 
at the end of the month when cash flows from coupons are reinvested in the index, new 
securities are added and old ones are dropped from the index. The duration of the index 
usually increases on the last business day of the month, and portfolio managers who 
want to maintain a position relative to the index need to rebalance the portfolio. For 
example, in a refunding month in the US (February, May, August and November), the 
treasury may issue a new 30-year bond, a new 10-year bond and a new 5-year bond. 
The entry of these bonds increases the duration of the index at the same time that bonds 
that have a maturity of less than 1 year are dropped out of the index. For some indexes, 
such as J. P. Morgan bond indexes, the coupons are reinvested in the index as soon as 
they are received, but new securities are added and old securities are dropped from the 
index only at the end of the month. Reinvestment of coupons in the index in the middle 
of the month causes a jump in the duration of the index. For example, if a bond that 
pays annual coupon of 7% has a duration of 10 years and a price of 100, its new dura-
tion after coupon payment will be
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Since coupon flows and security changes are known in advance, the shift in the duration 
of the index is known in advance and most portfolio managers rebalance the portfolio 
on the last business day of the month.

Fund flow is related to the flow of funds into and out of a portfolio. For mutual 
funds, there may be periodic distributions, or redemptions by shareholders, or new 
money that needs to be invested. Periodic distributions are generally known in advance, 
but redemptions are generally known at most a day in advance. Since it may take up 
to three business days for trades to settle, a trader needs to maintain a level of cash for 
redemptions. Typically, portfolios maintain 1−2% cash for this purpose. Institutional 
accounts usually offer longer lead times for redemptions or withdrawals.

Settlement of foreign securities can be more complicated and, depending on the 
time horizon, an extra day may be required to settle a trade. For example, selling Japa-
nese government bonds from a portfolio located in the US, during US normal business 
hours when the Japanese markets are closed, may take an additional day to settle.
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Asset allocation can take place passively or actively or both, depending on the prod-
uct. For example, a balanced fund that is a 50–50 mix of equity and fixed income will 
require rebalancing to bring it in line with its benchmark. In the periods where equi-
ties outperform fixed income, money flows from equities into fixed income and traders 
need to rescale the portfolio to maintain its structure and integrity. Likewise, in periods 
where fixed income outperforms equities, traders need to raise the necessary cash to the 
equity portion of the fund. Such passive rebalancing usually takes place on a monthly 
or quarterly basis. The asset allocation can also be between two sectors of fixed income. 
A strategic fund can be a combination of treasuries, emerging markets, high yield, and 
international securities managed by different portfolio managers. If one of these sectors 
outperforms others, it will require rebalancing as mandated by product description.

Active asset allocation refers to the active management of the mix between equity 
and fixed income or two sectors of fixed income. For balanced funds that have a range 
of allocations, there might be a committee that decides the percentage of each sector or 
asset class and can change that mix based on their views of the market. Likewise, an 
investment committee might decide to allocate funds to a sector of fixed income from 
high yield to treasuries or vice versa. 

A trader may be asked to extend or shorten the duration of a portfolio due to 
active duration management by the portfolio manager. Traditionally, a long duration 
implied a flattening bet on interest rates, that is, the trader needed to sell some short 
duration securities and buy long duration securities to get the necessary exposure. With 
this structure, if the general level of interest rates fell but the slope of the yield curve 
increased, the portfolio would not get the desired performance gain. With our term 
structure model this would not happen, as individual components of the yield curve can 
be separately hedged. Using derivatives or cash securities, we can take an active bet on 
the level of rates only and hedge the other components. We will discuss this approach 
in more detail in Chapter 8.

A trader may also be responsible for monitoring the level of cash to meet collateral 
requirements for derivatives or to pay for margin flow of futures. Depending on a port-
folio’s mandate, many funds such as mutual funds and pension funds are required to 
have cash equivalents for deliverable futures such as bond futures. Cash settled futures 
such as eurodollar futures usually do not require cash collateral. 

Traders need to anticipate many of the above cash flows to effectively buy cheap or 
liquid securities. Liquid securities tend to be expensive and illiquid securities tend to be 
cheap. For a liquid security such as an on-the-run treasury, the bid–ask spread may be 
1

64  point, while for an illiquid or off-the-run treasury it may be 1
16  or more.

Table 7.1 shows sample analytics for selected treasury coupon Strips (CS), principal 
Strips (PS) and coupon bonds (T) in 2012. The fair price is calculated by discounting 
cash flows by the calculated curve plus adjustments that were covered in Chapter 6, and 
the model price is calculated by discounting cash flows by the calculated TSIR. Note that 
the fair price and model price are almost identical, implying that all zero coupon bonds 
are priced nearly perfectly by the model. The spread to market and spread to curve are 
representations of the spread of the security relative to the fair price and model price, 
respectively. The next column, Price R/(C), is the price deviation from the model price. 
We could also use price difference from the fair price as a measure of value. Rich bonds 
have a positive Price R/(C), and cheap bonds have a negative price spread. The next two 
columns are the continuously compounded yield and theta or yield plus rolldown.
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Coupon Strips are all fungible, implying that all coupons with the same payment 
date can be combined together as one security. Principal Strips are, however, not fun-
gible if their maturity falls on the same date. Thus, a coupon bond can be stripped to its 
individual coupons and principal. If other bonds are also stripped, all the coupons that 
have the same maturity date can be aggregated. Likewise, if a trader has all the coupons 
and stripped principal, he can reconstitute the original treasury coupon bond. 

There are four securities listed in Table 7.1 with a maturity of 11/15/21: a cou-
pon Strips, a principal Strips, an old 30-year bond that was issued in 1991 and has a 
remaining maturity of 10 years with a coupon of 7.625, and a recently issued 10-year 
bond with a coupon of 2 (on-the-run). The principal Strips is more expensive than the 
coupon Strips by 0.57, even though they have the same maturity and the same exact 
credit rating. This is about the same amount that the treasury 2, 11/15/21 is rich relative 
to the curve. When a bond is rich, it is usually the principal Strips that is rich, since all 
coupons are fungible. 

In a normal market, it typically takes about 6 months to a year for an on-the-run 
treasury to lose its richness and trade with little or no premium. If a trader has to buy a 
10-year security for hedging and there is a high possibility that he has to sell the secu-
rity in the next day or two, it makes sense to buy the on-the-run treasury rather than 
the cheaper zero coupon Strips. In Table 7.1, if the bid–ask price spread for on-the-run 
and the Strips are respectively 1

64  and 1
16 , a round trip trade (a buy and subsequent  

TABLE 7.1 Selected treasury bonds, 2012

Ticker Cpn Mat Price Fair  
Price

Model 
Price

Sprd to 
Mkd bps

Sprd to 
Crv bps

Price  
R/(C)

Contd 
Yld

Theta

CS 0 11/15/21 86.84 86.79 86.74 −1 −1 0.06 1.518 3.294

PS 0 11/15/21 87.41 86.79 86.74 −8 −8 0.62 1.448 3.225

T 2 11/15/21 105.07 104.54 104.49 −6 −7 0.53 1.410 2.937

T 8 11/15/21 158.40 157.79 157.73 −5 −6 0.61 1.300 2.445

CS 0 2/15/22 86.14 86.09 86.01 −1 −2 0.05 1.563 3.344

PS 0 2/15/22 86.61 86.09 86.01 −6 −7 0.52 1.506 3.287

T 2 2/15/22 104.82 104.27 104.19 −6 −7 0.55 1.451 2.959

CS 0 5/15/22 85.40 85.40 85.30 0 −1 (0.01) 1.612 3.392

PS 0 5/15/22 86.00 85.40 85.30 −7 −8 0.59 1.541 3.321

T 1.75 5/15/22 102.24 101.68 101.58 −6 −7 0.56 1.497 3.042

CS 0 11/15/41 44.52 45.43 45.57 7 8 (0.91) 2.763 2.904

PS 0 11/15/41 44.73 45.43 45.57 5 6 (0.70) 2.747 2.888

T 3.125 11/15/41 111.42 112.20 112.37 4 4 (0.78) 2.551 2.694

CS 0 2/15/42 44.14 45.10 45.24 7 8 (0.96) 2.767 2.903

PS 0 2/15/42 44.34 45.10 45.24 6 7 (0.76) 2.752 2.888

T 3.125 2/15/42 111.36 112.22 112.39 4 5 (0.86) 2.556 2.675

CS 0 5/15/42 43.72 44.80 44.94 8 9 (1.08) 2.778 2.909

PS 0 5/15/42 44.00 44.80 44.94 6 7 (0.80) 2.756 2.887

T 3 5/15/42 108.66 109.57 109.74 4 5 (0.91) 2.565 2.700



Trading 95

c07.indd 03/24/2015 Page 95Trim:  170  x  244 mm 

sell or vice versa) using the on-the-run would cost 0.0156 and for the Strips 0.0625. If 
we can expect, conservatively, a period of 6 months for the on-the-run to lose half its 
richness, the loss per day of owning on-the-run is approximately 0 57

2 182
0 01
2 3

. .
× ×≈ . In order 

to overcome the transaction cost difference of 0.047, the holding period of the Strips 
must be longer than 0 047 182 2

0 57 30.
.

× × =  days.
A trader needs to use his knowledge of the portfolio manager’s style and the fund’s 

characteristics to anticipate cash flows and decide how to hedge them. Even in a high 
turnover portfolio, many of the securities do not trade for months or even years at a 
time. For such core positions, liquidity can be sacrificed for yield. However, a fraction 
of the portfolio needs to be liquid for hedging purposes. Assuming that a portfolio 
requires a daily rebalancing of about 0.1 years of duration per day, for a portfolio with 
a duration of 5 years, the annual turnover will be about 252 0 1

5 0 2 2 5×
× ≈.

. . . The additional 
transaction cost using off-the-run treasuries will be about 2 5 0 047 12. .× ≈ bps.

What is interesting in Table 7.1 is the cheapness of the bonds at the long end of 
the curve. Historically, the bonds at the long end of the curve have been very rich 
relative to the curve due to convexity premium. However, this cheapness is new and 
requires an explanation. As we will see in Chapter 10 on convexity adjusted TSIR, 
convexity is worth more than 1% of return a year at the long end of the curve. For a 
30-year zero coupon bond, the convexity is about 900. Assuming an absolute volatility 
of 60 bps a year, the contribution of convexity to performance can be approximated 
by 1

2
2900 0 006 1 62× × =. . %. Maybe the market is implying that the long term debt 

dynamic of the US is not sustainable and it requires a yield premium at the long end of 
the curve. If one believes that the US debt is risk-free at any maturity, the long end of 
the curve offers very good value.

7.2 FORWARD PRICING 

When a security is purchased, it usually settles within one to three business days, at 
which point cash is paid to the seller and security is transferred to the buyer. This is 
called a spot trade and the transaction price is called the spot price of the security. It is 
possible to buy a security for future settlement at a price that is different from the spot 
price. The seller should be indifferent between, on the one hand, selling the security in 
the spot market and receiving cash for it and investing the cash in Libor instruments, 
and, on the other hand, lending it (term repo) and selling it in the forward market. 
Likewise, the buyer is indifferent between, on the one hand, buying the security, lending 
it and using the proceeds until the expected forward settle date, and, on the other hand, 
buying it for forward settlement. In either case, the trader will lay off the risk of the 
security and receive cash for it, assuming that the buyer does not go into bankruptcy in 
the interim. For a forward transaction, there are potentially four parameters that need 
to be considered to calculate the forward price of a security as follows:

 ▪ The proceeds of the sale in the forward market, present valued by Libor discounting.
 ▪ The potential coupon proceeds between spot and forward dates discounted by Libor.
 ▪ The interest earned due to the difference between Libor and the repo rate if the 
security is on-special.

 ▪ The coupon of the security for accrual calculation.
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We write these parameters as:
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where pm,d is the dirty market price (price plus accrued interest), pf,d is the dirty forward 
price (forward price plus accrued interest), yl,i is the Libor yield at time ti , ybr is the repo 
rate for the security through the forward settlement date, pm is the clean spot price, pf is 
the clean forward price, wm is the accrual period for market settlement, wf is the accrual 
period for forward settlement, and c is the coupon rate. After rearranging the formula, 
the forward price of a security can be written as
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If there are no cash flows before the forward date, and the repo rate for the security is 
the same as Libor, then

 p w c p w c ef f m m
y tl f f+ = +( ) ,  (7.4)

For short forward pricing, this can be approximated as

 p w c p w c y tf f m m l f f+ = + +( )( ),1  (7.5)

For example, a 6% US treasury bond, with 91 days of accrual in a coupon period of 
182 days, is priced at 105. The forward price for extending the settlement by 2 weeks, 
given a short term Libor of 0.75%, is
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The price difference is relatively large; for a $50 million trade, it amounts to a $100,000 
price reduction, which is often overlooked by traders who request a forward settlement. 
The difference for corporate bonds can be even larger.

Note that that accrual period and forward settlement time are calculated differ-
ently. For accrual period, we use the bond convention (Actual/Actual for the US), and 
for forward settlement we use the local Libor convention (Actual/360 for the US).

The accrual convention for most corporate bonds is 30/360. For example, if a cor-
porate bond is to settle on February 28 on a Tuesday in a non-leap year at a price of 
105, to extend the settlement day by a day will add 3 days to accrual, but only 1 day to 
financing. In the above example, if the bond was a corporate bond with a 1-day exten-
sion from February 28, the price would be
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Many sell side traders use the spot price for forward settlement. For corporate 
or emerging markets bonds, this provides a significant advantage to the selling party, 
since the coupon accrual is often significantly larger than the financing rate. For 
example, if the coupon rate of the bond is 6% and the financing rate is 1%, the seller 
would be earning an additional 5% (on a price of 100) for every day the settlement 
is extended.

7.3 CURVE TRADING 

In Chapter 3 it was mentioned that some components of the TSIR have a mean rever-
sion tendency. Here we explore how one can exploit such tendencies for systematic 
trading strategies. Figure 7.1 shows historical level, slope and bend components of euro 
based swaps. Euro era monetary policies were largely adopted from the Bundesbank. 
Thus, to estimate the euro era swap rates before monetary union, German swap rates 
are used as a proxy for euro swaps. The level has fallen from about 8% in the early 
1990s to about 1% currently, and the bend component has hovered around 0% and 
has a relatively strong mean reversion tendency. 

Table 7.2 shows historical statistics for EUR historical swap term structures. 
The first four rows give the historical maximum, minimum, average, and standard 
deviations of each component. The current value (as of the last data point) of each 
component as well as the number of standard deviations from the mean of the 
current values are also shown. Reversion is the mean half-life of the series in years as 
explained in Chapter 3, and the final row gives the t-statistics for the mean reversion 
tendency. A t-statistic greater than 2 is usually considered to be significant, and the 
greater the value the higher the statistical significance. The t-statistic of 5.44 for 
the bend component is very significant, implying a mean reversion of 0.26 or about 
3 months. 

FIGURE 7.1 Historical term structures of euro swaps
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We can use the mean reversion as an initial expectation for the time horizon of a 
trade. Since 1998, the bend component has been in the range of ±0.3%. On April 22, 
2008 when the bend component was at 0.25% it appeared that there was an opportunity 
for a trade. The bend component is the curvature of a parabola that is centered close 
to 5-year maturity. When the bend component is at the high end of its trading range, 
it implies that the parabola is very deep at the 5-year part of the curve (concave up). 
Likewise, when the bend component is negative, the parabola is concave down and the 
5-year yield is high. 

Since the 5-year swap is very rich, we set up a trade to short the 5-year and go long 
2-year and 10-year swaps. For this trade, we need to hedge the level and slope of the 
curve, so that we are compensated for the richness of the 5-year swap, regardless of the 
direction of interest rates and the slope of the curve. Table 7.3 shows the size of each 
swap contract for the trade.

The spread measured relative to the Libor curve is a measure of richness or cheap-
ness of the securities. The total market value of the trade is zero, so the durations, 
theta (see Section 5.2), and spread are calculated based on the market value of the 
5-year swap. The total spread is the expected performance gain of the spread if secu-
rity spread reverts to zero. We can expect about half retracement of the spread in the 
3-month horizon, leading to a cost of − = −×0 078 4 597

2 17 9. . .  bps. We also calculate the 

TABLE 7.2 Analysis of EUR term structure components

EUR Level Slope Bend

Max 9.03% 2.85% 1.25%

Min 1.06% −1.18% −0.70%

Average 4.62% 1.03% 0.05%

Stdev 0.67% 0.69% 0.65%

Current 1.23% 1.29% 0.15%

Sigma’s 5.06 −0.38 −0.16

Reversion 5.87 1.67 0.26

T-Stat 1.49 2.34 5.44

TABLE 7.3 EUR swap trade, April 22, 2008

Libor Duration

Issue Face Price Level Slope Bend Spread Theta

EUR-5YR −1,000,000 100 4.597 −0.330 −4.446 0.022% 4.302%

EUR-6MO −638,054 100 0.501 −0.438 0.264 0.045% 4.758%

EUR-2YR 1,364,903 100 1.955 −1.070 −0.781 −0.073% 4.113%

EUR-10YR 273,151 100 8.231 3.114 −5.188 −0.022% 4.908%

Total 0.00 0.000 0.000 1.795 −0.078% −0.384%
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theta contribution of − = −38 4
4 9 6. .  in the horizon. Thus, the total estimated cost of the 

trade will be −27.5 bps. The expected gain of the trade will be 50% retracement of the 
bend in the horizon period, given the mean reversion period of 0.26 years. The expected 
gain from mean reversion is 1 795 22 525

2. .× =  bps. Thus, the expected gain of the trade 
would be −5 bps, even though the bend component is at an extreme. Knowing the 
expected value of a trade is a great tool to anticipate returns and to avoid trades that 
appear reasonable at first sight but end up costing money. In practice this trade would 
have been profitable by 52 bps thanks to a large change in the bend component that 
contributed 65 bps and security selection costing only 2.3 bps instead of 18 bps.

Our next analysis is for a similar trade in the US swap market on November 26, 
2007 where the bend component was at an extreme value of 0.57%, implying a very 
rich 5-year swap. Figure 7.2 shows the historical components of the US swap curve.

Table 7.4 shows trade parameters for a trade to sell the 5-year part of the 
curve and buy the wings. This trade had a positive bend duration, in anticipation of 
falling bend of the TRLR. The estimated holding cost of the trade for 3 months is 
expected to be − × − = −10 2 4 57

2
139 6

4 58. . .  bps. The expected gain from mean reversion is 
1 778 5157

2. × = bps. The net expected value of this trade is also negative. Table 7.5 
shows the outcome of this trade in 3 months.

Even though the mean reversion had a better performance than we anticipated, it 
was not enough to overcome negative theta and spread retracement, which were higher 
than expected. 

The purpose of these examples is to show the pitfalls of a trade that appears to be 
reasonable at first sight but where deeper analysis shows that it may not be a viable 
trade. We might get lucky with one or two trades, but in the long run, if it does not 
make sense, it will end up being random noise in a portfolio. 

There are times when the headwind against a mean reversion trade is a lot less than 
the above examples and the trade makes sense. At the end of June 2004, the bend com-
ponent was −0.47%, not quite at the extreme of the previous example, but the analysis 

FIGURE 7.2 Historical term structures of USD swaps

–2%

0%

2%

4%

6%

8%

10%

1/1/90 1/1/94 1/1/98 1/1/02 1/1/06 1/1/10 1/1/14

USD Swap



100 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c07.indd 03/24/2015 Page 100

was much more supportive of a trade to buy the 5-year part of the curve and short the 
wings. Table 7.6 shows the parameters of the trade. Note that the bend component is 
extreme negatively and will likely rise. We therefore need to have a negative bend dura-
tion to make money as the bend rises.

The anticipated holding period theta loss is 14 bps and the security spread has 
an expected return of 3.5 bps. A 50% retracement of the bend component will have 
a contribution of 42 bps for an expected gain of 32 bps. Table 7.7 shows the actual 
performance.

TABLE 7.4 USD swap trade data, November 26, 2007

Libor Duration

Issue Face Price Level Slope Bend Spread Theta

USD-5YR −1,000,000 100 4.570 −0.325 −4.421 0.028% 4.678%

USD-6MO −631,906 100 0.498 −0.436 0.264 0.135% 4.348%

USD-2YR 1,355,763 100 1.951 −1.065 −0.784 −0.098% 3.435%

USD-10YR 276,143 100 8.113 3.053 −5.117 −0.014% 4.968%

Total 0.00 0.000 0.000 1.778 −0.102% −1.396%

TABLE 7.5 USD swap trade performance, November 26, 2007

Issue Bend Spread Theta Vex Sum Market

USD-5YR 1.654% −0.007% −1.166% 0.004% −2.263% −2.376%

USD-6MO −0.062% −0.039% −0.684% −0.002% −1.278% −1.051%

USD-2YR −0.398% −0.329% 1.160% 0.031% 3.548% 3.121%

USD-10YR −0.529% 0.007% 0.342% −0.022% −0.048% 0.218%

Total 0.665% −0.369% −0.348% 0.010% −0.041% −0.087%

TABLE 7.6 USD swap trade data, June 28, 2004

Libor Duration

Issue Face Price Level Slope Bend Spread Theta

USD-5YR 1,000,000 100 4.530 −0.335 −4.369 0.008% 5.547%

USD-6M0 618,168 100 0.504 −0.440 0.264 −0.018% 2.528%

USD-2YR −1,332,313 100 1.951 −1.067 −0.781 −0.003% 4.465%

USD-10YR −285,856 100 7.844 2.847 −4.998 −0.015% 6.022%

Total 0.00 0.000 0.000 −1.736 0.016% −0.561%
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7.4 SYNTHETIC SECURITIES 

In a single currency or multi-currency portfolio, there are times when you want to 
express a viewpoint about two different areas of the curve or about two global curves. 
Such positions can sometimes be constructed by buying or selling securities that mature 
in the desired areas of the curve. However, specific zero coupon securities are often not 
available or outright short positions in cash securities are not permitted. Using TSIR 
or TSLR we can use interest rate swaps to construct such synthetic positions relatively 
efficiently.

Consider the TSLR for AUD and NZD shown in Figure 7.3 along with the instan-
taneous forward curves. The solid lines are the spot curves and the spread between the 
markers and the curve represents the spread of the market data relative to the term 
structure of the swap curve.

Historically, the AUD and NZD Libor curves have been highly correlated with 
NZD yields generally at a small premium to AUD yields. The crossing of the two 

TABLE 7.7  USD swap trade performance, November 26, 2007

Issue Bend Spread Theta Vex Sum Market

USD-5YR 1.717% −0.012% 1.397% 0.052% 4.877% 4.646%

USD-6MO −0.064% −0.008% 0.394% 0.000% 0.301% 0.272%

USD-2YR −0.409% −0.037% −1.498% −0.004% −2.255% −2.159%

USD-10YR −0.562% −0.011% −0.434% −0.065% −2.467% −2.309%

Total 0.682% −0.068% −0.141% −0.017% 0.457% 0.449%
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spot and forward curves is unusual and suggests a possible trade. Given the dynamic 
nature of rates, there is no reason why AUD overnight rates will be higher than NZD 
2 years in the future and then fall below NZD about 7 years later. Given the histori-
cal correlations of the two economies and their rate behavior, one can express a view 
that the curves will revert to normal and structure a trade that has positive carry in 
the mean time. 

Suppose that we want to create a synthetic security that has a stream of equal cash 
flows between maturities of 20 and 23 years. We calculate the risks of those cash flows 
(level, slope and bend) and, knowing that we can represent about 98% of the risks 
by level, slope and bend components, we can then find a combination of swap cou-
pons that replicates the risks of the stream of cash flows that we are interested in (see 
 Chapter 8 for more details). Linear programming can be used to select securities that 
maximize or minimize the yield of the replicating risks, depending on whether we want 
to be long or short the risks, respectively.

Figure 7.4 shows two slices of the forward curves of AUD and NZD swaps that can 
be used for relative value trading. The durations of a stream of cash flows that mature 
in the shaded areas on a quarterly basis are shown in Table 7.8.

Having the duration components of the tradable swaps in the market, we can easily 
find the number of shares of an optimal trade that has the same duration risks as the 
duration of the stream of cash flows in Table 7.8, (e.g., by using the Solver add-in in 
Excel). We can then set up a linear programming table that minimizes the number of 
shares traded as the objective function and in such a way that the net market value 
exposure to AUD or NZD is zero.

Table 7.8 shows the necessary trades to construct a portfolio with 2000 level VBP 
(Value of a Basis Point) in each currency. The trade could be structured to have the same 
VBP in the short end and long end of the curve. However, our trade assumes equal cash 
flows per unit of time, resulting in about five times more VBP in the long end than in 
the short end of the curve. The aggregated yield is the duration weighted yield of long 
and shorts for each currency. The long and short yields are the duration weighted yields 
of long and short cash flows irrespective of the currency. 
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TABLE 7.8 Durations of streams of cash flows

Issue Coupon Level Slope Bend Exp Yld Face Amount

AUD 25 Year Lbr 4.08 15.83 12.51 6.28 4.04% −$1,623,130

AUD 30 Year Lbr 4.00 17.66 14.60 9.04 3.96% −$112,198

AUD 4 Year Lbr 3.58 3.76 −0.77 −3.40 −3.55% $378,346

AUD 5 Year Lbr 3.69 4.61 −0.32 −4.47 −3.66% $1,356,981

NZD 20 Year Lbr 4.07 13.65 9.89 2.66 4.03% $2,441,539

NZD 1 Year Lbr 2.36 0.99 −0.75 0.15 −2.33% −$278,909

NZD 6 Year Lbr 3.25 5.49 0.30 −5.32 −3.22% −$652,618

NZD 7 Year Lbr 3.42 6.27 0.99 −5.73 −3.39% −$1,510,012

Total VBP AUD −2000 −2267 −1856 6.98% $0

Total VBP NZD 2000 2267 1857 8.94% $0

Long Yield 4.02%

Short Yield −2.89%

Figure 7.5 shows the spot swap curves of AUD and NZD about 7 months after the 
trade. The curves have normalized to a large extent, implying that our trade must have 
worked very well.

Table 7.9 provides a summary of the trade result about 7 months after initi-
ation. The trade resulted in a profit of $133,000 with the original scaling of 2000 
VBP, implying a favorable change in relative rates of about 133,000/2000 = 66.5 bps. 
While opportunities like this do not present themselves on a frequent basis, relatively 
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large and highly successful trades can be structured when the opportunity is available. 
A spread trade like this has significantly lower risk than outright duration bets and a 
much higher success rate.

Interestingly, Figure 7.5 provides another opportunity for a low risk and high suc-
cess rate trade. It can be structured in two ways:

1. Buying AUD barbell and selling NZD bullet. This trade takes advantage of the 
higher AUD yields at the short and long ends of the curve and similar yields in 
the 10-year part of the curve. The trade has positive carry and is likely to have posi-
tive performance as the curves normalize.

2. Buying AUD butterfly and selling NZD butterfly. A long butterfly trade is buying 
the long and short ends of the curve and selling the middle part of the curve. A long 
butterfly trade is the same as a long bend duration trade. If long and short rates 
outperform the midrange rates, the trade makes money and thus has significantly 
less risk and volatility than an outright duration trade. The risk of the suggested 
trade is even lower than a normal butterfly trade, since AUD and NZD rates are 
highly correlated. The trade offers positive carry, which means that time is on our 
side, and the longer it takes for the trade to work, the more carry we will collect. 
Even if the trade goes against us, the loss will be mitigated by the positive carry.

7.5 REAL TIME TRADING 

In a dynamic market, prices change constantly. From the time a trade idea is analyzed 
till the trade is executed, the market has often moved. The price or yield change of a 
non-liquid security is often linked to the price or yield of a benchmark security. These 
links are not always accurate, and more sophisticated means of assessing the price 

TABLE 7.9 Summary of trade result, December 18, 2012

Issue Dirty Price Face Market Value Coupon Payment

AUD 25 Year Lbr 95.24 −$1,623,130 −$1,545,887 −$33,112

AUD 30 Year Lbr 92.06 −$112,198 −$103,294 −$2,241

AUD 4 Year Lbr 101.35 $378,346 $383,441 $6,777

AUD 5 Year Lbr 101.60 $1,356,981 $1,378,636 $25,062

NZD 20 Year Lbr 100.90 $2,441,539 $2,463,586 $49,716

NZD 1 Year Lbr 100.02 −$278,909 −$278,970 −$3,284

NZD 6 Year Lbr 100.30 −$652,618 −$654,589 −$10,589

NZD 7 Year Lbr 100.41 −$1,510,012 −$1,516,169 −$25,821

Total $126,754 $6,508
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change of a security are necessary. For example, the price of a long zero coupon bond 
cannot be accurately benchmarked against a coupon bond, and the price of a floating 
rate emerging country bond cannot be compared to the price of a fixed rate asset.

The US treasury benchmark securities or the so-called on-the-run treasuries are 
generally not a good representative of the US yield curve, since they are often on-special 
in the repo market. When a bond is on-special, it can be financed at a lower rate than 
the deposit rate. For example, if the deposit rate is 5% and a security is on-special at 
2%, the holder of the security can borrow cash at a rate of 2% by lending his security. 
The borrowed cash can then be invested at a cash rate of 5%. Since on-special securities 
have an extra source of income for their holders, they tend to have a lower yield and/
or a higher market price.

We can often use on-the-run treasuries to estimate the change in the shape of the 
yield curve, provided that a benchmark security’s repo rate does not change signifi-
cantly. We can write the change in the price of a benchmark security from the changes 
in the components of the TSIR as

 Δ Δp p D aj j ij i

i

= − ∑  (7.6)

where Dij is the ith duration component of the benchmark bond j and Δai is the change 
in the ith component of the TSIR. It is straightforward to construct a spreadsheet with 
live data feeds and calculate the price change of on-the-run treasuries in real time. 
Knowing their duration components, we can calculate the changes in the first three 
components of the TSIR that would best replicate the respective price change of on-the-
run treasuries. We can then link the changes in the components of the TSIR to the dura-
tion components of other securities and calculate their expected price change due to the 
treasury market using the above equation. This process works universally for all securi-
ties, including treasuries, corporates, high yield, emerging markets, and mortgages.

Calculating the real time market impact of a security can provide for a much more 
efficient way of trading in fixed income. By taking into account the movement of the 
market, a portfolio manager can better structure a relative value trade that is to a large 
extent independent of the direction of the market.
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The objective of portfolio optimization in fixed income is to identify a handful of secu-
rities in order to provide the optimum (maximum) property that we are interested in. 

We can require that the optimum portfolio be the one with the highest yield, the highest 
carry, the highest convexity or the highest spread. The process of finding the optimum 
solution is called linear programming (LP).

We will provide a simple example of LP in this chapter, but refer the reader to one 
or more of very excellent textbooks on this subject, including those by Vanderbei [8] 
and by Gass [9], for more details.

Assume that we want to construct a portfolio with a market value of $1 million 
and we have two securities, A and B, to choose from. The portfolio can accept a cash 
balance. If x and y are the market values of A and B respectively, in units of millions of 
dollars, we have

x y+ ≤1 (8.1)

In LP this is called a constraint. Suppose that the duration and carry of A and B are 
respectively 3 and 12 and 6% and 4%, and the acceptable duration range is 4.5–6 
years. Thus,

3 12 6

3 12 4 5

x y

x y

+ ≤
+ ≥ .

(8.2)

The policy also limits the percentage of security B to 30% of the portfolio or $0.3 
 million. This constraint can be written as

y ≤ 0 3. (8.3)

In linear programming the values of all variables are zero or positive, just as we 
want in this exercise. Given the above constraints, we want to construct a portfolio 
with the highest possible carry. The carry of the portfolio is

Z x y= +6 4% % (8.4)

CHAPTER 8
Linear Optimization and  

Portfolio Replication

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
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Z is called the objective function, and our goal is to maximize the objective func-
tion in such a way that it meets all the constraints. We solve this problem graphically 
by changing all inequalities to equalities and drawing all the lines and finding the area 
that meets all the constraints. Figure 8.1 shows all the constraints.

Any point inside the shaded area meets all the constraints and is called a feasible 
solution. In LP, the optimum point is always on a vortex of the feasible solution area. 
If we examine the three corners of the feasible area triangle, we find the optimum solu-
tion to be

( , ) ( , )
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(8.5)

If the carry of A and B were respectively 3% and 6%, instead of 6% and 4% as 
discussed above, then the optimum solution would be at a different vortex, namely,
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=
=

0 7 0 3

3 9
(8.6)

With two variables in an LP problem, we can use graphical method to find the opti-
mum solution. For every additional variable, we add a dimension to the problem; when 
there are 150 or more bonds, we need a computer program to solve for the optimum 
solution. Sometimes there is no feasible solution. In the above example, if the policy 
requirement for bond B were a maximum of 15%, there would be no feasible solution. 
Therefore, it is crucial to have constraints that are reasonable and logical, since for a 
large number of variables it can be very difficult to figure out which constraints make 
the solution non-feasible.

We demonstrated in Chapter 5 that the performance of a portfolio can be measured 
by its carry, duration, and convexity components. The contribution of convexity to 
performance is small, and for a portfolio that has a balanced risk profile the convexity 
of the portfolio will not be that different from the benchmark. Thus, to replicate an 
index, we have to match the duration components of the portfolio with those of the 
index. The first three components are usually enough as we demonstrated, but five may 
be used, that is, 

FIGURE 8.1 Portfolio optimization example

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

Market Value

Max durationMin Dur

Max B

Feasible Area



Linear Optimization and Portfolio Replication  109

c08.indd 03/30/2015 Page 109Trim:  170  x  244 mm 

w D p MDj i j j i

j

, =∑ (8.7)

where Di is the ith duration component of the index, Di,j is the ith duration component of 
security j, M is the market value, pj is the price of security j, wj is the weight or number of 
units of security j. To add the first component of convexity, we can also require

w X p MXj j j

j

00 00,∑ =
(8.8)

If there are 150 bonds in an index, there are more than 500 million ways of select-
ing five different bonds to match the durations. There is an infinite number of ways that 
more than five bonds can be selected and weighted to match all the duration compo-
nents. To avoid leverage, we must also make sure that the market value of all bonds will 
be less than or equal to the total cash available. Thus,

w p Mj j

j

≤∑ (8.9)

Equation (8.9) suggests that the portfolio need not be fully invested in securities and 
can accept a cash balance. This process can also be used for active portfolio manage-
ment as well. For example, to have a long duration of 0.5 years relative to the index, we 
can use the following constraint:

w D p M Dj j j

j

0 0 0 5, ( . )∑ = + (8.10)

Unlike traditional duration measurements, where a long duration implies a flattening 
position, we can manage individual components separately.

 If we use (8.7) and (8.9) as constraints in an LP optimization and match the first 
three duration components, LP software will choose three or four bonds for index rep-
lication. To force zero cash balance, we must change inequality (8.9) to equality. The 
objective function can be written as one that would maximize the yield of the portfolio:

Z w D p y MD yj j j j

j

= =∑ 0 0 (8.11)

yj is the yield of security j. The yield of a portfolio is calculated by duration market 
value weighting its components; see Chapter 1 for a derivation of the portfolio yield.

This constraint works only if the level duration is set to a constant value. If we 
allow the level duration to have an acceptable range, then the objective function gener-
ally forces the maximum allowable duration in a steep yield curve. However, optimiz-
ing carry which is market value weighted will result in a solution that is not a strong 
function of the duration range. To optimize on the carry of the portfolio, θ, we use

Z w p Mj j j

j

N

= =∑ θ θ, (8.12)
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where θj  is the carry of security j and N is the number of securities in the portfolio.  
Using the TSIR to optimize or hedge a portfolio offers the following advantages over 
methods relying on correlation matrices or principal components analysis: 

 ▪ There is no need for historical correlation matrices to calculate the principal com-
ponents for a country where the information is not available.

 ▪ The consistency and comparability of duration components across different curren-
cies are guaranteed if the same decay coefficient is used for all currencies.

 ▪ One can hedge two of the first three components and take an active view on a third 
component of the TSIR.

 ▪ Unlike equities where correlation matrices are very important, the risk parameters 
of a treasury portfolio can easily be quantified by three to five parameters. Fur-
ther diversification will not lower the tracking error materially. The term structure 
 components can be very efficiently used in LP.

 ▪ The model can be very easily applied to multi-currency portfolios and credit 
portfolios.

8.1 PORTFOLIO OPTIMIZATION EXAMPLE

Our analysis in Chapter 5 showed that the first three duration components of the TSIR 
can account for nearly all the performance of a treasury index. Thus, a portfolio with 
identical level, slope, and bend duration components as a benchmark is expected to 
 replicate the return of the benchmark. This technology requires only four bonds to cre-
ate a fully invested index replicating portfolio.

To create the index replicating portfolio, LP optimization was used to create a 
portfolio from the universe of bonds that matched the first three or five duration com-
ponents of the index and maximized the yield.  The custom treasury index from Section 
5.4 for the benchmark was used and the universe consisted of the index and coupon 
Strips. To eliminate pricing errors, the yield of selected bonds in the portfolio was com-
pared with the yield of other bonds with similar maturity.

Tables 8.1 and 8.2 summarize the performance results for the optimized portfolio 
and the benchmark using five and three term structure components, respectively. The 
optimization was carried out by maximizing yield, carry (yield plus rolldown), and 
carry duration and the universe of securities was either coupon bonds or coupons as 
well as Strips.

Recall that the carry is simply the change in the price of a security per unit of time: 
from (5.9),
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where n is the number of cash flows of the bond. The minus sign implies that as time 
moves forward, the time to maturity lessens. The parameter t y ti i∂ ∂  is simply the change 
in the yield per unit time times duration of the cash flow. Thus, carry is a combination 
of yield plus the impact of change in yield as the security rolls down the curve. We also 
performed optimization using carry duration as a proxy for carry plus convexity.
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The index performance in Tables 8.1 and 8.2 is slightly different from that in 
Table 5.1, in that on a few occasions securities that had suspect pricing and were picked 
by the optimizer were eliminated from the universe to ensure that performance gains 
were realistic. Carry duration optimization is referred to in the Table as “Mixed”.

During times of crisis, such as after the Lehman bankruptcy in September 2008, 
coupon bonds had a premium relative to Strips. A portfolio optimized using coupon 
bonds had a huge divergence in performance from a portfolio optimized from zero 
coupon bonds.

Using five components for the optimization clearly has a better information ratio, 
but not a better return. Most of the higher tracking error of the three components model 
is from periods of turbulence where diversification along the yield curve improves the 
tracking error.

Our optimized portfolio outperformed the index by about 50–100 bps per year, 
depending on the method, with a tracking error of about half the return. The informa-
tion ratio calculated by dividing the relative return by the tracking error is around 2. 
Overall, optimizing carry had the best return as well as information ratio.

TABLE 8.1 Performance of index replicating portfolio using five components, 1992–2012

Index Coupons Cpns & Strips

Yield Carry Mixed Yield Carry Mixed

Return 6.23% 6.79% 6.83% 6.62% 7.31% 7.31% 7.26%

Volatility 4.88% 4.86% 4.87% 4.89% 4.85% 4.84% 4.83%

Relative Return 0.56% 0.60% 0.39% 1.08% 1.08% 1.03%

Tracking Error 0.26% 0.25% 0.21% 0.48% 0.48% 0.47%

IR 2.16 2.43 1.87 2.26 2.25 2.20

8/31/08–12/31/08 −0.21% −0.25% 0.16% −0.39% −0.75% −0.60%

12/31/08–4/30/09 1.76% 1.65% 1.04% 2.26% 2.42% 1.43%

TABLE 8.2 Performance of index replicating portfolio using three components, 1992–2012

Index Coupons Cpns & Strips

Yield Carry Mixed Yield Carry Mixed

Return 6.23% 6.74% 6.87% 6.57% 7.33% 7.35% 7.21%

Volatility 4.88% 4.91% 4.91% 4.89% 4.90% 4.87% 4.91%

Relative Return 0.51% 0.64% 0.34% 1.10% 1.12% 0.98%

Tracking Error 0.29% 0.33% 0.27% 0.68% 0.58% 0.69%

IR 1.76 1.91 1.27 1.63 1.94 1.42

8/31/08–12/31/08 −0.48% −0.38% −0.43% −1.12% −1.48% −1.08%

12/31/08–4/30/09 1.06% 1.69% 0.83% 2.18% 2.50% 2.17%
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Transaction costs for the portfolio optimization process were ignored, but the com-
position of an optimized portfolio does not change significantly from one month to 
the next. Assuming a quarterly optimization of the portfolio and a transaction cost 
of about 2.5 bps per optimization, the overall information ratio would fall a little but 
would still be very respectable. If the transaction costs are included in the optimization 
process and transaction frequency is increased, a higher information ratio is achievable. 
We cover transaction costs in actual portfolio optimization in Chapter 19.

8.2 CONVERSION TO AND FROM CONVENTIONAL KRD

In Section 4.5 we showed how to convert from key rate duration (KRD) to term struc-
ture duration (TSD).  If the number of key rates is more than the number of parameters 
in the TSIR model, there will be a unique solution to the conversion. However convert-
ing from TSD to a conventional KRD may not always lead to a unique solution, since 
no more than five TSIR components are needed (constraints), while there may be ten or 
more KRDs. We can create a unique solution to the  conversion by using LP.

For securities, conversion of TSD to KRD is simple, since the primary risk of the 
security is an interpolation of its two nearest key rate securities (KRSs). We can require 
the objective function of the LP to maximize the weights of these two KRSs.

In order to calculate the KRD of a portfolio, it is probably best to write an objective 
function that maximizes its yield. Let nt be the number of TSIR components, and nk be 
the number of conventional KRSs. Let wi be the weight of the ith KRS. Let ψji be the 
jth TSIR duration component of the ith KRS, similar to (3.18). Let Di be the ith KRD 
of the security or portfolio, and Ki be the ith KRD of the KRS. Here are the formulas 
to convert from KRD to TSD and vice versa, assuming that the number of key rates is 
more than the number of components of the TSIR. To convert from KRD to TSD: 

w D j ni ji

i

n

j t

k

ψ∑ = = 1, ,… (8.14)

To convert from TSD to KRD, we use the following constraints:

wi

i

nk

=∑ 1 (8.15)
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k

ψ∑ = = 1, ,… (8.16)

The objective function for portfolios is to maximize the yield: 

w yi i i

i

nk

ψ0∑ = max (8.17)

The objective function for securities with non-contingent cash flows is

w wk k+ =+1 max (8.18)
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where wk and wk+1 are weights of key rates that have respectively closest shorter and 
longer maturity than the security.

Linear programming will result in a solution only if all the parameters are positive. 
To allow for negative values, we can add, negative duration components of the key 
rates to the constraints: 
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(8.19)

If all the components of the KRD thus obtained are positive, we can then try to find a 
solution by maximizing the weight of two KRDs that are closest to the level duration 
of the portfolio.

8.3 KRD AND TERM STRUCTURE HEDGING

Most portfolios that are hedged using key rate durations use about ten of the following 
key rates: 6 months, 1, 2, 3, 4, 5, 7, 10, 15, 20, and 30 years. One of these, usually 6 
months, 4 or 15 years, is dropped from the list. As we have seen in previous chapters 
only five components of the TSD are sufficient for hedging. If there are 10 KRDs, there 
is an opportunity to structure an optimized hedge and add return to the portfolio. Our 
objective will then be to select five key rates in such a way as to maximize or minimize 
yield or carry of the hedge. For example, if a portfolio is long duration and we want to 
hedge it by selling KRSs, our objective will be to sell the securities in such a way to mini-
mize their expected return. Likewise, to add duration to a portfolio, we select securities 
that will maximize the expected return given all other constraints. 

To minimize the effect of the richness of on-the-run bonds, we created a portfolio 
of equal weights of off-the-run treasuries with the maturities 1.5, 2.5, 3.5, 5.5, 7.5, 
9, 14, 18, and 24 years. If there were two securities with identical maturity, the secu-
rity that was issued most recently was selected. Since the exact maturities were not 
available, the closest maturity to the above list was selected on the last business day 
of every month. The KRD of the portfolio was measured using the following KRSs:  
6 months, 1, 2, 3, 5, 7, 10, 15, 20, and 30 year zero coupon bonds. We then constructed 

TABLE 8.3 Performance of hedging methods, 1998–2012

Hedge Excess Return Tracking Error

KRD 0.23% 0.47%

Yield Maximized 0.24% 0.62%

Yield Minimized −0.03% 0.43%

Carry Maximized 0.35% 0.53%

Carry Minimized −0.12% 0.46%
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the portfolio, its hedge using the KRSs and four optimized hedges using TSDs. There 
was one maximization and one minimization each for yield and carry. Table 8.3 shows 
annualized tracking errors and performance of the different hedging methods. If the 
market value of the hedges was larger or smaller than the market value of the portfolio, 
a 1-month time deposit was purchased or sold respectively, to bring the market values 
of the hedges in line with the portfolio.

While all tracking errors are comparable, it is clear that optimization on carry 
offers the best performance, as it did in Tables 8.1. Using ten KRDs does not offer an 
advantage on tracking error over five components of the TSIR. It requires twice as many 
trades and its performance may not be desirable. For example, if the portfolio is long 
due to overweight in corporate securities, KRD hedging can be costly as the hedge has 
positive performance. Using TSIR durations and optimization not only requires fewer 
transactions, but also can add value to the portfolio. Even though we used off-the-run 
treasuries, many coupon bonds can be at a premium price compared to zero coupon 
bonds due to liquidity and deliverability in bond futures. This is a primary reason why 
the KRD hedge outperformed the portfolio.
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Quantifying yield volatility is the key ingredient for pricing securities with options, 
including callable and puttable bonds and swaptions. A swaption is an option on a 

forward swap contract, and if exercised, it will become an interest rate swap. Swaptions 
are often quoted as the price of a receiver (call) or a payer (put) with time to expiration 
of the option followed by the maturity of the underlying swap. For example, buying 
a 3-month by 10-year at-the-money forward receiver implies paying the premium for 
the right to buy a 10-year swap in 3 months at the implied 3-month forward 10-year 
swap rate.

The premium is in units of the currency, but the strike is in market yield. At the 
expiration of the option, if the market yield is lower than the strike yield, a receiver 
swap can be exercised and the swap can be sold for a premium. There is a very active 
market in trade swaptions with varying option expiration dates, up to 10 years and 
many different maturity dates in USD, EUR, GBP and JPY.

Most options for equity or currency markets have terms of less than 1 year and the 
implied volatility of the option can be calculated from its price or vice versa. Addition-
ally, the nature of the underlying equity or currency does not change in the course of 
the option. Fixed income options, on the other hand, can be considerably more compli-
cated for the following reasons:

 ▪ Bond options can have a very long expiration date. A 30-year bond that is callable 
in 10 years is an option with an expiration date of 10–30 years in the future.

 ▪ As a bond gets closer to maturity, its remaining life and volatility change as its price 
converges to par at maturity.

 ▪ The interest rate that is used to discount the future price of the option is itself 
dependent on the path of interest rates. 

 ▪ There are additional complications for options on credit securities that will be dis-
cussed in full in Chapter 15.

CHAPTER 9
Yield Volatility

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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9.1 PRICE FUNCTION OF YIELD VOLATILITY

Analysis of volatility for bonds leads to the term structure of yield volatility surface. 
The term structure of yield volatility is dependent upon the time to expiration of the 
option as well as the time to the maturity of the underlying security or bond. 

Before attempting to calculate the term structure of volatility, let us examine a secu-
rity with two cash flows c1 and c2 at times t tf f+ 1 and t t tf f f+ +1 2. 

t = 0

tf tf 2tf1

c1 c2

t1

t2

The forward price function of the security at some future time tf  will be

p c e c ey t y t y tf f f f f f= +− − +
1 2

1 1 1 1 2 2( ) (9.1)

where yf 1 is the forward rate and tf 1 is the forward time to the first cash flow of the 
security and yf 2 is the forward yield for the second cash flow. If yf and tf  are the yield 
and time to the forward date and y1 and y2 are the yields to the first and second cash 
flows respectively, then

y t y t y tf f f f1 1 1 1= + (9.2)

and

y t y t y t y tf f f f f f2 2 1 1 2 2= + + (9.3)

As we can see, yields have linear relationships, unlike volatility which has a qua-
dratic relationship. To analyze volatility, we note that, by definition, the yield volatility 
is equal to the standard deviation of the relative changes in yield over a period of time. 
If yi is a sequence of yields at different times, the square of its standard deviation is
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If the yield change is measured on a daily basis and there are 252 trading days in 
a year, then the square of annualized volatility is equal to the square of the expected 
standard deviation of the yield change after 1 year. If we denote the volatility by v, then
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To calculate the square of the standard deviation of the yield change after 6 months, 
we need to use half as many observations. Thus, the square of the standard deviation of 
the yield change is proportional to time times the square of volatility: 

σ( )t v t2 2= (9.6)

If the change in yield after a short time δt, is δy, we can write

σ δ δ

δ δ

( )
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2 2
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(9.7)

 We can now evaluate the expected changes in the yields in (9.2) and (9.3) after a 
short period of time δt. If v1 and v2 are the respective volatilities for yf 1 and yf 2 and ρ is 
the correlation between the two rates, assuming that the yield to the forward date does 
not change, the expected change in the spot yield to the cash flow dates after a time δt 
will be

δ δy y v tf1 1 1= (9.8)
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If the correlation coefficient is not 1, the result will be complex non-linear equations 
and we will not cover it here. Going forward we will assume that the correlation coef-
ficient is always 1, unless it is mentioned explicitly, as in corporate bonds. However, 
the term structure of volatility will match all market volatilities and thus has implied 
correlations embedded in it.

From the definition of modified duration (1.8) or continuously compounded dura-
tion (1.18), we know that 

p p p pD y p pD ym m+ = − = −Δ Δ Δ (9.10)

Making the substitution for the change in yield from (9.7) results in

p p p pD y p pD y
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where Dm and ym are the modified duration and market yield of the security, vm is the 
implied market volatility of the security, and D, y, and v are the duration, yield, and 
volatility in the continuously compounded framework. As we learned in Chapter 1, 
we can convert the market yield to the continuously compounded yield as follows,
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where m is the coupon frequency. We can calculate the relationship between the 
 continuously compounded volatility and market volatility as follows:
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or
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If vi is the forward spot volatility associated with yi for a cash flow at time ti, we 
can write the change in the price function of a security after time δt as
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From (6.15), we can similarly derive the contribution of a floating Libor rate to the 
volatility price as

p t y v y v t e y v t ei i i i i i i
y t

i i i
y ti i i i= −− − −

− −− −μ( )1 1 1 1 1 (9.17)

Equation (9.16) is the price function of volatility in terms of its component volatilities 
using a correlation coefficient of one.

9.2 TERM STRUCTURE OF YIELD VOLATILITY

Our model for volatility is similar to the term structure of rates model, with the exception 
that volatility is a surface and depends on both time to maturity and time to expiration 
of the underlying option. Instead of modeling the relative yield volatility, we model the 
absolute yield volatility y vi i in the forward space. Consider a segment of the yield curve 
that spans from time tx to tf . We define the time to the mid-point of the segment as

t
t t

y
x f=

+

2
(9.18)

t = 0 tfty

Time

tx

We define the term structure of Libor volatility (TSLV) or term structure of yield volatility 
(TSYV) as the forward volatility of the segment with mid-point ty and expiration time tx:
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y t t v t t e t tx y x y k vk x y

k
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where ψvk is the kth component of the basis function of the TSYV. ψvkdepends on both 
the expiration time of the option tx and the time to the mid-point of the forward seg-
ment ty. For simplicity, we express the dependence of the volatility to the expiration 
time in polynomial basis functions as a function of tx. The first three components will be

ψ ψ θ ψ θv v v, , ,, ,0 1 2
21= = = (9.20)

with

θ β= − −1 2e tx (9.21)

β is the associated decay coefficient for time to expiration of volatility, analogous to 
(2.16). 

The dependence of volatility to the mid-point of the forward segment ty in PBFs, 
using three components ψy l, , can be written as

ψ ψ τ ψ τy y y, , ,, ,0 1 2
21= = = (9.22)

Equation (9.19) can now be written as

y t t v t t bx y x y kl
k l

k l

( , ) ( , )
,

= ∑ θ τ (9.23)

In this formulation, high order components contribute to the short end of the volatility sur-
face. For example, the contribution of e tx−8β  in θ β8 81 2= − −( )e tx  decays very rapidly with 
time. For simplicity, we will use fast decaying components to capture the effects of short 
term volatility, in order to minimize the number of components that are necessary to rep-
licate market volatility.  We define the absolute term structure of volatility (yv) as follows:

y t t v t t b b b b b b b bx y x y( , ) ( , ) = + + + + + + +0 1 1 2 1
2

3 1 4 1
2

5 1 1 6 2 7 2τ τ θ θ τ θ θ θ ττ2 (9.24)

The following definitions and decay coefficients are used:

τ αα
1 11 2 0 131= − =−e ty , . (9.25)

τ αα
2 21 2 0 602= − =−e ty , . (9.26)

θ ββ
1 11 2 0 251= − =−e tx , .   (9.27)

θ ββ
2 21 2 1 42= − =−e tx , .  (9.28)

Here α1 is the decay coefficient for the term structure of rates, β2 
is the characteristic 

decay coefficient for the time to the expiration of the option, α2 
is the decay coefficient 

cross-component of short term expiration time and mid-forward point, and β2 is the 
characteristic decay coefficient for short term components of the expiration time. 

Figure 9.1 shows the cross-sections of the volatility surface for different expira-
tion dates using the above formulation. At the front end of the curve, where interest 
rates are close to zero (0.25%) the volatility is very high and options with short matu-
rity of the underlying rarely trade. For example, the market for 6-month options on a 
1-year underlying forward bond is very illiquid and trading costs of such options are 
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typically several percent. Quite often there are kinks and irregularities in the early part 
of the short expiration–short maturity volatility surface. For final maturity of 2 years 
or more, the maximum error of our model is usually less than 0.5% volatility, which is 
well within transaction costs. However, for calculating option premiums, it is not the 
relative volatility that needs to be accurate; it is the basis point volatility or absolute 
volatility which drives the price change on the underlying security. Our volatility price 
function (9.16) optimizes absolute volatility. Figure 9.2 shows selected cross-sections 
of the absolute volatility in percentage interest rates. For example, a volatility of 0.5 
means an expected volatility of 0.5% per year.

FIGURE 9.1 Selected cross-sections of relative Libor volatility, June 30, 2012
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The historical components of the TSLV have relatively strong correlations with 
each other, implying that a reduced set of coefficients is possible. Table 9.1 shows the 
correlation coefficients of the TSLV.

 One way to find a reduced set of coefficients is through principal components 
analysis. Table 9.2 is the table of eigenvectors and eigenvalues of such an analysis. The 
eigenvalues will be the weights of the each vector or component of the reduced set of 
coefficients. The coefficients of each vector or column of the table are normalized, that 
is, the sum of squares of the coefficients is 1. The last row is the corresponding eigen-
values or the historical weight of each vector. 

FIGURE 9.2 Selected cross-sections of absolute Libor volatility, June 30, 2012
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The weight of the fourth (sixth) vector is only 4% (1%) of the weight of the first 
vector based on historical data. In efficient markets, the bid–ask spread of volatility 
is usually more than 2%, implying that the first four principal components should 
provide reasonable accuracy for most calculations. Using the first five principal compo-
nents should provide the necessary accuracy for nearly all applications. 

9.3 VOLATILITY ADJUSTMENT TABLE

We can create a table of volatility adjustments that would enable us to price nearly 
all volatilities exactly. The table is constructed by taking the shortest expiration and 
maturity point on the volatility surface and calculating the absolute yield volatility 
adjustment that is needed to match the calculated and market volatilities. Then the 
adjustment for the next shortest maturity for the same expiration time is calculated, 
and we continue until all the adjustments for a given expiration time are calculated. The 
same process is repeated for the next expiration date and continues until all volatilities 
are priced.

TABLE 9.1 Correlations of historical components of TSLV, 2000–2012

Vol. bl b2 b3 b4 b5 b6 b7 b8

1.323% 1 −0.837 0.865 −0.887 0.657 −0.944 0.362 −0.573

1.166% −0.837 1 −0.663 0.636 −0.457 0.852 −0.537 0.674

0.509% 0.865 −0.663 1 −0.693 0.434 −0.827 0.260 −0.368

0.630% −0.887 0.636 −0.693 1 −0.834 0.815 −0.144 0.509

0.274% 0.657 −0.457 0.434 −0.834 1 −0.541 −0.090 −0.406

2.479% −0.944 0.852 −0.827 0.815 −0.541 1 −0.403 0.538

2.484% 0.362 −0.537 0.260 −0.144 −0.090 −0.403 1 −0.831

2.706% −0.573 0.674 −0.368 0.509 −0.406 0.538 −0.831 1

TABLE 9.2 Principal components of historical components of  TSLV, 2008–2012

bl b2 b3 b4 b5 b6 b7 b8

0.205 −0.041 −0.046 0.016 −0.191 0.558 −0.051 0.009

−0.220 −0.035 0.069 −0.274 −0.155 0.013 −0.179 0.358

0.457 −0.050 −0.442 −0.832 0.140 −0.332 −0.011 −0.387

−0.397 0.248 −0.118 0.063 −0.396 −0.132 −0.342 −0.805

−0.724 −0.945 −0.878 0.472 0.865 0.714 −0.905 0.229

0.049 0.177 0.007 0.002 0.089 0.058 −0.111 0.050

−0.105 0.013 0.049 −0.080 0.082 0.218 0.073 −0.105

0.070 −0.091 0.102 −0.013 0.033 −0.030 −0.109 −0.094

5.378 1.438 0.715 0.228 0.141 0.056 0.029 0.015
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Currently there are 13 expiration months and 14 maturities in the US market. We 
can select about ten expiration times and ten maturities to calculate the adjustment table 
or we can simply price all of them using a 13 × 14 matrix. Table 9.3 shows a sample 
adjustment table for the above volatility term structures. Nearly all adjustments are less 
than 2 bps of absolute volatility per year. Table 9.4 shows the market volatility, calculated 
volatility (“Fair”) using the adjustment table and the model volatility without adjustment.

With the adjustment table of about 100 adjustments, nearly all volatilities can be 
calculated within 0.5 bps of market volatility well within transaction costs of such 
trades. For expiration and volatilities that are not in the adjustment table, for example 
to calculate the adjustment for an expiration of 2.5 years and maturity 13 years, we 
take a rectangle on the volatility surface that surrounds the point of interest. In this 
example, the rectangle will be at expirations of 2 and 3 years and maturities of 10 and 
15 years. We first calculate the adjustment for expiration of 2.5 years with a maturity 
of 10 years by interpolating between the adjustments at 2 and 3 years. We carry out 
the same process at 15 years maturity and then interpolate between 10 and 15 years to 
calculate the adjustment for 2.5 × 13 years volatility. These adjustments are usually very 
small but allow us to price the whole volatility surface nearly exactly.

TABLE 9.3 Adjustment table for US swap volatility, June 30, 2012

Expiration  Years Maturity Years  Adjustment Volatility

2.00 1.0 0.0123%

2.00 2.0 −0.0195%

2.00 3.0 −0.0074%

2.00 4.0 −0.0147%

2.00 5.0 −0.0027%

2.00 7.0 −0.0004%

2.00 10.0 0.0174%

2.00 15.0 −0.0186%

2.00 20.0 −0.0202%

2.00 30.0 0.0147%

3.00 1.0 −0.0188%

3.00 2.0 −0.0048%

3.00 3.0 −0.0017%

3.00 4.0 0.0040%

3.00 5.0 −0.0096%

3.00 7.0 −0.0044%

3.00 10.0 0.0001%

3.00 15.0 −0.0109%

3.00 20.0 −0.0043%

3.00 30.0 0.0134%
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TABLE 9.4 Market, fair, and model volatilities, June 30, 2012

Expiration Maturity Market Fair Model

2.00 1.0 0.754 0.754 0.734

2.00 2.0 0.639 0.639 0.663

2.00 3.0 0.579 0.579 0.586

2.00 4.0 0.517 0.517 0.529

2.00 5.0 0.488 0.488 0.490

2.00 6.0 0.464 0.464 0.465

2.00 7.0 0.445 0.445 0.446

2.00 8.0 0.433 0.432 0.430

2.00 9.0 0.420 0.420 0.415

2.00 10.0 0.412 0.412 0.405

2.00 15.0 0.372 0.371 0.378

2.00 20.0 0.358 0.358 0.365

2.00 25.0 0.351 0.353 0.355

2.00 30.0 0.351 0.351 0.348

3.00 1.0 0.612 0.611 0.629

3.00 2.0 0.549 0.548 0.552

3.00 3.0 0.496 0.496 0.497

3.00 4.0 0.463 0.463 0.461

3.00 5.0 0.434 0.434 0.439

3.00 6.0 0.420 0.417 0.421

3.00 7.0 0.404 0.404 0.406

3.00 8.0 0.394 0.390 0.392

3.00 9.0 0.387 0.381 0.382

3.00 10.0 0.375 0.375 0.375

3.00 15.0 0.350 0.349 0.353

3.00 20.0 0.340 0.340 0.342

3.00 25.0 0.334 0.333 0.332

3.00 30.0 0.330 0.330 0.327

9.4 FORWARD AND INSTANTANEOUS VOLATILITY

Equation (9.24) calculates the absolute yield volatility of a forward yield starting at tx 
and ending at tf  for volatility between time 0 and tx. Now let us calculate the volatility 
of a forward line segment that starts at a forward time other than tx.

Assuming v t t t tx x y y( , , , )1 2 1 2  to be the relative yield volatility of a segment of the yield 
curve between ty1 and ty2 and expiration time interval between tx1 and tx2, such that 
t t t tx x y y1 2 1 2≤ ≤ ≤ , we define the absolute yield volatility w, as
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w t t t t v t t t t y t tx x y y x x y y y y( , , , ) ( , , , ) ( , )1 2 1 2 1 2 1 2 1 2= (9.29)

t = 0 tx1 ty2

Time

ty1 tftx2

If we represent the forward yield between time tx 
and ty2 as y t tx y( , )2  then

y t t
y t t t t y t t t t

t tx y
x y y x y y y y

y x
( , )

( , )( ) ( , )( )

( )2
1 1 1 2 2 1

2
=

− + −
− (9.30)

The term structure of volatility (9.16) provides the volatility for the segment with expi-
ration time tx, maturity ty2

 
and mid-point to maturity tf  and we denote it by W t tx y( , )2 :

y t t v t t w t t t t W t tx f x f x x y y x y( , ) ( , ) ( , , , ) ( , )= = =0 1 2 2 (9.31)

The change in the yield of the segment ( , )t tx y2 2  after time δt is equal to w t t t tx x y( , , , ) .0 2 2 2 δ  
Likewise, the change in the yield of the segment ( , )t tx y2 1  will be w t t t tx x y( , , , )0 2 2 1 δ . If 
the absolute volatility of the segment ( , )t ty y1 2  in the interval ( , )0 2tx  is w t t tx y y( , , , )0 2 1 2 , 
then from (9.30), assuming perfectly correlated movements of the yield curve, we have

w t t t t t t

w t t t t t t w

x x y y x

x x y y x

( , , , )( )

( , , , )( ) (

0

0

2 2 2 2 2

2 2 1 1 2

−

= − +

δ

δ 00 2 1 2 2 1, , , )( )t t t t t tx y y y y− δ
(9.32)

or

W t t t t t W t t t t t

w t t t

x y y x x y y x

x y y

( , )( ) ( , )( )

( , , ,

2 2 2 2 2 1 1 2

2 10

− = −

+

δ δ

22 2 1)( )t t ty y− δ
(9.33)

Thus,

w t t t
W t t t t W t t t t

tx y y
x y y x x y y x( , , , )

( , )( ) ( , )( )

(
0 2 1 2

2 2 2 2 2 1 1 2=
− − −

yy yt2 1− ) (9.34)

If the correlation between the segments is not one, we replace equation (9.32) with a 
triangular equation of the form

y x x x x= + +1
2

2
2

1 22ρ (9.35)

(assuming a log-normal distribution of rates) where x1 and x2 are the two terms on the 
right hand side of equation (9.32) and ρ is the correlation coefficient.

If the absolute volatility of the line segment ( , )t ty y1 2  in the time interval ( , )0 1tx  is v1 and 
in the interval ( , )t tx x1 2  is v2, these volatilities by definition will be uncorrelated since they 
are in two non-overlapping time intervals. The volatility in the period ( , )0 2tx  

can be calcu-
lated by adding the square of the standard deviations, similarly to the derivation of (9.6):

v t v t v t tx x x x3
2

2 1
2

1 2
2

2 1= + −( ) (9.36)
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 Making the substitutions  w t t tx y y( , , , )0 2 1 2  for  v3, w t t tx y y( , , , )0 1 1 2  for v1 and w t t t tx x y y( , , , )1 2 1 2  
for v2, we arrive at

w t t t t
w t t t t w t t t

x x y y
x y y x x y y

( , , , )
( , , , ) ( , , , )

1 2 1 2
2 1 2

2
2 1 1 20 0

=
( ) −(( )

−

2
1

2 1

t

t t
x

x x

(9.37)

Equation (9.37) is the absolute yield volatility of the forward segment in the 
interval ( , )t ty y1 2  and implies that there is no serial correlation between yield volatility, 
that is, the volatility in the interval (0, tx1) is independent of the volatility in the interval  
(tx1, tx2). Since all segments of volatility in (9.37) refer to the ( , )t ty y1 2  segment, the abso-
lute volatility can be converted to relative volatility by dividing both sides of the equa-
tion by the forward yield of the line segment, leading to

v t t t t
v t t t t v t t t

x x y y
x y y x x y y

( , , , )
( , , , ) ( , , , )

1 2 1 2
2 1 2

2
2 1 1 20 0

=
( ) −(( )

−

2
1

2 1

t

t t
x

x x

(9.38)

To calculate the volatility of the instantaneous forward rates between time 0 and 
tx2, we can calculate the limit of (9.34) as ty2 approaches ty1: 

w t t t
t

W t t t t t

W t t

x y y
y

x y x y x

x y

( , , , ) ( , )( )

( , )

0 2 1 1
1

2 1 2 1 2

2 1

=
∂

∂
− −( )

= ++
∂

−
W t t

t
t tx y

y
y x

( , )
( )2 1

1
1 2

(9.39)

The instantaneous volatility of the instantaneous rates can be calculated by inserting 
the above equation into (9.37) and allowing tx2 approach tx1 Thus,

w t t t t
w t t t t

t

w t

x x y y

x y y x

x
( , , , )

( , , , )

( ,

1 1 1 1

1 1 1
2

1

1

0

0

=
∂ ( )⎡

⎣
⎢

⎤
⎦
⎥

∂

= xx y y x
x y y

x
x y yt t t

w t t t

t
w t t t1 1 1

2
1

1 1 1

1
1 1 12

0
0, , )

( , , , )
( , , , )( ) +

∂
∂

(9.40)

For a credit bond with a spread si, credit volatility of vc i,  and floating coupon 
defined by (12.18), the volatility price function can be written as

pDyv c y s v t e

p y v t y v t e

i i i c i i
y s t

i

r i i i i i i

i i i= +

− −

− +

− − −

∑ ( )

( )

,
( )

1 1 1
−− −− −∑ y t s t

i

i i i i1 1

(9.41)
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In the previous chapters we explained the performance contribution of a security or a 
portfolio of securities on the basis of movements in the components of the TSIR. We 

now revisit this issue and analyze the impact of convexity on the shape of the yield 
curve.

At very long maturities, the value of τ in the term structure of rates approaches 
unity and long spot rates approach a constant value called the consol rate, that is,

 y y a a a a a
t→∞ →

= = + + + + +τ 1 0 1 2 3 4 … (10.1)

There has been much research and debate on the subject of long term rates. In the 
1990s the long end of the zero coupon curve in the US had a negative slope, but lately 
this has changed. Dybvig, Ingersoll and Ross [10] proved that long forward and zero 
coupon rates can never fall. This implies that in an arbitrage- and friction-free environ-
ment, long rates can only rise. Before we derive our analytical shape of long rates, we 
will prove that long rates cannot change at all! 

10.1 THEOREM: LONG RATES CAN NEVER CHANGE 

We will base our proof on the following assumptions:

 ▪ Forward rates must be finite and can never be negative in any time interval.
 ▪ There is an endless availability of risk-free zero coupon maturities that can be 
 borrowed or lent without transaction costs.

 ▪ There cannot be any arbitrage opportunity, that is, there cannot be an expected 
positive return without the possibility of negative return.

 ▪ Long term rates are continuous and asymptotically approach a constant value and 
will do so in all future paths.

 ▪ Long rates can change over time.

CHAPTER 10
Convexity and Long Rates

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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Consider three portfolios of zero coupon bonds in an initial state such that

 Q N e Q N e Q N ea a
y t

b b
y t

c c
y ta a b b c c= = =− − −1 1 1, , ,, ,  (10.2)

where y1, a is the yield and ta is the time to maturity of portfolio Qa, and similarly for the 
other two portfolios. The face amounts Na, Nb, and Nc are selected such that

 

Q Q Q Q

Q
y

N t e N t e N t e

a b c

a a
y at

b b
y t

c c
y ta b b c c

= − + =
∂
∂

= − + =− − −

0

01 1 1, , ,  (10.3)

We choose the maturities and the number of shares such that

 

t T t T t T

N e

N e N e

a b c

b
y t

a
y t

c
y t

b b

a a c c

= − = = +

=

= =

θ θ, ,
,

, ,

1

1 1

1
1
2

 (10.4)

Assume that at very long rates, yields approach a terminal value asymptotically as 
follows:

 y a y
d
tt

a
na

1
1( )

→∞ ∞≈ +  (10.5)

where d is a finite number and n is the power of asymptotic approach of the yield to its 
terminal value. The forward yield between points a and b is

 f
y t y t

t tab
b b a a

b a
=

−
−

 (10.6)

Substituting for the yield from (10.5), we obtain

 f y
d

t t t tab
b a b

n
a
n

= +
−

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟∞ − −
1 1

1 1  (10.7)

The forward rates can become unbounded at very long times if the asymptotic power 
n < 1. Thus,

 y t y
d
t

n
t n

( ) ,
→∞ ∞≈ + ≥1 (10.8)

Assume that the portfolio in (10.3) will evolve to a new state after a short time Δt 
with a new terminal rate that is shifted by δ. The new portfolio can be written as

 Q N e N e N ea
y t t

b
y t t

c
y t ta a b b c c

2
2 2 2= − +− − − − − −, , ,( ) ( ) ( )Δ Δ Δ  (10.9)
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At very long rates, the asymptotic approach can be written as

 
y t y

d
t

y

y y

n2 2
2

2 2

2 1

( ) , ,

, ,

≈ + = +

= +

∞ ∞

∞ ∞

ε

δ
 (10.10)

Thus, the new state of the portfolio can be written as:

 
Q N e N e

N e

a
y T t

b
y T t

c

a b
2

1 2 1 2= −

+

− + + − − − + + −

−

∞ ∞( )( ) ( )( )

(

, , , ,δ ε θ δ εΔ Δ

yy T tc1 2, , )( )∞+ + + −δ ε θ Δ  (10.11)

For small values of δ, ε and Δt, we can expand the above equation using Taylor 
series. The expansion for the portfolio Qa is
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2 1
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with similar expressions for portfolios Qb and Qc . Using (10.3) and (10.4), after some 
simplification and allowing for Q1 = 0, we find
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With finite values of d1,d2, y, θ and small but finite values of δ and Δt, the limiting values 
of (10.13) will be governed by T and n for very large values of T. The first and second 
lines of the above equation tend to zero for large values of T. The third line can be 
expanded using Taylor series in θ:
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This will tend to zero for large values of T. Similarly, the fourth and fifth lines tend 
to zero as T−n and T−2n, respectively. It can easily be shown that for all components 
of the expansion of ( )( ), ,ε ε θ2 1a a T t− − −Δ , the highest order component in T will 
cancel out and they will all converge to zero with power of 1/T n or faster. This is 
shown as
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In a Taylor series expansion of the numerator, the highest order contribution of T is 
cancelled, leading to convergence. The last line of (10.13) is finite and always posi-
tive. This implies that if interest rates change, in a frictionless environment, port-
folio Q will always have positive return and therefore it is an arbitrage. To avoid 
arbitrage, at least one of our assumptions at the beginning of this theorem has to be 
invalid.

The assumption that long zero rates approach a constant value is invalid. There is 
no rationale why long zero rates need to be constant. The rational assumption should 
be that the expected return of long term rates needs to be constant to prevent arbitrage. 
It is the return that can be arbitraged not the yield, and the yield does not need to 
approach a constant value.

10.2 CONVEXITY ADJUSTED TSIR 

In the previous section it was proved that, assuming constant long rates, a portfolio can 
be constructed with positive return that is proportional to the square of the change in 
long rates and has zero risk. We know that the second order effect is generally due to 
convexity, and we will try to quantify this effect in this section.

Assume that at the very long end of the curve, the expected return of long rates 
and future forward rates will be equal. The key to understanding the behavior of long 
rates is that, in order to prevent arbitrage, the rate of returns must approach a constant 
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value. Consider the price of a long zero coupon rate that pays off one unit at maturity 
as follows:

 p e y Ts= −  (10.16)

Here T is the long term maturity of the zero coupon bond and ys is the spot yield. After 
a time Δt, if the yield rate has changed by Δy, we can write the portfolio value as

 p t e e ey y T t y T yT y t y ts s s( ) ( )( ) ( )Δ Δ Δ Δ Δ Δ Δ= =− + − − − − −  (10.17)

We expand the second exponent in Taylor series to obtain
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Noting that duration and convexity are equal to T and T2 respectively, equation (10.18) 
can be modified to
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where D and X are the spot duration and convexity, respectively. After simple rear-
rangements and substitutions, (10.19) can be written as
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If vy is the annualized relative yield volatility, we can write the expected value of the 
expression in parentheses in (10.20) as
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We denote the extra return due to convexity as yx and we call it the convexity yield. Thus, 
the change in price due to the convexity component of (10.20), Δpx, can be  written as
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Substituting into (10.20) leads to
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The expected return of the portfolio is equal to the return due to yield (ysΔt), duration  
(−D yΔ ), and convexity (1

2
2 2Xy v ts yΔ ). The contribution of convexity to return is 
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proportional to time and provides extra positive return in addition to return due to yield. 
For a given ys, the more convex a portfolio the higher the expected return will be. If long 
rates are constant, we can buy a more convex portfolio and short a less convex portfolio 
and have positive return without risk. This is the basis for the previous theorem. To pre-
vent arbitrage, the extra short term return realized through the convexity should be offset 
by lower yield of high convexity securities. We must assume that long term return expecta-
tions are constant, instead of constant long term yields. For a given yield, ys, we require

 lim
t

s s yy Xy v
→∞

+( ) =1
2

2 2 const (10.24)

Thus, the overall return expectation is calculated by adding the convexity yield to the 
spot yield ys, that is,

 y y y y Xy vt s x s s y= + = + 1
2

2 2 (10.25)

where yt is the calculated or term structure yield of a security, equal to its expected rate 
of return, and ys is the market spot yield. vy is the annualized volatility of the zero 

 coupon bonds and should be written as v ty( ). However, for simplicity and to focus on 
the contribution of convexity at the long end of the yield curve, we will use a flat term 
structure of volatility. The effect of convexity on the short end of the yield curve, domi-
nated by short term interest rate expectations, is generally small.

The historical annualized relative yield volatility, vy, can be calculated from
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where NB is the number of business days in a year and N is number of observations. The 
observed yield curve in the market is the spot yield ys in (10.25), while the term struc-
ture model provides the calculated yield, yt. The convexity of a zero coupon bond in 
the continuously compounded framework is equal to t2. We can thus transform (10.25) 
and derive the arbitrage-free spot yield as a function of the calculated yield as follows:

 y y t y vt s s y= +
1
2

2 2 2 (10.27)
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Equation (10.28) or (10.27) represents the convexity adjusted TSIR model. These equa-
tions imply that, in an efficient and arbitrage-free environment, the short term return 
expectations of a duration adjusted long zero coupon bond is constant. Equation (10.27) 
represents our return and yield-volatility relationship and will be the basis for constructing 
the term structure of credit spreads (Chapter 12) and inflation expectations (Chapter 11).
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The convexity adjusted instantaneous forward rate yfs can be calculated from the 
expected forward rate of return yft given by (2.27) as follows:
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Substituting from (10.27) leads to
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The contribution of convexity to the yield of a long maturity zero coupon bond can be 
quite significant. For example, assuming a yield volatility of vy = 0 08.  and a yield of
yt = 0 06. , the convexity adjustment for the yields of a 25-year and a 30-year zero coupon 
bond will be 58.6 and 78.4 bps, respectively. This implies a drop of 78.4 − 58.6 = 19.8 
bps in the spot yield curve between 25- and 30-year maturities due to convexity.

Equation (10.25) could also be represented in terms of absolute yield volatility; 
however, empirical evidence suggests that absolute yield volatility is higher in higher 
interest rate environments and vice versa. For a constant absolute yield volatility, the 
contribution of convexity to the return of very long maturity zero coupon bonds could 
be so large as to make the implied spot yield in (10.25) negative. 

If we assume that vy is a constant or approaches zero at an asymptotic rate that 
is slower in order of magnitude than 1 t, then the long term spot (10.28) can be writ-
ten as
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The instantaneous forward rates (10.31) can be written as
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after substituting from (10.27) for yt. We can see from (2.29) that all derivatives of 
∂
∂
y
t
t  

have factor ( )1− τ  which goes to zero exponentially at large values of t. Thus, (10.33) 
can be simplified as

 y t
v tfs( )→ ∞ →

1
2 2  (10.34)

The above analysis suggests that the spot yields of long zero coupon bonds approach 
zero with the inverse of time to maturity. There is some evidence in the market to 
support this model. The US treasury Strips yield curve has had a downward slope for 
maturities longer than 25 years for most of the time since early 1990s to mid-2000s.

To accurately include convexity in the TSIR, we have to use (10.27) by substi-
tuting for yt with (2.18) and minimize the error between ys and spot market yields. 
We can also use vy as an adjustable parameter to calculate the market implied yield 
volatility. 

The new price function and spot duration components (4.3), adjusted for  convexity, 
will take the following general form:
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From (10.27),
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where ys is calculated from (10.28) and yt is calculated from (2.18), that is, 

 y at j j

j

= ∑ ψ  (10.39)

There are two ways to define the price sensitivity with respect to volatility. The 
traditional way is to calculate the derivative with respect to vy. This is widely used in 
options calculations and is called vega (ϖ): 



Convexity and Long Rates 135

c10.indd 03/25/2015 Page 135Trim:  170  x  244 mm 

 ϖ =
∂
∂

=
+

=
+

−∑1 1
1 1

2 2

2 2

2 3

2p
p
v p

c t y v t

y v t
e

y v t

y v ty

i i s y i

s y i

y t

i

s y

s y

s i
22  (10.40)

The second method, which we will call the duration of volatility (Dv), is obtained by 
calculating the derivative of price with respect to the square of vy:
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The duration of volatility has the same units as ordinary duration.
The vega of a 30-year zero coupon bond with a volatility of 9% and yield of 5% 

is about 4.5. This implies a price impact of 45 bps for a change in volatility of 0.001. 
While the yield volatility changes significantly in the options markets, its impact on the 
price of zero coupon bonds has been relatively smaller than is implied by our calcula-
tion, on a historical basis.

10.3 APPLICATION TO CONVEXITY 

Figure 10.1 shows the calculated convexity adjusted TSIR as well as market yields of cou-
pon Strips. The implied yield volatility for Figure 10.1 is 0.0975 for May 28, 1999, imply-
ing a yield volatility of about 60 bps for a spot yield of 6.2%. This appears to be a fair value 
for volatility; however, most of the time the implied volatility has been much lower than 
the observed or option implied volatility. As we mentioned in Chapter 7, as of 2012, the 
long end of the curve had a yield premium instead of a discount. One interpretation that 
can be given to the positive slope at the long end of the curve is a risk premium as investors 
question the sustainability of the US debt dynamic. It can also be due to market inefficiency.

The downward slope of the yield curve for maturities longer than 20 years is directly 
related to the volatility effect. Figure 10.2 shows the same curve without convexity 
adjustment. The average yield error of the convexity adjusted TSIR is 0.016%, and of 

FIGURE 10.1  Convexity adjusted yield curve, May 28, 1999
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the non-convexity adjusted curve 0.055%. Each curve requires only five parameters 
for fitting. Figure 10.1 requires four components of the TSIR plus one volatility, while 
Figure 10.2 requires five components of the TSIR.

The implied yield volatility of 0.0596 on May 29, 1998 compared to 0.0975 on 
May 28, 1999, meant a lower downward slope on the former date. Thus, even though 
the yields of 20-year zero coupon bonds were 5.90% and 6.17% on the former and 
latter dates respectively, the implied zero coupon yield for a maturity of 30 years for 
both cases was 5.8%. Figure 10.3 shows the implied 100-year treasury curves for May 
1999 as well as for May 1998.

We will call the lower yield of coupon Strips at the long end of the treasury market 
the convexity premium. Implied volatility as well as the historical data provided in 
Table 10.2 suggest that the contribution of convexity to performance was about 2% 
per year, and thus the historical convexity premium was very cheap, disappearing 
completely as of 2012.

Table 10.1 shows the components of the TSIR with and without volatility. The 
standard deviation of the difference between the calculated and the market yield is 
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FIGURE 10.3 Convexity adjusted long zero curves
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much lower for the volatility (convexity) adjusted yield curve. The quartic component 
of the TSIR was calculated to be zero in both cases, implying that using four compo-
nents of the TSIR plus implied volatility provided a much better representation of the 
yield curve than using five components of the TSIR.

Table 10.2 shows the annualized daily market returns as well as the contribution 
from convexity and security selection components for arguably the most convex security 
in fixed income, namely a 30-year treasury coupon Strips.

The first row in the table represents the aggregate contributions of level, slope, 
bend, cubic, and quartic duration components on a daily basis as well as the annualized 
standard deviation of those contributions.

The security contribution is derived from the level duration times the change in 
the spread of the security relative to the curve. The curve was not adjusted for convex-
ity and only bonds with a maturity less than 22 years were used for calculating the 
curve. The security selection contributed –0.34% on an annual basis. It is instructive 
to look at the very large volatility of the security selection attribution relative to its 
return. This is due to the very large duration of the security and the change in the 
shape of the yield curve at the long end as well as the relative position of the security 
compared to the yield curve.

The yield contribution is calculated from yield plus rolldown on the curve. Since 
the changes in the durations and spread correspond to the two yield curves at two 

TABLE 10.1  Components of the TSIR

Level Slope Bend Cubic Quartic Vol. Error

May 98, Vex 5.681% 0.502% 0.124% 0.083% 0.000% 5.962% 0.016%

May 98, No Vex 5.530% 0.401% −0.077% 0.069% −0.087% 0.027%

May 99, Vex 5.798% 1.255% 0.083% 0.226% 0.000% 9.754% 0.016%

May 99, No Vex 5.422% 0.878% −0.396% 0.138% −0.204% 0.055%

TABLE 10.2 Return attribution of coupon Strips 2/15/2027, 1997–2012

Annualized Return Annualized Stdev

Curve 5.79% 19.73%

Security −0.34% 9.93%

Yield 5.55% 0.73%

Convexity-4 2.04% 0.30%

Convexity-15 1.94% 0.27%

Total-4 13.04% 19.81%

Total-15 12.94% 19.81%

Market 12.95% 19.82%

Market - Total-4 −0.09% 0.12%

Market - Total-15 0.01% 0.05%
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 different dates, the rolldown is already incorporated into the components of the curve, 
and thus the yield has to be instantaneous forward yield (2.27).

Convexity-4 consists of the four largest components of the convexity, namely X00, 
X01, X11, and X02. Convexity-15 is the sum of all 15 components of the convexity. A 
5 × 5 convexity matrix is symmetric and has five diagonal and ten off-diagonal ele-
ments, leading to 15 separate components.

Total-4 (Total-15) is the sum of performance attributions from curve, yield, security 
selection, and four (all) components of convexity. 

The Market – Total-4 and Market – Total-15 rows show the difference between 
performance attribution and market performance on an annual basis as well as the 
associated annualized standard deviations.

Note that convexity and security selection performance are relatively large due to 
the long duration of the security. The table shows that even if all components of con-
vexity are used, there is about 5 bps of tracking error between market and calculated 
performance. Convexity captures second order effects of interest rate movements; this 
tracking error is due to higher order components. 

The average convexity for the study period of this security was about 500, which is 
about 20 times the convexity of a typical portfolio of bonds that has 5 years of duration. 
Since the tracking error of our performance attribution relative to the market performance 
is related to convexity and higher order terms, we expect that the difference between our 
performance attribution and the market on an annual basis to be about 20 times less than 
the tracking error for the zero coupon treasury. Thus, for a typical portfolio, we can expect 
the annualized error using four components of convexity to be less than 1 basis point.

10.4 CONVEXITY BIAS OF EURODOLLAR FUTURES

The effect of convexity on yield and return that was discussed for long zero coupon bonds 
is much more evident for eurodollar futures contracts (EDFC). EDFCs are very liquid and 
have virtually zero convexity. The yield premium that is demanded by EDFC investors 
compared to a hedging portfolio is relatively large and is well known in the marketplace.

An EDFC contract is based on a forward 90-day time deposit with a notional value 
of $1 million. If c is the (biased) forward time deposit coupon rate, we can write the 
future value of a time deposit as 
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 (10.42)

where ne is the number of days to the maturity of the time deposit (90 for the US) 
for the underlying EDFC, Ny

 
is the number of days in a year for calculation purpose 

(360 for the US) and ye is the forward yield of the time deposit for a stated contract. 
An EDFC has zero market value at initiation. The only source of return for the contract 
are changes in interest rates. 

 In order to analyze EDFCs, we will first build a replicating portfolio that has the 
same interest rate sensitivity as the EDFC contract. The price of an EDFC is stated as

 p c ye= − = −100 100 1( ) (10.43)
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Since the price of a portfolio of one EDFC can be written as

 Q A Bym e= +  
(10.44)

B is selected in such a way that the change in the price of the contract for a change of 1 
basis point in the rate is equal to $25. Thus,
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1 000 000 250 000, , ,  (10.45)

The value of an EDFC at initiation is zero, that is, there is no cash requirement to buy 
or sell an EDFC. Only margin money is required to be posted to the exchange. For an 
initial yield of y0, an EDFC can be written as

 Q
n
N

y ym
e

y
e= −1 000 000 0, , ( ) (10.46)

Since the swap curve is based on forward Libor rates, we can construct a replicating 
portfolio for an EDFC as

 Q C e C er
y t y t= − +− −

1 21 1 2 2  (10.47)

where t1 and t2 are the beginning and ending times of the forward time deposit. At 
 initiation, the values of the coefficients in equation (10.47) are selected in such a way 
that the value of the portfolio is zero and its risk is the same as the respective EDFC: 

 C e C ey t y t
1 21 1 2 2− −=  (10.48)

 To convert from (10.42) to our continuously compounded notation, we can write
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The sensitivity of our replicating portfolio to changes in rates is
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with
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After simplification and making the necessary substitutions using (10.48), we can 
 calculate the coefficients of (10.47) as
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The term structure risks of EDFC will therefore be
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Since an EDFC is based on a 90-day time deposit, the level duration will be closer to 
90

365 25 0 246. .= . Our simplified version of the risk in (4.9) which stated that the level 
duration was 0.25 years did not include the effect of market convention accruals.

The expected change in the price of an EDFC is from the change in interest rates 
only. The price sensitivity of an EDFC from (10.46) based on market convention 
yield is
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To calculate the sensitivity of the replicating portfolio to changes in interest rates we 
perform a Taylor series expansion of the replicating portfolio (10.47) as

 Q Q
Q
y

y
Q
y

yr r
r r= +

∂
∂

+
∂
∂0

1
2

2

2Δ Δ(  (10.55)
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While the first order interest rate sensitivity of the replicating portfolio matches 
that of the EDFC, the replicating portfolio has a convexity component which is 
always  positive. We can write the contribution of convexity to the return of the  
portfolio as

 Q V t t yx = −1
2 2

2
1
2 2( )( )Δ  (10.57)

where
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250 000,  (10.58)

Due to the convexity, the replicating portfolio is superior to the EDFC. As we 
explained earlier, the contribution of convexity to return is like additional yield. To 
avoid arbitrage, the yield of an EDFC must be adjusted to balance the convexity advan-
tage of the replicating portfolio. For a change in time of Δt , the expected change in 
( )Δy 2 can be written as

 ( ) ( )Δ Δy y v tf f
2 2=  (10.59)
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where vf  is the forward rate volatility. The contribution to convexity can be written as

 Q V t t t y v tf f fvex = +1
2 1 2

2( )( ) Δ  (10.60)

The total earnings of the replicating portfolio due to convexity through the initia-
tion time of the forward time deposit will be
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To prevent arbitrage, the expected return of EDFC must be equal to the expected earn-
ing of the replicating portfolio. Therefore, the EDFC requires an additional yield to be 
fairly compensated due to the lack of convexity. 

Substituting
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EDFCs require an additional expected yield equal to
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The expected price function of the EDFC (10.43) can be written as

 p y ye x= − −100 1( ) (10.64)

where ye is the unbiased expected forward yield of the EDFC calculated from
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For constant absolute yield volatility, (10.62) can be simplified as

 I t t t y vf f f= +1
2 1 1

2( )( )  (10.66)

Therefore, the convexity bias in yield of the Eurodollar contracts must be equal to
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The implied constant yield volatility can be calculated from the market price of the 
EDFC and the forward implied yield, if forward volatilities are not available:
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For the US, the following conventions apply:
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where p is the price of the EDFC. Table 10.3 shows market and calculated parameters 
for Eurodollar futures.

The table starts with the fifth active quarterly contract. The fair price is the 
calculated price based on swap curve as well as the term structure of volatility. TED 
is the calculated treasury–eurodollar spread. The unbiased yield is the calculated 
forward market yield without convexity adjustment. The implied convexity yield is the 
difference between market yield and unbiased yield, and the fair convexity yield is the 
calculated convexity yield of the EDFC based on (10.62). From the table we can see 
that the contribution of convexity to the price of EDFC is less than 1 basis point for the 
first 15 contracts (EDH15).

At the long end of the EDFC, the implied convexity contribution is significantly 
less than the calculated convexity and is a representation of the market inefficiency. 
Not only is the TED spread negative, implying that swaps are rich relative to treasuries, 
but also EDFCs are rich to the swap curve. With many hedge funds and proprietary 
desks out of business there are few mechanisms through which the inefficiencies can be 
arbitraged.

Many portfolio managers, endowments, insurance companies, and pension funds that 
need to fund long term liabilities find EDFCs very suitable for hedging. Since EDFCs are 
not deliverable and are cash settled at the expiration of the contracts, most investors are 
not required to collateralize them and can acquire them with small margin requirements. 
Bond futures, on the other hand, are required to be collateralized with cash.

Figure 10.4 shows the swap and treasury curves that were used for the calculation. 
The calculated yield of nearly all swap contracts is within a fraction of a basis point 
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FIGURE 10.4  Treasury and swap curves for calculations of EDFC, July 30, 2012
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TABLE 10.3 Eurodollar futures contracts, July 30, 2012

Yield

Contract
Market  
Price Fair Price TED Market Unbiased Implied Vex Fair Vex

EDU13 99.585 99.631 0.078% 0.415% 0.369% 0.046% 0.001%

EDZ13 99.555 99.576 0.118% 0.445% 0.423% 0.022% 0.001%

EDH14 99.530 99.499 0.118% 0.470% 0.499% −0.029% 0.002%

EDM14 99.495 99.484 0.119% 0.505% 0.513% −0.008% 0.003%

EDU14 99.445 99.476 0.106% 0.555% 0.519% 0.036% 0.004%

EDZ14 99.375 99.393 0.103% 0.625% 0.600% 0.025% 0.007%

EDH15 99.315 99.299 0.008% 0.685% 0.692% −0.007% 0.010%

EDM15 99.220 99.186 0.040% 0.780% 0.801% −0.021% 0.014%

EDU15 99.105 99.064 0.078% 0.895% 0.917% −0.022% 0.019%

EDZ15 98.970 98.950 0.080% 1.030% 1.025% 0.005% 0.025%

EDH16 98.845 98.833 0.073% 1.155% 1.135% 0.020% 0.032%

EDM16 98.710 98.685 0.109% 1.290% 1.274% 0.016% 0.041%

EDU16 98.570 98.522 0.172% 1.430% 1.426% 0.004% 0.052%

EDZ16 98.415 98.397 0.154% 1.585% 1.539% 0.046% 0.064%

EDH17 98.280 98.274 0.130% 1.720% 1.651% 0.069% 0.075%

EDM17 98.145 98.136 0.202% 1.855% 1.777% 0.078% 0.087%

EDU17 98.025 98.003 0.329% 1.975% 1.897% 0.078% 0.101%

EDZ17 97.895 97.887 0.314% 2.105% 1.998% 0.107% 0.114%

EDH18 97.800 97.775 0.295% 2.200% 2.099% 0.101% 0.126%

EDM18 97.705 97.685 0.248% 2.295% 2.172% 0.123% 0.143%

EDU18 97.620 97.602 0.196% 2.380% 2.240% 0.140% 0.158%

EDZ18 97.530 97.505 0.168% 2.470% 2.321% 0.149% 0.174%

EDH19 97.475 97.416 0.140% 2.525% 2.398% 0.127% 0.187%

EDM19 97.415 97.370 0.056% 2.585% 2.428% 0.157% 0.201%

EDU19 97.360 97.324 −0.037% 2.640% 2.454% 0.186% 0.221%

EDZ19 97.300 97.252 −0.072% 2.700% 2.511% 0.189% 0.237%

EDH2O 97.270 97.179 −0.105% 2.730% 2.563% 0.167% 0.258%

EDM20 97.235 97.106 −0.263% 2.765% 2.618% 0.147% 0.277%

ED U20 97.195 97.034 −0.561% 2.805% 2.667% 0.138% 0.299%

EDZ20 97.150 96.977 −0.611% 2.850% 2.706% 0.144% 0.317%

EDH21 97.125 96.931 −0.660% 2.875% 2.743% 0.132% 0.326%

EDM21 97.100 96.861 −0.562% 2.900% 2.791% 0.109% 0.348%

EDU21 97.070 96.791 −0.308% 2.930% 2.837% 0.093% 0.372%

EDZ21 97.030 96.738 −0.326% 2.970% 2.864% 0.106% 0.398%

EDH22 97.015 96.701 −0.341% 2.985% 2.889% 0.096% 0.410%

EDM22 96.985 96.607 −0.373% 3.015% 2.959% 0.056% 0.434%
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of the market yields, therefore the inefficiencies mentioned are real and not an artifact 
of the calculations.

In Table 10.4 we see that Euribor futures contracts are also trading very rich to the 
calculated curve and all have negative implied convexity yield. The richness of EDFCs 
is evident nearly in all actively traded currencies and is a sign of market inefficiencies in 
this sector of the market.

TABLE 10.4 Euribor futures contracts, July 30, 2012

Yield

Contract
Market 
Price Fair Price TED Market Unbiased Implied Vex Fair Vex

ERU13 99.695 99.436 0.730% 0.305% 0.563% −0.258% 0.001%

ERZ13 99.635 99.425 0.631% 0.365% 0.573% −0.208% 0.002%

ERH14 99.575 99.401 0.598% 0.425% 0.596% −0.171% 0.003%

ERM14 99.500 99.311 0.628% 0.500% 0.685% −0.185% 0.004%

ERU14 99.425 99.195 0.683% 0.575% 0.799% −0.224% 0.006%

ERZ14 99.335 99.110 0.688% 0.665% 0.881% −0.216% 0.009%

ERH15 99.245 99.014 0.668% 0.755% 0.974% −0.219% 0.013%

ERM15 99.125 98.900 0.632% 0.875% 1.083% −0.208% 0.017%

ERU15 98.995 98.777 0.617% 1.005% 1.201% −0.196% 0.022%

ERZ15 98.840 98.656 0.596% 1.160% 1.316% −0.156% 0.028%

ERH16 98.700 98.530 0.570% 1.300% 1.435% −0.135% 0.035%

ERM16 98.545 98.366 0.541% 1.455% 1.591% −0.136% 0.043%

ERU16 98.405 98.182 0.534% 1.595% 1.765% −0.170% 0.053%

ERZ16 98.255 98.043 0.499% 1.745% 1.894% −0.149% 0.063%

ERH17 98.135 97.915 0.462% 1.865% 2.014% −0.149% 0.071%

ERM17 98.020 97.838 0.574% 1.980% 2.079% −0.099% 0.083%
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With the issuance of the first inflation linked (IL) bond in the US in January 1997, 
a new era began for trading and hedging real yields and inflation expectations in 

what are commonly known as treasury inflation protected securities (Tips). Since then 
there has been an explosion of inflation linked securities and inflation swaps that trade 
globally. The UK, Canada, Australia and a few other countries had issued IL bonds 
before the US treasury.

For a real bond, the stated real coupon is multiplied by the accumulated inflation 
factor from the issuance date of the bond to be converted to nominal coupon and paid 
out. For example, if the annualized coupon of an IL bond is 3% and the cumulative 
inflation factor at the time of the coupon payment is 1.3, then the amount of coupon 
payment will be 3 × 1.3 = 3.9 divided by the coupon frequency. For the US, the infla-
tion factor used is the non-seasonally adjusted headline CPI. Most inflation reports are 
frequently adjusted as more accurate information is collected and seasonal patterns 
shift due to weather or globalization. However, to avoid confusion, the US treasury has 
agreed not to revise the reported headline CPI that is used for Tips indexation. Inflation 
adjustment would create chaos in the markets as investors who have traded their bonds 
could demand higher payments if prior inflation reports are adjusted higher.

11.1 TERM STRUCTURE OF REAL RATES

One can calculate the term structure of real rates (TSRR) and the term structure of 
inflation expectations (TSIE) by comparing the yields of IL and nominal bonds. Trea-
sury issued inflation bonds have the same quality as regular treasuries and are consid-
ered to have risk-free interest and principal payments. 

We define the TSRR yr and the TSIE yn in the same manner as we defined the TSIR 
(2.18):
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where ar j,  and an j,  are the coefficients of the jth component of the spot real rate and 
inflation expectation, respectively. Before analyzing the TSRRs, we explore the stability 
of real rates and inflation expectations.

11.2  THEOREM: REAL RATES CANNOT HAVE  
LOG-NORMAL DISTRIBUTION

The relationship between spot rates and instantaneous forward rates is given by (2.27). 
Analogously to (10.27), for a given relative real yield volatility of vy r, , the calculated 
TSRR of real rate of return yt r,  and spot real yield ys r,  are related to each other by

y y y v tt r s r s r y r, , , ,= + 1
2

2 2 2 (11.3)

Equations (10.27) and (11.3) imply log-normal distribution of volatilities for the 
movements of interest rates and real rates, respectively. A log-normal distribution can 
never be zero. The US Treasury has guaranteed that for US real bonds, the real principal 
of bonds are guaranteed at par if there is deflation between the issue date of a bond 
and its maturity, thereby providing a floor of zero real yields for long term Tips. We will 
now analyze the implications of log-normal distributions for real bonds.

Long term nominal yields cannot become negative, since investors have the option of 
storing their cash at zero rates with almost zero carrying cost. Therefore, the zero rate acts 
as a barrier that an investor would have no incentive to cross. If nominal rates become 
negative, investors will store their cash in safe deposit boxes and avoid negative interest 
rates, thus negative nominal rates are not sustainable. We can make the same argument 
about credit spreads as well. As the level of credit spreads falls to zero, the incentive to 
buy credit sensitive securities rather than risk-free securities would fall to zero.

Our argument for log-normal distribution of real rates is not as strong as for nomi-
nal rates since there is no real or inflation protected currency which guaranties inves-
tors of zero real returns in a deflationary environment. However, we believe that the 
introduction of IL bonds where the principal is protected against deflation and other 
natural inflation hedges, are likely to provide a floor for negative long term real rates in 
deflationary and inflationary environments.

It appears that we cannot use a log-normal distribution for the TSIE, since there are 
no natural barriers at zero inflation rate. In the recent history of Western economies, 
there have been periods of positive as well as negative inflation rates. While the abso-
lute volatility of inflation tends to be higher during high inflation periods, log-normal 
distribution alone cannot account for that. One can attempt a combination of normal 
and log-normal distribution functions for inflation expectations. We will first analyze 
the mathematical implications of the normal distribution function for inflation.

The historical annualized inflation volatility can be calculated from
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where NB is the number of business days in a year and N is the number of data points. 
For the TSIE yt n, , spot inflation expectations ys n, , and nominal government yield yt g,  we 
have the following identities: 

 y y yt g t r t n, , ,= +  (11.5)

 y y ys g s r s n, , ,= +  (11.6)

Identity (11.5) states that the return expectation of a long bond is equal to the sum of 
return expectations of a real bond and inflation for the same maturity. Identity (11.6) 
states that the spot nominal rate is equal to the spot real rate plus spot inflation expec-
tation. Violation of either of these identities will result in arbitrage opportunities. 

Expanding the price function of a nominal zero coupon bond in Taylor series in 
terms of changes in real and inflation yields, similar to (10.18), leads to

p e ey t y t y ts g s r s n= =− − −, , , (11.7)

After time Δt  the expected price is
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Expanding this equation in Taylor series, similarly to (10.18), and noting that Δt  is 
negative results in
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After converting the changes to volatilities as in (10.20) and some simplification we 
arrive at
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(11.10)

where ρrn is the correlation coefficient between ys r,  and ys n, , and wy n,  is the absolute 
volatility of inflation expectations. Substituting (11.6) in the above equation and rear-
ranging the parameters slightly leads to

v y v y w y v wy s g r s r y n rn s r r y n
2 2 2 2 2 2, , , , ,− = + ρ (11.11)

As t → ∞, the left hand side of the above equation approaches zero since both ys and 
ys r,  approach zero. Therefore, after some simplification, we have

w t y vy n rn s r r, ,( )→ ∞ = − =2 0ρ (11.12)

Thus, assuming a normal distribution for inflation expectations and a log-normal 
 distribution for real rates has led to (11.12), implying that long term volatility of inflation 
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should approach zero. Since this is not a logical conclusion, our original assumption 
is incorrect. Normal and log-normal distributions cannot coexist. To restore arbitrage 
neutrality and mathematical stability, we have to assume that long term inflation expec-
tations are also log-normally distributed.

Log-normal distribution for inflation implies that long term inflation expectations can-
not cross the zero rate without creating an arbitrage opportunity. Using log-normal distri-
bution for inflation, the return expectation of inflation and spot inflation can be written as

y y v y tt n s n y n s n, , , ,= + 1
2

2 2 2 (11.13)

Equation (11.10) changes as follows:
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We can rewrite (11.14) for arbitrage-free spot yields, using (10.27), (11.3) and (11.13), as

y y y y y v v tt t r t n rn s r s n r n= + +, , , ,ρ 2 (11.15)

Thus, depending on the sign of the correlation coefficient between real yields and infla-
tion rates, the return expectation of a nominal bond can be greater than, equal to or less 
than the sum of return expectations of its components.

If we assume that inflation expectations are log-normally distributed, stability is 
restored to (11.14). However, given that there are no barriers to the inflation rate cross-
ing zero and becoming negative, we have to assume that inflation does not have a 
log-normal distribution. Our original assumption of a log-normal distribution for real 
yields has to be invalid. Assuming a normal or log-normal distribution for real rates 
and/or inflation expectations leads to mathematical or practical inconsistencies and is 
thus unacceptable. We can only conclude that inflation expectations and real rates are 
correlated in such a way that their sum (i.e., nominal rates) will be log-normally distrib-
uted but neither is normally or log-normally distributed.

Most options formulas for bonds use log-normal distributions to calculate the for-
ward distribution of rates and implied prices. Based on this analysis, one has to ques-
tion the validity of pricing models for options on IL bonds. 

There are other econometric barriers for very high real rates. Real rates serve as a 
proxy for the productivity of an economy. If real rates are very high, companies that 
borrow at nominal rates need to have productivity gains that match or exceed the real 
rates for their profitability to stay the same or increase. In the history of the Western 
and emerging economies there are numerous instances of inflation and nominal rates 
running out of control, in some cases exceeding 1000% per year. However, there are 
no documented cases of real rates adjusted for inflation staying at high levels for a long 
period of time. In fact, to combat inflation, central banks often raise short rates above 
inflation to slow down economic activity and inflation.

At very high rates of inflation, one has to adjust real rates by compounding inflation. 
For example, if the inflation expectation for the next 12 months is 1000% and nominal 
rates are 1020%, a nominal investment of $100 will have a nominal return of $1020. 
At today’s prices, the value of $1020 will be $102 and thus inflation adjusted real rate 
will be , 102 100

100 2− = % which is significantly different from the 1020% − 1000% = 20% 
which is obtained by subtracting inflation from nominal rates.
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11.3 INFLATION LINKED BONDS

Accurate analysis of IL bonds is among the most complicated of all non-contingent 
securities. Table 11.1 lists the timeline of dates to analyze for IL bonds.

Since infl ation is not known instantaneously, all infl ation linked products are priced 
based on an infl ation lag. For most markets the infl ation lag is about 2 months; how-
ever, for some older securities, particularly UK infl ation linked gilts, the infl ation lag is 
about 8 months. Australia and New Zealand report infl ation on a quarterly basis and 
infl ation accrual is based on the average of the prior two quarters.

For every cash fl ow of an IL bond, there is an infl ation reference point. The infl ation 
reference point is the method used to calculate infl ation compensation for the bond holder.

For the US market, the infl ation reference is calculated by the linear interpolation 
of the realized non-seasonally adjusted infl ation of the reference month (2 months prior 
to the date in question). For example, to calculate an infl ation reference for April 10, 
suppose that the infl ation factor was 120 at the end of January and 120.36 at the end 
of February. Infl ation for the month of February, which is 2 months before April, is 
120.36/120.00 − 1 = 0.3%. April has 30 days and it is assumed that infl ation accrues 
linearly, therefore for April 10, the infl ation reference point will be

f = +
−

=120 0
120 36 120 00

30
10 120 12.

. .
.

The last known nominal date for a bond is the date before which all cash fl ows 
are nominal with known factors. For example, if the infl ation report for February is 
released on March 20, then on March 21 we know the infl ation factor for all cash fl ows 
through the end of April. If an IL bond has a coupon payment on April 15, we can 
 calculate the infl ation reference point for April 15 and divide it by the infl ation refer-
ence point for the dated date of the bond. This ratio is the infl ation compensation for 
the coupon payment of the bond on April 15.

TABLE 11.1 Timeline for cash fl ow analysis of infl ation linked bonds

A Infl ation reference point for the start of interest accrual date (dated date)

B Interest accrual date (dated date)

C Infl ation reference point for settle date

D Settle date

E Last known nominal date; cash fl ows before this date are nominal with known factors

F Last nominal date for which infl ation has been realized but not reported. Cash fl ows up to 
this date are nominal with unknown factors

G Partially nominal date – cash fl ows before this date are partially nominal and partially 
real

H Infl ation lag; date at which a coupon goes nominal

I Coupon payment

J …

L Infl ation lag; reference point for maturity date

M Maturity date
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There is also an accumulated but not accrued inflation factor from the reference 
inflation date to the trade date. For example, for a bond traded on April 9 and settled 
on April 10, the last known inflation is end of February report, but inflation is only 
accrued for one third of the month of April. The accumulated inflation through the 
end of February is already known, and on trade date the inflation for March and the 
first nine days of April have already taken place and accumulated but not reported or 
factored into the invoice price.

On March 10, before the inflation report for February, the cash flows of a bond 
that pays coupon in April will be nominal, but the factor is not known. If there is 
a spike in inflation in March, the April cash flows will not benefit from it. One can 
estimate the expected inflation using market consensus or from historical inflation for 
February to estimate the impact of inflation on April cash flows.

Likewise, the reference inflation for the month of May is March. The inflation fac-
tor for a bond that pays a coupon at the end of May depends on the level of inflation 
in March. On March 15, about half of the inflation for the month has been realized but 
not reported. Thus, a cash flow at the end of May is 15

31 48 4= . % nominal and 51.6% 
real. The adjustment factor for such a bond will be based on 48.4% of the expected 
inflation in the month of March. Similarly, a cash flow on May 12 will be scaled by 
12
31

15
31 18 7× = . % of the expected March inflation rate. For the accurate analysis of par-

tially nominal cash flows, we must break a cash flow into two components: one dis-
counted by the nominal curve and one by the real curve.

The adjustment for Australian real bonds is significantly more complicated. For 
example, on April 10, before the first quarter inflation report, all the cash flows in the 
third quarter are nominal. Additionally, cash flows in the fourth quarter have nominal 
components as half of the first quarter inflation will be realized in the factor for the 
fourth quarter. Moreover, the contribution of inflation in the first ten days of April will 
be fully realized in the first quarter of the following year.

The price of an IL bond can be written as

p c ei
y t y t y t

i

N
r in in i i in in= − − −

=
∑ , ( )

0

(11.16)

where ti (tin) is the time to cash flow i (minus an inflation lag – for an inflation lag of 
2 months, t tin i= − 2

12 ), yi (yin) is the nominal yield at time ti (tin), yr,in is the real yield at 
time tin, and ci is cash flow i, i=1, …, N.

For accurate analysis of IL bonds, the dirty price (price plus accrued interest) as well 
as all cash flows must be multiplied by an inflation reference factor and an accumulated 
but not accrued inflation factor. The real duration components of a real bond are

D
p

c t er j i in j
y t y t y t

i

N
r in in i i in in

,
( ),= − − −

=
∑1

0

ψ (11.17)

where ψj is the jth component of the basis function for time tin. The nominal duration 
components of a real bond are defined as

D
p

c t t en j i i i in jn
y t y t y t

i

N
r in in i i in in

,
( )( ) ,= − − − −

=
∑1

0

ψ ψ (11.18)
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Therefore, every inflation linked security has exposure to nominal rates. The larger the 
inflation lag (t ti in− ), the larger the exposure to nominal rates. 

In order to calculate the term structure of real rates, we first need to calculate the real 
cash flows of real bonds. A real cash flow is a cash flow that will be compensated at the 
stated real coupon plus inflation factor and thus will be discounted by real rates only. We 
first need to subtract the present value of all cash flows that are on or before the last nomi-
nal date from the market price of the real bond. Define the real cash flows of the bond as

c c ein i
y t y ti i in in= − −( ) (11.19)

Substituting from (11.19) into (11.16), we calculate the real price pr as

p c er in
y t

i

N
r in in= −

=
∑ ,

0

(11.20)

Equation (11.20) defines the implied real cash flows of a real bond with all the nominal 
components taken out and can be used to calculate the TSRR.

Figure 11.1 shows the TSIR and the TSRR along with the traded securities on July 
30, 2012, and Figure 11.2 shows the TSIE on the same day. Since inflation linked securi-
ties were issued in the US in 1997, the TSRR has had a narrow range for the most part 
and structure of nominal rates and inflation expectations were very similar. Since 2008, 
the TSRR has varied significantly and the TSIE has been much more stable. 

What is most interesting about the TSRR is the negative spot real rates for maturi-
ties shorter than 15 years. The TSIE looks like a normal yield curve, gradually sloping 
upward and leveling off at long maturities, and it appears to be a driver of real rates. 
It is more likely that market participants have a relatively simple inflation expectation 
model that is used to derive the relative complex shape of the real rates.

The level of real rates is an indication of growth expectations in an economy and 
is a reflection of real demand for money. When the productivity of capital is high, com-
panies are looking to borrow, even at high real rates, and use the capital for production 
or service sector investments that will have high rates of return. When productivity is 
low or investment risk is high, or there are excess savings, companies are not willing to 
borrow for risk of failure and lenders are willing to lend their money for negative real 

FIGURE 11.1 Spot real (Rts) and nominal (Tsy) rates, July 30, 2012
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rates instead of investing it in risky ventures. Figure 11.1 is an indication that investors 
are willing to accept guaranteed negative real returns rather than investing their money 
in ventures. 

Market conventions for accrual and trading are country dependent for IL bonds. 
In the UK, Australia, New Zealand, and Sweden the trading price includes the infla-
tion factor. In the US, which is modeled after Canadian markets, and the euro zone the 
trading price does not include the inflation factor. For these markets, the trading price 
is multiplied by the inflation factor to calculate the invoice price.

Table 11.2 shows a sample of IL bonds from selected countries. Unlike nominal 
bonds, adding the accrued interest to the price of the bond does not give the invoice 
price, and even for countries such as Sweden where the price includes the factor, the 
accrual needs to be multiplied by the inflation factor.

Since each cash flow is discounted by both real and nominal bonds, the calculated 
spread is relative to both curves. The spread relative to market is the best estimate of the 
spread using the adjustment table for the market price of bonds. In the table there are 
two bonds with relatively large spreads that require explanation, namely, EUR 1.75% 
4/15/20 and USD 0.125% 4/15/17. Germany does not have a large IL bond market 
and the EUR curve is derived from the French IL bond market with the addition of the 
credit spread of France relative to Germany (see Section 12.6), and thus the calculated 
spread relative to the market is not necessarily very accurate. For US 0.125 4/15/17, 
the richness is due to the very low coupon of the bond as will be discussed in the next 
section. 

Table 11.3 shows the yield and interest rate durations of our sample IL bonds. 
Since all cash flows of a real bond are combinations of real as well as nominal accrual 
periods, the calculated yield of a real bond is a composite yield that approximates real 
yield for long maturity bonds. For short maturity bonds, the yield could be very mis-
leading. In order to calculate the accurate real yield of a real bond, we need to strip the 
contribution of nominal cash flows. This is accomplished using equation (11.20).

The nominal duration of some IL bonds is very significant and needs to be properly 
calculated in any portfolio that invests in them. Older UK gilt stocks have an inflation 

FIGURE 11.2 Term structure of inflation expectations, July 30, 2012

1.5%

2.0%

2.5%

3.0%

0 5 10 15 20 25 30

Years

Inf Trm



Real Rates and Inflation Expectations 153

c11.indd 03/30/2015 Page 153Trim:  170  x  244 mm 

TABLE 11.2 Price and spreads for selected IL bonds, July 30, 2012

Security Price Spread

Crncy Cpn Maturity Mkt Accr Invoice Fair Model Mkt Curve

AUD 4 8/20/20 195.36 0.82 195.36 195.37 195.33 0.000% −0.003%

AUD 3 9/20/25 140.74 0.36 140.74 140.75 140.69 0.000% −0.004%

CAD 3 12/1/36 165.86 0.52 197.58 165.88 165.57 0.000% −0.010%

EUR 1.75 4/15/20 119.17 0.53 128.66 118.03 118.48 −0.133% −0.080%

GBP 1.25 11/22/27 123.34 0.24 153.87 123.35 124.36 0.000% 0.058%

GBP 4.125 7/22/30 315.08 0.11 315.27 315.08 309.72 0.000% −0.122%

SEK 3.5 12/1/28 192.19 2.35 195.07 192.21 192.64 0.000% 0.017%

USD 2 1/15/14 104.36 0.09 129.92 104.37 104.45 −0.003% 0.053%

USD 2 7/15/14 106.58 0.09 129.45 106.58 106.71 −0.001% 0.064%

USD 2.375 1/15/17 116.51 0.11 132.82 116.42 116.69 −0.022% 0.034%

USD 0.125 4/15/17 106.78 0.04 107.67 105.86 106.10 −0.186% −0.139%

USD 0.625 7/15/21 113.45 0.03 115.24 113.45 113.21 0.000% −0.024%

USD 0.125 1/15/22 108.21 0.01 109.77 108.24 107.74 0.002% −0.047%

USD 3.875 4/15/29 167.33 1.14 235.02 167.33 167.61 0.000% 0.012%

USD 3.375 4/15/32 167.85 1.00 218.30 167.87 167.19 0.000% −0.026%

TABLE 11.3 Yield and interest rate durations for selected IL bonds, July 30, 2012

Security Yield Tsy Duration

Crncy Cpn Maturity Theta Exp Level Slope Bend

AUD 4 8/20/20 0.736% 0.334% 0.506 0.422 −0.122

AUD 3 9/20/25 0.894% 0.568% 0.592 0.633 0.525

CAD 3 12/1/36 0.445% 0.202% 0.167 0.177 0.202

EUR 1.75 4/15/20 −0.204% −0.840% 0.167 0.152 −0.034

GBP 1.25 11/22/27 0.840% −0.267% 0.167 0.197 0.228

GBP 4.125 7/22/30 0.370% −0.286% 0.664 0.707 0.737

SEK 3.5 12/1/28 0.177% 0.035% 0.167 0.179 0.189

USD 2 1/15/14 −1.401% −1.373% 0.167 −0.063 −0.147

USD 2 7/15/14 −1.403% −1.370% 0.167 −0.033 −0.199

USD 2.375 1/15/17 −1.060% −1.355% 0.167 0.076 −0.213

USD 0.125 4/15/17 −1.112% −1.507% 0.167 0.093 −0.206

USD 0.625 7/15/21 0.411% −0.833% 0.167 0.177 0.048

USD 0.125 1/15/22 0.540% −0.775% 0.167 0.187 0.083

USD 3.875 4/15/29 0.407% −0.183% 0.166 0.178 0.183

USD 3.375 4/15/32 0.299% −0.109% 0.166 0.180 0.202
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lag of 8 months, while the more recently issued bonds have a lag of 2 months. We can 
see that the nominal level duration of US Tips is about 0.167 years or 2 months. How-
ever, there is more information in the nominal slope duration of IL bonds, since it iden-
tifies to a large extent the average position of nominal cash flows on the curve. Recall 
that the ratio of slope duration to level duration of a zero coupon bond is

D
D

e t1

0
1 2= = − −τ α (11.21)

Thus, when the ratio of nominal slope to level is about 1, the contribution of nominal 
duration is at the long end of the curve, and when it is negative it is at the front end of 
the curve. Unlike slope duration of zero coupon bond, the nominal slope duration of 
a real bond is similar to the slope duration of a eurodollar futures contract and can be 
larger than its level duration. We can see in Table 11.3 that bonds that mature in 2014 
have negative slope durations, while bonds that mature in the late 2020s have a slope 
duration that is comparable to the level duration.

Table 11.4 lists the real duration components of the selected IL bonds. The inter-
pretation of a real duration for an IL bond is the same as the nominal duration for a 
nominal bond. The credit duration is the duration of the security to the issuer, or the 
treasury in this case. For each cash flow, part of the exposure is from real rates and part 
from nominal rates. However, the exposure to credit is at all times, thus the credit dura-
tion is the sum of nominal and real durations.

At the portfolio level, nominal, real, and credit durations are aggregated separately 
and hedged separately as well. 

TABLE 11.4 Real and credit durations for selected IL bonds, July 30, 2012

Security Real Duration Credit Duration

Crncy Cpn Maturity Level Slope Bend 4th 5th Level Slope Bend

AUD 4 8/20/20 6.528 1.347 −5.695 −3.808 3.533 7.031 1.772 −5.819

AUD 3 9/20/25 10.597 5.848 −3.454 −9.164 −7.642 11.186 6.484 −2.931

CAD 3 12/1/36 18.782 15.843 9.383 2.533 −3.803 18.949 16.021 9.585

EUR 1.75 4/15/20 7.115 1.634 −6.223 −4.546 3.831 7.282 1.786 −6.256

GBP 1.25 11/22/27 13.880 9.595 −0.120 −9.199 −12.961 14.046 9.791 0.107

GBP 4.125 7/22/30 13.454 9.476 1.156 −6.183 −10.235 14.113 10.188 1.889

SEK 3.5 12/1/28 13.145 9.009 0.250 −7.395 −10.946 13.312 9.188 0.439

USD 2 1/15/14 1.275 −0.883 −0.052 0.953 −1.266 1.442 −0.947 −0.199

USD 2 7/15/14 1.757 −1.033 −0.541 1.665 −1.411 1.924 −1.066 −0.740

USD 2.375 1/15/17 4.106 −0.641 −3.870 1.793 3.280 4.273 −0.565 −4.083

USD 0.125 4/15/17 4.529 −0.493 −4.419 1.450 4.101 4.696 −0.399 −4.625

USD 0.625 7/15/21 8.567 3.025 −6.348 −7.509 0.868 8.734 3.202 −6.300

USD 0.125 1/15/22 9.244 3.705 −6.254 −8.715 −0.773 9.411 3.892 −6.171

USD 3.875 4/15/29 13.176 9.065 0.457 −6.978 −10.585 13.342 9.243 0.640

USD 3.375 4/15/32 15.470 11.869 4.033 −3.718 −9.492 15.636 12.049 4.235
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11.4 SEASONAL ADJUSTMENTS TO INFLATION

In the US the most closely watched measures of inflation are the core inflation or the 
personal consumption expenditures deflator which are seasonally adjusted and exclude 
the volatile food and energy components. However, nearly all global IL bonds trade on 
the basis of headline inflation. Headline inflation is subject to strong seasonal patterns 
that can impact the price and rate of return of short term IL bonds. For example, the 
headline inflation in January in the US is very high compared to other months, and a 
bond that matures in April will have the full influence of January inflation, while a bond 
that matures in January will not.

There is a wealth of information on calculating seasonal factors. Both the Federal 
Reserve and the European Central Bank have supported the development of standard-
ized procedures for seasonal adjustments. The methods developed by the US Census 
Bureau [11] and Tramo-Seats [12] are very widely used for seasonal adjustments.

Our objective is to develop seasonal adjustments with low computational overhead 
that can be used to estimate the impact of seasonality on cash flows. Calculation of IL 
bonds requires a historical table of inflation to be able to calculate an inflation reference 
index for a bond that was issued in the past. The historical inflation index in the table 
can be used for seasonal analysis as well. 

Table 11.5 shows a sample of historical headline inflation indexes for the US. We 
first calculate the average annualized inflation rate for every month of the last data 
available. For example, for January 2012,

1
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TABLE 11.5 Sample US headline inflation index

Jan Feb Mar Apr May Jun

2000 168.8 169.8 171.2 171.3 171.5 172.4

2001 175.1 175.8 176.2 176.9 177.7 178

2002 177.1 177.8 178.8 179.8 179.8 179.9

2003 181.7 183.1 184.2 183.8 183.5 183.7

2004 185.2 186.2 187.4 188 189.1 189.7

2005 190.7 191.8 193.3 194.6 194.4 194.5

2006 198.3 198.7 199.8 201.5 202.5 202.9

2007 202.4 203.5 205.4 206.7 207.9 208.4

2008 211.1 211.7 213.5 214.8 216.6 218.8

2009 211.143 212.193 212.709 213.24 213.856 215.693

2010 216.687 216.741 217.631 218.009 218.178 217.965

2011 220.223 221.309 223.467 224.906 225.964 225.722

2012 226.655 227.663 229.392 230.085 229.815 229.478
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We now remove the variations in the average inflation that are due to the first or last 
months. The difference between the average for each month and the average of all 
months is the adjustment required to make sure seasonality is not affected by a spike in 
inflation in any given month. Thus, the average annual inflation for the 12 years end-
ing in January 2012 as calculated above is 0.02456. Likewise, we calculate the average 
annual inflation for the 12 months ending in February 2012 and so on. In Table 11.5, 
the average inflation for all months is 0.02392. We want to change the inflation index 
values in such a way that the average annual inflation for all the months of 2012 will be 
equal to 0.02392. All index values in the month of January are scaled using the formula

I I e I eyear scaled year
year

year,
( )( . . ) (= =− −2012 0 02456 0 02392 20122 0 00064−year) .

The resulting index will result in the same average inflation for all annual rates ending 
in all months of 2012. Monthly inflation rates can be calculated by simply dividing the 
index of one month by the prior. For example, the monthly inflation for April 2003, 
using the values in Table 11.5, is equal to 183 8

184 2 1 0 22.
. . %− = − . In practice, the calcula-

tion should be done from the scaled indexes, resulting in 185 13
185 74 1 0 33.

. . %− = − . Once 
the average monthly inflations are calculated, the average inflation for each month is 
calculated.

 By subtracting the average of the monthly averages from each monthly average, the 
seasonal adjustment can be calculated. Figure 11.3 shows the seasonal monthly infla-
tion rates for the periods 1991–2012 and 2001–2012. The biggest difference between 
the two ranges is in the January adjustment. Since the sum of monthly adjustments is 
zero, the seasonal adjustments for all months of 1991–2012 period other than January 
fall below those of 2001–2012 range.

To correct for unusual monthly spikes in the data, we can remove the maximum 
and minimum inflation rates for every month in the data series and then calculate the 
seasonal patterns. The change that this refinement would make to the US data is negli-
gible, but it is a good practice to do it for future events.

Figure 11.4 shows the standard deviation of monthly CPI in the US for every year 
since 1981. It appears that globalization has had a major impact on the seasonal-
ity of inflation. The most volatile components of headline CPI are food and energy.  

FIGURE 11.3 Average monthly inflation rates
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Imports of produce from global sources and in particular from the southern hemi-
sphere in the winter months and less reliance on heating oil have had a major impact 
on the price stability of food and energy and variations of monthly CPI. The seasonal 
variation of inflation is not likely to go to zero, but more likely it will level off at the 
current levels. 

The monthly volatility of the seasonal inflation from Figure 11.3 for 2001–2012 
is 0.535%. Since the volatility of monthly inflation has been steadily falling, it is rea-
sonable to assume that we should use volatility other than historical volatility. If we 
use the average standard deviation for the last 5 years minus the highest and lowest, 
the volatility will be 0.402%. We can then scale the monthly seasonal pattern by the 
ratio 0 402

0 535
.
.  and use it for future seasonal factors. Table 11.6 lists the calculated seasonal 

 factors for the US CPI.

FIGURE 11.4 Standard deviation of monthly inflation in the US
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TABLE 11.6 Seasonal factors for US CPI

Unadjusted 
Seasonal

Adjusted  
Seasonal

Adjusted 
Factor

Jan 1.389% 1.042% 1.01048

Feb 0.228% 0.171% 1.00171

Mar 0.439% 0.330% 1.00330

Apr 0.163% 0.122% 1.00123

May −0.079% −0.059% 0.99941

Jun −0.165% −0.124% 0.99876

Jul −0.359% −0.269% 0.99731

Aug −0.067% −0.050% 0.99950

Sep −0.067% −0.050% 0.99950

Oct −0.326% −0.245% 0.99756

Nov −0.600% −0.450% 0.99551

Dec −0.557% −0.418% 0.99583

Stdev 0.535% 0.401%
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The cumulative inflation adjustment on a monthly basis for the US is shown in 
Figure 11.5. The adjustment is the highest in April and lowest in December. Therefore 
cash flows for the end of June will get the highest seasonal adjustment of roughly 2.2% 
and for January about 0.86%, given that there are 2 months of inflation lag compared 
to end of December. Therefore, bonds that mature in July usually have a lower real 
yield, and bonds that mature in January have a higher real yield. There is no calendar 
seasonality for the issuance of IL bonds. For example, if the treasury issues a bond in 
January and another in July, assuming that the real yields do not change, both bonds 
will have the same coupon and real yields. However, by the time the July bond is issued, 
the January bond has accumulated the seasonal high inflation accrual, while the July 
bond is at seasonal low point of inflation accrual. Going forward, the July bond will 
have an implied high inflation period in the last 6 months before maturity and thus will 
have a lower implied yield.

In order to calculate the seasonal adjustment, we have to use the difference between 
the cumulative seasonal inflation adjustment (CSIA) between the last day that inflation 
is available and the reference inflation point of a cash flow. For example, for a cash 
flow on January 15, the reference inflation index is November 15. If the last reported 
inflation index is for the end of June, then we subtract the CSIA for November 15 (the 
average of the October and November indexes) from the CSIA for June. The exponent 
of that value is the factor by which the cash flow for January 15 will be multiplied.

The factor to adjust the real rates covers a longer period than the last day for which 
an inflation reference is available. For example, if inflation for April is reported on May 
15, and the inflation lag is 2 months, then for a trade on May 5 the last inflation refer-
ence is for May 30, while the inflation reference through the end of June has already 
taken place but not yet been reported. We need to make an adjustment to the cash flows 
by estimating the inflation for the month of April, for example, by averaging the previ-
ous 5 years of historical data, and use that factor to scale the cash flows.

Table 11.7 shows the yields of short maturity Tips on July 31, 2012. We can see 
that the unadjusted yields of bonds maturing in 2014 are –0.978%, –1.009%, and 
–1.315% for maturity in the months of January, April, and July, respectively. A simi-
lar pattern is repeated for 2015 and 2017 as well. For 2016, the April maturity has a 

FIGURE 11.5 Cumulative seasonal inflation adjustment for US
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slightly higher yield, which may be due to pricing inefficiency or more likely is a coupon 
effect, which we will explain shortly.

The market seasonal price adjustment is significantly different for April maturity 
bonds, probably due to the market participants using a longer history for seasonal 
adjustment. We can see in Figure 11.3 that if we use the period 1991–2012 for  seasonal 
adjustment, the January adjustment is much larger, and this will impact the April matu-
rity bonds directly, since the inflation factor for these bonds is the reference CPI in 
mid-February.

Given that there is no standard method to estimate seasonal adjustments, there 
will always be some dispersion in the pricing of Tips, and that is where a trader can 
add value by correctly anticipating seasonal adjustments. Real yields and TSRR are 
also calculated using seasonal adjustments, and therefore there is no unique TSRR. 
The calculated TSIR, TSRR, and TSIE in Figures 11.1 and 11.2 are based on seasonal 
adjustments explained above using inflation data up to June 2012. It is remarkable that 
the implied TSIE is so smooth, considering all the adjustment.

The US Treasury has guaranteed that if there is deflation, the principal of Tips 
will be protected. Bonds that have a very low coupon, such as 0.125% 4/15/2016, 
will have a guaranteed price of 100 at maturity if there is deflation. However, bonds 
that have higher coupon and/or accumulated inflation can lose the accumulated infla-
tion and therefore have a potentially significant downside during periods of deflation. 
Thus, lower coupon securities have a better downside protection, given that there is an 

TABLE 11.7 Yield of short maturity Tips, July 31, 2012

Cpn Maturity Price Unadj  
Yield

Adjusted 
Yield

Spread

0.625 4/15/13 100.539 −0.139% −1.699% −0.364%

1.875 7/15/13 102.773 −1.011% −1.110% 0.268%

2 1/15/14 104.371 −0.978% −1.313% 0.091%

1.25 4/15/14 103.895 −1.009% −1.657% −0.245%

2 7/15/14 106.582 −1.315% −1.369% 0.050%

1.625 1/15/15 107.047 −1.196% −1.398% 0.033%

0.5 4/15/15 104.742 −1.219% −1.630% −0.195%

1.875 7/15/15 109.785 −1.360% −1.399% 0.037%

2 1/15/16 111.555 −1.262% −1.408% 0.024%

0.125 4/15/16 105.184 −1.238% −1.538% −0.113%

2.5 7/15/16 115.531 −1.314% −1.346% 0.069%

2.375 1/15/17 116.523 −1.223% −1.336% 0.051%

0.125 4/15/17 106.789 −1.271% −1.507% −0.141%

2.625 7/15/17 120.051 −1.282% −1.308% 0.039%

1.625 1/15/18 115.742 −1.162% −1.255% 0.041%

1.375 7/15/18 115.938 −1.199% −1.220% 0.017%

2.125 1/15/19 121.383 −1.067% −1.145% 0.032%
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implied put option for all bonds at par. The lower downside protection for lower cou-
pon bonds should translate into a premium price or lower market yield.

Theoretically speaking and based on long term data, investors usually demand 
compensation for inflation. During periods of high inflation, nominal yields tend to be 
high, and as inflation falls, so do nominal yields. Historically, inflation falls the most 
during recoveries, not during recessions. Quite often this takes portfolio managers by 
surprise, since bond yields fall the most in recoveries as well, while most investors 
expect to see rates rise in a recovery. Real yields tend to be much less volatile than 
nominal yields in periods of changing inflation.

Thus, it is logical to expect that nominal yields follow the path of inflation or 
expected inflation. During the winter months, when seasonal inflation is highest, 
nominal rates should be higher than in the summer, when seasonal inflation is falling. 
In practice, the short end of nominal rates is a smooth curve that is dominated by 
bank lending and borrowing and the Federal Reserve’s Fed Funds rate and does not 
react to inflation seasonality. Therefore, there has to be an adjustment to the short 
term real yields in such a way that the sum of inflation and real rates equals short 
term nominal rates.

Market yield for a real bond is not a clearly defined quantity, since a portion of the 
cash flow of a bond is nominal. Depending on the shape of TSIR and TSRR, the contri-
bution of nominal cash flows to the price of an IL bond can vary. The best measure of 
value for IL bonds is the spread relative to the curve, which must be a constant for both 
nominal and real cash flows relative to the respective curves. 

11.5 INFLATION SWAPS

Inflation swaps are instruments that can be used for direct trading of CPI. Like Tips and 
other IL bonds, inflation swaps trade based on non-seasonally adjusted headline CPI. 
Inflation swaps trade on the basis of inflation rate and at the present time they are all 
zero coupon swaps. For a notional face value Nz, coupon rate (market inflation rate) 
of r, compounding frequency of m and maturity of z years, the fixed swap receiver will 
at maturity be entitled to 

Q N
r
mz z

mz

,fix = +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1 (11.22)

The floating swap receiver will be entitled to 

Q N
I

Iz z
r z

r
,

,

,
flt =

0
(11.23)

where Ir z,  and Ir,0 are the inflation reference indexes at the maturity and at the initiation 
of the swap, respectively. The values of the fixed and floating legs of a swap are identi-
cal at the initiation of the swap. Similarly to IL bonds, with inflation swaps there is an 
inflation lag which is 2 months in nearly all traded contracts.

Unlike most interest rate swaps, where the floating rate receiver has very little 
or no interest rate risk, in inflation swaps the primary risk is in the floating inflation 
component. The fixed rate receiver is basically a zero coupon swap that has no direct 
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sensitivity to inflation rates. However, if inflation rates fall, the floating leg will under-
perform the fixed leg and the long receiver will net the difference between the market 
value of the fixed and the floater. Just like ordinary interest rate swaps, the long infla-
tion receiver will outperform the floating leg if implied rates fall.

The present value or face of the fixed and floating legs of an inflation swap are cal-
culated by discounting the maturity value by the Libor rate. If tz is the time to maturity 
of the swap, ys g, , ys r, , and ys l,  are the treasury (government), real treasury, and Libor 
yields, then the present value of the swap is

p Q ev z
y ts l z

, ,
,

fix fix= − (11.24)

The spot inflation yield ys n,  is the implied inflation rate and is equal to the treasury 
rates minus real rates. It can be written as

y y y
t

I

Is n s g s r
z

r n

r
, , ,

,

,
( ) ln= − =

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟

1

0
(11.25)

The amount that will be received at the maturity of an inflation swap is equal to the 
accumulated inflation through the inflation reference point which is generally lagged by 
2 months. Thus, the future value will be

p Q ef z
y y ts gn s rn zn

, ,
( ), ,

flt flt= − (11.26)

where tzn is the time to the inflation reference point for the maturity (usually 2 months 
before maturity), ys gn,  is the nominal treasury (government) yield at the final inflation 
reference point, and ys rn,  is the real treasury yield at the final inflation reference point. 
The subscript n refers to inflation. For time, it refers to the inflation reference point for 
a given cash flow. The principal at maturity needs to be discounted by Libor to calculate 
the present value of the inflation swap, that is,

p Q ev z
y t y y ts l z g rn s gn zn

, ,
( ), , ,

flt flt= − − − (11.27)

Thus, the floating leg of an inflation swap is a function of treasury, real, and Libor rates 
and all durations need to be accounted for correctly. This formulation works for float-
ing coupon inflation swaps as well. We just need to provide the summation for all cash 
flows as follows:

p c ev i
y t y y t

i

s l i s rn s gn in
,

( ), , ,
flt = − − −∑ (11.28)

In the foregoing we drop the subscript s for spot rates, since it applies to all rates. 
The Libor yield is equal to the treasury rate plus Libor spread. Thus, nominal, real, and 
Libor duration risks of floating zero coupon inflation swaps are respectively

D t t t t eg k z k zn k zn
y t y y tl z rn gn zn

,
( )[ ( ) ( )]= − − − −ψ ψ (11.29)

D t t er k zn k zn
y t y y tl z rn gn zn

,
( )( )= − − −ψ

(11.30)

D t t el k z k
y t y y tl n rn gn zn

,
( )( )= − − −ψ (11.31)
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For a floating coupon inflation swap, the implied floating coupon for a period end-
ing at ti is, from (6.15),

c ef i i
y y t y y tg in r in in g i n r i n i n

,
( ) ( ), , , , , , ,= −( )− − −− − −μ 1 1 1 1 (11.32)

where μ is the principal balance at the start of the period. To calculate the duration risks 
of floating coupon inflation swaps, we need to add the floating risk to the durations, 
similar to the adjustments in (6.23):
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If the floating coupon has a fixed component, it is simply added to the coupon in the 
summation.

Table 11.8 shows the risks of selective zero coupon inflation swaps. Note that the 
Libor duration is equal to the sum of treasury and real durations for the floating leg 
of the swap. If the Libor spread changes, both the floating and fixed legs of the swap 
react similarly, therefore the swap has no exposure to the Libor spread at initiation. As 
the swap matures and treasury or real rates change, one leg of the swap can develop 
a slightly different exposure to Libor than the other. If treasury rates rise, the fixed leg 
will underperform. If real rates rise and all other rates stay unchanged, the implied 
inflation rate will fall and the floating rate will underperform the fixed leg. Thus the 
long swap is positively exposed to the inflation rate. If implied inflation falls the fixed 
swap outperforms the floating leg and vice versa.

The inflation swap market is not fully developed and there are small but measurable 
differences between implied inflation from treasury–Tips spread and inflation swaps. 
Figure 11.6 shows the implied and market inflation rates. The difference between the 
calculated and market rates is about 5–10 bps, which is close to transaction costs. 
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FIGURE 11.6 Implied and market inflation rates, July 31, 2012

TABLE 11.8 Risks of selected inflation swaps, July 31, 2012

Treasury Real Libor

Type
Maturity 
Years Level Slope Bend Level Slope Bend Level Slope Bend

Fixed 2 2.00 −1.09 −0.82 2.00 −1.09 −0.82

Fixed 5 5.00 −0.23 −4.97 5.00 −0.23 −4.97

Fixed 7 7.00 1.36 −6.46 7.00 1.36 −6.46

Fixed 10 10.00 4.54 −5.86 10.00 4.54 −5.86

Fixed 15 15.00 10.73 0.36 15.00 10.73 0.36

Fixed 20 20.00 17.03 9.00 20.00 17.03 9.00

Fixed 30 30.00 28.78 25.24 30.00 28.78 25.24

Float 2 0.17 0.03 −0.35 1.83 −1.12 −0.47 2.00 −1.09 −0.82

Float 5 0.17 0.21 −0.22 4.83 −0.44 −4.75 5.00 −0.23 −4.97

Float 10 0.17 0.31 0.32 9.83 4.23 −6.18 10.00 4.54 −5.86

Float 15 0.17 0.30 0.54 14.83 10.42 −0.18 15.00 10.73 0.36

Float 20 0.17 0.27 0.52 19.83 16.76 8.48 20.00 17.03 9.00

Float 30 0.17 0.21 0.34 29.83 28.57 24.89 30.00 28.78 25.24
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In Section 5.3 we discussed the concept of spread relative to the TSIR. In this chapter 
we will quantify the meaning of yield spread and develop valuation, hedging and risk 

measurement methodologies for spread products.

12.1 EQUILIBRIUM CREDIT SPREAD

So far, our analysis has focused on risk-free non-contingent cash flow bonds where our 
interpretation of non-contingency is related to embedded options in a bond. Thus, we 
did not include callable treasury bonds in our analysis, even though they are risk-free. 
We now turn attention to option-free or bullet risky assets and argue that, in an efficient 
market, yield spread is associated with default risk. 

The price of a risk-free asset with a cash flow of c at time t is, from (10.35),

 p et
y ts= −c  (12.1)

We assume that investors are indifferent between the following two scenarios:

 ▪ A risk-free cash flow of ρ(t) at time t.
 ▪ A unit cash flow with a probability of ρ(t) and no cash flow with a probability of 
1 – ρ(t) at time t.

We can write the price pr of a risky bond as 

 p t t p t t c er t
y t ts( ) ( ) ( ) ( ) ( )= = −ρ ρ  (12.2)

where ρ(t) is the probability of no default or the survival probability by time t. If the 
expected instantaneous default rate η(t) is known at time t, the change in survival prob-
ability Δρ(t) between t and t + Δt is given by

 Δ Δρ ρ η( ) ( ) ( )t t t t= −  (12.3)

CHAPTER 12
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The negative sign in (12.3) signifies the decline of survival probability with time. The 
total survival probability can be calculated as
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leading to
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We now define the spot default rate ss c r, ( )  of a credit security as the average prob-
ability of default in the period (0,t), such that
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The definitions of spot default rate ss,c(t) and instantaneous default rate sf,c(t) or η(t)
are analogous to the definitions of spot yield y(t) and instantaneous forward rate yf(t) 
in (2.27). The spot default rate is equal to the time average of the instantaneous default 
rates. If the default rate is a constant in time, then

 s t s ts c f c, ,( ) ( )=  (12.7)

With (12.6), the survival probability (12.5) can be written as

 ρ( ) , ( )t e s t ts c= −  (12.8)

Substituting ρ( )t  from (12.8) into (12.2) leads to

 p c er
y t s t ts s c= − +[ ( ) ( )],  (12.9)

In (12.9) the implied default rate has been very conveniently translated into a yield 
spread over risk-free rate. In other words, in an efficient market, the yield premium of a 
risky asset is equal to its default rate, provided that the recovery value of the defaulted 
security is zero. Since the implied default rate or the yield spread is not a constant, we 
refer to it as the term structure of credit spread (TSCS).

The contribution of spread convexity to the spread yield is similar to the contribu-
tion of convexity to the spot yield (10.27). The implied spread st,c is related to the mar-
ket spot spread ss,c and the relative spread volatility vc and relative treasury (government) 
volatility vg  by 

y s y s y v t s v t y s v v tt g t c s g s c s g s c c s g s c g c, , , , , , ,+ = + + + +1
2

2 2 2 1
2

2 2 2 2ξξ
ξ

gc

t c s c s c c s g s c g c gcs s s v t y s v v t, , , , ,= + +1
2

2 2 2 2  (12.10)
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where ξgc is the correlation between the treasury (government) rate and default rate 
of the credit security. This equation suggests that the convexity adjusted spread yield 
should fall for very long maturities if the correlation coefficient is positive or if the vola-
tility of credit spread is higher than that of treasury rates. In practice, the contribution 
of convexity to yield spread is not observable at the present time since the TSCS is not 
very well developed and risky credits rarely issue long maturity bonds. The supply of 
super-long maturity bonds (~100 years maturity) is too limited to draw any conclusions 
about the convexity contribution to the TSCS at the present time. Spreads can be much 
more volatile than interest rates for most assets; therefore, spread convexity can be very 
important, even for medium term maturities.

12.2 TERM STRUCTURE OF CREDIT SPREADS

The TSCS can be written in a manner similar to the TSIR (10.39) as

 s bt c c j j

j

, ,= ∑ ψ  (12.11)

where ψj is the jth basis function of the yield spread and bc j,  is its coefficient. The com-
ponents of the TSCS can be calculated for issuers of liquid bonds with different maturi-
ties and identical seniority. The convexity adjusted price of a risky security (12.9) can 
be written as

 p c e c er i
y t s t t

i i
y t t

ii

s i s c i i s i i= =− + −∑∑ [ ( ) ( )] ( ), ρ  (12.12)

Using the definition of the effective cash flow, ce i,

 c ce i i i, = ρ  (12.13)

The price of a risky bond becomes like the price of a treasury bond,

 p c er e i
y t t

i

s i i= −∑ ,
( )  (12.14)

12.3 RISK MEASUREMENT OF CREDIT SECURITIES

The spread duration and convexity components of credit securities can be calculated 
in a similar fashion to those of treasuries. Assuming no recovery, from (12.12) we can 
derive
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The spread curve is calculated by subtracting the term structure of the treasury 
curve from the term structure of credit rates (TSCR). One should use extreme care to 
ensure that the spread curve is compatible with the treasury curve. They must both have 
the same decay coefficient and use the same set of basis functions. With this framework, 
the term structure of the credit spread will be

 s t a a b y t y tc c j j j

j

c j j

j

c( ) ( ) ( ) ( ), ,= − = = −∑ ∑ψ ψ  (12.17)

where ac j,  are the coefficients of the TSCR. If there is only one security, the calculated 
spread curve will be parallel to the treasury curve, implying that only the level of the 
credit curve is different from the treasury curve; all other components will be identical 
to the treasury curve. If there are two or more securities of the same credit issuer with 
identical seniority, we can calculate a slope for the credit curve as well. The remaining 
components must be equal to those of the treasury curve; they cannot be set to zero. If 
there are enough bonds by the same issuer, the bend component can also be calculated; 
however, fourth and fifth order components are almost never necessary. It is best to 
match them with the treasury curve. The algorithm for calculating the term structure of 
the credit curve must therefore allow for matching two or more components to those of 
the respective treasury in the currency of issuance.

The cheapness or richness of a security or bonds of an issuer is measured relative to 
the level of the TSCS which is the first component of the term structure. Care has to be 
taken when using key basis functions (KBFs), since spread cannot be measured relative 
to the key rates. If we match three of the components of the TSCR with the treasury 
curve and calculate a credit curve based on the first two key rates, the calculated credit 
curve will be unrealistic. The KBF is the natural basis function for risk measurement, 
but is very poor for valuation. Valuation requires a set of basis functions such that the 
spread relative to the first basis function is a representative of the cheapness or richness 
of the security. In the KBF, the components are localized and its use for valuation causes 
more problems than it solves. It is best to use the CBF for the credit, Libor and all other 
securities and convert the duration components to KBF after they are calculated. While 
the KBF is a great tool for hedging interest rate and credit exposure of a portfolio, it is 
a very poorly constructed methodology for calculating spreads.

12.4 CREDIT RISKS EXAMPLE

The conventional duration and KRD of credit securities can be further complicated 
by the slope of the credit curve, in addition to the slope of the treasury curve. To illus-
trate this point, Table 12.1 lists a few bonds of the Ford Motor Company along with 
their respective conventional as well as term structure durations. The conventional 
and term structure durations of comparable treasuries are also shown in the last two 
columns.

 The yield and duration columns are based on the continuously compounded yield 
of the securities. The level duration is the correct way of calculating the duration by 
discounting the cash flows using their respective discount yield, while the conventional 
duration discounts all cash flows by the same market yield. Therefore, the difference 
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TABLE 12.1 Comparison of duration components of credit securities, July 30, 2012

Credit Comparable Tsy

Coupon Maturity Yield Duration Level Slope Bend Duration Level

8 6/1/14 1.72% 1.73 1.73 −1.01 −0.55 1.69 1.69

12 5/15/15 3.10% 2.44 2.44 −1.02 −1.56 2.36 2.36

6.5 8/1/18 4.06% 5.12 5.15 0.16 −4.91 5.08 5.08

9.375 3/1/20 5.34% 5.65 5.69 0.90 −4.90 5.57 5.56

9.215 9/15/21 4.94% 6.57 6.60 1.80 −4.88 6.55 6.54

8.875 1/15/22 5.36% 6.91 6.94 2.04 −4.91 6.19 6.16

7.125 11/15/25 5.77% 8.95 8.89 4.36 −3.18 8.55 8.47

7.5 8/1/26 5.93% 9.24 9.16 4.64 −2.85 9.12 9.01

6.625 2/15/28 5.66% 9.91 9.76 5.51 −1.79 9.02 9.00

6.375 2/1/29 5.74% 10.62 10.42 6.15 −1.23 10.47 10.30

9.3 3/1/30 5.95% 9.87 9.63 5.49 −1.24 9.12 9.01

7.75 6/15/43 6.82% 12.75 11.80 7.99 2.10 11.14 10.95

7.4 11/1/46 6.11% 13.95 12.80 9.12 3.29 13.04 12.76

9.98 2/15/47 6.80% 12.48 11.45 7.72 1.98 11.14 10.95

7.7 5/15/97 6.87% 14.53 12.72 8.97 3.25 12.42 12.15

between the duration and level is a measure of the accuracy of the duration calculation 
for hedging. At low durations, the two duration measures are very close or identical. 
However, at longer maturities they start to diverge. In the conventional duration mea-
sure, the long dated cash flows are discounted by the same average yield as short dated 
cash flows instead of by their spot yield. Due to the steepness of the credit curve as well 
as the treasury curve, the long dated cash flows must be discounted by a higher yield 
than short dated cash flows and thus their contribution to duration should be lower 
than the conventional duration calculation. Likewise, the short dated cash flows are 
discounted by a higher yield than their spot yield, resulting in a lower contribution to 
duration. The net result is that for long duration securities a gap develops between the 
term structure duration and the conventional duration.

If a treasury portfolio that is managed against a benchmark is constructed by using 
coupon securities, the error in measurement of the duration of securities in the portfo-
lio and the benchmark offset each other to a large extent. For credit securities, the gap 
in durations can be too large to be canceled by hedging. In the last row of Table 12.1, 
the gap between the conventional duration and term structure duration is about 1.8 
years (14.53 − 12.72), while comparable treasuries that can be used for hedging have a 
gap of only 0.27 years (12.42 − 12.15). Thus, hedging the interest rate duration of the 
security by a comparable treasury or by using KRD will leave a duration mismatch of 
more than 1.5 years.

The duration mismatch is most prominent in high yield and emerging markets 
securities. It is further compounded at times of market selloffs. As spreads widen, the 
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hedging mismatch increases to the detriment of a portfolio. Since the duration is over-
estimated, the amount of treasuries that need to be sold to hedge the interest rate expo-
sure is also overestimated. The result is a portfolio that is underweight the interest rate 
duration at a time that interest rates are falling and spreads are widening. Without 
calculating the TSCR, the calculated durations and respective hedges cannot be trusted 
when spreads are wide. 

12.5 FLOATING RATE CREDIT SECURITIES 

The floating coupon of a bond is usually based on a liquid high quality short term ref-
erence index such as 3-month treasury bill or 6-month Libor. Floating rate bonds have 
almost zero duration if the issuer is also the issuer of the reference index. For example, 
the duration components of floating Libor bond in a swap transaction are zero before 
the first coupon is fixed, and therefore its price is always equal to par.

The implied floating coupon of a bond from time ti−1 to ti is, from (6.15),

 c e ef i
y t t y t t y t y ti i i i i i i i,
( ) ( )= −( ) = −( )− −− − − −100 1 100 11 1 1 1  (12.18)

where yi is the spot yield of the floating benchmark, which is usually Libor or treasury 
bill. The price of this security is

 p c e ef i
y t y t

i

i i m m= +− −∑ , 100  (12.19)

where tm is the time to final maturity and the last cash flow is the principal payment. 
Substituting for cj from (12.18) and using an initial time of zero, it is a trivial exercise 
to show that (12.19) is always equal to 100 and is independent of the yield level. There-
fore, the duration components of a floating bond that is discounted by the curve that 
generates its forward coupons are always zero.

In general, a cash flow cj is equal to the sum of contributions from the constant 
(fixed) rate coupon cc,i , floating rate coupon for the interval cf,i, and principal payment 
cp,i for a sinking or capitalizing bond. Thus

 c c c ci c i f i p i= + +, , ,  (12.20)

If μi is the remaining principal amount of a floating rate coupon payment, the floating 
rate part of the cash flow can be written as

 c ef i i
y t y ts i i s i i

,
, ,= −( )− − −μ 1 1 1  (12.21)

The price function will take the following form:

 p c c c ec i f i p i
y s t

i

i i i= + + − +∑( ), , ,
( )  (12.22)

In (10.38) we calculated the duration components of a bond with fixed cash 
flows. In order to calculate the duration components of a floating rate bond, we need 
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to calculate the sensitivity of the expected future coupons with respect to the TSIR, 
that is, equation (6.23), which is the duration risks of floating Libor without convex-
ity adjustment. With convexity adjustment, the basis functions are simply divided by 
1 2 2+ y v ts y i . We also need to calculate the sensitivity to volatility. The risk measures are 
thus 
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Thus, the duration components and vega of a risky bond can be written as
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Since the value of near term cash flows is a higher percentage of the price of a risky 
bond, the present value of long term cash flows and hence the convexity contribution 
falls exponentially with time. Ignoring the effect of volatility on the term structure 
of credit spreads, the interest rate duration of a floating rate credit bond can be 
 simplified as
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where
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The credit duration of a floating rate bond does not depend on the floating rate coupon 
and is simply equal to

 D
p

c t t ec k
r

i i k i i
y t

i

s i i
, , ( ) ,= −∑1 ψ ρ  (12.29)

If the floating coupon of a credit security is a function of real rates such as floating 
coupon of an inflation swap, then the real and nominal durations can be calculated by 
substituting (11.34) and (11.35) for (12.28). If the discount function is based on real 
rates, the necessary inflation lag adjustment must be made to the discount function. 



172 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c12.indd 03/31/2015 Page 172

12.6 TSCS EXAMPLES 

Many corporations or sovereign nations issue bonds with different seniority levels. In 
case of default one or more bonds will get preferential treatment over other bonds. This 
is even true for the US government. In general, the principal of a bond is presumed to 
have seniority over its coupons. Additionally, there are many government agencies that 
issue bonds with different levels of seniority. For each level of seniority of an issuer’s 
bonds, there is a different TSCS. Most credit agencies such as Moody’s, S&P, and Fitch 
assign credit ratings to the bonds of an issuer based on the financials of the issuing 
entity and its capital structure as well as the position of the bond in the capital structure. 

The government of Brazil has issued two sets of US dollar denominated bonds. The 
first set of these bonds, called Brady bonds, is the byproduct of restructured defaulted 
debt, which used to be owed to US banks. Another set of dollar denominated bonds 
issued by Brazil are called eurobonds, which were issued through competitive bidding 
in the capital markets.

Brazil has issued several US dollar denominated eurobonds across the maturity 
spectrum which can be used to calculate the TSCR. By comparison with the US curve, 
the TSCS can be calculated. 

In Figure 12.1 the diamonds represent the relative yield of bonds compared to the 
TSCR for Brazil. Bonds that are below the Brazil curve have a lower yield than calcu-
lated and are rich (expensive) and bonds that are above the curve are cheap. Two legacy 
Brady bonds trade at a yield premium to the rest of the market even though they appear 
to have the same credit rating.

The forward curve in Figure 12.1 is the implied instantaneous spread or default rate 
(12.6). Thus, the market expects the credit quality of Brazil to deteriorate to a default 
rate of more than 6% per year in 12 years (assuming no recovery). This has interesting 
implications for portfolio management in an efficient market environment where there 
are no economic or other barriers to buying or selling securities. For example, consider 
a portfolio that is constructed by buying 100 million of the Brazil with a maturity of 10 
years and selling equal market value of Brazil 5-year and hedging the US interest rate 
exposure of the trade. The implied forward spread of Brazil 5-year in the future would 
be about 2.8%, which is generous given the present levels. 
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FIGURE 12.1 Credit spread of Brazil, May 25, 2012
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The yield spread of the Brazil A bond with a maturity of a little over 5 years is 
about 220 bps over the Brazil curve and appears to be very cheap, compared to other 
bonds, even though it is a legacy Brady bond. 

Table 12.2 shows the parameters of the Brazil curve as well as the US curve and the 
resulting spread. Only the first three components were calculated; the remaining two 
parameters were matched to the treasury curve. 

The TSCS applies to sovereign countries that issue a bond in a currency that they 
cannot print and thus are subject to default risk. For example, Latin American countries 
issuing bonds denominated in USD and all Euro countries have credit risks. In the euro 
zone, Germany is considered to be the most creditworthy nation and the spreads of all 
other countries are measured relative to Germany’s. 

Table 12.3 shows the term structure components of Germany and the spreads of 
a few euro zone countries relative to Germany’s. The fourth and fifth components of 
the TSCS were matched to those of the German curve, so only three components were 
independently fitted to the data. 

Figure 12.2 shows the TSIR and TSRR for Germany and the TSCR and TSRC (Term 
Structure of Real Credit) for France. The top curve is the calculated TSCR (Crd Trm) 
along with the actively traded bonds (Crd Mkt) for the French treasury market. The 
next curve is the German government curve which is a proxy for the euro zone treasury 

TABLE 12.2 Term structure of Brazil, May 25, 2012

Level Slope Bend Cubic Quartic

TSY 1.26% 1.56% 0.28% −0.04% −0.10%

BRAZIL 2.63% 2.63% 0.16% −0.04% −0.10%

SPREAD 1.37% 1.07% −0.12% 0.00% 0.00%

TABLE 12.3 Term structure of European credit spreads, May 25, 2012

Level Slope Bend 4th 5th

Germany 0.805% 1.339% 0.279% −0.104% −0.128%

Spreads

Austria 0.345% 0.508% −0.127% 0.000% 0.000%

Belgium 0.833% 0.775% −0.253% 0.000% 0.000%

Spain 4.852% 0.198% −0.845% 0.000% 0.000%

Finland 0.021% 0.270% −0.282% 0.000% 0.000%

France 0.505% 0.625% −0.087% 0.000% 0.000%

Ireland 3.489% 0.634% −1.613% 0.000% 0.000%

Italy 4.137% 0.641% −0.775% 0.000% 0.000%

Netherlands 0.119% 0.212% −0.214% 0.000% 0.000%

Portugal 6.725% 1.649% −3.165% 0.000% 0.000%
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market (Tsy Trm). The third curve down is the term structure of real credit for France 
(Rcr Trm) as well as the French real treasury market (Crd Mkt). The bottom curve is the 
TSRR for the euro zone (Rts Trm). 

France has an active real rates market (IL bonds) while Germany does not. In order 
to calculate the TSRR for Germany, we calculated the TSRR for France and subtracted 
the spread curve of French nominal treasuries relative to the German curve from the 
French real rates. This method works if both countries have similar inflation rates or 
use the same inflation index for IL bonds. If inflation rates are different and IL bonds 
use different inflation measures, then there will be no relationship between the spreads 
of nominal bonds and real bonds.

12.7 RELATIVE VALUES OF CREDIT SECURITIES 

Measuring the spread of a security relative to the TSIR has many advantages over the 
traditional method of measuring the spread relative to a benchmark or an on-the-run 
treasury. Since on-the-run treasuries are sometimes on-special in the repo market, the 
spread tends to be exaggerated. For example, consider a security S whose spread of 80 
bps is measured against treasury T. Assume that T is on-special and its yield is 20 bps 
below the curve. If T converges to the curve, while the spread of the credit security is 
unchanged, the spread of S falls to 60 bps relative to T. One would get the impression 
that S has outperformed credit securities that are measured against different treasuries. 
In practice, T has underperformed the curve by 20 bps and all other securities have 
maintained their relative valuations. Additionally, it is not always possible to compare 
the cash flows and maturity of a spread bond with an on-the-run treasury. The best 
measure of relative value for any security is its spread relative to its own curve. 

Table 12.4 lists a number of relevant analytics for a few credit issues. This table 
and the calculated values require some explanation. The first two bonds are dollar 
denominated bonds issued by the Republic of Panama which has issued several dollar 
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denominated bonds and therefore its TSCR can be calculated. From the TSCR we can 
calculate the fair or model price as well as the spread of each bond relative to its curve. 
Since both bonds have fixed coupons, they have the same treasury and credit durations. 
One of the bonds is very cheap and one rich relative to Panama’s credit curve. The 
spread relative to the credit curve is a much better measure of the cheapness or richness 
of a bond than yield or spread relative to the treasury curve. 

The last two bonds in the table have floating coupons based on Libor rates. If the 
Libor spread widens, the future coupons of the bonds will increase without directly 
changing the credit curve and therefore the price of the bond increases. The Libor 
duration of floating credit bonds is thus negative. There are not enough bonds for AE 
Emirate to calculate the TSCR and therefore no spread to curve and model prices were 
calculated.

12.8 PERFORMANCE ATTRIBUTION OF CREDIT SECURITIES

We can write the general price of a credit security as

 p c em i
y s s t

i

i c i b i= − + +∑ ( ),  (12.30)

where sc,i is the spread curve of the credit, and sb is the spread of the security (bond) 
relative to its curve. The spread of the security is calculated as before in such a way that 
the discounted value of the cash flows will match the market price of the security. The 
change in the performance can be calculated as 
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where the subscript g is for government (treasury), l is for Libor, r is for real, c is for 
credit, and b is for the bond (security). In a complex portfolio, performance attribution 
can only be done through the decomposition of risk components. Table 12.5 shows a 
sample from an emerging markets portfolio report including performance attribution. 
This table is relatively detailed and requires explanation for the interpretation and deri-
vation of some of the fields. 

At the beginning of the month the market value of the benchmark (JP Morgan 
EMBI+) is scaled to match the market value of the portfolio. Throughout the month 
the market values are allowed to move independently based on performance and the 
difference between the two is the relative performance of the portfolio. The calculated 
performance for the portfolio and the benchmark are in cells V6 (=532.28 bps) and 
V10 (=445.95 bps), respectively. Therefore, the portfolio has outperformed the bench-
mark by 86 bps in the month. The interest rate (treasury), Libor, and credit durations of 
the portfolio and benchmark are in rows 4–6 and 8–10 for the beginning of the month, 
the previous day, and the last day. There is no exposure to Libor for the portfolio or 
the benchmark. The term structure of rates for treasury and Libor are in rows 12–14. 
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TABLE 12.5 Emerging markets portfolio report
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For example, the change in level of rates in the month was 1.20% − 1.06% = 14 bps. 
The contribution to the performance of level duration for the portfolio would thus be 
approximately 14 × 8.05 = 112 bps. The accurate contribution in cell F16 (=107.3) 
is in basis points.

The recovery value of all bonds is assumed to be zero and there are no floating 
rate bonds in the portfolio or the benchmark, thus the overall credit durations of the 
portfolio and benchmark are equal to the interest rate durations. The performance of 
each sector or country, however, needs to be calculated by multiplying the change in 
the credit term structure of the respective credit and credit durations. The overall per-
formance of credit curve is calculated in rows 16–17 and columns N–P. The level and 
slope of the spread curve at the beginning of the month and the last day are shown in 
columns O–R and rows 24–40. The credit performance of each sector including contri-
butions from curve, are shown in columns U–V and from row 24.

The overall performance of each category is in column U–V and rows 13–19. For 
example, the rate performance of 142.01 bps for the portfolio is the sum of performance 
from level, slope, etc. We can also see that the security selection performance for the port-
folio is (0.388% − 0.372%) × 8.05 = 13 bps. The calculated performance of the portfo-
lio and the index is about 2 bps different from the market value performance calculation.

The performance of each security is calculated based on its exposure to all appli-
cable curves plus security selection and theta or carry (yield plus rolldown). We can 
also estimate the total performance of the portfolio and benchmark by multiplying 
the change in spread to the treasury times the level duration. For the portfolio, the 
contribution of credit is (4.04 − 3.60) × 8.05 = 352 bps. Add to this the interest rate 
contribution of 142 bps and the yield (not carry) contribution of 48 bps, and the total 
will be 542 bps which is close to the total performance.

The small errors in performance attribution are due to rounding errors, ignoring 
convexity, and pricing inefficiencies where some bonds are not priced every day which 
could distort credit curves. Overall the accuracy is excellent. 

12.9 TERM STRUCTURE OF AGENCIES 

The US government agencies are among the largest issuers of debt in the world. There 
has been much debate about the implied guarantee of the US government of the debt 
issued by agencies. The general market consensus before the Lehman bankruptcy was 
that the US government had an implicit guarantee and their short term debt traded at 
very tight spreads relative to US treasuries. The US government was forced to bail out 
both Fannie Mae and Freddie Mac after the Lehman bankruptcy. 

Nonetheless, the debt of both agencies trades at very tight spreads to the US gov-
ernment debt and their liquidity is very high. The term structure of agency rates (TSAR) 
can be calculated similarly to the TSCR. Given the slight perceptions of the debt of dif-
ferent agencies, one TSAR can be calculated for each agency.

Table 12.6 is a sample of the term structure of agency spreads. There is very little 
differentiation between the four largest agencies in pricing and yield as they all enjoy 
the same implicit backing from the government. The positive slope of the credit spread 
points to increasing spread with maturity. At the front of the curve the spread is equal 
to level minus slope plus bend (see equation (2.22)) and thus the spreads are very tight 
to the treasury market.
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12.10 PERFORMANCE CONTRIBUTION

Performance attribution is the business of finding out the sources of risk and return in 
a portfolio relative to a benchmark or in absolute terms. Performance contribution is 
the process of relating the sources of return to respective teams or individuals who con-
tribute to the management of a portfolio. These two processes are related but are not 
the same. In fixed income, there are two ways to allocate risk to a portfolio: by market 
value or by (spread) duration. The interplay of these two allocation paradigms has often 
meaningful and sometimes large consequences for performance contribution and the 
overall performance of a portfolio. Performance contribution is strongly dependent on 
investment process.

Let us analyze a hypothetical example to delineate the interplay of risk allocation 
by market value and spread duration on a portfolio. Consider a fixed income bench-
mark with two issuers. The performance of the portfolio managers is measured by 
sector/issuer allocation, while the performance of analysts is measured by the change 
in spread of their securities. Issuer A has a very steep credit curve that becomes steeper 
after 1 year, and issuer B has an inverted credit spread curve that inverts further after 
1 year. Investment policy requires neutral sector/issuer contribution to duration. Table 
12.7 shows the weight and performance of each issuer after 1 year.

TABLE 12.7 Performance contribution example

Index Port

Issuer A Issuer B Issuer A Issuer B

Mv Weight 40% 60% 70% 30%

Duration Contribution 2 3 2 3

Spread 4% 3% 2.50% 1.50%

Spread Change 0 0 −0.15% −0.15%

Excess Perf. Sprd 1.60% 1.80% 1.75% 0.45%

Sprd Change Perf. 0.00% 0.00% 0.30% 0.45%

Sector Performance 1.60% 1.80% 2.05% 0.90%

Portfolio Performance 3.40% 2.95%

TABLE 12.6 Term structure of agency spreads, July 30, 2012

Name Ticker S & P Moodys Level Slope Bend

Federal Home Loan Bank FHLB AGN AGN 0.42% 0.40% 0.13%

Freddie Mac FHLMC AGN AGN 0.35% 0.40% 0.07%

Fannie Mae FNMA AGN AGN 0.36% 0.54% −0.09%

Tenn Valley Authority TVA AGN AGN 0.48% 0.47% 0.16%
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The average duration of all the bonds by issuers A and B is 5 years. The market 
value weight of the index for issuers A and B is 40% and 60% and the contributions 
to duration are 2 and 3 years, respectively. However, for the portfolio, the analyst for 
issuer A selects a bond with a lower duration than the average and requires 70% of the 
portfolio to get the required 2 years of spread duration. Likewise, the analyst for issuer 
B selects a higher duration bond than average and requires only 30% of the market 
value to achieve the required contribution to duration of 3 years. 

After 1 year, the spread of issuer A becomes steeper, while the average spread stays 
unchanged. Thus, its contribution to the performance of the index is zero. However, 
since the security that the analyst selected was at the front of the curve, its spread fell by 
15 bps. Analyst A is credited with a performance contribution of 15 × 2 = 30 bps. Like-
wise, the spread curve of security B flattens and the spread of the security that analyst B 
selected at the long end of the credit curve falls by 15 bps even though the overall spread 
of B stayed unchanged. Analyst B is credited with 15 × 3 = 45 bps of performance. The 
excess return of the benchmark relative to treasuries is (40% × 4) + (60% × 3) = 340 
bps. Since the portfolio manager overweighted the higher returning issuer, he will be 
credited with a performance contribution of (70% × 4) + (30% × 3) = 370 bps or 30 
bps of excess return. In practice, since allocation to A was at the short end of the steep 
curve, the yield of A was only 2.5% and the performance of A after 1 year was 70% 
× 2.5 = 175 bps plus 30 bps for spread change, a total of 205 bps. The performance 
of B in the portfolio was 90 bps. The total performance of the portfolio was 295 bps, 
which is 45 bps below the benchmark return. So why did the portfolio underperform 
the benchmark while the analysts and portfolio manager were all credited with posi-
tive contributions? The simple answer is inconsistent metrics and incentives for perfor-
mance contribution.

The key to performance contribution is its additive property; the contributions of 
analysts, portfolio managers, and the chief investment officer have to sum to the perfor-
mance of the portfolio, just as performance attribution does. The performance targets 
that are set for analysts and portfolio managers have to be practical, achievable, curve 
neutral, and, as far as possible, non-directional. Most importantly, the incentive struc-
ture of all involved parties has to be aligned and measureable with the performance of 
the portfolio. Let us review the implications of these objectives in practice.

If the performance of analysts is measured by spread change, it can lead to sub-
optimal sector selection, as we saw in the previous example. The most stable and pre-
dictable source of return in a portfolio is the yield or carry adjusted for default. In the 
long run, the performance is dominated by yield and has to be incorporated into perfor-
mance contribution if analysts are to pay attention to it. If we use excess return (return 
adjusted by treasury return) as an incentive for performance contribution, where both 
yield and spread change contribute to performance, higher market value allocation 
to a sector will increase its excess return at the expense of other sectors. In the above 
example, analyst A had excess return of 175 bps from spread which was more than the 
excess return of issuer A in the index by 15 bps, even though analyst A used a very low 
yielding security. In fact, if excess return is the yardstick for measuring performance 
contribution, seasoned analysts tend to overweight their sectors as safe bets to achieve 
positive contribution.

One way to measure the performance contribution of analysts is by measuring the 
performance of issuers (or names) that they select to outperform their sectors similarly 
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to the way equity analysts pick names. If a credit index such as the corporate part of the 
Barclays Aggregate Bond Index has 700 issuers in it, a portfolio manager may need only 
100 names to replicate it. If there are 12 sectors in the index and there are four analysts, 
each analyst may be assigned three sectors to cover. Each analyst needs to provide about 
ten or more names that he has the most confidence in. The portfolio manager can pick 
from all the names that analysts have provided to construct the portfolio. He can choose 
not to include some names in the portfolio or to overweight or underweight some sectors, 
but those are the contribution risks that the portfolio manager takes, not the analysts.

The performance contribution of analysts in each sector will be measured by assign-
ing equal market value weighting to all the picked names in a sector and subtracting 
the sector return from those names. For example, if healthcare is 12% of the index with 
an excess return of 160 bps, and an analyst covering healthcare has selected 15 names 
with average excess returns of 190 bps, the analyst will be credited with a performance 
contribution of (190 – 160) × 12% = 3.6 bps for the entire portfolio. The portfolio 
manager can in fact use the analyst’s recommendation and realize the same return for 
the portfolio. However, if the portfolio manager decides not to use some of those issues, 
that is the risk that he takes. In Chapter 19 we will explain how the portfolio manager 
can take the analysts’ recommendations and construct the portfolio.

The performance contribution of a portfolio manager will be measured by the 
excess return of the asset class minus the excess return of the analysts. Transaction 
costs, which can be high for credit portfolios, need also to be taken into account and 
there has to be a disincentive for excessive name changing and trading recommenda-
tions. Transaction costs can be estimated by the price or yield spread that a market 
maker makes for a security and can be charged equally to the performance of analysts 
and portfolio manager.

A chief investment officer or investment policy committee can change the alloca-
tion of asset classes, be responsible for the overall duration of the portfolio allocation to 
out-of-benchmark asset classes such as currencies, emerging markets, and high yields, 
and his performance can be measured by the excess returns of these decisions.

In general, performance contribution is a very important yet sensitive and some-
what imprecise science. It cannot be performed in fixed income without accurate secu-
rity level analytics to decompose the respective returns of all securities, sectors, and asset 
classes. More importantly, performance contribution has to be aligned with investment 
process and how risk is allocated and measured. Many of the off-the-shelf packages 
for fixed income fail to understand the interplay of yield, spread, duration, and spread 
duration for performance contribution.

12.11 PARTIAL YIELD

Yield is a very useful measure of value for a fixed income security. However, for com-
plex securities yield can sometimes lose its intended meaning and usefulness. Consider 
a UK IL gilt stock with 8 months of inflation lag and 1 year to maturity. The yield of 
such a security is a composite value of 4 months of real yield and 8 months of nominal 
yield. Likewise, a corporate bond with floating Libor coupon has exposure to interest 
rates (treasury), Libor, and credit rates. What is the meaning of yield for such a security? 
Spread is a much better measure of value for such a security. Now consider a 10-year 
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corporate bond that has 30% probability of default in its lifetime, where 40% of the 
principal value can be recovered upon default. For such a security, even the spread is 
not a good measure of value if it is not adjusted by default probability.

We introduce the concept of partial yield as the weighted contribution of all compo-
nent cash flows that make up the price of a security over its life. Figure 12.3 shows the 
treasury and credit curve as well as the spread of a security. To calculate the partial credit 
yield of the security, we multiply the spread of the security over the treasury curve at 
every cash flow and duration weight the present value of all those cash flows and divide 
the final result by the duration market value of the security. The advantage of duration 
weighting is that, for bonds with no recovery, the sum of partial yields will be very close 
to the calculated yield of the security. For bonds with implied recovery, the contribution of 
recovery to the price is discounted by Libor and the bond will have a Libor partial yield.

In Table 12.8 partial yields of selected securities are shown along with continuously 
compounded yield calculated based on price. The penultimate column (Sum) is the sum 
of the four partial yields of a security plus security specific spread contribution to yield. 
For most bonds the sum of partial yields and the calculated yield based on market 
price are within 1 basis point of each other. For IL bonds the calculated yield is slightly 
different from the market convention yield and is based on full inflation accrual. For 
example, for the US on July 31, 2012, the inflation for the month of June has been 
released and the inflation accrual is known through the end of August. The market 
convention is to use the reference inflation for August 1 for invoice price calculation.

We assumed that German Bunds represent the equivalent of treasury quality in 
EUR denominated bonds and all other countries are credit issuers. The term structure 
of real rates for Italy is calculated as

  y y y y y sc r r c t t r, ,( )= + − = +  (12.32)

where yc,r and yc,t  are the real and nominal yield of a credit issuer (Italy) and yr and yt  
are the real and nominal yield of the treasury issuer (Germany).

FIGURE 12.3 Contribution to partial yield
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The partial yield for the security, “Secr”, applies to all cash flows that have the 
credit risk of the security and is the same as the spread of the security relative to its 
credit curve for nearly all bonds. 

The partial yield is a much better indicator of value than market conventional yield 
for complex securities since it decomposes the yield into its respective components. 
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Default and recovery are the ever-present risks of investing in credit securities. While 
most companies do their best to prevent default, it is sometimes inevitable that a 

company is forced to default due to factors outside its control. Default can take place 
for one of the following reasons:

 ▪ Inability to pay. A company can run out of cash due to poor management, a down-
turn in economy or risk aversion by suppliers. In 2008, some retailers filed for 
bankruptcy due to the withdrawal of supplier lines of credit.

 ▪ Unwillingness to pay. Sovereign countries can default on their debt simply because 
they choose to do so. Creditors have great difficulty freezing the assets of the 
 sovereign nations or forcing them to pay their debt and often are forced to negoti-
ate a reduction in principal of the debt.

 ▪ Unsustainable dynamics. While a company can have enough cash and income to 
service its debt, it may have low sales or high interest payments that would eventu-
ally drain its cash position and it can file for bankruptcy to protect its business.

Most companies borrow or draw on their line of credit before filing for bankruptcy, 
since getting financing would be very difficult afterwards. If a company has a high 
burn rate, the bonds can appreciate after default and bankruptcy filing due to a higher 
expected recovery value. Sometimes, creditors try to force a company into bankruptcy 
to protect their assets. 

13.1 RECOVERY, GUARANTEE AND DEFAULT PROBABILITY 

It is standard practice to calculate the spread of a security assuming that the recovery 
value of a defaulted security is zero. In most cases the recovery value is not zero and a 
fraction ri of the remaining principal, μi , of the bond at time ti can be recovered upon 
default. The present value of a security that defaults at time ti is

p t r ec i i i
y t ts i i( ) ( )= −μ (13.1)

CHAPTER 13
Default and Recovery

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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Equation (13.1) assumes that the recovery value is discounted by treasury rate. It is 
more appropriate to discount the recovery value by Libor: 

p t r ec i i i
y t tl s i i( ) , ( )= −μ (13.2)

Theoretically, if r ti( ) is the instantaneous recovery rate, the value of recovery at periodic 
coupon intervals i will be equal to

r e r t e dti
y t t y t t

t

t
l s i i l s

i

i

= −

−
∫, ,( ) ( )( )

1

(13.3)

The default probability in a period leading to time ti is the difference between 
 survival probabilities at the beginning and end of the period. If si is the spread of a 
security relative to the treasuries at time ti, then from (12.8) we have

ρ ρ ρi i
s t s t s t s t

ie e ei i i i i i i i−
− − − +− = − = −( )− − − −1 1 1 1 1 1 (13.4)

For sovereign nations that cannot be forced into bankruptcy and there is significant 
uncertainty about their willingness to pay or the amount that can be recovered in case 
of default, a guarantee may be demanded from investors at the time of issuance of the 
debt. Some of the debt of South American and Eastern European countries in the 1980s 
was restructured under the Brady plan; it was subsequently referred to as Brady bonds. 
Most Brady bonds had principal and/or rolling interest guarantees (RIGs). The princi-
pal guarantee was usually a US Treasury zero coupon security and the RIG consisted of 
high quality deposits with third parties. The RIG would be used only in case of default 
and it typically covered two or more coupon payments. If there was a default, the RIG 
would be used to make coupon payments until it run out. However, if the sovereign 
country made a coupon payment, the RIG would be rolled forward. The RIG was like 
a partial put option on the security.

For securities that have a principal guarantee and/or RIG, the recovery applies to the 
exposure of the security to the credit adjusted by the value of guarantees at the time of 
default. Thus, if gc j i, ,  is the guaranteed coupon cash flow at time ti due to default in the 
period (t tj i−1, ), then the guaranteed portion of the coupon cash flow is equal to the default 
probability in all the prior periods times the respective guarantee amount, namely,

g t gc i i j j c j i

j

i

, , ,( ) = −( )−

=
∑ ρ ρ1

1

(13.5)

Near the maturity date, the coupon guarantee will take the form

g t g j jc i i j c j i

j j

n

g

g

, , ,( ) ,= ≥
=
∑ρ (13.6)

where n is the number of cash flows of the bond and jg is the index number for the date 
at which the RIG will be equal to or larger than the sum of remaining coupons through 
maturity date. For example, if a bond has a coupon guarantee of $8 with semi-annual 
coupon payments of $4 per par value, then, if the bond has not defaulted 1 year prior 
to maturity, the last two coupons will be paid from the guarantee. At that point the cash 
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flows need to be discounted by Libor or treasury rates depending on the quality of the 
guarantee. Usually, the principal guarantee is treasury quality but the coupon guarantee 
is a deposit in a bank or escrow company and is of Libor quality. Each guarantee has to 
be discounted by its respective discount function.

We define the value of the guaranteed portion of the principal cash flow as

g t gp i i j j p j i

j

i

, , ,( ) = −( )−

=
∑ ρ ρ1

1

(13.7)

The total guaranteed cash flow from default in the past is 

g g g

g g g
t i c i p i

t i j c i j p i j

, , ,

, , , , , ,

= +
= +

(13.8)

In order to analyze bonds with principal and/or coupon guarantees for default and 
recovery, we need to calculate the guaranteed portion of the cash flows and subtract 
it from the outstanding principal to calculate the credit risk of the security. If there is 
default in the interval leading to ti cash flow, the present value at time ti of all future 
cash flows from guarantees will be

p e g eg i
y t

t i j
y t

j i

n

i i j j
, , ,= −

= +
∑

1

(13.9)

This is provided that the guaranteed cash flows are discounted at treasury rates. If some 
of them are discounted by Libor, we have to modify equation (13.9) to adjust for the 
discount function. The recovery of a defaulted bond with implied guarantees applies 
only to the credit portion of the cash flows. Thus, the amount of credit that is subject to 
recovery is equal to μi g ip− , , of which only r pi i g i( ),μ −  can be recovered. Thus, the sum 
of recovery and guarantee from default in the period (t ti i−1, ) is

p r p r r pg i i i g i i i i g i, , ,( ) ( )+ − = + −μ μ 1 (13.10)

where ri iμ  is the recovery amount, pg i,  is the present value of all the guarantees at time 
ti, and rpi g i,  is the amount that is not subject to recovery because it is guaranteed.

There is no contribution to recovery from default in the prior periods. In this 
 formulation, the guaranteed amount is scaled by ( )1− ri , instead of adjusting the recov-
ery amount by the guarantee. Thus, the effective cash flow (12.13) of a bond with 
guarantees and recovery potential is given by

c c g p r pe i i i t i i i g i i i i i g i, , , , .= + + −( ) + −( ) −( )− −ρ ρ ρ ρ ρ μ1 1 (13.11)

Here we have multiplied the cash flow ci by the survival probability ρi. gt i,  denotes the 
cash flows from prior defaults, and pg i,  the present value of all guarantees. The term 
ρ ρi i− −1  is the default probability in the period ( , )t ti i−1  that will result in the recovery ri for 
the portion of the credit exposure that is not guaranteed μi g ip−( ),  plus guarantees pg i, .

If there are no guarantees, that is, if gt i,  is zero in (13.9), equation (13.11) can be 
rewritten as

c rc c ee i i f c i i
s ts c i i

, , ,
, ,= +( ) − (13.12)
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where

c ef c i
s t s t

i
i i

i
i

s c i i s c i i
, ,

, , , ,
( )

= −( ) =
−− −− −1 1 1 1μ ρ ρ

ρ
μ (13.13)

is the implied forward spread coupon of the risky bond in the interval leading to the 
ith cash flow. 

The generalized price of a risky bond is the present value sum of cash flows in 
(13.11). After some simplifications and noting that the guarantee is scaled by ( )1− ri , it 
can be written as

p c g c r r
c

p em i i t i f c i i i i
f c i

i
i g i= + + + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−ρ ρ
μ

ρ, , ,
, ,

,( )1 yy t

i

i i∑ (13.14)

This leads to the redefinition of ce i,  in (13.11) as

c c g c r r
c

pe i i i t i f c i i i i
f c i

i
i g i, , , ,

, ,
,( )= + + + −ρ ρ

μ
ρ1 (13.15)

Let us define the constant recovery rate rc as a recovery rate that calculates the 
market price of a security from its credit term structure, that is,

p c g c r r
c

p em i i t i f c i i c c
f c i

i
i g i= + + + −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−ρ ρ
μ

ρ, , ,
, ,

,( )1 yy t

i

i i∑ (13.16)

rc is a measure of the cheapness or richness of a security and applies to all securities even 
if they have zero expected recovery rate. If rc is higher than the expected recovery rate, 
the security is rich; if it is lower, the security is cheap.

Assuming no cash flow guarantee, the market price can be simplified as

p p rc e c rc em nr i f c i
y s t

i

i i f c i i
y ts i s c i i s i i= + = +− + −∑ , ,

( )
, ,

, , , ,( )ρ
ii

∑ (13.17)

where pnr  is the price with no recovery of the security given in (12.12). The constant 
recovery rate is equal to the present value of the recovery in the future, which is equal 
to default probability in a period multiplied by the recovery amount and discounted to 
the present time. Thus,
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i
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With guarantee, the constant recovery rate can be calculated as
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If the principal guarantee is discounted by treasury rate and the coupon guarantee and 
recovery rates are discounted by Libor, we need to modify the summation for guarantee 
in (13.9) as

p e g e e g eg i
y t

p i j
y t y t

j i

n

c i j
y t

j i

n

i i j j l i i l j j
, , , , ,
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−
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∑ ∑

1 1

(13.20)

For bonds where there is no guaranteed principal and coupon, we can simplify  
(13.16) to

p c e c rem i i
y t

i
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(13.21)

Defining the effective recovery rate rie as
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we can write (13.21) as

p c c r em i f c i ie
y s t

i

i i i= + − +∑( ), ,
( )

(13.23)

The effective cash flow for bonds that have guarantees but no recovery can be 
 simplified as

c c ge i i i t i, ,= +ρ (13.24)

Here, we need not concern ourselves with future guarantees, since all future guar-
antees will be accounted for at their scheduled time. The effective cash flow depends 
only on the spread. However, for floating coupon bonds, the amount of available guar-
antee depends on the coupon rate and is not fixed.

13.2 RISK MEASUREMENT WITH RECOVERY

For bonds with recovery value but no guarantees, which applies to most credit securi-
ties, the price function from (13.12) is

p rc c em i f c i i
y t s t

i

s i i s c i i= +( ) − −∑ , ,
, , ,

(13.25)

From (13.13) we can write

∂
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a
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1 1 (13.26)

We can use (13.26) to develop an analytic equation for the duration and convexity 
of bonds with recovery value. In practice it is more convenient to calculate the price 
of such securities and shift the spread curve to calculate the duration and convexity 
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components. This method can be used even for the most complex securities involving 
guarantee, recovery value, and floating coupon. If p sm a k( ),Δ  is the price of the security 
with a shift in the kth component of the spread curve, then
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The generalized effective cash flows of a bond with guarantee, recovery, and  floating 
rate cash flows in (13.15) will take the form

c s c c c r s c r r ye i c i f i p i i g i f c i i i g i, , , , , , , ,( ) ( ) ( ) ( ( ))= + + + + +ρ ρ (13.29)

where r sg i, ( ) is the effective guarantee from prior defaults and is only a function of 
spread s, 
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(13.30)

and r yg i, ( ) is the effective present value of recovery adjusted future guarantees and is 
only a function of forward yield,
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The price function of bonds with recovery and guarantee can be calculated by sub-
stituting for ce i,  in (12.14). Thus, the duration components and vega of a risky bond, 
can be written as
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Since the value of near term cash flows is a higher percentage of the price of a risky 
bond, the curve exposure tends to increase with the bond spread. The slope and bend 
components of duration for bonds with a yield spread of more than 5%, such as some 
high yield bonds, are quite significant.

Likewise, we can calculate the spread duration components and spread vega by 
 differentiating the price function relative to the components of the TSCS. The result 
will be somewhat similar to (13.32) and (13.33) if y is replaced by s. If the correlation 
between the treasury rate and credit spread is zero, using the interest rate dependent 
guarantee cash flows, the spread duration and spread vega can be calculated as
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where ss c,  is the spot spread of the bond, vc is the spread volatility of credit security, and
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The derivatives of r sg i, ( ) and r yg i, ( ) relative to the term structure of spread and interest 
rates are long and not very practical. It is best to calculate the risks when guarantee and 
recovery are both present by equations (13.27) and (13.28). 

Most spread curves are not very well developed and the convexity adjusted spread 
curve cannot be calculated at the present time. Ignoring the convexity adjustment, the 
duration components of the credit curve can be calculated as
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v y y s sc s c s c c i s c i= = = =ϖ 0, , , , , , (13.44)

In investment management and trading, it is standard practice to use a recovery 
value ri of zero for a credit bond. Since the recovery value is rarely zero, its estimation, 
for example on the basis of an issuer’s assets, can be very valuable for bonds that trade 
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at significant discount to par. When the recovery value is incorporated into the pricing 
of an issuer’s bonds, the TSCS becomes equal to the term structure of default probabil-
ity (TSDP). Without the recovery value, a credit spread is just a number that provides 
a measure of value but cannot be compared with securities that have different recovery 
values. The incorporation of recovery value into the calculation of default probability 
allows for much better comparison of two securities.

The recovery value is like a put option on a security. As the default probability 
increases, the present value of the recovery increases and provides downside protection 
on the price of a security. For a given price of a security, the higher the default probabil-
ity, the higher the implied recovery has to be and vice versa. Thus, as the recovery value 
increases, for a given price, the implied default probability increases as well. The spread 
duration of a security can be significantly lower for high recovery securities than would 
otherwise be expected if the recovery value is subtracted from the price of the bond. For 
example, if the spread duration of a bond with zero recovery is 7 years and the present 
value of recovery with a recovery value of 50 is 30 for a par bond, the spread duration 
will be significantly less than 100 30

100 7 4 9− × = .  years.
Tables 13.1 and 13.2 show selected analytics and TSCS for two corporate bonds 

and a Brady bond issued by the Dominican Republic that has a principal guarantee and 
$6 of RIG for a face value of $100. The coupon of the Brady bond is based on 6-month 
Libor with a spread of 0.8125. The RIG covers several years of coupon guarantee at the 
prevailing Libor rates. There is a significant amount of information in these tables that 
requires explanation. There are four rows of data for the Ford Motor Company bond, 
four rows for the IBM bond and three rows for the Dominican Republic Brady bond.

The Ford bond has progressively higher recovery values. When the recovery value is 
zero, the credit durations are the same as treasury durations. However, with increasing 
recovery value, the credit durations fall well below treasury durations and the security 
develops exposure to Libor due to the discounting of recovery value by Libor. Also due 
to potential default and recovery, the cash flows are realized sooner and the treasury 
duration falls as well. The level of TSCS or TSDP will also rise with increasing recovery 
value. With the inclusion of recovery value, the meaning of yield and durations will 
be completely distorted and the spreads and the term structure exposure will become 
much more important for valuation and risk measurement.

For the IBM bond, assuming a recovery value of 50%, the calculated default rate 
close to maturity is about 2.6% per year for a survival probability of 82.7%. The pres-
ent value of recovery will be 5.63 for a par value of 100. If recovery value is more than 
50%, the implied default rate would have to be higher for a given price of the security. 
Based on historical data, the implied survival probability of 82.7% at 50% recovery is 
considerably lower than one would expect. Therefore, either the recovery value is lower 
than 50%, implying a lower default probability for the same market price, or the bond 
price is cheap. We will show in Section 15.9 that corporate bond prices are not effi-
ciently priced. Analysis of recovery value provides for a much better decision-making 
about the spread of corporate bonds than simply using the spread of the security. 

The last three rows of data for the Brady bond use different assumptions for dis-
counting the guaranteed principal and RIG. The first row of data for Dominican Repub-
lic discounts all the guarantees by treasury rates, the second discounts RIG by Libor and 
the third discounts all guarantees by Libor. Due to the guarantees, the levels of treasury 
durations are positive in all three cases. Recall from Table 12.4 that floating rate bonds 
usually have small treasury durations. When the principal is of Libor quality, since the 
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Libor spot curve is below the treasury curve at the point of maturity of the bond, the 
value of the principal guarantee is higher and the value of the credit must be lower to 
compensate for the constant price of the security. To estimate how much the fair model 
price of the security increases by discounting the principal guarantee by Libor, we note 
that the spread to curve of the security is wider by 7.73 − 6.39 = 1.34% for Libor 
discounting. Multiplying this widening by the average credit duration of 0 69 0 63

2
. .+ , we 

find a credit value that is lower by 0.88%. This value is the same change in the value 
of the guarantee that is captured by the difference in model prices of the two scenarios, 
namely, 103.36 − 102.48 = 0.88. When the principal guarantee of the bond is of Libor 
quality, the Libor duration of the bond becomes positive from negative.

13.3 PARTIAL YIELD OF COMPLEX SECURITIES

In Figure 12.3 we showed schematically how different components of yield are decom-
posed to calculate partial yields. In some cases, such as real bonds and bonds with 
recovery, that decomposition is not always straightforward. 

For an inflation linked treasury bond, all cash flows are discounted by treasury 
rates. Part of the discounting term is by real rates and part by nominal rates. To calcu-
late the contribution of each to partial yield, we decompose each cash flow into two: 
one with a maturity at the expiration of the real rate (inflation reference point for the 
cash flow), and one starting at that point and running through the date of the actual 
cash flow. We then scale each yield by its respective level duration. From (11.16), we 
calculate the partial real yield of an IL bond as
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where the subscript n refers to the inflation reference point for a cash flow. The nominal 
partial yield is
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The partial credit yield of a security with recovery and/or guarantee is calculated 
using (13.15) for cash flow as:
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in which ce i,  is given by (13.15). The partial Libor yield of a security with recovery and/
or guarantee is given by the cash flows that are discounted by Libor as
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For securities with recovery or guarantee, the recovery is like a put option on the secu-
rity. If the spread rises, the value of the security falls and the likelihood of default increases, 
leading to a higher recovery value that partially compensates for the spread widening. 
Therefore, the spread duration of a security with recovery is less than one without recovery. 

In order to calculate the partial yields of a security with recovery, assume that each 
cash flow is a separate security and we want to calculate the yield of a portfolio com-
prising all the cash flows as securities. For simplicity, consider a portfolio whose cash 
flows depend on interest rates plus spread. We define the partial yield of the credit as 
the equivalent yield that the same set of cash flows would have without recovery rate. 
Using (13.12), we write the market value of the cash flows as
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Subtracting the right hand side from the left and expanding the equation using Taylor 
series to first order leads to
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In Table 13.2, the sum of partial yields falls with increasing recovery rate. As the 
recovery rate increases, the default probability rises and the likelihood of earlier realiza-
tion of recovery increases. Given the slope of the treasury and credit curves, the overall 
yield falls as the cash flows are realized in a shorter time horizon which can be seen from 
the level duration. For example, if default is likely in the next year, there is a high likeli-
hood that recovery which is discounted by the front end of Libor will be realized leading 
to a very low yield. The sum of partial yields is a better representation of the yield of a 
security than the market yield which is invariant under all default and recovery scenarios. 

13.4 FORWARD COUPON 

The forward coupon is the implied coupon rate that an issuer needs to pay if it issued a 
bond for forward settlement. The implied forward coupon rate is used to calculate the 
call or put probability for bonds with call/put provisions and therefore it can happen in 
the distant future. If pf  is the forward price, cp i,  the principal payment at time ti, cg i,  the 
guarantee potion of cash flow at time ti, tf  the forward time, wi the weight of coupon 
at ti, wa the accrual weight of the coupon, and c0 is the current coupon of the security, 
then the forward price function can be written as
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If cf  is the expected forward coupon, then
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Therefore,
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13.5 CREDIT DEFAULT SWAPS 

A credit default swap (CDS) is a swap transaction that transfers the risk of default for a 
credit security from the buyer of protection to the seller of protection in exchange for a 
predetermined periodic payment from the buyer to the seller for the duration of the con-
tract. If the underlying security defaults, the buyer delivers defaulted bonds to the seller 
and receives the par amount for the face value of the bonds. If no default takes place for 
the duration of the contract, the periodic payments that the seller receives will be all profit.
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Consider a corporation, XYZ, issuing a floating rate bond with a coupon of Libor 
plus a spread at par (price of 100). An investor will be indifferent between investing his 
money in floating Libor, on the one hand, and buying XYZ bond and protection for the 
duration of the bond, on the other hand. If there is default, the buyer simply delivers the 
defaulted bond and receives his original par investment. If there is no default, the buyer 
will receive Libor plus spread and pays the protection premium. If protection premium is 
equal to the spread of the bond over Libor, then there is no arbitrage. Therefore, for a bond 
that is priced at par, the CDS premium is equal to the credit spread of the bond over Libor. 

For a bond that trades at a discount to par, the premium for its protection is higher 
than the spread. If the premium is equal to the spread, you can buy the bond and buy 
protection at the same time to hedge the credit risk. If there is no default, the extra 
spread that is earned will pay for protection of the bond. However, in the event of a 
default, you profit by delivering the bond that you had purchased at less than par and 
receive the par amount for it. 

Implied in a CDS contract is a floating Libor contract for both buyer and seller, in 
addition to the premium. The seller of protection will receive floating Libor plus the 
periodic premium and pay floating Libor. The two floating Libor payments cancel each 
other and the seller receives the net premium payment. However, for analysis, we need 
to include the floating Libor in the cash flows.

Assuming s t( ) to be the term structure of credit spread of the bond with recovery 
value ri at ti, we can use (13.23) to calculate the price of a bond as
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Likewise, we can calculate the price of a CDS as
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where yf l i, ,  is the forward Libor rate in the interval between i – 1 and i, and cc i,  is the 
CDS periodic premium. Forward periodic treasury and Libor rates are similar to for-
ward spread (12.6) and are given by
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If an issuer has issued many bonds, equation (13.55) can be used to calculate the 
TSCS or term structure of default rates, assuming that the recovery rate is known. 
Substituting the calculated TSCS and the recovery rate into (13.56), the price of CDS 
can be calculated for known periodic premiums. Likewise, knowing the price, the 
periodic premiums can be calculated. However, if the periodic premium and the price 
of CDS are known, we can use (13.55) and (13.56) to calculate the implied recovery 
rate in an iterative way. For liquid securities where CDS prices are available for a 
range of maturities, the term structure of recovery rate can be estimated as well.

For a reasonably accurate estimate of the market implied recovery rate, the bonds 
of an issuer must have accurate pricing as well as coupon diversity to allow for recovery 
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differentiation. Consider a bond manager intending to get exposure to the bonds of an 
issuer. He has the option of buying a 10-year bond that is trading at a price of $115 
or selling 10-year protection on the issuer. Suppose that in case of default the recovery 
value will be 82% of par and the protection premium is $2 per year. Assuming fair pric-
ing of the protection and a default probability of x in the first year, the expected gain 
with no default ( )1− x cc must be equal to the expected loss:

( ) ( ), . , , %1 100 1 0 82 2 10− = − = = =x c x r r c xc c

For the alternative of purchasing the bond where the default loss will be significantly 
more, the spread must be as follows: 

( . ) ( ) . , . %1 0 1 100 115 82 0 1 3 67− × = − × =s sc c

Thus, for a bond that is priced higher than par, the spread must be higher than the 
equivalent CDS spread, and bonds that are trading at a discount require a lower spread 
than CDS for fair compensation. 

Figure 13.1 shows the TSCS for Ford Motor Co. with 0% and 34.5% recovery 
rates, respectively. The 34.5% recovery rate is the optimized recovery rate that would 
most closely price all bonds. It is probably a good estimate of the recovery value, and the 
curve represents the TSDP. If an analyst estimates the recovery rate to be 50%, then we 
can see a much larger differentiation between different bonds and CDS rates. At 50% 
recovery rate, CDS rates are about 40 bps cheap relative to the curve. Most cash bonds 
that are trading at premium prices have lower spreads than warranted if default is a 
possibility.

Incorporation of recovery value into the spread curve of securities, especially high 
yield bonds where the default probability is higher, is an indispensable tool for bond 
traders and portfolio managers. The insight that can be obtained by the analysis of a 
bond using different recovery scenarios can be very valuable for relative value trad-
ing and portfolio positioning. Recovery of a defaulted bond is a long process and 

FIGURE 13.1 TSCS and TSDP for Ford Motor Co., July 31, 2012
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sometimes an issuer can take several years to exit bankruptcy. The recovery value is 
the price that the bond is expected to trade at when a company files for bankruptcy.

The market convention for evaluating a CDS is to use a recovery value of zero. The 
price function of a CDS using TSCR with zero recovery can be written as

p c y ec i f l i
s y t

i

s c i s i i
cds = + − +∑( ), , ,

( ), , ,

(13.59)

For securities that have a high default probability and where the spread is very high, most 
market participants price the CDS at a spread of 5% over Libor and pay a cash amount 
to the seller of protection. For example, if the spread for a 10-year CDS is 12%, then 
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where m is the coupon frequency of the CDS. From this equation we solve for the 
spread of the security relative to the treasury curve and then calculate the price of the 
CDS at a spread of 5% as
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The calculated price is now 60.45, implying that the seller of protection will receive 
39.55 for 100 par value of the CDS and will also receive a premium of 5% on an 
annual basis. However, in the event of default, the seller of protection will have to pay 
a par amount of 100 and will receive the defaulted bonds.
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Bond futures are exchange traded futures contracts where at expiration, and during a 
delivery period, the seller can deliver from a basket of bonds (deliverable basket) to 

the buyer and receive the price of the futures contract multiplied by a scaling factor plus 
accrued interest. The scaling factor, called the conversion factor, provides a mechanism 
to create a contract where most of the bonds in the basket have similar prices, even 
though their coupons and market prices can be significantly different.

The introduction of bond futures in 1977 was a financial engineering masterstroke 
and it radically changed the liquidity, transparency, pricing efficiency, and hedging 
capability of bond market investors. The contracts have become very popular and have 
been replicated in most major bond markets, including the euro zone, Japan, UK, and 
Canada. Prior to the introduction of bond futures, secondary markets in bonds were 
through over-the-counter desks and lacked pricing uniformity and transparency. US 
and EUR 10-year bond futures trade with a bid–ask price spread of about 0.016 per 
100 of face value and average around 1 million contracts with a notional amount of 
more than $100 billion a day in trading.

The deliverable basket of bonds includes all the bonds that meet certain matu-
rity, coupon, and issuer criteria established by the exchange where the bond futures 
are traded. For example, the deliverable basket for US bond futures that trade on the 
Chicago Board of Trade includes all the bonds with a minimum maturity of at least 
15 years from the first day of the delivery month, with coupon rates larger than zero, 
that are issued by the US Treasury. If the bond is callable, the earliest call date must be 
longer than 15 years.

The face value or the notional amount of each contract is established by the 
exchange. For US bond futures the notional amount is $100,000, while for 2-year 
futures the notional amount is $200,000.

US bond futures contracts have a period for the delivery of bonds by the short seller 
to the buyer of the bond futures. The short notifies the buyer of the delivery any day 
during the delivery period, which is usually 1 month. Some bond futures such as Japa-
nese government bond futures have a fixed delivery date that is only 1 day.

CHAPTER 14
Deliverable Bond Futures  

and Options

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.



202 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c14.indd 03/26/2015 Page 202

Most bond futures contracts have an associated option with a different expiration 
date than the contract expiration of the futures. After calculating the price volatility of 
the options, the price volatility of the underlying contract at the expiration date of the 
option can be calculated by interpolation or extrapolation of the option volatility. We 
will first derive a simple options pricing formula that will be used in evaluating bond 
futures and, in a later chapter, for swaptions and bond options.

14.1 SIMPLE OPTIONS MODEL

Our derivation of the option’s pricing formula is based on the random walk process 
without the use of differential equations. For more detailed option pricing formulas 
including barrier, digital, and all exotic options see Haug [13].

Consider a security with an initial price p0 that can change in very small relative 
steps of δ such that 
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In this model the price changes are relative. For example, if the price is for a stock and 
each share of the stock splits into two, then the absolute changes in price would be 
half of the pre-split change, but the relative price change would be the same. After a 
very large number of steps N, the number of ways that M of those steps will be up and 
N – M will be down is given by
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For very large numbers, the distribution will be centered close to its maximum likeli-
hood. The highest likelihood of the above distribution will be the same as the highest 
likelihood of its logarithm. The factorials can be expanded using the gamma function 
expansion as follows:
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We now expand the distribution around its most likely state using Taylor series:
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Thus, the probability distribution can be written as
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where A is a constant to ensure that the sum of all cases in the distribution is unity. 
After N steps, if each step is δ, the net difference between up and down steps will be
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where p is the price after N steps and p0 is the original price. Making the substitution 
in (14.5) results in

ρ δ≈ −Ae x N2 22 (14.7)

If there are n0 steps per unit of time, for example, if the expected daily volatility is δ, 
then n0

2δ  will be the annualized volatility of price, denoted by vp. For a given time t, 

N t n tvpδ δ2
0

2 2= =( ) (14.8)

Hence,

ρ ≈ −Ae x v tp
2 22 (14.9)

We require that the sum of all probabilities be unity; this is called normalization:
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Equation (14.10) is the standard normal distribution function. If the step up was 
slightly larger than the step down or vice versa, the distribution would be drifting 
toward higher prices. In fact, for stocks this is the case. For example, suppose a stock 
price is at 100 and with 50% probability goes to 110 or 90. In the next step it can go 
up another 10% to 121 or down 10% to 81, and the average of these outcomes would 
not be 100 but 101. This is the case because the price cannot go below zero, but there 
is no upside to it. In the above equation, if x is replaced with x − μ, the normalization 
requirement will still be met and it will be called a drifted distribution. The center of 
the distribution is simply shifted to x = μ. For stock prices, the arbitrage-free require-
ment must also be met which states that the average price of a stock at some time in the 
future based on its distribution must be equal to the forward price of the stock – that 
is, for a drifted distribution,

p
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p
p

p p ef
p

x v t xp= =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=− −

−∞

∞

∫1
2

2 22

0
0

π
μ( ) , ,ln (14.11)

From (14.6), we can calculate p as a function of x, noting that p0 is the expected for-
ward price and is equal to pf . Thus,

p
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p e dxf
p

f
x x v tp=
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∞
− −∫1

2

2 22

π
μ( )

(14.12)
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From (14.12), the value of μ can be calculated analytically. The result is

μ = −
v tp

2

2
(14.13)

The probability distribution function (14.6) in extended form can be written as

ρ
π

( ) )p
tv

e d p
p

n p p v t v tf p p= − ( )+( )1
2

2 2 22 2� ln( (14.14)

For a security that does not pay dividend, the forward price can be calculated from the 
current price as

p p ef
rt= 0 (14.15)

where r is the risk-free short term rate. Equation (14.14) is the Black–Scholes  probability 
distribution of forward prices and can be used to calculate all other option properties. 
Having calculated the probability distribution of forward prices, we can calculate the 
forward price of a call or put option for a strike price of px as follows:
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where xx is the value of x at the strike price. The future value of the option must 
be  discounted by the prevailing interest rate to the present time. We will cover bond 
options in detail in Chapter 15.

Equation (14.14) is arbitrage-free for stocks, that is, the expected future price of the 
stock over all possible forward paths of price movements is equal to the forward price. 
If we use the same methodology for bond options, assuming that yields have log-normal 
distribution, then the expected future yield over all possible paths will be equal to its 
forward yield. However, since the price–yield relationship of a bond is not linear, the 
expected future price of the bond will not be equal to its forward price if we use (14.13).

For bond options the drift has to be calculated in such a way that the expected 
future price over all possible paths of interest rates will be equal to the forward price. 
The drift value cannot be calculated analytically and must be calculated by iteration.

14.2 CONVERSION FACTOR

The conversion factor is equal to the price of a bond based on a notional yield, 
called the conversion yield, divided by 100. Most bond/note futures contracts adjust 
(round) the maturity date to a monthly or quarterly multiple of the first delivery date. 
For example, US bond futures contracts adjust the maturity of the bond to the quar-
terly date of the contract delivery date. US 10-year note futures round the maturity 
date to the monthly date of the first delivery date of the contract. For example, for 
September 2012 futures, a bond with a maturity of 8/15/2029 is rounded to 6/4/2029 
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for the calculation of the conversion factor only. Likewise, for 10-year note futures, 
a note with a maturity of 5/15/2019 will be rounded to 5/4/2019.

Let us calculate the conversion factor for the Treasury 6.125% 8/15/2029 for Sep-
tember 2012 delivery (USU12). The first delivery date for this contract is September 4, 
2012. The rounded maturity date is 6/4/2029. The fractional period to the next coupon is

fa =
−
−

=
12 4 2012 9 4 2012
12 4 2012 6 4 2012

0 49727
/ / / /
/ / / /

.

Given the conversion yield of 0.06 (6%), the price plus accrued of this security is 
 calculated as

p a i f
i

fa a
+ =

+
+

++
=

+∑
6 125

2
0 06

20

33

0 06
2

331
100

1

.

. .( ) ( )

where 34 (0 to 33 inclusive) is the number of semi-annual coupon payments between 
9/4/2012 and maturity date. Accrued interest is

a fa= −
6 125

2
1

.
( )

The conversion factor for this security is thus

CF
p

= = =
100

101 298
100

1 01298
.

.

14.3 FUTURES PRICE ON DELIVERY DATE

On the delivery date, the seller can deliver the notional amount for each contract 
from the basket of deliverable bonds to the buyer and receive a cash amount equal to 
the futures price times the conversion factor for the bond plus accrued interest. For 
 example, if the futures price is 125, for each contract, the seller can delivery $100,000 
face value of 6.125% 8/15/2029 and receive a price of 125 × 1.01298 or deliver 4.5% 
2/15/2036 and receive a price of 125 × 0.81316 for the bonds. The seller is incentiv-
ized to provide the bonds that are cheapest to deliver (CTD). To avoid arbitrage, on 
the delivery date, the futures price must be equal to the price of the CTD bond divided 
by its conversion factor. If there are n bonds in the basket with forward prices pf i,  and 
conversion factors fc i, , the exchange traded futures price will be equal to

p
p

fx
i

n
f i

c i
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟=

min
1

,

,
(14.17)

14.4 FUTURES PRICE PRIOR TO DELIVERY DATE

The arbitrage-free futures price prior to the delivery date is equal to the weighted aver-
age price of the bonds in the basket divided by the respective conversion factor times 
the probability that that bond becomes the cheapest to deliver.
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Consider a futures contract where there is only one deliverable bond. We can write

v D y vp f f y= (14.18)

where vy is the yield volatility, vp the price volatility, Df the forward duration, and yf 
the forward yield.

Knowing the price volatility of a security from the options market, we can calculate 
the yield volatility of the forward security. Using a log-normal distribution for the for-
ward paths of interest rates, we calculate the forward price from the TSIR of a security 
from (14.11) as

p
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p y e d yf t
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f
y y v ty

,
( ) ) )( )= ( )∫ − − −1

2
0

2 22

π
μln( ln( ln (14.19)

where μ is the drift and p yf ( ) is the price of the bond with a yield of y and y0 is the 
 current forward yield. The volatility process is based on the log-normal distribution 
of the yield, but the arbitrage-free requirement for all future paths of interest rates 
depends on price. Therefore, due to convexity, the value of μ cannot be calculated ana-
lytically and must be calculated by iteration. This equation is the basis for arbitrage-free 
requirement of the forward pricing of a bond, that is, the weighted sum of all forward 
prices must be equal to the market forward price of the bond.

For numerical calculations, it is computationally much less expensive to calculate 
the distribution function than to calculate the prices. We therefore calculate an array 
of prices and use a drifted unit normal distribution function to calculate the drift. A 
drifted unit normal distribution (DUND) function is defined as

DUND = − −1
2

2 2

π
ζe x( ) (14.20)

The value of ζ is varied until the following equation is satisfied:

p p y e dxf t f
x

,
( )( )= ∫ − −1

2
2 2

π
ζ (14.21)

where ζ is the unitized drift given by

ζ μ μ
σ

= =
v ty y

(14.22)

σy yv t2 2= . (14.23)

To calculate the applicable yield for a given value of the DUND, we use the 
transformation

ln( ln(y y
x y y e

y

xy
) )−

= ⇒ =0
0σ

σ
(14.24)

Alternatively, we can use a unit normal distribution (UND) function and include the 
drift in the yield calculation as

y y e y x x= −
0

0σ ( ) (14.25)
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In practice, it is most convenient to use either a UND or a DUND and calculate the 
yield factor from (14.24) or (14.25). All calculations for pricing of bond futures are 
performed in the forward space; therefore we will drop the forward subscript from all 
variables for convenience. 

Knowing the price volatility of the bond futures contract, we calculate the yield 
volatility and drift of all bonds in the basket. To calculate the forward price of a basket 
of bonds we will first need to find the aggregate yield volatility and drift of the basket. 
For each bond i in a basket of deliverable bonds we can write

v D y vp i i i y i, ,= (14.26)

where vp i,  and vy i,  are price and yield volatilities of security i respectively. Then

p
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p y e d yi
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y v ti y i= ∫ − −1
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2 22
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,

( ) )( ) ),ln( ln( (14.27)

Suppose that we know the probability wi that bond i becomes deliverable. Thus,

wi∑ = 1 (14.28)

Denote the yield volatility of the basket by vy,x, the price volatility of the basket by vp,x, 
the forward duration of the basket by Dx, and the forward yield of the basket by yx. Thus,

D w Dx i f i

i

n

= ∑ , (14.29)
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(14.30)

v w v D yp x i y i f i f i
i

n

, , , ,
2 2 2 2= ∑ (14.31)

In (14.31) we can assume that the yield volatility of all the bonds in the basket is the same 
in order to estimate the yield volatility of the basket from the price volatility of the future.

In markets where the Libor term structure of volatility is available, we can assume 
that the yield volatility of the treasury bonds is proportional to the yield volatility of a 
comparable Libor security; the proportionality factor r will be the ratio of the treasury 
bonds’ volatility relative to Libor. This provides a better market driven approximation 
to the yield volatility of the basket of bonds. If the yield volatility of a comparable Libor 
bond is vl i, , we can write the yield volatility of the respective treasury bond as

v v ry i l i, ,= (14.32)

Substituting from (14.32) into (14.31), we can calculate the volatility ratio r if we know 
the weights of each bond in the basket:

r
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w v D y
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(14.33)
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In this equation, the price volatility of bond futures can be calculated from the options 
markets by interpolating between options that expire before and after the futures 
expected delivery date. We can now create a log-normal distribution defined by its drift 
μx and yield volatility vy x,  calculated as follows:

μ μx i i

i

n

w= ∑ (14.34)

v v D yp x y x x x, ,
2 2 2 2= (14.35)
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We define beta for each bond as the ratio of the yield volatility of the bond relative 
to the basket:

β = =
v
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v
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y x
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,
(14.37)

The log-normal distribution density function will be
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The probabilistic futures price will be calculated as
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where min p y fi i c i( ) ,β( ) is the minimum value of all bonds in the basket at a yield of y. The 
next step is to calculate the weights of each bond in the distribution. We calculate (14.19) 
through (14.36) assuming equal weight for all bonds in the basket. From the resulting 
distribution, we calculate the CTD at each value of the forward yield. This will give us the 
likely deliverables at every forward yield, hence the new weight for each deliverable. We 
use the new weights in the equations and recalculate all the parameters. Generally, after 
two or three iterations the solution converges and the weights do not change. 

The weight of each bond in the basket is calculated as

w
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for all y such that
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Once the solution stabilizes and all the weights are calculated, risk parameters and 
valuations of futures contracts can be calculated as well. 

14.5 EARLY VERSUS LATE DELIVERY

All the calculations in the previous section were based on the price of bonds on delivery 
date. One has to take the market price of bonds and calculate the forward prices using 
repo or Libor rates using (7.3) or (7.4). In an upward sloping yield curve, the farther 
the delivery date, the lower the price of the bond will be.

We can think of a bond as two securities: one with a maturity date equal to the 
delivery date and one using the proceeds of the maturity of the first bond and maturing 
at the usual maturity of the original bond. If y1, y2, D1, D2 are the respective yield and 
durations of the two securities and y and D are the yield and duration of the original 
security, given that the present values of all are the same,

D D D2 1≈ − (14.42)

We can use (1.27) to estimate y2 as
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(14.43)

When y y1 < , the longer D1 is, the higher y2 will be and vice versa. A higher y2 implies a 
lower forward price and more profit for the short seller of the bond future. Therefore, 
in an upward sloping yield curve, delivery takes place on the last delivery date, and, in 
an inverted yield curve, delivery takes place on the first delivery date.

14.6 STRIKE PRICES OF THE UNDERLYING OPTIONS

Since the seller of futures contract has the option to deliver any eligible bond in the 
 basket at the delivery time, he is long an option to deliver the CTD bond. If the CTD 
bond changes, the seller will exercise his option. Therefore, the strike price of this 
option is at a forward yield point where the CTD changes. There can be multiple strike 
prices if several bonds become CTD at different forward rates. 

The call strike price is the price at which the CTD changes at higher prices (lower 
yields) and the put strike price is for a change in the CTD at lower prices. If the current 
CTD bond is designated with subscript d, the call and put values of the delivery option 
are given by 
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14.7 RISK MEASUREMENT OF BOND FUTURES

All the calculations for the futures contracts in the previous section were performed 
in the forward time space at the optimal delivery point of the futures contract. Know-
ing the market price of bonds in the basket, the forward prices can be calculated from 
(7.3). Let us assume that there is only one deliverable bond in the basket. An investor 
can either buy the bond future, which only requires posting collateral for margin move-
ment, or buy the underlying bond for forward settlement and retain access to his cash. 
The forward price of the bond excludes cash flows that will take place between now 
and the delivery date. If pv is the present value of cash flows that will occur after the 
delivery date, from (7.4), assuming that the bond is discounted by repo rate ybr, we can 
write the forward price as

p w c p w c ef f v m
y tbr f= − + +( ) (14.46)

where wf  and wm are the accrual period for forward and market settlement, respec-
tively. Instead of discounting by Libor, we have to discount the forward price by the 
repo rate. The futures price based on this bond will be

p
w c p w c e

fx
f v m

y t

c

br f

=
− + +( )

(14.47)

Given that the repo duration is a relatively small part of the risk of futures and the 
accrual contribution to the price is small, we can simplify the above equation as

p
p
f

ex
v

c

y tbr f≈ (14.48)

If the repo rate is the same for all bonds in the basket, the forward compounding of the 
repo factor will be the same for all bonds and the futures price can be written as

p e d yx
y tbr f= ∫ … ln( (14.49)

The repo duration components of the futures will thus be

D t tx p f k f, ( )= − ψ (14.50)

Therefore, futures have a negative duration exposure to short repo rates. Since the repo 
competes with Libor and the Fed Funds rate, futures generally have short exposure to 
short rates. In times of crisis, such as in the wake of the Lehman bankruptcy, repo and 
Libor rates have diverged significantly.

Interest rate duration components of futures cannot be calculated analytically since 
there is an option embedded in the futures contracts. If rates rise, bonds with the lon-
gest duration underperform other bonds and become cheapest to deliver, and when 
rates fall, bonds with shortest duration underperform other bonds and become cheap-
est to deliver. In other words, the weight of bonds in the basket changes as interest 
rates move and we have to calculate the effect of that weight change on duration of the 
futures. Due to the optionality of futures, some futures have negative convexity. 
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Duration and convexity components are calculated by shifting the level of interest 
rates and calculating its impact on price using (13.27) and (13.28), respectively. Since 
bond futures have zero market value, it is more appropriate to calculate the VBP for 
each contract than duration components. The futures price is only a reference value for 
calculating margin movements and no money changes hands when a futures contract 
is bought or sold.

14.8 ANALYTICS FOR BOND FUTURES

There is a security spread duration component associated with futures contracts as 
well. The exposure of the futures contract to the spread of the CTD security relative to 
the TSIR is slightly different from the duration of the futures. The duration components 
are based on the forward price of the security but the spread of the security will impact 
the current price of the security and thus has a slightly longer duration.

Tables 14.1, 14.2 and 14.3 show options, valuations, and risk analytics for a few 
global futures contracts, respectively. The futures prices and ticker symbols are from 
Bloomberg. Given the extremely low level of interest rates compared to the notional 
coupon of the futures, the call options have almost no value. For futures with a longer 
delivery date, the value of the option increases. For example, TYZ12 expires 3 months 
after TYU12 and its put option is accordingly more valuable.

TABLE 14.1 Futures options analytics, July 31, 2012

Security Volatility Option Value Strike Price

Ticker Crncy Size Last Trade Price Yield Call Put Call Put

TUU12 USD 200,000 09/28/12 0.62% 177.14% 0.000 0.000 110.85 108.85

FVU12 USD 100,000 09/28/12 2.38% 119.37% 0.000 0.000 127.19 118.12

TYU12 USD 100,000 09/19/12 4.86% 89.35% 0.000 0.016 141.47 126.51

TYZ12 USD 100,000 12/19/12 4.87% 84.51% 0.000 0.219 141.71 125.49

USU12 USD 100,000 09/19/12 10.65% 49.33% 0.000 0.002 176.02 128.51

OEU12 EUR 100,000 09/06/12 3.98% 281.95% 0.000 0.036 129.73 122.06

RXU12 EUR 100,000 09/06/12 8.59% 101.01% 0.000 0.002 155.57 128.85

UBU12 EUR 100,000 09/06/12 23.61% 70.11% 0.000 0.016 177.70 115.81

JBU12 JPY 100 Mil 09/10/12 2.22% 76.58% 0.000 0.000 147.39 133.89

GU12 GBP 100,000 09/26/12 6.68% 52.46% 0.000 0.364 131.77 121.00

CNU12 CAD 100,000 09/19/12 10.74% 88.26% 0.000 0.001 154.47 117.08

YMU12 AUD 100,000 09/17/12 1.29% 50.07%

XMU12 AUD 100,000 09/17/12 1.31% 42.21%

ZYU12 NZD 100,000 09/12/12 0.63% 25.64%

ZTU12 NZD 100,000 09/17/12 0.66% 18.87%
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TABLE 14.2 Futures valuations analytics, July 31, 2012

Ticker

Price Spread Yield

Market Fair Model Recons. Notional To Curve Exp Theta

TUU12 110.30 110.49 110.45 110.49 220,609 −0.018% 0.197% 0.405%

FVU12 124.78 124.96 124.85 124.75 124,781 −0.022% 0.480% 1.133%

TYU12 134.66 134.95 134.56 134.60 134,656 −0.048% 0.905% 2.129%

TYZ12 133.64 133.90 133.42 133.50 133,641 −0.058% 0.984% 2.235%

USU12 151.03 151.74 150.98 150.73 151,031 −0.045% 1.997% 2.722%

OEU12 127.75 127.88 128.05 127.85 127,750 0.029% 0.317% 1.187%

RXU12 144.57 144.75 144.35 144.70 144,570 −0.035% 1.086% 2.542%

UBU12 137.08 137.21 136.83 137.17 137,080 −0.016% 2.025% 2.154%

JBU12 144.01 144.11 144.06 144.08 144,010,000 −0.006% 0.435% 1.260%

GU12 121.88 121.70 121.87 121.69 121,880 0.017% 1.524% 2.811%

CNU12 138.94 139.14 138.58 139.11 138,940 −0.052% 1.594% 2.330%

YMU12 97.48 97.42 97.71 0.00 109,995 −0.002% 2.568% 2.776%

XMU12 97.00 97.04 97.25 0.00 125,704 −0.001% 2.938% 3.521%

ZYU12 97.61 97.06 97.34 0.00 116,148 −0.003% 2.920% 3.541%

ZTU12 96.62 96.59 96.83 0.00 138,927 −0.002% 3.381% 3.932%

TABLE 14.3 Futures risk analytics, July 31, 2012

Ticker 

Tsy Duration Repo Duration Spread Dur

Level Slope Bend Cubic Quartic Level Slope Bend Level

TUU12 1.77 −0.97 −0.75 1.88 −1.46 −0.09 0.09 −0.08 1.86 

FVU12 4.17 −0.52 −4.16 1.84 3.48 −0.09 0.09 −0.08 4.26 

TYU12 6.13 1.06 −5.89 −2.62 4.51 −0.13 0.13 −0.12 6.27 

TYZ12 6.35 1.70 −6.06 −3.50 3.77 −0.38 0.35 −0.24 6.70 

USU12 10.99 6.76 −1.70 −6.93 −8.13 −0.13 0.13 −0.12 11.09 

OEU12 4.52 −0.21 −4.60 0.93 4.17 −0.10 0.10 −0.09 4.65 

RXU12 7.90 2.71 −5.97 −6.39 0.75 −0.09 0.09 −0.08 7.93 

UBU12 16.92 14.08 7.27 1.65 −3.38 −0.09 0.09 −0.08 17.11 

JBU12 6.72 1.43 −6.31 −3.69 4.47 −0.10 0.10 −0.09 6.83 

GU12 8.43 3.65 −5.13 −6.92 −1.95 −0.15 0.15 −0.13 8.59 

CNU12 7.73 2.63 −5.98 −6.21 0.94 −0.13 0.12 −0.11 7.88 

YMU12 2.30 −0.26 −2.25 0.91 1.70 −0.08 0.08 −0.07 2.38 

XMU12 7.10 2.48 −5.13 −5.36 0.13 −0.13 0.12 −0.11 7.23 

ZYU12 2.74 −0.03 −2.77 0.24 −0.04 −0.07 0.07 −0.06 2.81 

ZTU12 6.95 2.60 −4.72 −5.45 −0.06 −0.12 0.12 −0.10 7.07
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In Table 14.2 we provide three calculated prices for the futures markets. The fair 
price is the calculated price from the basket using the methodology described in previ-
ous sections. This should be most closely related to the market price and provides a 
direct arbitrage opportunity if significantly different from the market price. The US 
futures market closes at 3:00pm Eastern time but the cash market is open usually up 
to 5:00pm. Cash prices are supposed to have been captured at 3:00pm, but sometimes 
there might be timing differences that could lead to discrepancies. The model price is 
based on using term structure prices for bonds in the basket and then calculating the 
CTD and the futures price. The reconstituted price is based on constructing the price of 
bonds in the basket from zero coupon bonds and using those prices for futures calcula-
tions. There is a closer relationship between the model or reconstituted price and the 
market price of the futures than between the fair price and the market price. It appears 
that most futures in the tables are cheap relative to fair value.

14.9 AUSTRALIAN BOND FUTURES

Australian and New Zealand bond futures are structured differently from those of 
other countries. The contracts are cash settled and thus there is no delivery in the con-
tracts. The price of the bond futures is calculated from the average yield of all the bonds 
in the basket as follows:

p yf = −100 1( av (14.51)

However, for margin calculation, the price of a notional 10-year bond with a coupon 
of 6% is calculated using the average yield of the basket. Thus the contract price is 
calculated as

p
x

y
x x

y
=

−
+ =

+
31

2
100

1
1 2

20
20( )

, (14.52)

The margin movement is based on the contract price.

14.10 REPLICATION OF BOND FUTURES

We can use linear optimization to replicate the risk profile of bond futures. The repli-
cation is useful for either arbitraging bond futures or replicating the performance of 
futures for funds that cannot invest in derivatives. The universe of securities that can be 
used to replicate bond futures can be one of the following three groups:

 ▪ Bonds in the basket.
 ▪ The universe of coupon bonds.
 ▪ The universe of all bonds including Strips.

Depending on the universe of securities that we use, the tracking error can vary. 
Under normal circumstances all strategies replicate the bond futures very closely. 
However, in times of stress where bond futures typically demand a liquidity premium, 
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there will be some divergence between the replicating portfolio and the bond futures. 
Each one of the above universes can be optimized for either buying or selling bond 
futures. Due to the option characteristics of bond futures, it is not always possible 
to calculate all the risks without shorting some securities. Instead of shorting secu-
rities, we allow a small variance in the bend duration relative to the bond futures. 
Assuming a fully financed portfolio, we have to include the durations of financing in 
the aggregate durations. We use the following constraints to calculate the replicating 
portfolio:

N D p N D p D pi i i

i

l l l x x0 0 0, , ,∑ − = (14.53)

N D p N D p D pi i i

i

l l l x x1 1 1, , ,∑ − = (14.54)

N D p N D p D p D pi i i l l l x x x x

i

2 2 2 00 02, , , ,.− = ±∑ (14.55)

N p N pi i

i

l l∑ = (14.56)

0 9 1 1. .p N p px i i

i

x< <∑ (14.57)

where Ni and Nl are the number of units (face amount) of bond i and of Libor, respec-
tively; Dk i, , Dk l, , and Dk x,  represent the kth component of interest duration i, of the 
Libor duration through the delivery date, and of the duration of the futures, respec-
tively; and pi, pl, and px are the price of bond i, the price of Libor for maturity on the 
delivery date, and the futures price, respectively.

Constraints (14.53) and (14.54) match the level and slope durations of the opti-
mized portfolio with the futures, and (14.55) matches the bend duration with a 2% 
variance of the level duration. Constraint (14.56) requires equal market value for bonds 
and Libor financing, and (14.57) is a limit on the variance of market value. The objec-
tive function will be

Obj = ∑N D p yi i i i

i

0, (14.58)

For optimizing a portfolio that is designed to outperform bond futures, for example, for 
buying the portfolio and shorting the bond futures, we maximize the objective function. 
For an optimized portfolio that is constructed to underperform the bond futures, we 
minimize the objective function.

Table 14.4 shows a sample of replicating portfolios for TYU12. There are four rep-
licating strategies: using coupon bonds only, using Strips as well as coupons, and long 
and short for either scenario. When the universe of bonds consists of coupons as well 
as Strips, the yield difference between the optimized portfolio and the futures yield is 
larger than when only coupon bonds are permitted. 

We use the difference between the market price of a futures and its fair price as an 
indicator of cheapness/richness of the contract. For example, in Table 14.2, TYU12 is 
cheap by 134.95 − 134.66 = 0.29.
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14.11 BACKTESTING OF BOND FUTURES

To use the above information in a backtest of a strategy to buy bond futures when 
they are cheap and to short them when rich, we have to make sure that the difference 
between the market price and fair price is not a consequence of timing the price cap-
tures. We analyzed historical cheapness/richness of bond, note, and 5-year futures in 
the US. When there was a price difference of 0.35 or more for three consecutive days, 
we assumed that the price difference was real and not an artifact of different times for 
capturing price of futures and cash bonds. We then used the minimum difference as 
our value signal. If bond futures were rich, which they were in about 75% of cases, we 
sold bond futures and bought cash bonds to hedge them, similarly to what we did in 
Table 14.4. When bond futures were cheap, we bought bond futures and shorted cash 
bonds from the basket. The trades were held until 1 day before the first delivery date 
or if the opposite trade was triggered. There was no hedging of the trades during the 
holding period. It is possible that the shorted bonds had a lower repo rate than what we 
used and therefore our gain was exaggerated. However, even if we execute the strategy 
only when bond futures were rich, the gain per trade stayed about the same and we lost 
in only about 25% of cases. Table 14.5 shows the result of backtest from 2001 through 
mid-2012. Table 14.6 shows the list of trades that either lost money or had the least 
gain when we bought the futures and sold cash bonds.

What is common to all these trades is that the market yield moved by 100 bps 
or more in each case. Since we did not change the hedge during the trade period and 
bond futures have very low to negative convexity, the trades underperformed. Had we 
hedged after a market move of about 25–30 bps, the trades would all have contrib-
uted positively. Consequently, the performance of the backtest results is significantly 
underestimated.

TABLE 14.5 Bond futures backtest results, July 31, 2012

Avg Gain Stdev Number IR

812 998 71 1.98

TABLE 14.6 Bond futures backtest underperformers, July 31, 2012

Ticker Start End Market Trade G/L

USZ08 7/22/08 11/28/08 −16,375 15,391 −985

USH08 10/3/07 2/29/08 −8,304 7,906 −398

USZ07 7/5/07 11/30/07 −10,954 10,813 −141

TYU02 5/14/02 8/30/02 −10,177 10,094 −83

TYZ07 5/16/12 11/30/07 −8,495 8,578 83

TYZ08 7/3/07 11/28/08 −10,632 10,719 87

FVH08 7/22/08 2/29/08 −7,858 7,953 95
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Analysis of bond options requires the term structure of volatility as well as the term 
structure of rates. While the shape of the yield curve can change significantly, our 

term structure of volatility does not include explicit correlation parameters. Instead, we 
match the volatility at every point on the volatility surface with market volatility, using 
the adjustment table (as explained in Section 9.3), and therefore the implied market 
correlations are included implicitly in the volatility model. Bond options can be of three 
general categories:

 ▪ European bond options – The option can be exercised only at expiry.
 ▪ American continuous options – The option can be exercised at any time after the 
vesting time. For example, callable bonds cannot be called prior to a specific date, 
called the first call date.

 ▪ American discrete options – The option can be exercised only on specific dates, 
usually coupon payment dates, between the first call date and the expiration date.

The widely traded interest rate volatility is based on options on swaps (swaptions). 
A call swaption is an option to receive a fixed rate underlying bond on or before a cer-
tain expiration date and a put swaption is the right to pay fixed rate before expiration 
date. Swaptions trade with many different expiration dates for the options and matu-
rity dates for the underlying swap. 

An at-the-money call swaption is based on the implied forward coupon of the 
underlying swap. For example, if short rates are at 1% and 10-year rates are at 3%, the 
implied 10-year swap 1 year forward might be at 3.25%. The buyer of an American 
call swaption can exercise the options at any time in the first year and receive a coupon 
of 3.25% through the final maturity of the underlying which would be 11 years from 
the original trade date.

In an upward sloping yield curve, the buyer of a call option has a very high incen-
tive to exercise early and start collecting the forward coupon, instead of earning short 
rates through the life of the option. The same is true for the exercise of a put option in 
an inverted yield curve.

CHAPTER 15
Bond Options

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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15.1 EUROPEAN BOND OPTIONS

We first analyze a European Libor bond option. The price of a European bond option 
is the discounted value of the expected exercised price of the option on the expiration 
date. We use (14.19) as the arbitrage-free forward price of the bond. The probability 
distribution of a bond yield at a future time t is given by

d e d yf t
y

y y

yρ
πσ

μ
σ

,

(ln( ) ln( ) )

ln( )=
−

− −
1

2

0
2

22 (15.1)

where the standard deviation of the forward log of yield is

σ2 2= v ty (15.2)

By definition, the sum of all probabilities of forward yields is equal to 1:
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The drift μ is calculated in such a way that the expected value of the forward 
price of the bond is equal to its forward price. The resulting equation (15.4) is called 
arbitrage-free requirement:
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The forward price of a call option with exercise yield yx and time to expiration tx 
will be

C t p y p y e d yx
y

x
y y

y
y

x

( ) ( ) ( ) ln(ln( ) ln( ) )= −( ) ( )− −∫1
2

0
2 22

0πσ
μ σ

(15.5)

If price and yield had a linear relationship, we could calculate the distribution drift 
analytically, just as is done for equities. However, due to convexity, the drift needs to be 
calculated numerically. For computation purposes, it is much more convenient to write 
equation (15.5) in terms of the drifted unit normal distribution:

C t p y p y e dxx x
x x

yx

( ) ( ) ( ) ( )= −( ) − −∫1
2

0
2 2

0π
(15.6)

with

y y e yx= 0
σ (15.7)

The present value of the forward call price, for most options, is calculated by dis-
counting the future price by the risk-free yield at the time of option expiration:

C C t ex
t rx x( ) ( )0 = − (15.8)
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where rx is the risk-free rate between the trade date and the expiration date of the 
option. For bond options, the above equation is not accurate, because the paths of 
interest rates that result in a call option being exercised imply lower forward rates and, 
in general, lower rates before the option expiration. We will estimate the discount func-
tion later in Section 15.3.

Using equity like options for bonds and then making a convexity adjustment to the 
option’s price will violate the arbitrage-free requirement. The arbitrage-free require-
ment must be part of the drift calculation that includes convexity. 

The most widely used model to price European bond options and swaptions is 
the Black-76 model which uses a log-normal distribution of rates. The option is cal-
culated the same as equity options by replacing the price with forward yield. Thus, in 
the Black-76 model the expected value of the forward rate is equal to the forward rate. 
This, however, does not mean the expected value of the forward price will be equal 
to the forward price and as such it is not arbitrage-free. The Black-76 equation can 
be derived by using (14.14), replacing price by rate and noting that in a swaption the 
exercise of the option will lead to a stream of cash flows that is equal to the difference 
between the strike rate and the forward rate through the maturity of the bond. Using 
the Black–Scholes call price (14.16) and replacing the price with interest rate, the call 
rate can be calculated as
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2 2 22 2

0π
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(15.9)

The exercise of the call swaption will entitle the receiver to a stream of cash flows 
through the maturity of the underlying bond equal to the call rate. If rf is the implied 
forward rate, the value of the stream of cash flows will be
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(15.10)

Equation (15.10) is very widely used to price swaptions in the market and is known as 
the Black-76 model. Black-76 has three shortcomings:

 ▪ It is not strictly arbitrage-free. The arbitrage-free requirement must be based on 
the expected forward price; the arbitrage-free condition of the Black-76 model is 
based on rates. If the underlying bond has a low convexity or the option tenor is 
short, the price–yield relationship will be almost linear and Black-76 model will 
be accurate. 

 ▪ When an at-the-money call is exercised, the implied forward rates are lower, imply-
ing that the discounting of the forward price must be done with slightly lower inter-
est rates. Black-76 has no mechanism to make that adjustment. 

 ▪ Black-76 cannot be easily adapted to American bond options.

The present value of a call price using Black-76 on July 8, 2011 for a 10-year 
swaption 1 year forward was 3.59, and the above model is very close at 3.55. 
 Figure 15.1 shows a Bloomberg screenshot, using the same parameters, which prices 
the option at 3.71.
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For a longer dated option and longer maturity where the convexity can be more 
important, we price a 5-year option on a 20-year bond. The following table shows the 
inputs and calculated prices:

rf 0.04809
m 2
N 20
tf 5
vr 20.1%
5-year discount rate 1.84%
Black-76 price 9.95
Our model 9.53

The Black-76 model is similar to an equity option, using a log-normal distribution 
for rates instead of prices. The range of bond prices is much more limited than the 
range of equity prices. In a log-normal distribution, the price of a stock or interest rates 
can range from zero to infinity. However, the price of a bond at a yield (rate) of zero is 
equal to the sum of all the cash flows and at a yield of infinity the price is zero. Thus, at 
extreme rates the Black-76 model fails.

FIGURE 15.1 European at-the-money call swaption, July 8, 2011
Used with permission of Bloomberg L.P. Copyright© 2014. All rights reserved
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15.2 EXERCISE BOUNDARY OF AMERICAN OPTIONS

Consider a forward distribution of rates where an American call option is exercisable. 
In Figure 15.2, one of the paths from the current level of rates, time t0 and point A to 
point C is through point B. Assume that point C is the last exercise date of an American 
option for a bond that matures at point M and, as such, an option that is in-the-money 
will be exercised. We assume that there is no cost associated with the exercise of the 
option. Usually, callable bonds might have an exercise cost, since the call has to be 
funded and the raised funds require a brokerage fee. We evaluate the forward price of 
the bond at all forward points at time C that meet arbitrage-free requirement (15.4).

We then calculate the forward price distribution of the bond price at time B that 
meets the arbitrage-free requirement stated in DUND as

dp p y e dxx xB= − −1
2

2 2

π
( ) ( ) (15.11)

At point B, another possible exercise date for the American option, we calculate the 
call price of the option if it is exercised and converted to a bond that matures at time M. 
At point B we then have to decide whether it is more economical to exercise the option 
or to leave it for possible exercise at point C. The distribution of rates at point B is gov-
erned by the volatility and drift of a forward bond at point B that matures at point M.

At each point B, we calculate the probability of all the paths leading to the final 
exercise time C. The volatility of the paths from B to C is governed by the volatility σBC 
and drift μAB. The volatility can be calculated by aggregating the volatility of cash flows 
using (9.37). We note the additive property of the drift as follows:

μ μ μAC AB BC= + (15.12)

FIGURE 15.2 Log-normal probability distribution

Yield
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σB, μB
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Using unitized drifts (14.22),

ζ ζ σ ζ σ
σBC

AC AC AB AB=
−

bc
(15.13)

Since we have already calculated the forward price of the option at every point at time 
C, we calculate the probability of all the paths from point B to C and calculate the for-
ward price of an unexercised option at time C.

After discounting the forward prices of unexercised options at time C to time B, 
we can compare the price of an exercised option and an unexercised American option 
and calculate the yield at which exercised and unexercised prices will be identical. We 
call a collection of such points where the value of exercised and unexercised options 
is equal to the exercise boundary. The exercise boundary has to be calculated from the 
last exercise date to the earliest date sequentially. For call options, the yields below the 
exercise boundary imply early exercise. At higher yields, unexercised options are more 
valuable than exercised ones, even if they are in-the-money. For put options, the yields 
above the exercise boundary will result in early exercise.

15.3 PRESENT VALUE OF A FUTURE BOND OPTION

If a call option is exercised in the future, the paths that will lead to the exercise of the 
option are more likely to involve lower interest rates than is implied in the present. 
Therefore, the discount function for calculating the present value of a forward exercised 
option should also imply lower rates. In this section we will derive the approximate 
discount function for calculating the present value of a future exercise. For notational 
convenience, we replace μAB and σAB by μB and σB, respectively. Likewise, we replace 
μBC  and σBC by μC and σC, respectively. The probability density of all yields at point B in 
Figure 15.2 for a bond that matures at M can be written as

d e d yy yρ
πσ

μ σ
B

B
B

B A B B= ( )− − −1
2

2 22(ln( ) ln( ) ) ln (15.14)

where yA is the forward yield of the bond for settlement at time B calculated at time A 
and yB is the distribution of that yield at time B. Now let us consider a rate process that 
will take us from A to B to C. The combined probability density to go from A to B to 
C can be written as

d d e d yy y y yρ ρ
πσ σ

μ σ μ σ
B C

A B
B

B A B B C B C C= − −( ) − −( )1
2

2 2 2 22 2ln( ) ln( ) ln(( ) ( )d yln C (15.15)

where σB (σC) is the volatility of the forward bond at B (C), in the interval between A 
and B (B and C), and μB (μC) is the drift of the forward bond at B (C). Substituting

u
y
y

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

ln
0

(15.16)
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for some constant y0 and rearranging the parameters leads to
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(15.17)

To calculate the average uB( uB ) for all paths that start at point A and end at C, we 
can integrate the above equation multiplied by uB over its range. u uB A−  is a measure 
of how many standard deviations the distribution has shifted. We can thus write

u d
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or
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In this equation

d
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is simply the density function of a random process that goes from point A to point 
C, with

μ μ μ
σ σ σ

= +
= +

B C

B C
2 2 2 (15.21)

Thus,

u
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μB and μC are the drift parameters. Assuming constant volatility in the interval between 
A and C, and the additive property of the drift, we can write

σ
σ

μ λ
μ λ

B B

C

B C

B B

C C

2 2

2 2

=
=

= +
=
=

v t

v t

T t t

t

t

C

(15.23)

Substituting these values in (15.22) we find the shift in u of a bond forward as

u u
t u u

TB A
B C A− =

−( )
(15.24)

This states that a bond forward having a shift in the log of yield equal to u uC A− , at 
time C (T), has an average shift at an intermediate point B, proportional to time at 
point B (tB).

Our analysis up to this point has been for the forward security. However, we are 
interested in calculating the impact of changes in the forward rates on the discount function 
in the interval from A to C. At point B, the yield of the forward security has shifted by

u u
y
yB A

B

A
− =

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

ln (15.25)

We can assume that the yield of all the points between B and C has also shifted propor-
tionally. Likewise, the yield of the discount function has shifted proportionally. For the 
discount function, we add the subscript d to (15.24). Thus,

du
dt

u u
T

d d

B

C A=
−, , (15.26)

This is the rate of change of the shift in u in the interval between A and C. When ana-
lyzing the discount function between A and C, we note that at time tB any shift will 
impact the discount function from time tB to tC and not the whole range from tA to tC.  
To calculate the average shift in the discount function, we multiply the above equation 
by T – t, the area that is impacted by the shift, and integrate over its range: 

u u
T

du
dt

T t dt
u u

d d

T
d d− = − =

−
∫A

C A
,

, ,( )
1

20
(15.27)

Compare this with (15.24); the average shift for the end point of the discount function 
is half that of the forward bond. This is intuitively reasonable, since as we approach 
exercise time C, only the remaining portion of discount function is subject to volatility, 
while the forward bond has full volatility. 

Next, we need to calculate the average volatility of the discount function. We first 
note that the discount function is an evolving function and, at any time tB, only the 
segment between B and C can change. Additionally, the volatility at any forward point 
will propagate to the remaining part of the forward discount function. Thus, we need 
to calculate the average instantaneous volatility over the life of the discount function. 
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If w t t tx y y( , , , )0 1 2  is the volatility of a forward line segment ( , )t ty y1 2  between time zero 
and tx, then the incremental absolute volatility between tx 

and t dtx x+
 
is calculated as
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Thus,
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(15.29)

Equation (15.29) is general and applies to any forward yield (line segment). Integrating 
it leads to

w t t t dt d w t t t t w t tx y y x
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x y y x
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x x

( , , , ) ( , , , ) ( , ,0 0 01 2
2

0
1 2
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0∫ ∫= ( )= yy y xt t1 2
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To calculate the average volatility of the instantaneous forward rate, we evalu-
ate (15.30) at t t t ty y x1 2= = = C. Making the necessary substitutions, average absolute 
volatility squared can be calculated:

W t w t t t t2 20C C C C C= ( , , , ) (15.31)

Using a UND as in (14.25), Δx and Δu are related by

Δ
Δ

x
y y u

= =
ln( )C A

σ σ
(15.32)

with

σd W t t2 2= −( C A (15.33)

where σd is the volatility of the discount function. Defining σf  as the volatility of 
the forward security and using the UND from (14.25) and combining with (15.25), 
we find the number of standard deviations that the logarithm of yield has shifted at 
point C:

ln
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Likewise, the number of standard deviations in yield shift for the discount function 
from (15.27) is
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By equating the standard deviations, Δx in equations (15.34) and (15.35), we find
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Thus,
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As we can see, for y yC A= , the discount function will stay unchanged. The yield of 
the discount function will be lower if y yC A<  and vice versa. Using the UND function 
(14.24), this can be simplified as

y y ed d
xd= 0

2σ (15.38)

For small values of σd we can simplify this by means of Taylor series to first order in x:

y y
x

d d
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2
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(15.39)

We define the discount function d as

d e ey t x y td d d= =− − +( )1 2 0σ (15.40)

From (15.31), we can calculate σd as

σd W t t= −2
0( ) (15.41)

The adjustment to the discount factor is very small. For example, if the absolute yield 
volatility is 2% (200 bps) per year, for a 10-year period, σd = 0 065. . For a shift of two 
standard deviations in yield (x = 2), assuming a yield of 5%, the change in the discount 
function is only about 3%, that is, 

d e e ey t y t x y td d d d= ≈ ×− − −0 0 02 0 968σ .

This is the change in the discount function for the price of the option. The adjustment 
has to be made for all options when calculating the exercise boundary and discounting 
the value of exercised options. 

15.4 FEEDFORWARD PRICING

Once we calculate the exercise boundary, we start at the earliest exercise date and calculate 
the price at all exercise yields. We then create a process at all forward yields where the 
option was not exercised and calculate forward paths. The exercise price times the weight 
of forward paths that land in the exercise zone is added to the option price and the weights 
of paths that end up in the non-exercise zone will be added to non-exercised weights.

For numerical calculation, if we slice a UND into N pieces and use Q sigma as the 
range of the UND (6 sigma gives sufficient accuracy), then x in (14.21) is given by

x
Q i N

Ni =
−( )2

(15.42)

The area of an even numbered slice i, between i – 1 and i + 1, using Simpson’s rule is 
given by
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For every layer, we create a UND consisting of N intervals. The range of yields for 
exercise points that are farther in the future will be wider than range of yields for early 
exercise times. The number of intervals at every layer is, however, constant. Therefore, 
computation time increases linearly with the number of layers.

Every layer is divided into N buckets, with equal number of buckets at both sides 
of the drifted middle of the distribution. If wn j−1,  is the weight of an unexercised option 
in the jth bucket of layer n – 1, it will progress to layer n as a log-normal distribution 
with drift and volatility calculated from (15.21). Assume that one of those paths that is 
a fraction η of wn j−1,  will result in a value xk that is in bucket i of the next layer to the 
right of the middle of the bucket. We calculate the contributed weight of that path to 
buckets i and i + 1 as follows:
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so that if a path leads to the boundary of two consecutive buckets, each will get half 
the contribution. 

For each layer, the number of points that need to be analyzed is about N2, since 
every point progresses to N points in the next layer. Even though this computation 
method is much more time-consuming than simple binomial tree method, the accu-
racy is significantly better, comparable to the accuracy of closed form solutions if they 
existed. The binomial tree method converges much less slowly and the number of nodes 
that need to be analyzed increases quadratically. Additionally, early exercise points are 
analyzed with far fewer steps than late exercise points. For most options, the earliest 
exercise times are the most valuable since the discounting is less. However, in binomial 
trees, the least emphasis is on the earliest times.

The spacing between layers does not need to be constant. The shorter dated layers 
can have closer spacing than long dated layers. This is in contrast to the binomial trees 
where shorter dated layers have fewer points and thus are less densely populated. For 
long dated swaptions and options, having more than 40 layers does not increase the 
accuracy in any meaningful way. 

Table 15.1 shows the calculated premiums for a few European and American swap-
tions.  There is a relatively large pricing difference between our calculation and Bloom-
berg’s for American options, particularly put options. 

Figures 15.3 and 15.4 show the screen images of American call and put options with 
1 year to expiry and 10-year maturity. We can estimate the value of American versus Euro-
pean options by noting that an at-the-money European call is about 50% likely to be 
exercised and the likelihood is higher for American options. Given an immediate exercise, 
the underlying bond has a coupon of 3.65%, which is about 3.2% higher than the implied 
risk-free rate through the expiration of the option. If we assume 50% exercise probability 
spread over the year, on average we will receive 50% of the bond premium for 6 months, 
resulting in 0.5 × 0.5 × 3.2 = 0.80 extra premium for the American call. Our model cal-
culation of the American call appears more reasonable than the calculation in Figure 15.3. 
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FIGURE 15.3 American at-the-money call swaption, July 8, 2011
Used with permission of Bloomberg L.P. Copyright© 2014. All rights reserved

In a steep yield curve environment, such as for the above options, an American put 
option is rarely exercised early since the put holder has to pay forward coupon early 
while the cash rate is much lower. It makes sense to exercise an American put in a steep 
yield curve only when the likelihood of exercise at expiration time is so high that the 
interest earned on the premium will be more than the time value of the option. The 
premium price of 9.912 in Figure 15.4 is highly suspect based on the shape of the curve 
and knowing the value of European put option. 

The underlying price of an American call option increases approximately linearly 
with time and the difference between short rates and long rates. For example, if short 
rates are at 1% and long rates at 4%, the present value of a bond with a 1-year forward 
price of par will be about 103. If the option is exercised early, over the next year the 

TABLE 15.1 Bond option premiums, July 8, 2011

Parent Option Premium

Cpn Maturity Fwd C/P A/E Expiry Strike Fair Model Bloomberg

3.65 7/11/22 100 C E 7/9/12 100 3.550 3.550 3.712

3.65 7/11/22 100 C A 7/9/12 100 4.291 4.291 5.238

3.65 7/11/22 100 P E 7/9/12 100 3.551 3.551 3.714

3.65 7/11/22 100 P A 7/9/12 100 3.579 3.579 9.912
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FIGURE 15.4 American at-the-money put swaption, July 8, 2011
Used with permission of Bloomberg L.P. Copyright© 2014. All rights reserved

bond will have a coupon of 4% instead of 1% for short rates. Likewise, for a 2-year 
forward, the added benefit will be approximately 6%. The price premium of an at-the-
money option increases approximately with the square root of time. Therefore, in very 
steep yield curves, there is usually an expiration time at which the premium for early 
exercise will be more than the option premium and the American call option will be 
exercised immediately. 

Table 15.2 is an example of four American options that are at the cusp of exercise. 
The price of the underlying securities if the options are exercised immediately is shown in 
the rightmost column. The parent price of the 10-year forward, maturing in 2025, of an 
option expiring in 4 years is 112.797.  The optimal exercise for this option is immediate 

TABLE 15.2  Early exercise of American call option, July 8, 2011

Parent Option Price

Cpn Maturity Fwd C/P A/E Expiry Strike Fair Model Parent

4.73 7/10/25 100 C A 7/8/15 100 12.797 12.797 112.797

4.75 7/10/30 100 C A 7/8/15 100 13.287 13.287 112.881

3.38 7/10/18 100 C A 7/8/13 100 5.441 5.441 105.441

3.59 7/10/19 100 C A 7/8/13 100 5.900 5.900 105.861
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and the premium earned will be 112.797 − 100 = 12.797. However, an option with 
the same expiration date but 15-year maturity underlying, due to the higher volatility 
of the longer duration underlying, has more value if not exercised immediately. With a 
duration of 12.7 years, if long rates fall by 8 bps, it will be economical for this option 
to be exercised if the volatility does not change. 

15.5 BOND OPTION GREEKS

Option Greeks refer to characteristics of options that influence their pricing. For a 
review of option Greeks see any standard options textbook or Haug [13]. For bond 
options, especially using TSIR and TSYV, the Greeks can be significantly more compli-
cated than equity Greeks. The most commonly used option Greek is delta, the ratio of 
the change in the price of the option to the underlying security (parent). Vega, theta, 
and gamma are the sensitivity of an option’s price to volatility, time, and second order 
change in the parent price, respectively. Thus,
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where Od, Ov, Ot, and Og are respectively the option delta, vega, theta, and gamma, po 
is the option price, pu is the underlying (parent) price, and vu is volatility. Other option 
Greeks such as zomma, vomma, and vanna can also be calculated in a similar way. 
Refer to [13] for information on other option Greeks.

Since bond options are for an underlying security that is subject to maturity and thus a 
function of time, the most important task before one calculates the Greeks is to identify the 
underlying security. It is common practice for European options to use the forward security 
as the underlying security. However, this can cause consistency issues when we include 
American options and callable bonds, since the option delta can became larger than 1. 
While a delta larger than 1 is possible in some exotic options, for simple options it is never 
larger than 1. Alternatively, we can use the forward security based on the first exercisable 
date of an option. For options with discrete call dates, the underlying security changes 
when a call date expires, resulting in discontinuity in the risks of the underlying security. 
For consistency and simplicity, we use the spot underlying security for calculating Greeks.

Using the spot underlying security as the parent security for Greeks calculations 
will result in call and put at-the-money deltas that can be significantly different from 
0.5 and –0.5, respectively. In nearly all options, buying a call and selling a put has 
the same risk as buying the underlying security for forward settlement. However, for 
American options this is not the case, since one leg of the option might be economical 
to exercise early.
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Delta can be calculated by changing the yield of the underlying security and then 
calculating the impact of that change on the price of the security and the option. Using 
the TSIR, the price of the security can change due to changes in the level, slope, bend, 
etc. of the TSIR. Each one of those changes will result in a different delta.  The calculated 
delta from the changes in the yield of the parent security is very close to the delta 
calculated from the changes in the level of TSIR. A European call swaption expiring in 3 
years and with a forward maturity of 5 years has calculated deltas of 0.262, 0.161, and 
–0.235 from level, slope, and bend components, respectively. Thus, if the price change 
is from the slope of the yield curve, the delta hedging will not work as expected.

Vega, like delta, can be calculated by changing the volatility of the underlying 
security. However, using the TSYV, we can calculate the sensitivity of the option to the 
components of the term structure of volatility.

For bond options, theta and delta are related. If interest rates change, not only will 
the forward price of the option change, but also the discount function for calculating 
the present value of the option. This is one key ingredient that the Black-76 model is 
missing for correct evaluation of options. Using binomial trees addresses this issue, but 
the accuracy is not very high.

Table 15.3 shows common Greeks analytics for options listed in Table 15.1. 
The American call option has a higher than 50% probability of being exercised and 
therefore has a relatively high delta. This is reflected in the premium of the option as 
well in Table 15.1.

Ordinary options can only be hedged using other options that have the same 
expiration date but different strike prices. For American options that can be exercised 
continuously, there may not be any simple way of hedging them. The volatility model 
that was discussed in Chapter 9 can be used to hedge bond options similarly to the way 
TSIR exposures can be used for hedging interest rate risks.

15.6 RISK MEASUREMENT OF BOND OPTIONS

The risks of most options are measured by the delta of the option multiplied by the risks 
of the underlying security. For example, if an option has a delta of 0.4, the risk metrics 
of every unit of the option are equivalent to 0.4 units of the underlying security. Delta 
hedging for bonds does not work as well as for equities, currencies, and commodities.

TABLE 15.3 Bond option Greeks, July 8, 2011

Parent Option Greeks

Desc. Cpn Maturity Price C/P A/E Expiry Strike Delta Gamma Vega Theta

Option 3.65 7/11/22 100 C E 7/9/12 100.00 0.426 0.019 0.000 −1.946

Option 3.65 7/11/22 100 C A 7/9/12 100.00 0.564 0.018 0.000 −3.042

Option 3.65 7/11/22 100 P E 7/9/12 100.00 −0.462 0.016 0.000 −1.948

Option 3.65 7/11/22 100 P A 7/9/12 100.00 −0.471 0.015 0.000 −1.987

Bond 3.65 7/11/22 103.257

Frwd 3.65 7/11/22 100
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By changing the components of the TSIR and measuring their impact on the price 
of the option and the underlying security, we can calculate a different delta for each 
component of the TSIR. Alternatively, the calculated level, slope, etc. durations of an 
option are equal to their specific delta times the durations of the parent security.

The price of callable bonds is equal to the underlying bond (no call bond) minus the 
call price. The price of a puttable bond is equal to the price of the underlying bond plus 
the put price. Writing subscript u for the underlying, c for call and p for put options, 
and b for a callable or puttable bond, we have the identities

p p p p

D
p a p a

p

D
p a p a

b u c p

c k
c k c k
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b k
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= − +
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− − +
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2 pb
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where Dc k,  and Db k,  are the kth duration component of a call option and callable bond 
respectively, and Δ is a small shift in the kth component of the TSIR ak.

Table 15.4 lists the TSIR duration components of the options that were in Table 
15.3. The American call is more likely to be exercised early, resulting in a much higher 
sensitivity to the level of interest rates. On the other hand, the American put has a 
low probability of early exercise in the steep yield curve environment, leading to risks 
that are very similar to those of the European put option. The duration risks of the 
underlying cash bond and the forward bond are also presented for comparison.

The sensitivity of the option price to changes in the volatility surface can also be 
measured by changing the components of the term structure of Libor volatility (TSLV) 
in (9.24). These changes are in units of absolute interest rate, implying that the measured 
sensitivities will have the unit of time or duration. Thus, we call the TSLV sensitivity 
“the duration of volatility”. The kth duration of volatility is calculated as

D
p b p b

pv c k
c k c k

u
, ,

( ) ( )
=

− − +Δ Δ
Δ2 (15.47)

Table 15.5 lists the TSLR duration components of the options in Table 15.3. The 
first or level component is similar to the level of interest rates sensitivity and is usually 
the largest contributor to the TSLV risk of an option. The sensitivities of options prices 

TABLE 15.4 Bond option durations, July 8, 2011

C/P A/E Level Slope Bend 3rd 4th

C E 3.87 2.22 −2.25 −3.96 −1.43

C A 5.13 2.62 −2.86 −4.75 −2.15

P E −4.21 −2.61 2.56 4.54 1.46

P A −4.29 −2.65 2.60 4.62 1.49

Bond 9.10 4.09 −4.68 −8.00 −3.84

Frwd 8.41 5.02 −5.00 −8.84 −3.00
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to the components of the TSLV for American and European options are much closer 
than interest rate sensitivities.

15.7 TREASURY AND REAL BONDS OPTIONS

The term structure of yield volatility can only be calculated for Libor, where there is a 
liquid market in swaptions for a few currencies. For other currencies and treasury or 
real rates, where the volatility is not known, one has to estimate it in relation to either 
the volatility of known currencies or Libor volatility and the market relationships. For 
example, in the US, Libor and treasury rates have a correlation of more than 98%, 
implying that we can use Libor volatility to price treasury options.

Unlike yield which can be observed, volatility cannot be observed. Only historically 
volatility can be measured; future volatility can be traded and hedged, but cannot be 
realized. For example, an investment in a risk-free zero coupon bond with a yield of 
5%, will result in annualized return of 5% at maturity. The return of a transaction 
(not an investment) in a risk-free asset with a volatility of 15% will only be known at 
expiration or exercise time.

There is an implicit assumption in all volatility calculations that volatility is 
independent of yield. For equities, it is assumed that volatility is independent of stock 
price. In general, out-of-the-money options tend to have a higher implied volatility than 
at-the-money options. This is called the volatility smile (as opposed to the volatility 
frown if the opposite is true). It is possible to estimate the volatility smile for some 
highly traded options, but the data for calculating the term structure of volatility smile 
are currently not very reliable. 

There is significant evidence that the yield volatility is a function of yield. Prior to 
the Lehman bankruptcy, when short rates were about 4–5%, the short term volatility 
of 1-year bonds was about 20%. When Fed Funds rates were below 0.5%, the same 
rates had a yield volatility of more than 80% which stayed at elevated levels years after 
the crisis had ended. This can be explained by noting that the Federal Reserve usually 
moves rates in increments of 0.25% when they are in a tightening or easing cycle and 
the increments are not significantly different whether rates are at 5% or 1%. This 
is also one reason why volatility can be modeled much more accurately as absolute 
volatility instead of relative volatility in our TSYV. 

Aside from the yield dependence of volatility, for most securities, there is the 
uncertainty of the relationship between the security volatility and that of Libor. Of the 
fundamental rates which include treasury, real, and Libor, the most uncertainty is in 

TABLE 15.5 Bond option TSLV sensitivities, July 8, 2011

C/P A/E Level 2nd 3rd 4th 5th 6th 7th 8th

C E −3.136 −0.125 3.030 1.743 1.199 −1.171 −0.628 −0.705

C A −2.915 −0.068 2.808 1.905 0.315 −1.183 −0.967 −1.008

P E −3.139 −0.125 3.032 1.744 1.200 −1.172 −0.629 −0.705

P A −3.142 −0.123 3.035 1.756 1.171 −1.177 −0.643 −0.719
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the long term volatility structure of real rates, since they have the lowest correlation 
with Libor. One way to estimate the volatility of real rates is to use beta adjustment. 

Beta is a measure of the relative yield volatility of a security relative to the volatility 
of Libor. If yr 

is the yield of real bonds and yl is Libor yield, then

β =
( )

( )
∑
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Δ

Δ

y y

y y
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2 (15.48)

For example, if the yield volatility of real rates is 40% of the yield volatility of Libor 
rates, we can multiply all forward volatilities by 0.4 to estimate the forward real rate 
volatility. Option premiums increase almost linearly with beta. Table 15.6 shows a 
sample of at-the-money, 1-year expiration, 10-year maturity European call premiums 
for treasuries with different betas. 

15.8 BOND OPTIONS WITH CREDIT RISK

Up until now, our analysis of bond options assumed that there was no credit risk in 
the option and arbitrage-free requirements applied to Libor quality bonds. Since the 
term structure of volatility is derived from the Libor market, in the absence of a liquid 
market for other securities, their volatility has to be derived from Libor volatility. Beta 
adjustment is a reasonable approach for treasuries, since they have a very high correla-
tion with Libor and both are related to the general state of the economy. For corporate 
bonds, the spread of the security is a function of the economy as well as the credit fun-
damentals of the company. When the economy slows or recession is forecasted, nominal 
rates fall and spreads widen. During recoveries inflation falls and both nominal rates 

TABLE 15.6 Bond option beta sensitivities, July 8, 2011

Beta Premium

0.4 1.43

0.5 1.79

0.6 2.15

0.7 2.51

0.8 2.86

0.9 3.22

1 3.57

1.1 3.92

1.2 4.27

1.3 4.62

1.4 4.97

1.5 5.31
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and spreads fall. During periods of non-inflationary growth, spreads fall and rates tend 
to be stable. One way to model the volatility of non-Libor bonds is to assume that the 
bond spread relative to Libor varies according to its beta and correlation coefficient.

Correlation is a measure of how the spread and Libor move relative to each other. 
When inflation is not a threat, if the economy slows, rates fall while spreads widen, 
since a slowing economy is risky for corporations. If the economy accelerates, rates rise 
while spreads fall, since companies have stronger revenue to pay down debt. In this 
scenario, spreads and Libor are negatively correlated. If inflation is on the rise, the Fed 
raises rates to combat inflation, which usually results in higher rates as well as higher 
spreads. In this case, Libor and spreads will be positively correlated.

The correlation coefficient of change between two processes is defined as

ρ
μ μ
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where yl i,  is Libor yield at time ti, sc i,  is the security spread at time ti, μl  is the mean of 
changes in Libor over the sample period, and μc  is the mean of changes in the spread 
over the sample period.

Mathematically speaking, correlation is equal to the cosine of the angle between 
two vectors. Assuming that the changes in Libor yield and credit spread are respectively 
Δyl  and Δsc, the change in the yield of the bond is

Δ Δ Δ Δ Δy y s y sl c l c= + +( ) ( )2 2 2ρ (15.50)

Historically, treasury rates and Libor or swap rates have been very highly cor-
related, and therefore one can use the TSLV for pricing callable treasury bonds or 
options on treasury bonds. During times of crisis, such as the Lehman bankruptcy, the 
correlation between Libor and treasury rates falls slightly, but it is still more than 90%, 
and the correlation is higher for longer maturity bonds. Overall, treasury rates have a 
slightly lower volatility than Libor and we can assume that treasury bonds have a beta 
less than 1. 

Real rate bonds have a much lower correlation with Libor than nominal bonds, 
and their volatility is significantly lower. Options on real rate bonds can be priced using 
an estimated beta for real rates. For example, the ratio of 3-month historical market 
volatility for a specific real rate bond and a comparable Libor bond can be used to 
estimate the beta of real rate bonds. The beta can then be used in conjunction with the 
TSLV to estimate the market implied yield volatility of a real rate bond.

Analysis of options on credit securities is significantly more complicated than trea-
suries or interest rate swaps. For a given change in forward Libor rate, we cannot use 
the mean change in the spread based on correlation, because if the correlation is zero, 
the mean change in the spread will always be zero. Therefore, one needs to calculate a 
distribution of spread change scenarios that will result in the correct correlation and 
volatility of the spread, a process that can be computationally expensive. For practi-
cal purposes, one can use a weighted sum of about 10–20 scenarios that produces the 
expected correlation and beta. 
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First, let us consider two correlated normal distributions, a and b, with means of 
zero and standard deviations σa and σb and correlation ρab, defined as
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The joint distribution probability can be written as
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where β is the ratio of the standard deviations.  It is a trivial exercise to calculate the 
average of b, b, for a given value of a, and its standard deviation b2 as follows:
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Thus, the distribution of b is normal with mean ρ βab a and standard deviation σb
2.  By defini-

tion, a small change in the relative spread is proportional to the change in the relative Libor 
yield times the correlation. The proportionality factor is β. Thus, the spread can be written as
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Substituting for a and b from (15.51) into the above equation, the yield of the security 
is derived as
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In correlated distributions, there are two arbitrage-free requirements that need to 
be met: one for Libor and one for the security. The arbitrage-free requirements for cor-
porate bond options will be discussed in more detail in the next few sections.

15.9 THEOREM: CREDIT PRICES ARE NOT ARBITRAGE-FREE

At any given time, the values of ρ, β and yl in (15.55) are constant. y xc( ) is dominated 
by yl at very large values of yl in the forward distribution of rates, if the correlation is 
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negative. Likewise, at very small values of yl, y xc( ) will be dominated by s y yc l l, , ,0 0( )ρβ
 

which becomes arbitrarily large. Thus, for a negative correlation, the yield of a credit 
security can be arbitrarily large for either very high values of rates or low values of 
rates, and the resulting forward price can be arbitrarily close to zero at both extremes. 
Given the continuous nature of the price–yield relationship, the price will attain the 
maximum value somewhere between high and low rates. At the implied forward maxi-
mum price, there can be no distribution of forward rates that can result in the expected 
value of the price, and the forward yield volatility has to be zero. A call option struck 
at the yield corresponding to the maximum price can never be in-the-money and its 
price and volatility have to be zero. Since the forward yield volatility is not zero, a con-
stant negative correlation is mathematically inconsistent with arbitrage-free pricing. We 
conclude that the correlation must be a variable or changing with rates to ensure the 
stability and arbitrage-free status of forward pricing. 

Historically, the correlations of high grade, high yield, and emerging markets bonds 
with interest rates have been negative. Using weekly treasury rates from Federal Reserve 
H.15 tables and Moody’s BAA yields that are also available on the Fed’s website, we can 
estimate the historical correlation of treasury rates and BAA spreads. By subtracting the 
10-year constant maturity treasury rate from the BAA yield, we can estimate the spread 
of the high grade bonds relative to the treasury rate. The calculated correlation from 
1995 to 2013 is equal to −0.50 with a beta of 0.33.

Given the long term persistence of the negative correlation between treasury 
rates and credit spreads, especially when interest rates are falling, one has to question 
the market efficiency of credit spread pricing. In all crises, including the early 1990s 
mortgage crisis, the 1998 Russian/LTCM crisis, the 2001 technology bubble, and the 
2008 Lehman bankruptcy, when interest rates fell sharply, credit spreads widened, 
resulting in negative correlation between rates and credit spreads.

It is intuitively reasonable to assume that during a crisis, when investors seek 
principal protection by selling credit securities, the Fed or central banks in general 
lower rates to mitigate the effects of risk aversion resulting in negative correlation 
between rates and spreads. However, this phenomenon is inconsistent with arbitrage-
free pricing and efficient market hypothesis. Estimating the correlations and betas 
of the market, one can estimate the maximum price that a security can attain and 
construct a portfolio of short call options to take advantage of the market behavior. 
The negative correlation at the time that interest rates fall is part of the structure of 
the market and is not likely to change. It is thus logical to conclude that credit rates do 
indeed have a maximum price/minimum spread that can be mathematically calculated.  
From (15.55), we can write
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Minimizing yield by differentiating with respect to f results in
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For a negative correlation, the above equation has a positive definite root that defines 
the minimum value of the yield that a credit security can assume. Once the minimum 
value of the spread is attained, further fall in interest rates will result in spread widening. 

Based on this argument, one has to conclude that the spread market is not efficient 
and there are long term arbitrage opportunities in it. 

15.10 CORRELATION MODEL

Zero or very small positive correlations are most often unstable and the arbitrage-free 
condition cannot be met. We know that a negative correlation is not stable at all rates 
and has to become positive at some point. Given the stability of positive correlation, 
should one assume that a positive correlation can be constant?  How do we differenti-
ate between a positive correlation and the positive component of a negative correla-
tion? For consistency reasons, and considering that positive correlation could indeed be 
a manifestation of the variable nature of the negative correlation at different forward 
rates, we will assume that correlation is a function of yield such that the correlation is 
equal to the mean value of the correlation at all forward rates.

Correlation is always between –1 and +1; one way to model it is to use the tangent 
hyperbolic function as follows:
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The values of αρ  and η need to be calculated in such a way as to ensure that the average 
weighted correlation is equal to the expected correlation. Using the probability distri-
bution of forward rates, we require the equality
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We can only solve for αρ  or η using the above equation. To satisfy the arbitrage-free 
requirement, αρ  

has to be negative, so that at low rates correlation is positive. We can 
select the value of αρ

 
and calculate η, which is the decay coefficient for the correlation 

coefficient.
We can also use a correlation model that requires only one parameter to be 

calculated and positive correlation at low rates is guaranteed.  An exponential function 
similar to the time decay function (2.16) that has a range of (−1,1) can be used as 
follows:
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The drawback of this model is that it is not symmetric at low and high rates.   Figure 15.5 
shows the shapes of the hyperbolic and exponential correlation models. 
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15.11 CREDIT BOND OPTIONS EXAMPLES

For non-floating corporate bonds, a parallel shift in the credit curve or interest rate 
(treasury curve) results in the same price sensitivity, that is, duration components. Arbi-
trage-free requirements guarantee that a parallel shift in interest rates or credit curve 
results in the same price for the underlying security. For options, when the Libor curve 
is shifted, the drift needs to be recalculated to ensure arbitrage-free pricing of Libor and 
the security. However, shifting the credit curve, the Libor drift does not change but the 
credit drift needs to be recalculated and therefore the credit distribution will be slightly 
different from the case where Libor is shifted. This will result in different duration 
components for Libor and credit for a credit option, even if both correlation and beta 
are equal to unity. 

In deciding to exercise an early call option, the issuer needs to consider its financing 
option and therefore discount the option value and premium by its credit curve.

Once the choice of option exercise is made by the issuer, the value of the option has 
to be discounted back by Libor for the bond holder. 

The present value of an option for a bond holder can be significantly higher than for 
the issuer. Therefore, callable bonds must trade more cheaply than non-callable bonds 
and issuers of such bonds are penalized through the overestimation of the call value. 

Table 15.7 shows the call value and 3-month at-the-money call for two custom 
callable securities. Security A has a fixed coupon of 4% that steps up to 10% in 2016 
and is priced at 99.5. Security B has a fixed coupon of 5% that becomes floating based 
on 6-month Libor with a spread of 5% after 2012 and is also priced at 99.5. The “A 
beta” and “B beta” calculations are based on a constant correlation of 1 and using the 
beta adjustment explained in Section 15.7. The calculated call prices are based on a 
beta of 2.5 for both securities using three different correlation coefficients.

FIGURE 15.5 Correlation functions

–1.2

–0.7

–0.2

0.3

0.8

–5 –3 –1 1 3 5

Hyperbolic

Exponential

ln (yl/yl,0)



240 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c15.indd 03/28/2015 Page 240

There is a very large variation in the call value of a callable bond or the price 
of an option on a bond based on correlation assumptions. Securities A and B could 
simply be two bonds issued by the same issuer with fixed and floating coupons. Other 
than using a correlation model, there is no way to calculate the price of options on 
different securities of an issuer in a consistent way. Estimating the market volatility 
based on historical data is incorrect because it is not clear if the source of volatility 
was due to interest rates or the spread. If an issuer has both floating and fixed rate 
bonds, the decomposition of interest rate volatility, spread volatility and correlation 
is the only approach that can result in a consistent and arbitrage-free pricing of their 
options. 

Correlation, beta, forward yield, spread, and arbitrage-free requirements all 
contribute to the price of an option.  Without option calculation, it is not always easy 
or intuitive to estimate the option’s price. For example, floating coupon security B has a 
lower premium value with zero correlation than with a negative correlation of –0.7. The 
correlation function will force positive correlation at low rates and negative correlation 
at high rates. The negative correlation at higher rates will result in more stable prices, 
while at lower rates the price increases very rapidly. The arbitrage-free requirement 
shifts the distribution of yields and will result in lower probability of exercise. On the 
other hand, starting with a negative correlation, the price of the security is dominatevd 
by the spread that has a higher duration and beta, and the resulting distribution will be 
closer to the center.

Next, we used security A with a correlation of 0.5 and calculated the call and 
put option premiums as well as the call value using different values of αρ  in equation 
(15.58). Table 15.8 compares the calculated prices of options using the correlation 
models. The call values are very close for a wide range of αρ  and have a significantly 
tighter range than the typical bid–ask spread for the price of such options. 

Bond options can be calculated similarly to callable/puttable bonds. The spread 
correlation and spread beta can be estimated much more reliably from historical 
data for short dated bond options. For such bonds, the change in spread correlation 
and beta is likely to be small, leading to more accurate pricing and hedging of the 
option.

TABLE 15.7 Call values of credit bonds, July 8, 2011

Security Corr Beta Cpn Maturity Price Call Value 3 Mo.  Call

A 0.7 2.5 4 1/15/26 99.50 8.20 5.38

A 0 2.5 4 1/15/26 99.50 5.16 2.00

A −0.7 2.5 4 1/15/26 99.50 1.95 1.43

B 0.7 2.5 5 1/15/26 99.50 4.06 3.90

B 0 2.5 5 1/15/26 99.50 2.10 0.72

B −0.7 2.5 5 1/15/26 99.50 2.79 2.79

A Beta 2.5 4 1/15/26 99.50 14.04 10.07

B Beta 2.5 5 1/15/26 99.50 6.12 6.27
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15.12 RISK MEASUREMENT OF COMPLEX BOND OPTIONS

Options on most credit bonds can be calculated by using the correlation and beta as outlined 
in the previous sections. The pricing of complex securities or bonds can depend on all four 
curves – treasury, real, Libor, and credit – along with their associated correlations and betas. 
We can, therefore, calculate all four groups of durations and convexities plus the sensitivity 
of a security to the TSYV as well as options Greeks for an option on a credit security.

Most of the risk measures of bond options cannot be calculated analytically and 
numerical methods have to be used as outlined in (15.46). For example, to calculate the 
credit duration of a call option, we use the formula
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(15.61)

where Dp c k, ,  is the kth credit duration of the put, pp
 
the put price (premium), pu 

the price 
of the underlying (parent) security, ac k,  

the kth component of the TSCR, and Δ a small 
change in the kth component of the TSCR.

Fixed coupon credit bonds have equal credit and treasury duration. However, 
options on the same bonds have different credit and treasury durations, even if we 
use a correlation and beta of unity. This is an artifact of the arbitrage-free requirement 
model that is used for option pricing. For example, in order to calculate the credit and 
interest rate durations of a security, we need to take the following steps:

 ▪ Shift the treasury curve – Calculate the drift to ensure arbitrage-free pricing of 
Libor. The calculated drift is slightly different from the unshifted treasury curve. 
The credit curve is also shifted to maintain the constant credit spread. The drift for 
the credit curve needs to be recalculated to ensure arbitrage-free pricing.

TABLE 15.8 Option values for varying correlation parameters, July 8, 2011

Model Slope Call Value 3 Mo. Call 3 Mo. Put

Hyperbolic 0.20 6.84 4.17 4.18

Hyperbolic 0.40 6.60 4.10 4.12

Hyperbolic 0.60 6.59 4.12 4.14

Hyperbolic 0.80 6.68 4.17 4.20

Hyperbolic 1.00 6.72 4.22 4.25

Hyperbolic 1.20 6.72 4.26 4.28

Hyperbolic 1.40 6.73 4.27 4.29

Hyperbolic 1.60 6.70 4.27 4.29

Hyperbolic 1.80 6.67 4.26 4.28.

Hyperbolic 2.00 6.65 4.26 4.28

Decay 7.30 4.24 4.24

Average Hyper 6.69 4.21 4.23

Stdev 0.07 0.06 0.06
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 ▪ Shift the credit curve – The Libor curve along with its associated drift will not 
change, but the drift of the credit curve needs to be recalculated.

 ▪ Calculate the durations – The two above cases will result in slightly different dis-
tributions for the credit curve and the resulting options prices and calculated dura-
tions will be slightly different.

Table 15.9 shows three components of the credit and treasury durations of the 
securities that were listed in Table 15.7.

15.13 REMARKS ON BOND OPTIONS

Bond options trade very heavily in fixed income markets. Exchange traded options on 
bond and note futures are among the most liquid instruments of any kind in the mar-
ket. Pricing these short dated options can easily be done using Black–Scholes formulas. 
For longer dated European options which are heavily traded as swaptions, Black-76 is 
the most widely used model for pricing. It is very fast for calculations and reasonably 
accurate for short dated swaptions. However, as mentioned in Section 15.1, it is not 
completely free of defects and the power of today’s computers has all but eliminated its 
speed advantage compared to more complex algorithms. 

Pricing American call options is usually done by simulation or using a binomial 
tree structure. Both of these models converge relatively slowly and accuracy is usually 
an issue. The convergence of both methods is proportional to the square root of the 
number of simulation paths or steps in the binomial tree. For example, if the pricing 
error is $0.50, you need to increase the number of steps by a factor of 25 to get the 
error to about $0.10. By using Simpson’s rule for integration, the model presented in 
this chapter converges almost quadratically. 

Most high yield bond companies issue callable bonds.  Considering the size of the 
market, there are not many successful models to price such long dated bond options. 
Additionally, some of those bonds can have either floating or fixed coupon rates. It 
appears that, without a correlation and beta model, it is not possible to price fixed and 
floating bond options of an issuer on a consistent basis. 

TABLE 15.9 Call risks of credit bonds, July 8, 2011

Security Corr Credit Treasury

Level Slope Bend Level Slope Bend

A 0.7 2.32 1.60 −0.30 2.46 1.73 −0.25

A 0 2.07 1.70 0.08 1.67 1.25 −0.06

A −0.7 3.42 3.45 1.07 2.54 2.50 0.73

B 0.7 1.21 0.93 −0.21 0.58 0.18 −0.39

B 0 1.14 1.01 0.17 0.33 0.12 −0.20

B −0.7 1.40 1.16 0.10 0.46 0.14 −0.32

A Beta 3.23 1.86 −0.86 3.23 1.87 −0.85

B Beta 1.82 1.29 −0.13 0.96 0.34 −0.54
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We showed that using the historical market dynamics implies that corporate 
securities pricing is subject to arbitrage; however, the pricing model must be arbitrage-
free. There clearly is an issue with the correlation of spreads and treasuries at times of 
crisis, implying that corporate yields peak at both ends of the interest rate spectrum 
which will not be addressed by the pricing models.  If the pricing model is subject to 
arbitrage, one can immediately construct an arbitrage portfolio and take advantage of 
the opportunity. 

Given the variability of correlations and betas, it is not clear if one can calculate the 
maximum price of corporate securities knowing the market dynamics. If one is able to 
estimate the maximum achievable price of a corporate security, he can sell call options 
at that strike price and realize free money, since the options will never be in-the-money.

We know that during times of easy credit, the excesses will build in the economy 
until they are no longer sustainable. At some point investors decide that the marginal 
gains from investing in credit securities are not worth the required level of risk and they 
start pulling their money out of risky ventures. Once the tide turns, more and more 
investors follow suit until a critical stage is reached where the central bank steps in and 
eases monetary policy. This dynamic is not likely to change in the future, hence credit 
prices will continue to be subject to arbitrage.

Identification of the peaks and the willingness to step out of credit markets, when 
the spreads are too tight, makes the case that active investment management can add 
value compared to indexation. 
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Currencies are very important components of any global portfolio. There is signifi-
cant academic and non-academic debate as to whether currency is an investment 

asset class or is simply the attribute of a transaction. A corporation can issue its debt 
in multiple currencies and they can all have the same credit risk and should all trade 
at the same default probability relative to the local currency’s risk-free rate. Likewise, 
countries can issue debt in foreign currencies which carries a credit risk.

Currency is one of the tools that many central banks use as a monetary policy 
vehicle. A depreciating currency increases import prices of goods in an open econ-
omy and can result in inflation. On the other hand, an appreciating currency can put 
 domestic producers at a competitive disadvantage relative to imported goods. For these 
and other political reasons, many countries attempt to manage or manipulate their cur-
rencies. Currencies management can fall into one of the following regimes.

 ▪ Pegged – A pegged currency is one that has a fixed exchange rate compared to a 
major currency, usually the US dollar or sometimes sterling, the euro, etc. For a 
peg to be maintained, the country has to have a strong economy, a relatively large 
current account surplus and very large foreign currency reserves. During times of 
higher inflation than the host country or at times of crisis, the central bank needs to 
intervene in the markets by selling dollars or other currencies and buying their own 
currency to maintain the peg. The Hong Kong dollar is an example of a success-
ful peg to the US dollar. The Argentine peso is an example that failed after about 
10 years in 2001 – the peso lost about 75% of its value in a short period of time.

 ▪ Strongly managed – A strongly managed currency is similar to a pegged currency, 
except that the currency has a tight range within which it can move relative to a 
major currency or basket of currencies. Usually, the country institutes strong capi-
tal restrictions to enforce the currency range. For currencies with a large current 
account surplus and growth rate such as Chinese renminbi, the country may limit 
the flow of foreign capital. Some countries such as Brazil have instituted tax for 
capital inflows and outflows. The central bank often buys foreign currency as a 
way to prevent rapid appreciation of the currency. The former communist countries 
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had strongly managed currencies and prevented foreign capital from flowing in 
and domestic capital from flowing out. Most countries that manage their currency 
strongly tend to develop two separate interest rates or even exchange rates, known 
as on-shore and off-shore rates.

 ▪ Weakly managed – A weakly managed currency is one that has a relatively wide 
range relative to a reference or a basket of major currencies. Weakly managed curren-
cies are often supported by monetary policy such as raising interest rates, to attract 
capital. Many eastern European currencies and the Danish krone fall in this category.

 ▪ Free floating – Nearly all major currencies are free floating and the market forces 
drive their valuations. In rare instances, if a major currency becomes very rich 
or cheap, central banks may intervene. However, due to the enormous liquidity 
of major currencies, the capital needed to move them can be very large and may 
require a coordinated effort by central banks. In the early 2000s there was an inter-
vention to stop the slide of the euro relative to the US dollar.

16.1 CURRENCY FORWARDS

Most currency transactions take place using forwards. A forward is an agreement to 
purchase a currency for forward or future settlement. For example, if 3-month forward 
EUR is $1.30, in 3 months, if the EUR spot price is $1.32, the buyer of €1.0 million will 
be entitled to pay $1.3 million and receive €1.0 million at settlement. For cash settled 
transactions, the buyer will be entitled to receive the difference between the spot price 
and the transaction price in cash instead of receiving the currency. The date at which 
the final price is established is called the value date and is usually two or three business 
days before the settlement date, at which time the exchange takes place.

The forward price of a free floating currency is calculated in such a way that the for-
ward value of a short term investment in both currencies will be the same (arbitrage-free). 
If r1 and r2 are the short rates of currencies 1 and 2, and xs and xf  are the number of units 
of currency 2 for one unit of currency 1 in the spot and forward markets respectively, then

x r t x r tf s( ) ( )1 11 2+ = + (16.1)

The left hand side of equation (16.1) represents investment in one unit of the first 
currency for a period of t and then converting the result to the second currency in the 
future. The right hand side is converting the first currency to the second in the spot 
market and then investing in the short term deposit rate of the second currency. The 
forward price can be simplified as
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For small interest rate differentials, the forward price relative shift is equal to the 
interest rate difference times the time to the forward time. For example, if the spot price 
of BRL (Brazil Real) is 2, i.e., 2 BRL’s is equal to one dollar, and short rates in the US and 
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Brazil are 1% and 9% respectively, the three month forward price of BRL will be 2.04, 
implying that BRL is expected to devalue by about 2%.

16.2 CURRENCY AS AN ASSET CLASS

Nearly all investment asset classes are based on the issuance of a security or asset that is 
supported by a physical property, asset or good faith of the issuing institution. As such, 
there is a limited supply of the asset that cannot be increased by anyone other than the 
issuer. To short the asset, one has to borrow the asset from an asset holder and receive 
the repo rate in exchange for the cash that is the collateral for the borrowed asset. 

Most currency transactions are like swaps and are governed by ISDA agreements. A 
currency transaction is symmetric and a zero sum game, and its expected return is zero. 
If one side of the transaction makes money, the other side will lose the same amount 
(except for transaction costs). However, when purchasing a traditional asset class, such 
as a government or a corporate bond, if rates go down, the investor profits, but the 
issuer does not lose. Since the expected returns of currencies are zero, assuming the 
efficient market hypothesis, currency investment should not be an asset class.

Fama [14] found that there was a higher correlation between the current spot 
exchange rates and future spot rates than between forward rates and future spot rates. 
In the above example, BRL will be more likely to be closer to 2.0 than to 2.04 in 3 
months’ time. This is particularly true if inflation rates are about the same in both coun-
tries. The exchange rate patterns in recent history also support the notion that higher 
yielding currencies outperform lower yielding currencies.

When productivity is high, the return of capital is also high. The demand for money 
for investment results in high real rates. Likewise, foreign capital seeking a higher rate 
of return flows into the host country, resulting in appreciation of the exchange rate. 
This is true even if the trade balance is in deficit, since capital flows much faster and 
more freely than goods. Likewise, when the demand for capital is low or the savings 
rate is high, the excess capital results in lower interest rates and capital flows to higher 
return currencies. A high yield currency is also known as a carry currency and a low 
yield currency is known as a funding currency. During times of crisis, capital repatria-
tion results in sharp declines in carry currencies in a short period of time.

Historical data are abundant with long term currency appreciations as developing 
countries enact market friendly policies and encourage foreign investments resulting in 
very high productivity rates as they narrow the standard of living gap with developed 
countries. The Japanese yen stood at more than 300 to the dollar in the 1960s and 
early 1970. The German Mark stood at 4 to the dollar in the same period. These are 
examples of countries closing the technological gap with the US. Many Asian and South 
American countries are on a similar trajectory, and African countries will surely follow. 

Table 16.1 is a simple analysis of 35 currencies (AUD, BRL, CAD, CHF, CLP, CNY, 
COP, CZK, DKK, EUR, GBP, HKD, HUF, IDR, ILS, INR, ISK, JPY, KRW, MXN, MYR, 
NOK, NZD, PEN, PHP, PLN, RUB, SEK, SGD, THB, TRY, TWD, UAH, USD, and ZAR) 
in the period 1998–2011. On the last business day of every month, the seven highest 
yielding currencies were purchased and seven lowest yielding currencies were sold short 
1 month forward. At the end of each month, the forwards would become equal to the 
future spot exchange rates and the gains (G) and losses (L) were tabulated using equal 
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weights for all currencies. For a portfolio of $1 million there were a net amount of $1 
million long and short positions every month.

The overwhelming evidence is that currency investing can have net positive return, 
even if it is against the efficient market hypothesis (EMH) principle and therefore is an 
asset class. For most global or multi-sector portfolios currency transactions are used for 
hedging the currency risk of bonds or stocks or for generating alpha. Currency transac-
tions are ideal for generating excess return in portfolios in a consistent way since they 
do not require any upfront capital at initiation.

16.3 CURRENCY TRADING AND HEDGING

Currencies are always traded in pairs. The first currency or the home currency is called 
the base currency and the second or foreign currency is called the quote or counter 
 currency. The price of a currency is the number of the quote currency units for each unit 
of the base currency. For example, a quoted price of JPY in USD of 88.5 implies 88.5 
yen per US dollar, and is shown by the International Organization for Standardization 
(ISO) codes of the respective currencies as USD/JPY or USDJPY.

If the base is explicitly stated, the market convention for the base is used. The euro 
is always assumed to be the base unless another currency is explicitly stated. For exam-
ple, when EUR is quoted to be 1.32, it implies that EUR 1 is equal to USD 1.32. The 
order of precedence of currencies as base is as follows: euro, pound sterling, Australian 
dollar, New Zealand dollar, US dollar, Canadian dollar, Swiss franc, and Japanese yen.

TABLE 16.1 Long/short currency trades

Year G/L

1998 14.3%

1999 28.0%

2000 16.5%

2001 16.8%

2002 11.6%

2003 24.5%

2004 17.0%

2005 16.0%

2006 4.8%

2007 10.4%

2008 −2.8%

2009 19.5%

2010 1.7%

2011 5.1%

Average 13.7%

Stdev 8.7%

Source: Bloomberg
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Currency forwards are often priced based on the spot price plus points or pips. A 
pip is typically the fifth significant figure of the price spread, but it can change if the 
 digits of the currency price changes. For example, for a USD based account the euro may 
be quoted as 1.2432/1.2435 as bid/ask prices for EUR 1. The spread between bid and 
ask of 0.0003 is called 3 pips in trading. For Japanese yen, when it trades at an exchange 
rate of more than 100, the pip may be the fifth significant figure (e.g. 108.23/108.20), 
but at lower than 100 it could be the fourth significant figure (e.g. 92.56/92.54).

The quoted prices of the base and quote currencies are the opposite of each other 
and can be confusing to inexperienced traders. For the euro, since it is the base currency, 
the offer price is higher, since it represents the number of US dollars per euro. However, 
for the Japanese yen the offer is lower, since it is the number of yen per US dollar. 

Forward currency prices are usually also quoted in terms of pips plus spot price. 
For example, if BRL spot is at 1.92, a 3-month forward may be quoted at +155, imply-
ing a price of 1.9355. 

Global fixed income portfolios should be managed on a currency hedged basis, 
and currency should be used as an overlay to take active currency bets. In a typical 
fixed income portfolio with a duration of 5 years and absolute interest rate volatility of 
100 bps, the volatility due to interest rate movements is about 5%, while the  currency 
volatility is usually about 10%. Therefore, an unhedged global portfolio has a higher 
volatility from currency and becomes more of a currency investment than bond invest-
ment. In a currency hedged portfolio the rate and currency decisions can be made inde-
pendently, while in unhedged portfolios they have to be made together. A potentially 
good rate opportunity cannot be implemented if the currency fundamentals are not 
supportive in an unhedged portfolio.

A country with a steep yield curve offers very attractive carry for hedged currency 
return, since the cost of currency hedging is short rates while the yield earned is from 
long rates. On the other hand, an inverted yield curve is a much better candidate to buy 
the currency and short the bond, since inverted yield curves usually imply high real short 
rates which supports the currency. Historical analysis shows that steep yield curves have 
the highest future returns especially if combined with high real rates. As we saw in Table 
5.1, in the long run the biggest contribution to return is from yield or carry.

When purchasing a foreign currency bond, the hedge can be instituted at the same 
time or usually 1 day later. Most currencies are settled T+2, implying two business 
days from the trade date, while bonds are usually T+3. The currency hedge is simply 
a currency spread where short term currency is purchased for settlement on the bond 
settlement day and the forward (typically 1 month or 3 months) is sold short at the 
same time. This is exactly like a short currency roll, where the short end is covered and 
a new short at the longer end is opened. The transaction cost of the currency spread 
is significantly lower than a naked currency position, since there is no exposure to the 
currency. The only exposure is to the short term interest rate, which is usually an order 
of magnitude less volatile than the exposure to the currency.

16.4 VALUATION AND RISKS OF CURRENCY POSITIONS

The forward price of currency positions can be calculated from (16.2) provided that the 
short term rate and spot currency are known. The volatility of unhedged portfolios can 
be significantly higher than hedged currency portfolios due to currency fluctuations. 
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Pricing inconsistency can be another source of relative volatility. For example, a global 
index may capture the bond and currency prices at 1:00pm London time, while a US 
based portfolio may capture currency prices at 2:00pm New York time. If currency 
prices have moved between New York and London closing times, the portfolio will 
show a tracking error purely based on the timing of price captures. Calculating cur-
rency prices for a portfolio and its benchmark on a consistent basis provides much 
more reliable risk metrics and tracking errors.

Pricing and risk management can be easily achieved by calculating the term struc-
ture of rates for each currency. Knowing the short term rates of the host currency, we 
can calculate the continuously compounded short rates. For example, for the US, where 
the deposit rates follow the Actual/360 convention, the future value of a time deposit 
with n1 days to maturity is
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Given the mid-point of the bid–ask forward prices of a currency using the base 
 currency (USD in this example), we can calculate the respective implied short rate of 
the foreign currency from (16.1) as
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where n2 and M2 are the number of days in the period and year for the quote currency 
for a time deposit. Given two liquid forward prices of the quote currency, we can calcu-
late the implied short term rates at two points and then calculate the term structure of 
rates using two parameters and assuming that the remaining three parameters are zero. 
Having calculated the term structure of short rates in different currencies, all forward 
rates can be calculated from the spot prices as

x x ef s
y y tq b= −( ) (16.5)

where yb and yq are the continuously compounded short rates of the base and quote 
currencies, respectively. 

Most accounting or record keeping systems break down a currency transaction 
into two forward settled cash transactions. For example, a 3-month BRL forward at a 
price of 1.92 per USD and a face value of 19.2 million will be broken down into a BRL 
19.2 million credit and a $10.0 million debit with a transaction date of 3 months into 
the future. The present value of the BRL credit can be calculated from its term structure, 
and the duration components can be calculated as

D tk k= ψ (16.6)

where ψk is the kth component of the term structure of rates. Since deposit rates are 
of Libor quality, the duration contribution of currencies is Libor based and the dura-
tions have to be aggregated with Libor durations. The contribution of currencies to 
interest rate risk is small, but for levered portfolios or if currency positions are longer 
than 3 months, the contribution of durations to the portfolio’s host currency needs 
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to be calculated and properly aggregated. There is a much larger universe of tradable 
currencies than interest rate swaps and the short term structure of interest rates can be 
estimated for all currencies that have active forward markets.

16.5 CURRENCY FUTURES

Currency (FX) futures, like bond futures, are exchange traded instruments with stan-
dardized contract size and expiration dates. Most contracts are deliverable and there is 
daily margin movement, so the gain and losses are current on a daily basis. Unlike over-
the-counter currency transactions that are broken into two positions for the respective 
currency pairs, FX futures are maintained by accounting and record keeping systems as 
one position, with the number of shares representing the number of contracts.

The price quotation of FX futures is the number of units of the domestic currency 
where the contracts trade per unit of the foreign currency regardless of the market con-
vention for the base and quote currency. For example, the market convention for EUR/
USD is base EUR and for JPY/USD base USD. Thus EUR=1.25 means that EUR 1 buys 
USD 1.25, but JPY=125 means that USD 1 buys JPY 125. In exchange traded futures, 
EUR would be quoted as 1.25 and JPY would be quoted as 0.0080.

Analysis of currency futures requires breaking a futures contract into the respective 
positions for the currency pair adjusted for the contract size of each contract and then 
performing the necessary risk analysis. Due to daily margin movement, the value of 
the quote currency changes every day depending on the price of the base currency. For 
example, for one EUR futures contract with a face value of €125,000, if the price of 
EUR changes from 1.20 to 1.19, there will be a margin movement of 125,000 × 0.01 = 
$1250 debit from the long position or credit to the short position. The USD face value 
changes from 125,000 × 1.2 = $150,000 to $148,750.

In over-the-counter trading, a fixed amount of quote currency is exchanged for a 
fixed amount of base currency on the value date. However, in FX futures trading, due 
to daily margin movement, a fixed amount of the base currency is exchanged for a vari-
able amount of the quote currency. The amount of quote currency changes similarly to 
all other futures such as bond futures.

16.6 CURRENCY OPTIONS

Currency options are the most traded of all options. Most exotic options, such as 
single and double barrier, digital, lookback, and basket, are primarily used for cur-
rency  trading. Most record keeping systems report currency options as a single posi-
tion. However, for proper risk measurement, the currency option has to be broken up 
into its components and the face amounts have to be adjusted by the option delta. For 
example, a call option on 10 million EUR/USD at a strike price of 1.30 in 3 months, 
when the forward EUR is at 1.27 with a delta of 0.3 and premium of $0.01 for a USD 
based investor, should be broken up into:

 ▪ 0.3 × 10,000,000 long EUR forward position (delta adjusted).
 ▪ 0.3 × 10,000,000 × 1.3 short USD forward position (delta adjusted).



252 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c16.indd 03/25/2015 Page 252

 ▪ 0.01 × 10,000,000 in USD for the value of the option.
 ▪ The present value of 3 months forward 0.3 × 10,000,000 × (1.3 – 1.27) USD as 
cash adjustment.

The last item is necessary to maintain the overall market value of the portfolio. The 
forward EUR and USD positions do not cancel each other, since they are based on the 
strike price of the option which is different from the forward price of the currency.

The duration risks of the synthetic forwards must be calculated using the TSIR for 
each respective currency.
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Mortgage bonds are bonds whose principal is collateralized by an underlying  
 property or real estate. The borrower for most residential single family mortgages 

has the option to prepay any or all of the principal back at any time, and therefore it 
is like a bond with continuous call option. The borrower usually does not always have 
the flexibility or the sophistication of an institutional borrower to call the bond at opti-
mum time and yield. Therefore, before analyzing mortgage bonds, we need to develop 
a model, based on historical data, that explains the behavior of home owners under 
different interest rate scenarios. Such a model is called a prepayment model. 

Mortgage bonds with prepayment restrictions are like regular bonds without call 
option through the restriction period. The principal of a mortgage loan is usually paid 
back in one of the following ways:

 ▪ Regular amortization of the loan.
 ▪ Accelerated payments – for example, some borrowers make 13 payments per year 
to shorten the life of the loan.

 ▪ Selling the house – if the home owner sells his house, the new buyer has to get a 
new loan and the old loan is paid back in full, unless it is assumed by the new buyer, 
which is very rare.

 ▪ The home owner refinances the loan at a lower rate – the remaining principal is 
paid back in full.

 ▪ Default – the home owner defaults at which point the insurance takes effect and the 
insurance company pays back the principal.

 ▪ Payback – after a number of years the home owner decides to repay the loan in full.

There are significant costs for refinancing a mortgage. The borrower has to pay for title 
search and insurance as well as points for new loans. The cost to the borrower is typi-
cally about 0.5–0.75% of additional interest for the loan.

We will analyze each of the above components in the following sections.

CHAPTER 17
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17.1 HOME SALE

When a home is sold, the principal of the loan is paid back in full. In rare cases where 
the loan is assumable and the buyer assumes the loan, the principal is not paid, but such 
loans are extremely uncommon for single family home loans.

When an individual buys a home or refinances the loan of an existing home, he/
she is not likely to sell or refinance the home immediately due to the associated costs 
of a new loan. Therefore, the prepayment probability at the beginning of a mortgage 
is low. In the prepayment speed assumption (PSA) model, it is assumed that it takes 
30 months for a mortgage loan to become seasoned. A seasoned home has a turnover 
 probability of about 6% per year, and during the seasoning period the turnover prob-
ability increases linearly with time. In the mortgage bond trading business, a prepay-
ment rate of 6% per year is called a prepayment rate of 100 PSA.

We assume that the change in the relative factor due to home sale is an exponen-
tially decaying function of time,

df
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a dt b e dts

s
s s

c ts= − + − (17.1)

where fs is the mortgage factor due to home sale, dfs/fs is the relative change in the 
mortgage factor due to home sale in time dt, asis the factor for home sale after a very 
long seasoning period, bs is the initial factor for home sale, and cs is the decay coef-
ficient for home sale.

At the beginning of the mortgage, the change in mortgage factor due to home sale 
is zero. Also, after a very long time, at 100 PSA, the annual home sale rate is 6%, thus 
we can write

a bs s= = 0 06. (17.2)

Upon integration, we have
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= − + − − (17.3)

FIGURE 17.1 Fraction of homes sold per year
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Our model is somewhat like the PSA model, except that it is a continuous function of 
time, as shown in Figure 17.1 for cs = 1. The PSA average of 6% is a long term average. 
For calculation purposes, one can scale the model depending on the expected housing 
turnover.

Home sales are very seasonal. For example, the average number of houses sold in 
August is more than double that in February. We can incorporate the seasonality com-
ponent into the data.

17.2 REFINANCING

Home owners start to refinance their home when it is economically beneficial. The refi-
nancing is usually done at a time and rate that is not optimal. The cost of refinancing 
including title search, broker fees, and other costs is about 0.50% in rate of the new 
mortgage. A home owner usually has the option of refinancing at a rate that is about 
0.50% higher and paying no closing costs and fees. When the interest rate differential is 
more than 0.50%, home owners start to refinance their mortgages. We define the incen-
tive to refinance as the difference between the existing mortgage rate on a home and 
the market rate plus 0.50%. For example, if the mortgage rate is 6% and the current 
market rate is 4.9%, the incentive to refinance is 6 − 4.9 − 0.5 = 0.6%, the amount in 
rate that the call option is in-the-money.

After rates have been low enough to make economic sense for home owners to refi-
nance for a while, the eligible candidates refinance their mortgages. The remainder, for 
economic reasons, or due to credit score or other restrictions, are less likely to refinance. 
This phenomenon is called “burnout”. 

We first define the refinancing incentive of a mortgage in terms of the difference 
between the existing mortgage rate, the current mortgage, and the cost of refinancing as 

r t r r si t( ) = − −0 (17.4)

where r ti( ) is the refinancing incentive at time t, r0 is the mortgage rate, rt is the rate at 
a time t after initiation of the mortgage, and s is the spread to account for the cost (of 
mortgage or refinancing) mortgage (i.e. 0.50%).

We model the prepayment rate related to refinancing as

df
f

a r dt b e r t dtr

r
r i r

c R
ir= − − − ( ) (17.5)

where fr is the mortgage factor due to refinancing, dfr/fr is the relative change in the 
mortgage factor due to refinancing in time dt, ar is the factor for refinancing after very 
high burnouts, br is the initial factor for burnouts, cr is the decay coefficient for burn-
out, and R is the cumulative historical incentive. Note that

R r t dt r ti
t

i= >∫ ( ) , ( )
0

0

0 (17.6)

Where t0 is the starting time of the mortgage. At the beginning, where the burnout is 
zero, the prepayment rate is proportional to a+b. After very high burnouts, the prepay-
ment rate falls proportional to a.
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Integrating (17.5) results in
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= − − − − (17.7)

Figure 17.2 shows the natural log of the mortgage factor due to refinancing. In the 
absence of burnouts, the curve would be linear.

17.3 ACCELERATED PAYMENTS

The monthly mortgage payment is the minimum payment due. Some home owners pay 
extra amounts on a regular basis or, when their balance is small, pay it off in full. Our 
model for accelerated payments is similar to the home sale model. We assume that the 
change in the relative factor due to accelerated payments is an exponentially decaying 
function of time:

df
f

a dt b e dta

a
a a

c ta= − + − (17.8)

where fa is the accelerated payment factor, dfa/fa is the relative change in the mortgage 
factor due to accelerated payments, aa is the factor for accelerated payments after a 
very long seasoning period, ba is the initial factor for accelerated payments, and ca is the 
decay coefficient for accelerated payments.

At the beginning of the mortgage loan, the change in mortgage factor due to accel-
erated payments is zero. Thus,

a ba a= (17.9)

FIGURE 17.2 Natural log of mortgage factor due to incentive
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Integration leads to
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= − + − − (17.10)

17.4 PREPAYMENT FACTOR

To calculate the prepayment factor, assuming that the factors due to home sale, refi-
nancing, and accelerated payments are unrelated, we need to multiply the three respec-
tive factors. Note that at the initiation of a mortgage all factors are equal to unity:

f f fs r a0 0 0 1= = = (17.11)

The prepayment factor is

ln( ) ln( ) ln( ) ln( ) ln( )f f f f f f fp s r a s r a= = + + (17.12)

For a conventional 30-year mortgage the following factors can be found empirically:

a b cs s s= = =0 06 1. , (17.13)

a b cr r r= = =0 04 1 50 1 00. , . , . (17.14)

a b ca a a= = =0 015 0 0142. , . (17.15)



259

c18.indd 03/30/2015 Page 259Trim:  170  x  244 mm 

Mortgage bonds are bonds whose principal is collateralized by an underlying prop-
erty or real estate. When a home owner borrows a loan to purchase a house, the 

term of the loan, the interest rate, and the amount of loan are used to calculate the 
monthly mortgage payment. For conventional loans, the constant payment rate consists 
of both interest payment and principal payment.

At the beginning of a loan most of the payment is interest payment, and towards 
the end of the loan most of the payment will be principal payment. Most mortgage 
loans have a 30-year amortization schedule. Fifteen-year loans have a higher principal 
payment at the beginning than 30-year loans.

Not all mortgages have a fixed coupon with a term of 30 or 15 years. Some other 
mortgage structures include:

 ▪ Interest-only – The home owner pays only interest on the mortgage and the princi-
pal is due after a predetermined period, e.g., 5 years. Some interest-only mortgages 
can become amortizing at the end of the interest-only period with a predetermined 
interest rate.

 ▪ Adjustable rate mortgage – The interest rate of the mortgage is adjustable, based 
on a benchmark such as the Fed Funds rate or Libor plus a spread. Most adjustable 
rate mortgages have caps and floors. The cap is the maximum rate that the mort-
gage rate can go to and the floor is the minimum rate.

 ▪ Balloons – A balloon mortgage is one where the principal is due after a specific 
period of time, usually 5 or 7 years. Most balloons amortize like a 30-year mort-
gage; however, at the end of the balloon period, the home owner has to refinance the 
mortgage and pay back the principal. A balloon can be an interest-only mortgage.

Mortgages that meet certain size and quality requirements are generally securitized 
by the US agencies, Fannie Mae, Freddie Mac or Ginnie Mae. In this book we only 
cover conventional 15- and 30-year mortgages, which are by far the largest segments of 
the market. The analysis for other mortgages is similar and requires the development of 
a prepayment model for them.

CHAPTER 18
Mortgage Bonds

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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Most mortgages are pooled together by lenders based on a coupon rate, the origi-
nal and remaining term, geographic area, and credit scores of the borrowers. The pools 
are securitized and sold in the secondary market. Mortgage bonds have the following 
characteristics:

 ▪ Lenders, such as banks and mortgage companies pool together many mortgage 
loans and securitize them as one security. Pooled loans typically have comparable 
coupon and original and remaining terms.

 ▪ The borrower pays a gross coupon to the lender. The lender or servicer takes some 
of the proceeds of the coupon for servicing and insurance and pays the balance, 
called net coupon, to the buyers of the securitized mortgage pool. All the principal 
payments are passed through to the bond holders. 

 ▪ Most mortgage loans amortize over the life of the loan. The borrower pays a fixed 
monthly payment which covers the interest and part of the principal of the loan. 

 ▪ There is a significant cost for refinancing a mortgage, as observed at the beginning 
of Chapter 17.

The weighted average coupon (WAC) of a pool is the outstanding face value 
weighted gross coupon that borrowers pay the mortgage servicer. The servicer pays the 
net coupon of the pool to the investors and uses the difference between the WAC and 
net as servicing costs. For most mortgage bonds the servicing cost is about 0.5–0.9%. 
The net coupon is often in increments of 0.5%. For example, for a WAC of 6.62%, 
the net coupon can be 6%. The weighted average maturity (WAM) of a mortgage pool 
is the average maturity in months and is an integer. The WAM is different from the 
maturity of the pool, which is equal to the maturity of the longest loan in the pool. The 
servicers provide the current WAC and WAM of a pool as well as the original WAC and 
WAM. The WAC of a pool does not change significantly over its life, but the WAM falls 
by roughly one unit every month.

Mortgage trading is usually done as TBA (to be announced); the exact securities 
that are to be delivered are not known at the trade time. Only the face amount, net 
coupon and price are agreed upon. For seasoned pools, additional specifications such 
as the WAM, geographic area of the loans or even the pool number may be agreed upon 
as well. Generally, 2 days before settlement, the pool numbers of the securities to be 
delivered are communicated with the buyer. Trades that are larger than $1 million face, 
have to be delivered in lots of 1 million with a small variance. In the early to  mid-1990s, 
the variance was 3%, that is, the seller had the option to deliver 1 million face ± 30,000. 
However, the variance has been reduced to only 0.01%. Up to three pools can be com-
bined to make a whole lot of 1 million. 

18.1 MORTGAGE VALUATION

Consider a mortgage loan with a principal amount of q, annual coupon rate (WAC) of 
c, payable monthly with 30/360 convention, and term of n years. The constant monthly 
payment rate m can be calculated from 

q
m

c
i

i

n

=
+( )=

∑
1 12001

12

(18.1)
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Alternatively, we can write
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where t is time in years and
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It is considerably easier to work in the continuous compounding of payments by 
converting the summation in (18.2): 

q me Ge dtrt

i
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i

n

= ⇒−

=

−∑ ∫
1

12

0
(18.4)

In differential equation form, if q is the principal, G is the constant payment amount, 
and r is the continuously compounded coupon rate, then

− = − +dq Gdt rqdt (18.5)

In this equation, rqdt is the amount of interest payment in the period dt. The remainder 
of the payment will be a reduction in principal. Solving the above equation leads to

G q r
G qr

e rt−
−

= −0 (18.6)

where q0 is the original principal of the mortgage bond. At maturity tn the remaining 
principal q is zero. We can therefore calculate the continuous payment amount G as

G
q r
e rtn

=
− −

0

1
(18.7)

By substitution, the remaining principal at any time t is given by

q q
e

e

rt rt

rt

n
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− +
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1

1
(18.8)

Now consider a pool of mortgages consisting of many original mortgages, some of 
them have already paid out in full. Equation (18.8) will apply to the pool at any time if 
the WAM of the pool in years is tn, and the current outstanding balance is q0. 

Due to refinancing, home sale, and faster paydown of the principal, the principal 
payment is usually higher than the regular principal payment rate calculated by taking 
the derivative of (18.8),

dq q re e dtrt rtn= −
0 (18.9)

We denote the additional principal payment rate, called the prepayment rate, as 
h(t); the continuous payment amount will also be a function of time and the amount 
of outstanding principal. The calculation of the principal payment is a function of the 
gross WAC, but the pass-through to the investor is only net coupon plus all principal 
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payments. The coupon contribution will simply be the ratio of the net coupon and the 
WAC of the pool. Thus, if g t( ) is the contribution from the coupon payment rate plus 
amortization to the bond holder, the price function of a mortgage pool can be written as

p
q

h t g t e dt
t

yt
n

= +[ ]∫ −100

0 0
( ) ( ) (18.10)

Since the borrower has the option to repay the mortgage at any time, when interest 
rates drop, the expected remaining life of the mortgage bond drops. Most mortgage 
pools have an original term of 30 years that pay on a monthly basis, resulting in 360 
payments.

To analyze a mortgage bond, we need to construct a probability tree at different 
time horizons. Since building such a tree could be computationally expensive for 360 
payments, we need to find approximate methods using fewer data points. 

We first convert (18.10) to a summation form as follows:
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∑100
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(18.11)

where h and g are the monthly cash flow contributions to the price function. We can 
now write the contribution of the cash flows in the interval from j to k as
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∑ ∑100 100

0 0
(18.12)

where fik is the factor to calculate the future value at time k of a cash flow at time i.
Since home owners do not exercise their options optimally, we do not need to con-

struct the exercise boundary; instead, we use the prepayment model to capture the behav-
ior of borrowers at different times and interest rates. Unlike bonds, we cannot calculate 
the forward coupon of mortgages by discounting future cash flows, since mortgages have 
a spread over Libor and are continuously callable. The prevailing mortgage rate at any 
given time is called the current coupon. We will first try to find a model to calculate the 
current coupon at future times to calculate the refinancing incentive for home owners.

18.2 CURRENT COUPON

The current coupon of a mortgage depends on several parameters, including interest 
rates, the volatility surface (option price), the spread demanded by investors, initiation 
costs, and the credit score of the borrower. Analysis of the historical current coupon of 
mortgages shows a very strong dependence on the level and slope of interest rates and 
weaker but meaningful dependence on the level of volatility.

We analyzed the average current coupon of 30-year and 15-year conventional 
mortgages initiated each month versus the average level and slope of the term structure 
of interest rates for that month and obtained the following fitted parameters.

The current coupon was assumed to be proportional to the level of interest rates and 
it also depended on the slope of treasury rates as well as volatility. One-year volatility 
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for a forward 10-year term was used. Other volatility measures, including 3yr × 10yr 
and 2yr × 10yr, also have similar accuracies.

For conventional 30-year mortgages, we found the following parameters from 
1997 through 2012:

r a a vl t= + + +100 42 4 0 023 0 7000 1 1 10, , ,. . . (18.13)

where al,0 is the level of the Libor term structure, at,1 is the slope of the treasury term 
structure, v1 10,  is the swaption volatility of a 1-year option for the 10-year forward rate, 
and r is the continuously compounded mortgage rate from equation (18.3). The stan-
dard error of the fit or the standard deviation of the calculated coupon rate versus the 
market rate is 0.13%. If we remove the 12 months after the Lehman bankruptcy from 
the data, the error is only 0.10%.

Figure 18.1 shows the graph of the conventional 30-year mortgage rates versus the 
fitted data. The fitted parameters were calculated from 1997 to 2012 when the volatil-
ity was available. The model data from 1991 to 1997 assumed a volatility of 14% for 
1-year options in a 10-year forward rate.

Figure 18.2 shows the difference between the market mortgage rate and the cal-
culated rate. A positive value indicates cheap mortgage bonds and a negative value 
indicates expensive rates.

For conventional 15-year mortgages we found the following parameters from 1997 
through 2012:

r a a vl t= + + +100 32 8 0 020 0 430 1 1 10, , ,. . . (18.14)

Figure 18.3 shows the graph of the 15 year mortgage market and calculated rates. The 
error of the fit is 0.16%.

The strong relationship between the current coupon and the components of the 
term structure of rates can be used to estimate future current coupons. Considering the 
number of factors that can affect the current coupon, including the credit score of the 
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borrower and the points received by the issuer, the accuracy is remarkable. Most mort-
gages have an issuance cost of about 2 points or 2% of the principal of the mortgage. 
Zero point mortgages typically have a higher interest rate by about 0.5–0.625%.

18.3 MORTGAGE ANALYTICS

We are now ready to calculate mortgage analytics based on the future path of interest 
rates and our prepayment model. 

Consider a point in the future with a cumulative refinancing incentive (RI) of R(t), 
the then incentive of r ti( ) and the mortgage factor of f(t), similar to point B in Figure 
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15.2. We will now consider a distribution that will transform point B to point C after a 
forward time Δt . The marginal contribution to RI will be

Δ
Δ

ΔR
r t r t t

ti i=
+ +( ) ( )

2
(18.15)

In this equation, we use the average of RI at points B and C times the time difference 
between those two points. Likewise, we can calculate the marginal change in the factor 
due to refinancing as

ln ln
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(18.16)

For small changes in RI, the change in factor will be

Δ
Δ Δ

f
f

a R br r
c Rr= − − −Re (18.17)

(see (17.7)). Since the RI is non-linear, prepayment rates are path dependent. For example, 
if future interest rates go down first and then up, future prepayment rates will be different 
than if interest rates go up first and then down. Thus, we need to find out how to aggre-
gate the paths that end up in the same level of rates at some point in the forward space.

If the average factor is not accurately maintained, there will be leakage in the prin-
cipal payments and the sum of all principal payments will not add up to 100. For exam-
ple, if the factor from one path is 0.8 and from another path with equal probability is 
0.9, the average factor for the end point should be 0.85. Based on this factor, we need 
to calculate the RI that would correspond to a factor of 0.85.

To simplify the iterative process of calculating the factor, first assume that point B 
is an aggregate of points with factors fi  and weights wi. We can write the net factor as:

F w f w ei i
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i
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= =∑ ∑ − − − −( )1
(18.18)

If R is the implied RI that corresponds to F, it can be calculated from

F e
aR

b
c

e cR

=
− − − −( )1 (18.19)

Substituting

R R ri i= + (18.20)

we can write (18.18) as 
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(18.21)

For a small value of r, i.e., for relatively tight distributions or small changes in time, we 
can expand the exponent using Taylor series up to first order, resulting in

F w F r a bei i
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≈ − +⎡
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−∑ 1 ( ) (18.22)
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By definition,

wi

i

=∑ 1
(18.23)

Thus,

w r a be a be w ri i
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( ) ( )+ = + ≈− −∑ ∑ 0 (18.24)

To calculate the change in the factor from a change in RI, we replace ri with r Ri + Δ  in 
equation (18.22), leading to

F F w F r R a bei i
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−∑Δ Δ1 ( )( ) (18.25)

After simplification and applying (18.24), we have

Δ
Δ

F
F

R a be cR≈ − + −( ) (18.26)

This result for changes in the aggregate factor is similar to (18.17) that we found for a 
specific factor. The only difference is that we have to use the implied RI of the aggregate. 
The implied RI is calculated from (18.19). We can use this equation to estimate the 
change in the RI that corresponds to a given factor at a forward point.

Before we start constructing the forward tree for the path of interest rates, we need 
to construct forward current coupons. The forward coupon is calculated from the term 
structure of forward rates. The term structure of forward rates can be calculated by cal-
culating five forward yields for Libor and treasury curves. For example, to calculate the 
current coupon 5 years forward, we can calculate the forward yield at maturities that 
correspond to −0 8. τ, −0 4. τ , 0 0. τ , 0 4. τ , and 0 8. τ . Knowing the forward yields, we can 
use equation (3.24) to calculate the polynomial representation of the yield curve from 
these five points. Chebyshev basis functions can then be calculated by simple transfor-
mation and the forward level and slope of Libor and treasury curves can be calculated 
for use in (18.13) or (18.14).

Next, we need to calculate the 5-year forward, 1-year volatility of a 10-year Libor 
bond. This requires estimating the coupon of a 10-year Libor bond that starts 1 year after 
the forward date (6 years forward in this example). The forward coupon can be calculated 
from the forward partial yield of the security, converting it to the estimated coupon. The 
forward partial yield can be calculated analytically and, unlike yield calculation, does not 
require iteration. The forward 1-year volatility of a 10-year Libor can be calculated using 
equation (9.37) for each cash flow of the forward security. In this equation x y2 1= , thus

w t t t t
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(18.27)

We also need the historical term structure of rates to estimate the historical current 
coupons. The difference between the WAC of a mortgage pool and the estimated current 
coupon from (18.13) or (18.14) is the premium or discount of the coupon of the pool. 
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Our process of building the paths of interest rates and refinancing is summarized 
as follows: 

 ▪ We build forward Libor distribution and calculate the drifts at forward points.
 ▪ The forward current coupon is calculated and its difference with the forward 
10-year Libor rate will be the mortgage–Libor forward spread sml.

 ▪ Given a point in the forward interest rate tree, we know the factor and RI.
 ▪ We evolve this point on the tree to all future paths and calculate the factor at each 
forward point, using the known RI for that point.

 ▪ The distribution of rates will be based on the distribution of 10-year Libor adjusted 
by sml to calculate the forward mortgage rate for a given level of Libor.

 ▪ We take the average factor at each point and calculate the implied RI for that point 
and continue to evolve the tree.

The average factor at point C from all points B will be calculated as

f
f t w fw

w

j j
j

j
j

j
j

( )
( )

C =
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∑
Δ

(18.28)

where f tj( ) is the factor at time t (or point B in time space), Δf  is the amount of principal 
payment due to amortization and prepayment, and wj is the probability weight of inter-
est rates going from point j at time B to C.

The historical TSIR needs to be provided to calculate the original premium or 
discount of the mortgage pool. The difference between the calculated coupon and the 
market coupon in Figure 18.1 is usually due to the borrowing habits of the borrowers 
or their risk premium. For example, a borrower who borrows with no point is likely to 
do the same in future refinancing and will thus pay a higher coupon rate. Likewise, a 
borrower who has a lower credit rating is likely to pay a higher coupon rate in a future 
refinancing as well.

The premium or discount of a pool’s coupon relative to the estimated coupon rate 
from (18.18) is likely to persist and needs to be added to the current coupon to estimate 
the future coupon rate of the borrower or to calculate his RI. Thus, if the calculated 
coupon rate for a pool is 5.5%, but the gross coupon rate of the pool is 5.63%, then the 
additional premium of the pool for refinancing is likely to stay at 0.13%. 

Next, we need to choose the spacing between the layers, similar to the layers in 
American options. For the first 6–12 months we can space the layers on a monthly 
basis. The spacing can then be increased to 2, 3, 6, and 12 months. If the spacing is 
longer than 1 month, we can assume that the accumulated cash flows take place in the 
middle of the range. For example, to aggregate cash flows for April, May, and June, 
we can assume that all cash flows happen in May for valuation and risk measurement.

For a given time period, we can use (18.8) to calculate the expected change in the 
principal at the beginning and end of the period due to amortization. We also calculate 
the prepayment amount by interpolating between the interest rate at the beginning and 
end of the period along with the expected coupon payment and assume that all the cash 
flows take place in the middle of the period. Thus, for cash flows that are 6 or more 
years into the future, annual spacing between layers will provide the necessary accuracy 
for price calculation.
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Knowing the historical RI of a given pool, we start by propagating interest rates to 
the first layer. At each point, we recalculate the prepayment amount, RI and calculate 
the factor for each point on the lattice. We progress from one layer to the next, keeping 
track of the factor and RI until the maturity of the pool. 

The most widely used measure of value for mortgage bonds is the option adjusted 
spread (OAS). Once we construct the tree of forward paths and payments, we have to 
find the spread that, when added to Libor or treasury curve and used to discount the 
future expected cash flows, will result in the market price of the security. 

18.4 MORTGAGE RISK MEASUREMENT AND VALUATION

Like American call options, mortgage bonds are sensitive to interest rates as well as to 
volatilities. For a given term structure of Libor and volatility surface, we construct the 
path of all forward rates. The forward distribution of rates is based on the calculated 
forward volatility surface which can be calculated from our term structure of volatility 
very accurately by using the adjustment table. From the spot term structure of Libor 
rates, term structure of interest rates and term structure of Libor volatility, the forward 
level of the TSLR, slope of TSIR, and forward volatility of 1-year by 10-year Libor 
can be calculated for estimating the forward current coupon using (18.13) or (18.14). 
At every node of the distribution, the burnout that is consistent with the factor at that 
point is calculated.

The forward paths of interest rates for mortgages cannot be recombined without 
effectively accounting for the burnout, since a rise in interest rates followed by a fall 
will result in different burnout than a fall in rates followed by a rise. Once the interest 
rate tree is constructed, the OAS can be calculated by finding the spread that will match 
the market value of the cash flows with the price of the bond.

The OAS of a mortgage bond has no equivalence in any other area of fixed income. 
Conventional mortgage bonds are virtually risk-free and thus their forward distribu-
tion of coupons and prepayments can be estimated from Libor volatility that is actively 
traded in the market. The calculated spread can thus be realized if one has an accurate 
prepayment model with minimal risk. It is common practice in the marketplace to label 
the spread of corporate bonds as OAS. This is misleading since the volatility surface of 
corporate bonds is not actively traded and the default probability and credit risks are 
not traded on an active basis. 

The best measure of value for a mortgage bond is its OAS. The value of an option 
for mortgages can be misleading, particularly in upward sloping yield curves. In order to 
calculate the option value, we will first have to calculate the price of the parent security. 
Discounting future cash flows based on scheduled amortization and coupon payment 
of mortgage bonds is not logical, since home owners do indeed move and sometimes 
prepay their principal even if it does not make economic sense. When interest rates rise 
and property values decline, home sales fall but de faults rise, leading to principal pay-
downs. We can estimate the option price of a mortgage bond by calculating the differ-
ence between the discounted future cash flows with and without refinancing. Paydowns 
due to home sales and aging will still influence prepayments regardless of interest rates. 

In an upward sloping yield curve a mortgage bond that prepays modestly can be 
worth more than a mortgage that does not prepay at all. For example, if short rates are 
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TABLE 18.1 Valuation of mortgage bonds, settlement August 3, 2012

Price Value

Cpn Wac Wam Market Invoice Parent Fair IO PO Option OAS Yield Theta

5 5.7 310 113.5 113.53 117.94 115.77 26.07 87.46 2.18 0.34% 1.83% 2.03%

4.25 5.03 324 109.5 109.52 113.22 112.45 23.03 86.49 0.77 0.44% 1.96% 2.15%

4 4.62 335 108.5 108.52 112.00 111.73 22.70 85.83 0.27 0.47% 2.02% 2.23%

4 4.51 346 108.5 108.52 112.79 112.34 22.72 85.80 0.44 0.56% 2.10% 2.30%

3.5 3.92 351 105 105.02 109.38 105.79 10.22 94.80 3.59 0.23% 1.55% 1.09%

3 3.45 360 104 104.02 105.65 105.54 11.49 92.52 0.11 0.35% 1.69% 2.16%

close to zero as they were in 2012 in the US, a mortgage bond with a coupon of 3% 
earns its investor an additional 3% per year over short rates. If most of the principal is 
returned to the investor within a few years, the present value of those cash flows could 
be higher than if the principal is returned after many years where the discounting yield 
is significantly higher. Table 18.1 shows a sample of mortgage bonds along with the 
valuation parameters. 

An interest-only (IO) bond receives only the interest rate cash flows of a mortgage 
bond. The principal-only (PO) bond is complementary to the IO and receives only the 
principal payments.

The average life of a mortgage bond is the weighted average time of all the princi-
pal payments of the bond, 

average life =
∑ c tp i i

i
,

100
(18.29)

where cp i,  is the principal payment at time ti. The duration components of mortgage 
bonds can be calculated similarly to callable bonds by shifting the components of the 
TSIR. For mortgages, the shifts in the components of the curve are significantly more 
complicated, since the forward current coupons also depend on the components of the 
curve. For example, to shift the slope of the treasury curve, we need to calculate the 
slope of forward curves at all forward points as well. Likewise, for shifting the compo-
nents of the volatility curve, we need to calculate the future expected forward volatili-
ties and then calculate the expected future current coupons from (18.13) or (18.14). If 
the forward slope of the curve is not adjusted, the calculated slope duration can be off 
by several years.

Table 18.2 lists the risk measures of the securities in Table 18.1 as well as the IO 
and PO of the last mortgage bond. In general, the average life and level duration of 
mortgage bonds with a premium price increase with seasoning. The level convexity of 
all pass through mortgages is negative; however, with seasoning, the convexity becomes 
less negative. 

The negative convexity of a current coupon bond can be very large. For example, 
in Table 18.2, the bond with a coupon of 3.0 and WAM of 360 has a convexity of 
–557 which requires a zero coupon bond with a maturity of 24 years just to hedge the 
convexity. 
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TABLE 18.3 Principal components of mortgage volatility, July 31, 2012

Principal Components

Cpn Wac Wam 1st 2nd 3rd 4th

5 5.7 310 –3.9 –0.9 –0.9 –0.2

4.25 5.03 324 –2.2 –0.5 –0.6 –0.2

4 4.62 335 –1.4 –0.4 –0.5 –0.2

4 4.51 346 –1.9 –0.5 –0.6 –0.2

3.5 3.92 351 –20.0 –4.5 –4.8 –1.1

3 3.45 360 –3.3 –0.6 –1.0 –0.4

IOs have very large negative duration. If interest rates rise, refinancing falls and 
IO will receive coupons for a longer period of time, resulting in higher prices, hence 
negative duration. The slope and bend durations and cross-convexities of IO and PO 
bonds can be extremely large and highly unstable, and therefore it is very difficult to 
hedge them. 

Mortgages are similar to American call options with continuous incremental exer-
cise points. However, since the option is not exercised optimally, they are unlike any 
tradable option. The duration of volatility of a mortgage provides a window into how it 
can be best hedged. Table 18.3 lists the first four principal components of the duration 
of volatility that is calculated by multiplying the term structure duration of volatilities 
by the matrix of principal components provided in Table 9.2. We can see that in nearly 
all cases the ratio of the absolute value of the first component to the second component 
is about 4.0 .

We next calculate the principal components of the duration of volatility of Ameri-
can and European swaptions to find a swaption that could be best used to hedge the 
volatility exposure of mortgages. Many market participants use 3-year expiration by 
10-year maturity (3 × 10) European call swaption to hedge the volatility of mortgages. 
Table 18.4 lists a number of American and European call and put swaptions for com-
parison that could be best used for hedging the mortgage volatilities. It is clear from 
Table 18.4 that none of the swaptions have a risk profile that can be used as a hedge 
for mortgages. The ratio of the first principal component to the second for mortgages is 
about 4, but swaptions do not follow the same pattern.

We used linear programming to find the optimal weight of swaptions to hedge the 
4% 346 mortgage in Table 18.3 by minimizing the minimum face value of swaptions 
for hedging. Table 18.5 summarizes the results. The most effective replication of the 
volatility is a combination of two long calls and a short put with a premium of about 
0.74. Thus, to hedge the volatility of the mortgage, we have to perform the opposite of 
the replication trade which will cost a premium of 0.74 points as well.

The biggest risk in hedging a mortgage is in the prepayment model. The volatility 
and interest rate risks are very well understood and the current coupon can be esti-
mated very accurately, given all the changes in the market, as Figures 18.1 and 18.3 
suggest. Adding seasonal factors to home sales can improve monthly estimation of 
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TABLE 18.4 Principal components of swaption volatility, July 31, 2012

Issue C/P A/E Premium

Principal Components

1st 2nd 3rd 4th

l×20 C E 2.75 −4.8 −1.4 −2.0 −0.5

3×10 C E 4.30 −9.3 −4.4 −3.0 −0.3

4×9 C A 5.30 −11.2 −7.0 −4.2 −0.4

5×20 C E 5.09 −0.8 −4.6 −2.7 −0.6

2×10 P E 5.57 −1.8 −5.8 −3.4 −0.7

5×15 P A 7.70 −2.3 −7.5 −4.3 −0.7

5×20 P A 10.63 −6.0 −9.4 −5.0 −0.4

5×5 P E 9.07 4.9 −5.8 −3.4 −0.9

5×10 P E 7.52 4.4 −5.2 −3.1 −0.9

TABLE 18.5 Hedging volatility of a mortgage

Issue C/P A/E Premium 1st 2nd 3rd Weight

1×20 C E 0.67 −1.2 −0.4 −0.5 0.24

3×10 C E 0.27 −0.6 −0.3 −0.2 0.06

5×6 P E −0.20 −0.1 0.1 0.1 −0.02

Total 0.74 −1.9 −0.5 −0.6

prepayments, but has small effect on the valuation of mortgage bonds. Unlike inflation 
linked securities where seasonal patterns can be important for bonds with a short matu-
rity, mortgage bonds have a steady paydown of the principal which tends to average 
out the first order seasonal effects. Mortgage bonds with low maturities have very small 
outstanding principals and are rarely traded.

It is well known that as home prices appreciate, people are more likely to sell their 
home and trade up to a more expensive one. Thus, a prepayment model should be 
dependent on home prices. However, home prices are known only after the fact and 
modeling future home price appreciations will add too much complexity to a prepay-
ment model. Home price appreciation due to falling interest rates is captured by the 
prepayment model to a large extent, lumped together with the refinancing incentive. 
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There is significant overlap between product design and portfolio construction, in the 
sense that they both attempt to achieve the highest return for a given level of risk. 

In product design, we are concerned about the viability of the product for a long term, 
usually 10 years or more. In portfolio construction, a typical investment horizon is 
3–12 months. In both cases, we need to use historical data as a guide to evaluate cor-
relations and volatilities, similarly to equity portfolio construction. 

Most institutional fixed income products are based on indexes. An index is a collec-
tion of bonds or assets that meet certain credit quality, maturity, liquidity or size criteria. 
For example, the Citi Treasury Index is a capitalized weighted index of all US treasuries 
with a maturity of 1 year or more. The Short Treasury Index is a capitalized weighted 
index of all US treasuries with a maturity of 1–3 years. Indexes can be combined to con-
struct broader indexes or aggregates. For example, the JP Morgan Emerging Markets 
Index consists of the liquid bonds of more than ten developing countries. The Barclays 
Aggregate Bond Index is an aggregate of most US dollar denominated bonds with matur-
ities longer than 1 year, including treasuries, corporate bonds, and mortgage bonds.

Indexes are supply driven and the largest weights belong to the largest issuers. For 
example, in the late 1990s, during the treasury surplus years in the US, the weight of 
US treasuries fell relative to mortgage bonds as real estate prices soared and borrowing 
increased. Therefore, an index is not necessarily an optimal portfolio. Nevertheless, an 
index is an unbiased measure of the investable market and its performance is a reasonable 
gauge of the expected performance of a bond manager. All market participants can own a 
capitalization weighted index, and therefore it represents the best indicator of the market.

In product design, one has to understand the needs of the client and the duration of 
the liabilities, if any, and create a benchmark whose performance can be independently 
verified and meets the client’s needs as closely as possible. For a pension plan that has 
liabilities with a duration of 15 years, using the treasury index does not provide enough 
duration. A better benchmark might be treasuries with minimum maturities of 5 or 10 
years, which when combined with an equity allocation provide the necessary duration 
and return expectation. Index providers often publish the return data for such custom-
ized indexes as well. 

CHAPTER 19
Product Design and  

Portfolio Construction

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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A key ingredient in designing a product or constructing a portfolio is to understand 
the interactions between different sectors under normal as well as stress situations. As 
mentioned in Section 15.9, the long term correlation of spreads and interest rates tends 
to be negative. This implies that if credit is overweighed, the treasury duration needs to 
be longer to mitigate the contribution of credit spread to risk. Consider a correlation 
between spreads and treasury rates of −0.5 and beta of spread of 0.33 for a portfolio 
with a duration of 5 years and yield and spread of 3.0% and 3.6%, respectively. Denot-
ing the spread of the security by s, the treasury yield by y, the correlation coefficient by 
ρ, and the beta of spread relative to yield by β, we can calculate the effect of a change 
in rates on the spread from (15.54) as follows:

ds s
dy
y

dy
dy= = × × − × ≈ −ρβ 3 6

3 0
0 5 0 33 0 2. %

. %
( . ) . .

Thus, for a change of 1 basis point in treasury rates, the average expected change in 
spread will be –0.2 bps. If we are long the spread duration by 0.9 years, we need to 
be long the treasury duration by 0.18 years as well. If treasury rates rise by 30 bps, 
the negative impact on the portfolio will be − × = −0 30 0 18 0 054. % . . %. Likewise the 
expected tightening in spread is 20% of 30 bps with a positive contribution to the 
portfolio of 0 30 0 2 0 9 0 054. % . . . %× × = . The two positions negate the risks of each 
other on average. However, in an upward sloping yield curve, both positions are likely 
to contribute positively to excess performance. For example, if short rates are 1%, the 
extra duration of 0.18 for a portfolio of 5-year duration will require an additional 
equivalent of 0.18/5 = 3.6% of the 5-year treasury. The likely contribution of financed 
treasury over a year is 3 6 3 0 1 0 072. %( . % %) . %− = . Likewise, the expected excess con-
tribution of the financed credit component with a weight of 18% (duration 0.9 years) 
is 18 3 0 3 6 1 1 008%( . % . % %) . %+ − = . The two strategies add about 108 bps of excess 
return without increasing the risk significantly.

This example illustrates the principal behind Markowitz portfolio theory which 
is widely covered in books on finance. In practice, things are not always this straight-
forward; correlations and volatilities are not stable, and during times of crisis the cor-
relation of spread and rates will approach –1 and betas will increase significantly. In 
general, the application of portfolio theory to fixed income is not as straightforward as 
it is for equities for the following reasons:

 ▪ Fixed income is more about liability management than simple risk and return. For 
a pension fund with a vested duration of liabilities of 15 years, the risk-free rate is a 
bond with duration of 15 years, while for a corporate treasury that intends to make 
an acquisition the risk-free rate is probably 3-month Libor.

 ▪ Fixed income sectors are highly correlated. Nearly all fixed income products are 
dependent on interest rates and correlations become useless at times of crisis, when 
they are needed the most as they approach 1 or –1.

 ▪ Principal preservation is much more important in fixed income since the upside in any 
investment is limited to the principal plus interest while the downside is unlimited.

 ▪ In fixed income, the portfolio structure can be independent of strategies to add 
alpha or excess return through the use of derivatives. Careful structuring of a short 
duration and a long duration portfolio can be achieved in such a way that their 
relative performance will be similar compared to their respective benchmarks. 
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Our approach to product design, is based on portfolio theory. However, we imple-
ment it in the context of “what-if” analysis which is much more conducive to team 
management. In an equity portfolio, one may have to consider more than one thousand 
different tickers and calculate the correlations among them. The core of fixed income 
can be broken down into a handful of sectors including treasuries, agencies, corporates, 
mortgages, high yield, and emerging markets. Other sectors, including commercial 
mortgage backed securities and convertible notes, are a much smaller part of core fixed 
income in most institutional accounts. The bonds in each of these sectors are highly 
correlated and, as noted in the previous sections, for treasuries, only three parameters 
can account for 98% of the movements of the entire market.

We break each of the fixed income sectors into subsectors based on maturity or 
credit quality buckets to build a product analyzer that can be used for designing prod-
ucts in a variety of sectors and maturity buckets.

19.1 PRODUCT ANALYZER

The product analyzer can be used to analyze the historical performance and risks of a 
portfolio and to design a product or to construct a portfolio that meets certain risk and 
return requirements. We provide the steps that are necessary to build a generic product 
analyzer for nearly all types of fixed income product designs. The product analyzer can 
be built using a popular spreadsheet using monthly historical return data for sectors of 
fixed income. The historical data can generally be obtained from index providers and 
the tables need to be maintained on a monthly basis.

Fixed income products are typically broken down by maturity buckets of short 
(1–3 years), intermediate (1–10 years) and full index. For a US based fund manager, to 
have the maximum flexibility, we need to have data for the maturity buckets 1–3, 1–10, 
1–30, 3–10, 5+, and 10+ years. Each one of these data series will occupy a column in a 
spreadsheet. We also need to store the durations of each of these sectors in the columns 
of a separate sheet of the worksheet. Similar historical data need to be obtained and 
stored in the worksheet for high grade corporates with ratings of BBB, A, and AA and 
high yield with ratings of BB, B, and CCC. There are usually only two maturity buckets 
of 15 and 30 years available for mortgages. We add data series for emerging markets, 
convertible securities, carry currencies (high yield), funding currencies, and return attri-
bution of level, slope, and bend components of the TSIR. For euro or other currency 
based products, we can add the time series of the respective fixed income sectors that 
are available locally.

First, let us show how the risks of two correlated securities are calculated. Suppose 
that securities A and B have risks rA and rB and correlation ρAB. The combined risk of 
A and B is calculated as

r r r r r

r r
r

r

= + +

= × ×

A B AB A B

A B
AB

AB

A

B

2 2 2

1

1

ρ

ρ
ρ

(19.1)
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For a portfolio of several securities or sectors with respective risks of ri shown as a vec-
tor R, and correlation matrix, ρ, the overall risk can be expressed as

r r r
T

i j ij

ji

= × × = ∑∑R Rρ ρ (19.2)

We can rewrite the above equation to calculate the contribution to tracking error. 
Define

w
r

r r
i

j ij
j

i j ij
ji

=
∑

∑∑
ρ

ρ
(19.3)

The risks can be written as

r w ri i

i

= ∑ (19.4)

where wi  is the weight of the risk of security i in the portfolio and w ri i  is the contri-
bution of the risk of security i to the total risk. For example, if securities A, B, and C 
have all risks of one unit and AB has a correlation of 0.6 and AC and BC have cor-
relations of –0.5, then the contribution of each security to risk of the portfolio will 
be wi = ( . , . , . )0 742 0 742 0 0  and the overall risk of the portfolio will be 1.483 units. 
The risk weight wi  has a non-linear relationship with the risks of other securities 
in a portfolio; however, for small changes in the risks of each security, the relation-
ship will be almost linear. For example, if the risk of security C increased to 1.1, 
then wi = ( . , . , . )0 706 0 706 0 067  and overall risk will be 1.486. This change is very 
small, considering that the risk of C in the original portfolio was zero. If we calcu-
late the risks of a portfolio of just A and B, then the contribution to risks will be 
wi = ( . , . )0 894 0 894  and the overall risk will be 1.788. If security C has a positive 
expected return, its addition to the portfolio will not only increase the return, it will 
lower the risk as well. 

Constructing the correlation matrix of different sectors in a spreadsheet enables us 
to perform what-if analysis and review the hypothetical performance of the portfolio in 
historical times of crises. If the monthly durations of each sector are also available, we 
can see how different durations at different times contributed to risk or return. 

Table 19.1 is a sample spreadsheet for the analysis of annualized risk, performance 
simulation, and what-if analysis. By changing the date ranges for correlation and the 
performance range, one can see how the portfolio would respond to different sectors. 
By increasing the weight of sectors that have a negative contribution to risk, we lower 
the overall annualized risk. Note that the sum of weights can be more or less than 
100%. Currency positions do not require upfront cash and treasury duration can be 
added by derivatives such as futures depending on investment policy.

The risks for all sectors and asset classes have to be stated in the same units. For 
example, if we use annualized return volatility in basis points as a measure of risk, we 
have to use the same units for currency, bond futures, swaps etc. as well. Monthly vola-
tilities can be converted to annual volatility by multiplying them by 12.
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TABLE 19.1  Sample portfolio analyzer output

Start End

Correlation 1/1/2002 7/31/2008

Performance 8/31/2008 3/31/2009

Duration 4.80

Yield 5.74%

Spread 2.52%

Total Weight 111.3%

Annualized Risk, bps 311.0

Performance −3.4%

Historical Volatility, bps 365

Sector Weight Contribution to Risk

Agy 1–3 5.0% −0.7

Agy 3–7 3.8% −2.1

Agy 7–10 2.5% −5.6

Agy 10+ 1.7% −1.5

BBB 1–3 0.9% 3.4

BBB 3–7 2.3% 16.3

BBB 7–10 4.0% 44.3

BBB 10+ 2.0% 35.8

B 1–7 4.9% 44.7

CCC 6.3% 59.8

Tsy 1–3 9.3% −2.3

Tsy 3–7 6.6% −4.2

Tsy 7–10 2.8% −8.4

Tsy 10+ 10.0% −11.1

Mtg 30 33.2% 62.6

Mtg 15 6.1% 7.9

Carry Fx 10% 72.0

Once the historical risk profile of a product is analyzed and found to be desir-
able, we can expect the future risk profile to be similar. However, the expected return 
of the product will be approximately equal to the yield adjusted for default loss. 
Since yields have been on a secular decline from 1980 to 2012, the same pattern 
cannot be expected to continue, and therefore expected future returns are likely to 
be less.



278 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c19.indd 03/26/2015 Page 278

19.2 PORTFOLIO ANALYZER

Our portfolio analyzer is similar to the product analyzer, except that it is used to con-
struct a portfolio and analyze its short term (3–12 months) return expectations. Addi-
tionally, the portfolio analyzer needs to be constructed in concert with the investment 
process. For example, if allocation is made to different sectors by duration, then the 
weights will be based on contribution to duration.

Given that most portfolios are managed against benchmarks, the risks are generally 
measured as the difference in spread duration between the portfolio and the bench-
mark. Likewise, return expectations are measured relative to benchmark. We need to 
make adjustments to the product analyzer to use it as a portfolio analyzer.

High grade corporate, agency, and global government bonds have a high correla-
tion with treasuries and the spreads are generally not very volatile. Thus, allocation to 
these sectors can be made on the basis of spread duration. On the other hand, high yield 
corporate bonds and currencies have a much lower correlation with treasuries and it is 
more logical to allocate the funds to these sectors by market value.

To allocate by spread duration, the risk is measured by the volatility of the spread 
or OAS, whichever is available. Theoretically, we have to measure the relative volatility, 
that is, changes in spread divided by the spread, and then multiply the realized volatility 
by the spread to calculate the absolute spread volatility. However, in practice it is easier 
to use the absolute change in spread as input into the correlation matrix. For example, 
if the historical monthly spread of the jth sector is denoted by sj i, , then the square of its 
risk will be calculated as
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where Δs is the drift or the average change in the spread in one period. The risk of sec-
tor j in basis points using spread duration weights will then be

r D vj s j s j= 10 000, , , (19.6)

For currencies, the risk is calculated as 
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where pi is the price of the currency at interval i, Δui is its performance, and Δu  is the 
drift or the average periodic performance (the subscript j having been dropped for con-
venience). Instead of the correlation matrix, we need to calculate the covariance matrix 
which includes the risks. The covariance matrix for sectors j and k, representing dura-
tion weighted sectors and market value weighted sectors respectively, is calculated as

c s s u u v vjk j i j i k i k i

i

jk j k= −( ) −( ) =∑ Δ Δ Δ Δ, , , , ρ (19.8)

To complete the portfolio analyzer, we need to load in the risks of different sectors 
of the benchmark. For a more useful portfolio analyzer, the risk factors of multiple 
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benchmarks such as 1 to 3 year, 1 to 10 year, etc., can be provided; these can be accessed 
using dropdown menus. Instead of using absolute allocations, the net allocation should 
be used and the resulting risk measure will be the total tracking error of the portfolio 
relative to the benchmark. The net contribution of each sector to risk is called marginal 
contribution to tracking error, and the spread and durations will be measured relative 
to the benchmark.

One has to remember that the estimated tacking error is just that, and the market 
environment can result in a significantly different tracking error than anticipated. A 
useful feature to add to the portfolio analyzer is the volatility scale. During times of 
crisis the interest rate volatility spikes up, and to account for it one can use a scale fac-
tor to scale the tracking factor by. For example, if the historical absolute volatility of a 
10-year swap has been 80 bps (absolute volatility is equal to relative volatility times the 
level of rates) and the current absolute volatility is 100 bps, we can multiply the track-
ing error by 1.25 to account for the increased volatility. 

The portfolio analyzer is a useful tool to review the positions and bets in the 
portfolio and to carry out what-if analysis in a team environment to see how differ-
ent ideas impact the risk and yield of the portfolio. It can also be used for regulatory 
or reporting requirements. The analyzer has many limitations and is not a product 
to use on a daily basis. The markets change on a regular basis and correlations are 
not often stable. Default rates tend to be cyclical and correlations tend to go to 
extremes at times of crisis, when they are needed the most. However, the portfolio 
analyzer provides a portfolio manager a great tool to see the approximate tracking 
error that is being taken and the expected spread. Additionally, it provides insights 
to increase the yield without increasing risk or lowering risk while maintaining 
the yield.

We can also calculate the mean reversion of the bets in the portfolio if they are 
indeed mean reverting and estimate the projected excess performance over the invest-
ment time horizon. Since spreads tend to be mean reverting, we can estimate the mean 
reversion half-life and calculate the projected spread change over a 3-month horizon 
for net positions. See Section 3.7 for details. 

The portfolio analyzer is a relatively high level product for portfolio structuring 
and is useful for macro bets. Security selection and active management should account 
for similar contributions to the performance of a fixed income portfolio. 

19.3 COMPETITIVE UNIVERSE

Sometimes a product that is very well structured may not be competing in the right 
universe of funds or it is not clear what benchmarks the competitive universe uses. 
Many funds that include “income” in their name fall into this category. The defini-
tion of income can differ considerably among portfolio managers. Technically, all fixed 
income products are income funds, since there is no growth in fixed income through 
maturity. The most that you can get is the principal and interest at maturity. Funds 
such as “strategic income” and “high yield income” are typically funds that provide the 
portfolio manager additional tools to add income to the portfolio and may include high 
yield, emerging markets, sovereign bonds, and currencies which are usually not a part 
of core bond funds. 
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Depending on market environment, many of these funds tend to have relatively 
large changes in their structure; however, as a group they do not change significantly 
over a long period of time. One can use style analysis to estimate the composition of 
the market. Then a fund can be structured with a benchmark that mimics that market 
more closely.

First, we need to access historical pricings of the competitive universe on a daily or 
weekly basis and calculate the performance on a daily or weekly basis. Most funds that 
have a price of about $10 will round the price to $0.01, which is 10 bps of performance. 
If there are 50 funds in the competitive universe, the error becomes 10 50 1 4/ .=  bps. 
Since nearly all funds have distributions, their net asset value changes on a daily basis. 
To calculate the performance of the fund on a daily basis, we use the formula

perf
nav dist

nav
=

++i

i

1 (19.9)

where perf is performance, nav is net asset value, and dist is distribution. We then 
use the historical performance of different sectors along with a few major currencies, 
emerging markets, and global bonds for the same dates that fund pricings are available 
and perform linear regression to find the weights of significant components of the com-
petitive universe. The calculated weights may not add to 100%, but in most cases will 
come very close to 100%. This method provides a very good picture of the competitive 
market and allows the bond manager to design a product or restructure the benchmark 
to be able to compete in the competitive universe more effectively.

19.4 PORTFOLIO CONSTRUCTION

Portfolio construction is the process of designing a portfolio based on the inputs of 
analysts, economists, and traders in such a way as to satisfy the product’s policies, 
guidelines, and constraints. The portfolio analyzer is a very good first step in sector 
allocation of a portfolio. It can incorporate the portfolio manager’s views on the 
direction of spreads, currencies, rates, curve position and provide an indication of the 
expected return, risk, and tracking error of the portfolio relative to the benchmark.

We can distinguish three kinds of portfolio management style. The top-down 
approach is based on analysis of the economy, inflation or disinflation pressures, growth, 
unemployment, etc. Based on economic fundamentals, one decides the direction of inter-
est rates, the path of the shape of the curve, and spreads. The biggest risk to the top-
down approach is that the market already has a view about economic fundamentals and 
many of those pressures are already priced in. For example, when the market anticipates 
Fed rate cuts, the front end of the curve outperforms the remainder of the market and 
the curve steepens. Thus, a top-down approach has to be more accurate than the col-
lective wisdom of the market participants to work, and most top-down fixed income 
managers tend to have volatile portfolios and often underperform the market.

The bottom-up approach is based on the analysis of the issuers and works best 
for corporate and mortgage bonds. It involves analysis of corporate filings as well 
as analysis of their competitors, suppliers, and products. Since there are a limited 
number of analysts that cover a company, a good analyst can often select issuers that 
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are most likely to pay their debt. Unlike equity analysis where growth is a significant 
component of valuation, a stable business is more desirable than growth prospects 
for bond holders. For mortgage bonds, sometimes off-the-run coupons become very 
slightly cheap or rich depending on market environment, and a mortgage analyst 
can increase overweight to premium or discount coupons to take advantage of the 
cheaper securities.

The quantitative approach is similar to the methods that have been discussed in 
this book, such as linear optimization, using inflation swaps plus interest rate swaps 
instead of using inflation linked bonds, etc. The quantitative approach can be used in 
conjunction with top-down or bottom-up analysis. For example, for constructing a 
corporate bond portfolio, an analyst can select the names of issuers from the universe 
of investable issuers that he likes and these names can be used as input into the opti-
mization process to structure the cheapest portfolio. We will discuss this method later 
in this chapter. 

The tracking error calculated by the portfolio analyzer is often understated, since 
only a fraction of the bonds or issuers from the corporate sector will be included in the 
portfolio. For funds that can trade swaps, exposure to the corporate sector can often 
be achieved by buying a total return swap, where the investment manager receives the 
returns of the corporate sector and pays short term Libor. The transaction cost is com-
parable to structuring the corporate portfolio by buying individual bonds; however, 
the portfolio manager cannot add value by security selection or sector allocation. This 
approach is useful for fund managers who do not have the required number of analysts 
to cover corporate bonds or for top-down managers.

The most consistent contributor to the performance of a portfolio of risk-free 
assets is the carry or yield. Maximizing the yield in a steep yield curve environment 
without constraint will result in a portfolio of very long duration. Likewise maximizing 
the carry with a steep yield curve will concentrate the portfolio usually in the 5–10-year 
maturity range depending on the steepness of the curve. Every fixed income portfolio 
has to have a major emphasis on maximizing yield or carry. 

Historical analysis of global bonds suggests that buying 10-year interest rate swaps 
of countries with steep yield curves generates positive alpha with information ratio 
greater than unity. Steep yield curves are usually a result of central banks lowering 
short rates, when inflationary pressures are very low, resulting in relatively high real 
long rates. High real rates usually result in further falls in inflation and eventual bull-
flattening of the yield curve.

In Chapter 5 we discussed how linear optimization can add value even for a trea-
sury portfolio. For corporate and emerging markets bonds, linear optimization can add 
significantly more value without changing the portfolio structure or the weights of issu-
ers in the portfolio. Since default is a real possibility in corporate or emerging markets 
bonds, we need to provide constraints to limit the maximum market value allocation to 
each issuer. Likewise, we can limit the maximum spread duration for each issuer rela-
tive to the benchmark or in absolute terms. Transaction costs are relatively significant 
for illiquid bonds and we need to take into consideration such transactions by buying a 
bond at the offer price and selling it at the bid price. For corporate bonds, the bid–ask 
can be about 5–10 bps of yield, implying a price bid–ask of about 0.50% for a bond 
with a maturity of 10 years.
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Analysts can provide the list of tickers that they like to buy or hold in the portfolio, 
and the tickers can be used to find all bonds for input into the linear optimization. For 
example, for a corporate portfolio we may require that no issuer can have a market 
value of more than 1% in excess of the benchmark and a maximum contribution to 
duration of 0.1 years over the benchmark.

Table driven constraints for the optimization can be very useful for team portfolio 
management, where the analysts as well as the portfolio managers can more easily visu-
alize the structure of the portfolio and bets in specific sectors. 

Table 19.2 is a sample list of constraints for a table driven linear optimization. Each 
group limits the sum of the contributions of all sectors in the group to the specified 
value. For example, the sum of spread duration for AR + EC + UA + VE has to be less 
than or equal to 0.4 years. To optimize a high yield portfolio, specific sectors or issuers 
can be grouped to limit their maximum contribution to the portfolio. Table 19.3 shows 
a sample output of trading recommendations made by the optimizer rounded to $5000 
face values.

TABLE 19.2 Sample linear optimization constraints

Field Country Absolute Relative to Bench Sign Group

Market Value AR 2% <=

Market Value BG 5% <=

Market Value BR 5% <=

Market Value CO 3% <=

Market Value EC 2% <=

Market Value MX 10% <=

Market Value ID 3% <=

Market Value PA 3% <=

Market Value PE 3% <=

Spread Duration PH 0.4 <=

Spread Duration HU 0.2 <=

Spread Duration HR 0.2 <=

Spread Duration TR 0.4 <=

Spread Duration ZA 0.4 <=

Spread Duration AR 0.4 <= 1

Spread Duration EC 0.4 <= 1

Spread Duration UA 0.4 <= 1

Spread Duration VE 0.4 <= 1

Market Value AR 6.0% <= 2

Market Value EC 6.0% <= 2
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The advantage of table driven linear optimization is that each analyst or portfolio 
manager can update their recommendations in the table and the overnight processing 
will produce the optimum trades to achieve the portfolio restructuring or rebalanc-
ing. The trader can see the estimated bid–ask spreads and the expected prices for 
each security before a trade is initiated. If the market price of a security is signifi-
cantly different from the price used in the optimization, the trader can postpone the 
transaction.

For corporate portfolios, liquidity may be a constraint for buying securities. Often, 
the optimizer picks securities that have higher spreads but are not available for trade. 
A table of exclusions can be updated to remove illiquid securities from the universe 
of securities that is used for optimization. Optimization of corporate bond portfolios 
often requires trial and error and a few iterations to find desirable securities. Many 
traders prefer to trade benchmark securities or very liquid securities which tend to have 
a premium price and a lower yield. In the long run lower yields will cost the portfolio 
excess returns.

Without linear optimization, there is no other way to efficiently structure the port-
folio by making the necessary trade-offs of bid–ask and yield or spread advantage. The 
optimization makes the entire portfolio available for sale at the bid price to raise cash 
and the entire universe in excess of the portfolio can be purchased at the offer price. A 
security that an analyst has a sell rating on is taken off the buy list and is automatically 
added to the sell list.

In general a decision to hold is the same as a decision to buy; thus, many fixed 
income mangers require analysts to have only buy or sell recommendations. Traders 
can often ignore small size trades that are produced by the optimizer. For example, a 
trade for $25,000 will not make a significant difference in the risk or return profile of 
a portfolio with a market value of $100 million.

Linear optimization is also very useful for end-of-month rebalancing when the 
index is also rebalanced and it can provide a peek into the restructured portfolio in 
advance. More importantly, a comparison of the positions in the current portfolio, the 
index, and the future portfolio, will make it easier to visualize the final product before 
implementation. Table 19.4 is a sample of such a report.

A monthly rebalancing of emerging markets or high yield portfolios using linear 
programming generates about 100–200 additional basis points on an annual basis 
while maintaining the same level of risk. 
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TABLE 19.4 Sample portfolio preview

Contribution to MV Contribution to SD Contribution to Carry

Country S & P Index Port Optim Index Port Optim Index Port Optim

AR B 2.1% 4.1% 4.1% 0.178 0.334 0.333 0.22% 0.47% 0.47%

BG BBB 0.5% 0.0% 0.0% 0.010 0.000 0.000 0.01% 0.00% 0.00%

BR BBB− 12.4% 6.9% 7.1% 1.089 0.674 0.694 0.15% 0.13% 0.14%

CO BBB− 5.6% 0.7% 0.7% 0.492 0.094 0.091 0.07% 0.01% 0.01%

EC B− 0.2% 0.0% 0.0% 0.006 0.000 0.000 0.02% 0.00% 0.00%

HR BBB− 1.4% 0.0% 0.0% 0.088 0.000 0.000 0.07% 0.00% 0.00%

HU BBB− 2.1% 0.0% 0.0% 0.154 0.000 0.000 0.10% 0.00% 0.00%

ID BB+ 6.6% 1.4% 1.4% 0.524 0.122 0.125 0.14% 0.03% 0.03%

MX BBB 13.8% 4.4% 4.4% 1.221 0.834 0.826 0.17% 0.09% 0.09%

PA BBB− 3.1% 0.0% 0.0% 0.297 0.000 0.000 0.05% 0.00% 0.00%

PE BBB− 4.2% 0.4% 0.5% 0.481 0.072 0.081 0.05% 0.01% 0.01%

PH BB 9.6% 3.6% 4.5% 0.865 0.384 0.466 0.15% 0.07% 0.08%

RU BBB 11.7% 46.9% 45.4% 0.662 4.253 4.114 0.24% 1.27% 1.22%

TR BB 13.2% 15.5% 16.3% 1.026 0.742 0.762 0.34% 0.41% 0.43%

UA B+ 1.3% 0.6% 0.5% 0.059 0.005 0.004 0.11% 0.05% 0.04%

VE B+ 9.7% 13.9% 13.8% 0.579 0.716 0.713 0.99% 1.57% 1.57%

ZA BBB+ 2.7% 0.0% 0.0% 0.179 0.000 0.000 0.04% 0.00% 0.00%

Cash AA 0.0% 1.6% 1.4% 0.000 0.000 0.000 0.00% 0.00% 0.00%

Total 100.0% 100.0% 100.0% 7.912 8.230 8.209 2.94% 4.10% 4.09%
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The components of the term structure of interest rates can be calculated by finding the 
set of parameters that would best approximate the market price of treasuries. The 

most widely used method for such an exercise is least squares error fitting. We can use 
one of the following two optimization functions to calculate the components of the 
TSIR:
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where wi is the weight or outstanding face amount of a given issue, pm i,  is the market 
price (plus accrued interest) of a bond, pt i,  is the calculated price of a bond based on the 
TSIR, Dm i,  is the Macaulay duration (which can be replaced by level duration), and N 
is the number of bonds to be used for the term structure calculation.

By minimizing Z, the term structure parameters can be calculated. Using outstand-
ing amounts as a weighting function for bonds has the advantage that small issues that 
are not liquid and tend to have pricing errors will have lower weights in the optimiza-
tion process. Since some bonds can be on-special in the repo market or have bad prices, 
one should run the optimization process at least twice, screening out securities with 
a standard error of more than 4σ after the first pass. Callable bonds should not be 
included in the optimization.

By replacing the calculated price pt i,  using (5.11), we can write (20.2) as

Z w p si m i b i
i

= ∑ , ,
2

(20.3)

where sb i,  is the implied yield spread of the security relative to the TSIR. Equation (20.1) 
leads to the TSIR on the basis of price optimization for all treasuries weighted by the 
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respective outstanding amount of each issue. Equation (20.2) uses yield optimization, 
which results in a relatively uniform yield fit throughout the curve. In the US treasury 
market, both models result in almost identical yield curves. In less developed markets, 
price optimization results in a more accurate yield calculation at long maturities and 
therefore provides a better valuation and risk assessment for a portfolio. Yield optimi-
zation results in a more accurate fit at the short end of the curve and therefore is better 
suitable for yield sensitive calculations such as short dated mortgages or options.

Another alternative is a compromise between price and yield optimization by 
replacing the square of duration with duration in (20.2):

Z
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m i

t i
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(20.4)

This method improves the fitting for the short end and long end of the curve compared 
to price optimization and yield optimization respectively.

If price optimization is not used, it is a good exercise to require as a constraint that 
the sum of calculated and observed market values of all treasuries be identical, i.e.,

w p pi m i t i

i

( ), ,− =∑ 0 (20.5)

If the TSIR is fitted with (20.5) as a constraint for an index, it will price the index 
accurately at any given time and therefore the contribution of security selection to the 
performance of the index will be zero as long as the index does not change. This implies 
that the optimal TSIR coefficients are index dependent. For example, consider portfo-
lios A and B, which are managed against treasury benchmarks with minimum maturi-
ties of one and five years respectively. If we apply (20.5) to benchmark A, then a small 
performance of benchmark B cannot be accounted for by the term structure durations 
and convexity contributions and has to be attributed to security selection. 

For convenience, we use the same optimization form for (20.1), (20.2) and (20.4) 
as follows:
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with μi  equal to 1, 1 2/ ,Dm i or 1 / ,Dm i for (20.1), (20.2) or (20.4), respectively. To incor-
porate (20.5) as an optimization constraint, we need to use the Lagrange multiplier. 
Differentiating (20.6) with respect to the coefficients of the TSIR yields
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where λ is the Lagrange multiplier, ∂
∂
p

a
t i

k

,  is the price derivative relative to the kth 

 component of the TSIR of the ith security defined in (4.3) or (10.38), depending on 
whether we use the standard TSIR or the convexity adjusted TSIR (10.28). We can 
use (20.7) and (20.5) to simultaneously solve for the coefficients of the TSIR and λ. 
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For convexity adjusted TSIR, we will also need to include vega optimization defined 
in (10.40), that is,
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We will now show that the optimization of (20.4) will also nearly satisfy (20.5) for 
the universe of bonds from which TSIR is being calculated. We first take the derivative 
of (20.4) relative to the first component of the TSIR:
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It follows that
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Substituting (20.10) into (20.9) leads to (20.5). This implies that constraint (20.5) will 
not be necessary and the Lagrange multiplier can be set to zero if the optimization is 
based on (20.4).

It is mathematically and computationally easier to calculate the coefficients of the 
TSIR using the polynomial expansion (see Chapter 3) and then transform the result 
into the Chebyshev representation.

20.1 OPTIMIZING TSIR

The objective of the optimization is to find the set of term structure parameters that 
would minimize (20.1), (20.2) or (20.4). We rewrite the optimization functions in a 
slightly different form for convenience as one that would maximize
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The optimization can be subject to the following constraint if we choose to match the 
market values:

u p pi m i t i

i

( ), ,− =∑ 0 (20.12)

The weight of securities ui in constraint (20.12) can be different from wi in (20.11). By 
including constraint (20.12), the general optimization equation can be changed to one 
that would maximize
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We assume a generalized equation for the volatility as
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=

−
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(20.14)

where ψv i,  is the ith basis function (i=0, 1,…, L – 1) for the term structure of volatility 
and bi are its coefficients. For notational convenience, we will define the variable gk as

g
a k n

b k n n L nk
k

k n
=

= −
= + + −

⎧
⎨
⎪⎪
⎩⎪⎪ −

0 1 1

1 1

, , , ,

, , ,

�

�
(20.15)

After differentiation, the optimization function leads to solving the following sets of 
simultaneous equations:
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With the inclusion of λ, there are K + 1 = n + L + 1 equations and as many unknowns. 
The equations can be solved by using Newton’s method in multiple dimensions. Figure 
20.1 shows how Newton’s optimization method works in one dimension. At starting 
point A, we calculate the slope of the tangent line, which is equal to the derivative of 
the function, and calculate the intercept of the line with the horizontal axis, point B. 
The value of the function at point B is calculated (point C) and its tangent is calculated, 
until the intercept of the function with the horizontal axis is found. 

 Using Newton’s fastest descent method, from trial starting values of 
a a a b bn L0 1 1 0 1 0, , , , , , ,… …− −{ }λ  we can calculate the shifts in the trial values by solving 

the set of simultaneous equations as follows:
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FIGURE 20.1 Newton’s optimization method
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where δgl is the shift in the trial value of the lth parameter and
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The second order derivatives are given by
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The first order derivatives are
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The following is the list of equations that are needed to calculate the derivatives:
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Since the contribution of yield volatility v to the price function is second order, its 
first order derivative is zero at v = 0. This leads to a trivial solution of (20.16) for v = 0 
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which is not optimal. Therefore Newton’s fastest descent method would converge to 
accurate yield curve parameters only if a reasonably close estimate of the volatility can 
be made. Alternatively, one can use optimization techniques that operate on the func-
tion such as the simplex method to calculate the yield curve parameters.

The simplex method for function optimization is different from the simplex method 
for linear programming. It is based on bracketing the minimum values of the function 
by varying each variable and finding the minimum by iteration. It is not as efficient as 
Newton’s method, but it is usually much more stable. For a review of different methods 
of finding optimum values of functions, see Press et al. [15].

20.2 OPTIMIZING TSCR

To calculate the term structure of spreads for credit securities, we use (20.18) and 
(20.19) as the starting point for the optimization equation. Assuming no cash flow 
guarantee, the price of a credit security with recovery can be calculated from (13.17) as
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We redefine the recovery adjusted effective cash flow as
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The spread adjusted discount function can thus be written as
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where vs is the spread volatility. We note that for a unit principal outstanding, the 
implied forward spread coupon from (13.13) is given by
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Equations (20.22)–(20.24) for credit securities take the following forms:
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Equations (20.40)–(20.42) are the primary equations that are needed to calculate the 
term structure of credit rates. The following are all the equations that are necessary for 
the calculation of the TSCR:
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(where RPTi−1 means calculating the previous term at time ti−1),
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In our formulation, we implied that the contribution of convexity to credit yield 
can be modeled by the term structure of volatility as in (20.37). In practice, at most 
one component of volatility can be estimated from market data. For US treasury rates 
the volatility can be calculated relatively accurately due to the efficiency of the market. 
However, for credit securities, there is not enough data or there is too much noise in 
prices to use the data for estimating volatility. 

20.3 OPTIMIZING TSCR WITH NO CONVEXITY

Even though the contribution of volatility and convexity is more important for most 
credit securities than treasuries, at the present time the market is not efficient enough to 
measure the contribution of volatility to the TSCR. Assuming that the contribution of 
volatility is zero, our equations simplify significantly as follows:
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20.4 ESTIMATING RECOVERY VALUE

The formulation for the calculation of the parameters of the TSCR was derived for 
securities with recovery value in Section 20.2. We can use the coefficient of the recovery 
value as one of the adjustable parameters that can be optimized to derive the TSCR 
and market implied recovery value. For example, to calculate a TSCR with five com-
ponents where the fourth and fifth components are matched with the TSIR, we will be 
optimizing the TSCR on only three components. We can include the recovery value as 
an additional component to calculate. 

The recovery value can only lie in the range (0%, 100%), and this can cause poten-
tial problems with the optimization of the data. Since the optimal solution is found by 
Newton’s fastest descent or simplex algorithms, the trial intermediate solutions can 
have a recovery value that is negative or larger than 100%, leading to instability in the 
solution. Such instabilities can easily be overcome if smaller steps can be taken. If the 
data quality is very bad or the maturity range of data is very tight, unstable components 
of the TSCR or recovery value will be calculated that can be significantly different from 
one day to the next.

It is advisable to estimate the market implied recovery value by trial and error in 
the range (0%, 100%). We first assume a zero recovery value and calculate the TSCR, 
we then try a 10% recovery value and see if the yield error of the TSCR is lower, then 
we try 20%, … until we can bracket the optimum recovery value and then use the sim-
plex method to estimate the optimum recovery value. 

While this method is computationally more expensive than outright optimization 
of the recovery value, it provides a much more reliable and stable result.

20.5 ROBUSTNESS OF THE TERM STRUCTURE COMPONENTS

The stability and robustness of term structure components require many bonds with diverse 
maturities and efficient market prices. The transformation of time to τ as in (2.16) using an 
exponentially decaying time function results in a range of values in [–1, 1]. For nearly all 
applications five components of the TSIR are enough for valuation and risk management.

In order to fit five components of the TSIR or TSCR, there need to be at least five 
bonds at different maturities. However, having just five bonds will result in a fit that 
reproduces the price of all those bonds exactly no matter how bad the prices are. If an 
issuer has issued eight bonds in the last 2 years with original maturities of 10 years, 
all bonds will fall in a relatively tight range in the τ space that we use. Since they are 
all tightly bunched together, it is difficult to calculate five parameters from these eight 
bonds and have confidence in them. In fact, even the slope of the TSIR cannot be reli-
ably calculated from such data. 

Recall from equation 2.21 that the Chebyshev basis functions have a sinusoidal 
function of the form

ψ τn n= cos( arccos( ))
Using five parameters for the TSIR requires n = 4 which is a polynomial of degree 4 

in τ space and intersects the τ axis at four points, dividing the range interval [–1,1] into 
five segments. A logical choice, in order to use five components, would be to require 
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bonds with maturities in all five segments. While this approach is reasonable, it is not 
very practical since the shortest time intersection with the τ axis would be at about 0.30 
years or 3.5 months. Most governments do not issue bonds with such short maturi-
ties. In the US there are treasury bills which are very liquid, but for most other coun-
tries such securities are relatively illiquid or not available. Older bonds that have short 
maturities tend to be very illiquid as well.

It is probably more practical to use a linear τ space and require minimum ranges 
for a given number of term structure parameters. For most countries that have a prim-
itive swap or government curve, the range of data is typically 2–5 year maturities. 
Assuming a decay coefficient of 0.13, the difference between τ for the maturities of five 
and two year swaps will be 0.498=-0.044+0.542 and level and slope would be sufficient 
to calculate such curves. Thus, for practical purposes, a range of 0.45 in τ should be 
the minimum for using two components. Likewise for three, four, and five components 
0.85, 1.15, and 1.35 respectively, are reasonable ranges for data to calculate robust and 
stable term structure components.

The range of τ for maturities of 2–20 years is (–0.54, 0.85) and this should be the 
minimum range for calculating five components. We can divide the range of data into 
maturity buckets in τ space and require the presence of data in most maturity buckets 
for calculating five parameters. For example, we can divide the [−1, 1] range for τ into 
eight equally spaced maturity buckets and require that there be at least one bond in five 
non-adjacent buckets. Such a criterion works better than performing a uniformity test 
on the data. If there are 20 bonds in one bucket and most other buckets have one or 
two bonds, the calculated TSIR would be robust even though the data are not uniform. 

In general, for bend calculation, there should be bonds with maturities near 2, 5, 
and 8 years or more. For most corporate or credit bonds, there is no need to calculate 
the fourth and fifth components and they should be set equal to the treasury rates if 
available. 

20.6 CALCULATING THE COMPONENTS OF THE TSYV 

The term structure of yield volatility can be calculated by minimizing the difference 
between the calculated and the market volatility price function (9.16). We rewrite 
(9.16) as

p D y v c y v t em j j x j m j j i j i j i i
y t

i

i i, , , , , ,= −∑ (20.62)

where vm j,  is the market volatility of security j, vj i,  is the volatility of cash flow at time 
ti of security j, and yx j,  is the continuous compounded (exponential) market yield of 
security j.

We write the optimization function so as to maximize the equation
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where wj is the weight of each bond in the optimization. We can write (9.19) as
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The coefficients of ak can be solved using the set of simultaneous equations represented 
by (20.67). wj can be equal to 1, 1

2
p Dm j j,( )  or 1 p Dm j j,  to optimize for absolute volatil-

ity, price weighted volatility or a compromise between the two extremes.
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Implementation of the methodologies in this book requires the development of mod-
ules that can handle all aspects of the infrastructure for an automated daily analysis 

and reporting. Calculation of the term structure of interest rates requires a module for 
generation of cash flows. However, cash flow generation of real rates or credit default 
swaps requires the term structure of nominal rates and Libor rates. These two projects 
will be heavily interrelated and must work together. In this chapter we discuss the 
development of modules that are necessary for the implementation of our methodology.

21.1 TERM STRUCTURE

The term structure module must be very flexible to handle all exceptions and calculate 
robust term structure of rates and credits. Using polynomial basis functions results in 
faster computation times and the result can then be converted to Chebyshev polynomi-
als. For most developed countries, government bonds with varying maturities can be 
used as input for cash flow generation. Many emerging countries may not have an effi-
cient or established government curve. In some cases better data are available for Libor 
(interest rate swaps) than for government debt and it can be used as the primary curve.

We first need to develop the primary curve of any country and use it as the basis for 
the development of other curves. 

21.1.1 Primary Curve

To develop the primary nominal curve we need to get the list of cash flows along with 
the time to cash flow of non-callable government bonds or interest rate swaps as input. 
For each bond, the invoice price, number of shares, and duration should also be pro-
vided for weighting each bond in the optimization function. Refer to equation (20.3) 
and the relevant explanation for more details.

CHAPTER 21
Implementation

The Advanced Fixed Income and Derivatives Management Guide. Saied Simozar
© 2015 by Saied Simozar. Published 2015 by John Wiley & Sons Ltd.
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The first step in calculating the term structure components is to identify the maxi-
mum number of parameters, up to five, that can be used. As we discussed in Section 
20.5, a broad distribution of maturities is required to calculate up to five parameters.

One of the keys to finding the optimal term structure, especially if the data are not 
very good, is to have a good starting point for the components. This can be achieved 
by calculating only the level of rates which should be close to the average yield of the 
input bonds. Then two components can be calculated, using the calculated level for 
the first component and initializing the second component at zero. This process can be 
continued until all the required components are calculated.

Once the term structure components are calculated, we need to calculate the adjust-
ment table. First, the bonds must be sorted by maturity. If there are fewer bonds than 
the size of the adjustment table, the size of the adjustment table will be equal to the 
number of bonds. If there are more bonds than size of the adjustment table, we can 
divide the adjustment table into maturity buckets and choose one bond for each bucket 
beginning with the lowest maturity bucket, until the remaining number of bonds and 
buckets are equal, at which point all remaining bonds will have their own buckets.

The adjustment table can be calculated by starting with the lowest maturity bucket. 
The spread of the bond in this bucket and all prior cash flows will be equal to the 
spread that will match the market price of the bond. For the second bucket, we adjust 
the yield of all the cash flows that have a maturity less than the first maturity bucket 
in such a way that the interpolated adjustments to the yields of cash flows between the 
two buckets will reproduce the price of the second bond exactly. The process will con-
tinue until the adjustments for all buckets are calculated.

Generally, an adjustment table with 24 bonds provides enough accuracy for nearly 
all applications. Using the adjustment table, nearly all swaps can be calculated exactly.

For countries where there is a liquid treasury market, up to five components can 
be calculated for the treasury term structure of rates. For Libor, three components are 
sufficient and the last two components can be matched with the treasury components. 
For countries where the swap curve is more liquid, the opposite can be done. 

At times of stress where liquidity premium is very high and the spread between 
on-the-run and off-the-run is very high, as in Figure 2.10, it is best to use off-the-run or 
coupon Strips for calculating the curve. In general, on-the-run bonds have a premium 
price due to liquidity and are not necessarily representative of the market.

Calculating the implied volatility of the yield curve can be very difficult using New-
ton’s steepest convergence, since volatility is second order and its derivation at zero is 
zero. Using the triangular simplex method of optimization (not to be confused with 
linear optimization) usually works better for calculating implied volatility. In general, if 
the yields of long maturity bonds are not lower than the yields of intermediate to long 
bonds, the calculated implied volatility is zero. 

21.1.2 Real Curve

The calculation of the term structure of real rates is very similar to the calculation of 
the TSIR. However, we must first calculate the TSIR to be able to strip the nominal por-
tion of the cash flows of real bonds. Using (11.16), the real portion of a cash flow can 
be calculated as

c c er n
yt y tn n= − + (21.1)
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where the subscript n refers to the inflation reference time for the cash flow at time t. 
The inflation lag is equal to t tn− . For example, if the real coupon of a bond is 3% and 
the inflation lag is 2 months and forward nominal yield is 4%, the calculated real cash 
flow will be

c er = =− ×3 2 9934 2
12% .

Next we need to calculate the nominal cash flows and accruals and subtract them 
from the market price of the bond. Consider an inflation report on March 15 and a real 
bond that pays coupon on April 15 with 2 months of inflation lag. On March 16 we 
know the nominal value of the coupon that will be received on April 15 and in fact we 
can calculate the market price of the bond up to the last day of April since the inflation 
factors are known through the end of April. If the factor for April coupon payment is 
1.6 and the real coupon rate is 3%, the semi-annual coupon amount will be 2.4 per 100 
of face value of the original bond. We have to subtract the present value of this coupon 
payment from the invoice purchase price to calculate the real purchase price. 

We also know that inflation for the first 16 days of March has already happened 
but not reported, and we need to estimate it. This can be done by using the average of 
historical inflation values for the last 5 years for the month of March to estimate the 
resulting factor for the first 16 days of March and multiplying all cash flows by this 
factor.

Next, the cash flows need to be seasonally adjusted beginning with the next month 
based on day of the month reference. For example, if there is a coupon payment on 
July 15, and inflation has been reported through the end of February, then inflation 
for March, April, and May will impact the coupon on July 15. If seasonal factors for 
March, April, and May are 1.01, 1.005, and 0.99 respectively, then the contribution of 
seasonality for July 15 coupon payment will be

1 01 1 005 0 99 1 1 01013815
31

16
31. . ( . ) .× × × + × =

After this process, the cash flows have all been converted to real seasonally adjusted 
cash flows and the term structure of real rates can be calculated similarly to nominal 
rates.

21.1.3 Credit Curve and Recovery Value

Calculation of the credit curve is similar to the calculation of the primary nominal 
curve. Pricing of credit securities is much less transparent and inefficient than treasur-
ies and swaps. However, with the increasing popularity of CDS, the spreads of many 
credit issuers are traded and can be used as additional data points to calculate the credit 
curves. In general, two or three parameters will offer a significant advantage compared 
to the simple spread calculation. The fourth and fifth components should be set equal 
to the components of the primary curve.

Even for issuers that have only one bond, a TSCS can be calculated by using iden-
tical components for the remaining four components and finding the parallel spread 
curve. Floating rate securities can also be included, as input for the TSCS, since the 
floating component will be based on Libor or treasury.

Calculation of the recovery value is somewhat more complicated since it cannot 
be done precisely. The recovery can be estimated by finding the credit curve that has 
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the lowest fitting error and is therefore very sensitive to bond prices. Before finding the 
implied recovery value, the credit yield has to be higher than the Libor rate at all matur-
ities, if discounting the recovery value by Libor. Since recovery is limited to (0, 100) 
range, using the fastest descent method may create instability in the calculated curve. 
The implied recovery value can be calculated after calculating the credit curve by trial 
and error. First, the recovery value can be estimated and the credit curve is recalculated. 
Using interpolation, ensuring that the recovery value is always in the range of (0, 100), 
the optimal implied recovery value can be calculated.

Since market practitioners usually use spreads based on a benchmark security to 
price other corporate securities, the relative pricing of all securities of an issuer remains 
unchanged to a large extent and the estimated recovery value does not change from one 
day to the next.

An adjustment table is not necessary or useful for credit curves since in most cases 
there are not that many bonds and the pricing may not be efficient. The spread of each 
security relative to its term structure is a measure of value for that security.

21.2 DISCOUNT FUNCTION AND RISK MEASUREMENT

In general, the discount function can be written as 

d ei
y r l c ti i i i i= ± ± ± ±( ) (21.2)

where di is the discount function, yi is the risk-free rate, ri is the risk-free real rate, 
l y li i s i= + ,  is the Libor or swap rate (ls i,  being the Libor spread), and c y ci i s i= + ,  is the 
credit rate (cs i,  being the credit spread over treasury). Theoretically, any combination of 
the above yields can be used for a discount function. However, there are only six practi-
cal discount yields, as shown in Table 21.1.

For implementation, each cash flow can be assigned a flag that encodes how it 
must be discounted. The flag can be used with bit patterns to identify the yield curve 
as well as the sign of the discount yield. For example, we can use 0x1 (hexagonal base 
number) for treasury yield, 0x2 for real, 0x4 for Libor, and 0x8 for credit. Likewise 
for the sign we use 0x10 for negative treasury, 0x20 for negative real, etc. Thus, 0x1B 
(0x01 + 0x02 + 0x08 + 0x10) is the flag for discounting real credit rates. 

The discount function of cash flows that have a real yield dependency must be 
decomposed into real and nominal components. If the function get_real_time 

TABLE 21.1 Practical discount yields

yi Risk-free rate

ri Risk-free real rate

li Libor or swap rate

ci Credit rate

l y ri i i− + Real Libor yield

c y ri i i− + Real credit yield
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returns the real time to a cash flow, then the following code can be used for the discount 
function of real bonds:

if((ti_r = get_real_time( ti, flag)) < ti ) then
di_r = get_discount( ti_r, flag_r )

 flag_r is 0x22 logical ANDED with flag
di_n = get_discount( ti, flag_n )

 flag_n is 0xdd logical ANDED with flag
di_nr = get_discount( ti_r, flag_n )
di = di_r * di_n / di_nr

else
di = get_discount( ti, flag )

The risk parameters can also be calculated in a similar fashion:

If((ti_r = get_real_time( ti, flag)) < ti ) then
dur_k_r[ k ] = di * ti_r * ψ( _ , )ti r k

contribution to the kth real duration
dur_k_n[ k ] = di *[ ti *ψ( , )ti k - ti_r *ψ( _ , )ti r k ]

the kth nominal duration

The risks of floating rate coupons are also measured similar to the risks of credit 
securities with no real component in the float as in (12.27) and (12.29). If the floating 
coupon is based on the inflation or real rate, then we have to adjust for the inflation 
lag. This is the case for the floating leg of inflation swaps which are traditionally zero 
coupon instruments. Inflation swaps do not need to be zero coupon and we can calcu-
late their risk using floating inflation. Unlike other floating rate bonds where the float 
is fixed just before the start of the coupon accrual period, an inflation swap coupon is 
truly floating and is not known until the inflation lag before the coupon payment. The 
risks of inflation swaps can be found in formulas (11.34)–(11.38).

21.3 CASH FLOW ENGINE

Most bonds have a fixed coupon rate and are very simple to analyze. However, many 
corporations, especially high yield issuers or emerging countries, have issued bonds 
with varying degrees of complexity of cash flows to satisfy their own capital require-
ments as well as investors’ demands for higher yields. For example, a company that is 
expected to have a high growth rate may prefer to pay a lower coupon at the beginning 
and to pay a higher coupon as its business matures. It may issue a 10-year bond with 
a coupon rate of 3% for the first 3 years, then 5% for the following 3 years, followed 
by 7% for its remaining life. The cash flow structure of such bonds and more complex 
structures need to be stored in a database and made available to the module analyzing 
the instrument. 

Sometimes a company issues a bond that pays in kind (PIK), that is, instead of pay-
ing a coupon rate, the implied coupon rate is added to the principal of the bond, like a 
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zero coupon bond. However, most bonds that pay in kind do so for a limited time and 
revert to coupon payment thereafter. A company or country can pay part of a coupon 
and PIK the balance. Such bonds are called capitalizing bonds.

A floating coupon can be based on one of the risk-free or quasi-risk-free bench-
mark rates listed in Table 21.2.

 Corporate or emerging markets’ floating rate bonds are usually issued with a 
spread over a benchmark to compensate for the additional risks of the issuer.

Table 21.3 lists different types of cash flows.

TABLE 21.2 Practical floating discount benchmarks

yi Risk-free rate, TSY

ri Risk-free real rate, RTS

li Libor or swap rate, LBR

y ri i− Implied treasury based inflation rate, ITS

l y ri i i− + Real Libor yield, RLB

l ri i− Implied Libor based inflation rate, ILB

TABLE 21.3 Types of cash flow

Coupon A fixed interest amount payment

Principal The final payment of the principal

Float A floating coupon based on a benchmark

Capitalized A coupon or part of it that is added to the principal

PIK Similar to capitalization. Often PIKs are optional

Sink Part of a principal that is paid before maturity.

Cap-Float A fixed amount of capitalization based on a floating coupon. The balance 
is paid as regular coupon

Float-Cap A floating amount of capitalization after a fixed coupon based on a float-
ing benchmark

PIK-Float A fixed amount of PIK based on a floating coupon. The balance is regular 
coupon

Float-PIK A floating amount of PIK after a fixed coupon based on a floating 
benchmark

RIG Rolling interest guarantee provided as insurance if the regular coupon is 
not paid

Prin-Guarantee Guaranteed part of a principal if it is not paid

Recovery The recovery amount if there is default

Previous The coupon is equal to the previous coupon. The previous coupon can be 
a floating rate coupon
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Each associated cash flow can have its own discount rate. A principal guarantee 
may have to be discounted by treasury or Libor rate depending on the quality of the 
guarantee. Thus, for each cash flow type we need to know how to generate it and how 
to discount it, independently of each other. For example, a corporate bond that is based 
on 6-month floating Libor with a spread of 3% will have to be discounted by credit 
curve, while the coupon is generated by Libor curve. 

There are bonds in the market whose coupons are fixed for 5 years and reset to 
the prevailing 5-year treasury rate plus a spread after 5 years. In order to analyze such 
bonds, we need to calculate the forward treasury rate and add the spread to calculate 
the coupon rate. The calculated coupon will be used for another 5 years and that is 
where the cash flow type “Previous” in Table 21.3 refers to.

The role of the cash flow engine (CFE) is to generate the forward cash flows based 
on the three primary curves of treasury, Libor, and real rates. For most bonds, the CFE 
needs to be used only once; however, for complex securities, such as a bond whose 
coupon is based on the forward 5-year treasury rate, it may be called multiple times to 
calculate the risks. For example, a company may issue a floating rate bond with semi-
annual coupon that is equal to 6-month Libor plus a spread of 150 bps. The CFE uses 
the Libor curve to calculate the forward 6-month Libor at semi-annual intervals and 
adds 1.5% to calculate the forward coupon of the security. We assume that treasury 
curve is the fundamental driver of rates and Libor is a follower with a variable spread. 
In this example, if 6-month Libor is at 4% four years from now and the treasury rate 
for the same period is at 3.6%, then the Libor spread is 0.4%. The fixed component of 
the coupon of the security will thus be 1.5 + 0.4 = 1.9% and the remaining 3.6% will 
be floating treasury. If Libor spreads widen for such a security, the cash flows increase 
and the value of the security increases. Thus a floating rate bond has a negative Libor 
duration.

The CFE produces cash flows from the term structure of rates and using the adjust-
ment table for Libor or treasury rates for accurate analysis. For example, for inflation 
swaps, the generated cash flows are based on implied forward inflation rates which are 
the differences between treasury rates and real rates lagged by 2 months. Once the cash 
flows are generated, they need to be scaled to the coupon period using market conven-
tions. A corporate bond may pay quarterly coupons based on 6-month Libor rates. 
Corporate bonds use the 30/360 convention, but floating Libor uses the Actual/360 
convention. 

Many high yield companies issue bonds that can either be a fixed coupon or a PIK 
depending on their choice. Investors generally demand a higher rate for a PIK than for 
coupon payment, since if a company chooses to PIK the cash flow, it may be under 
financial pressure and hence a higher premium is required for the extra risks that inves-
tors bear. For example, a company may issue a bond with a coupon rate of 6% with 
the option to PIK at 8%. The CFE can often estimate the economical cash flow if the 
company has a few bonds outstanding and an estimate of the TSCS can be made. If the 
implied forward yield of the issuer is at 6% or below, the company can borrow at a 
rate that is below 6% and will likely pay the coupon. However, if the implied coupon 
is more than 8%, the company is likely to PIK the cash flow. At rates between 6% and 
8%, it is not clear what the company will do, but it can be assumed that below 7% it 
pays cash coupon and above 7% it PIKs. 



306 THE ADVANCED FIXED INCOME AND DERIVATIVES MANAGEMENT GUIDE

Trim:  170  x  244 mm c21.indd 03/26/2015 Page 306

21.4 INVOICE PRICE

Most bonds in the market are traded as “clean price”, implying that interest accrual is 
not added to the price. The invoice price of a bond is calculated by adding the accrued 
interest to the clean price of the bond. In some developing countries, bonds trade with 
an accrual known as “dirty price”. Defaulted securities also trade with a flat price and 
there is no accrual for them. 

Most bonds with sink and/or capitalization (PIK) as well as inflation linked securi-
ties trade with clean price and factor. Sink and capitalization or PIK are the opposites 
of each other, and their calculations are different. If cc i,  and cs i,  are respectively the capi-
talization and sink cash flows of a bond, the factor by which the principal of the bond 
changes is calculated as follows:
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The outstanding principal of a bond with both sink and capitalization is the product 
of both factors. 

The invoice price of a bond with capitalization is calculated differently from other 
bonds, and principal accrual needs to be calculated as well. If x is the accrual fraction 
period, for a bond with a coupon of ci, of which cc is capitalized, the capitalization 
accrual will be xcc. However, if the bond is trading at a price of 60, the capitalization 
is not worth as much as coupon accrual and has to be scaled by the price of the bond. 
The invoice price of such a bond is calculated as
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There have been bonds issued in the market that have step-up coupon and split 
accrual at the beginning and end of the period. For example, for a bond that pays semi-
annual coupons with consecutive coupons of 4% and 6%, the cash flow at the time of 
6% payment is the average of the two coupons and is equal to 5%. The invoice price of 
such a bond in the first half of the split period is accrued at the rate of 4% and in the 
second half at the rate of 6%.

Inflation linked securities in the US and Canada trade with clean factor. The inflation 
factor calculated based on the inflation reference point is multiplied by the clean price 
plus accrued to calculate the invoice price. Thus, the factor for a bond is the product of 
factors for sink, capitalization, and inflation. All cash flows have to be multiplied by the 
factor as well. 

21.5 ANALYTICS

The first step in calculating risks and valuations is to calculate the spread of the security 
relative to its curve for non-callable securities. The spread is calculated by iteration, 
generally using Newton’s method as outlined in Chapter 20.
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The default probability of the security is then calculated from the difference 
between the credit and treasury curves. If there is zero recovery or guarantee for the 
security, risk measurements are straightforward and can be calculated analytically for 
fixed or simple floating coupons. 

For securities with recovery or guarantee value, the interest rate, real, and Libor 
risks can be calculated analytically. Since the default probability is only a function of 
the spread of the security, the effective cash flows from default can be calculated from 
(13.15) and they will not change if interest rates or Libor rates change. We also need to 
keep track of the floating component of the cash flow to calculate its risks analytically 
using (13.26).

It is much more convenient to calculate the credit durations and convexities of a 
bond with recovery by shifting the credit curve, recalculating default probabilities and 
new prices. Using (13.27) and (13.28), the credit durations and analytics can be calcu-
lated from the shifted prices. This process requires the CFE to be called only once, since 
the effective cash flows can be readily calculated from the default probabilities.

The risks of most bonds can be calculated analytically; however, there are bonds in 
the market whose risks can be calculated only by shifting the curves, regenerating the 
cash flows, and calculating durations from changes in the prices.

Complex cash flow bonds such as those whose coupon depends on the forward 
5-year treasury rate require additional effort to measure their risks. By shifting the 
treasury or Libor curve and generating cash flows and maintaining the spreads, one can 
calculate new prices and, from (13.27) and (13.28), calculate analytics.

The durations of capitalizing bonds based on floating coupons have to be calcu-
lated by shifting the curve and calculating the allocation to capitalization and payment 
for each level of interest rates. This requires multiple calls to the CFE to calculate 
the risks. If interest rates fall significantly, all the interest payment may have to be 
capitalized. The government of Ecuador had such a US dollar based bond that was 
the result of Brady restructuring where the interest rate was lower than the scheduled 
capitalization.

In general, we need to use one of the five methods to calculate the risks of any secu-
rity, depending on its cash flow structure.

 ▪ Simple – The risks of fixed rate bonds, including step-ups, sinking, and capitalizing 
bonds whose cash flows are known in advance, can be calculated analytically.

 ▪ Floaters – Floating rate bonds whose coupon depend on the forward Libor or trea-
sury rates, require an additional step in calculating their risks. We need to keep 
track of the prior coupon dates by using equation (12.25) for analytical calculation.

 ▪ Recovery – For measuring risks of bonds with recovery, but no guarantee, equation 
(13.26) can be used for analytical calculations. The interest rate, real, and Libor 
risks of credit securities do not depend on the credit curve or recovery and can be 
found analytically, unless the coupon is complex.

 ▪ Guarantee – The credit risks of bonds with RIG can be measured non-analytically 
by shifting the components of the credit curve and calculating its impact on the 
price using (13.27) and (13.28). If a bond has principal-only guarantee, its risk can 
be calculated analytically, similar to recovery rate. Other risks can be calculated 
analytically depending on their structure.

 ▪ Complex cash flow – Bonds whose cash flows depend on another bond, such as 
a bond whose coupon depends on the forward 5-year treasury, require a much 
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longer process for their risk measurement. By shifting the level of rates, the forward 
coupon of the underlying security is calculated and the cash flows of the bond are 
regenerated. The cash flows then need to be accrued based on the calendar conven-
tion. For example, if the accrual convention is Actual/360, each cash flow needs 
to be calculated on that basis and new prices can be calculated by maintaining the 
spread of the security relative to its curve. Equations (13.27) and (13.28) can then 
be used to calculate the risks. Only the risks of benchmark curves (treasury, real, and 
Libor) can be based on complex cash flows. Credit risk cannot be complex, unless 
a company issues a bond whose coupon depends on the coupon of another credit.

Table 21.4 shows examples of securities and methods of calculating their risks. 
Some of the methods are not applicable to some risks. For example, there is no special 
calculation for the treasury duration of a bond with a recovery value. Since default is 
only a function of spread, the treasury duration can be calculated as if the security had 
simple cash flows.

Complex credit securities are often issued by foreign corporations or quasi-sover-
eign foreign agencies denominated in a non-host country currency such as USD. 

21.6 TRADE DATE VERSUS SETTLE DATE

It is customary to use the settle date for yield and invoice price calculation of cash 
bonds. The settle date convention varies by market; US treasuries are settled in one 
business day in the US, while international treasuries are settled in three business days. 
Swaps are usually settled in two business days and corporate bonds are settled in three 
business days.

The settlement date is usually stated as T+n, where n is the number of business days 
to be added to the trade date to calculate the settle date. 

For the analysis of most securities the settle date should not be used, in particular 
if the settlement is for a forward date, even though the difference is usually very small. 
For example, if a buyer purchases a corporate bond for T+3 settlement that is over a 
long weekend (such as a Monday holiday), the actual settlement date will be six cal-
endar days from the trade date. If the company files for bankruptcy before the settle 
date, the buyer is still exposed to its risk. Thus, the measurement of risk has to start 
at the trade date. The trade date is particularly important for short dated options. For 
example, an option that will expire 30 days from the trade date would expire in 25 days 
if it is based on settle date over a weekend.

TABLE 21.4 Matrix of methods of risk calculation

Risk Simple Float Recovery Guarantee Complex

Treasury Treasury, corporate Floating rate note NA NA Complex credit

Real Tips Inflation swap NA NA Complex credit

Libor Fixed rate swap Floating rate swap NA NA Complex credit

Credit Corporate NA Corporate Brady bonds NA
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The trade date/settle date convention has a small impact on duration measurements 
as well. For example, if a zero coupon bond of a credit security is purchased for settle-
ment five calendar days from the trade date and maturity of 1 year from the trade date, 
then the credit duration of the security will be exactly 1 year. However, the interest rate 
duration of the security will be 365 5

365 0 986− = .  years. To be more precise, there is a nega-
tive exposure to the repo rate due to the implied lending of the security between the 
trade date and settle date by the buyer.

21.7 AMERICAN OPTIONS

Analysis of American options requires the construction of a diffusion process that will 
propagate the yield of the forward bond through a normal process to the next layer. 
The accuracy of the calculation does not increase materially with an increase in the 
number of layers beyond 30–40 for a long maturity and exercise date bond. Thus, it 
can be assumed that at about 40 layers, the accuracy is comparable to a closed form 
solution which of course does not exist for bond options. Unlike binomial trees, in the 
methodology that was explained in Chapter 15, the spacing between layers need not 
be constant.

A very important consideration for building the layers is their spacing. For exam-
ple, for a 10-year option, we can space the layers on a quarterly basis. Unlike binomial 
distributions, the spacing between layers need not be constant, and optimally it should 
not be. For deep out-of-the-money options the exercise is likely to take place in the lat-
ter half of the option, and for in-the-money options it is more likely in the first half if 
the carry is favorable. In high interest rate environments, the present value of an early 
exercise is much higher than that of a late exercise. In most cases, optimizing the num-
ber and spacing of layers can save significant computation time.

If we are only interested in the price of an option, we can use equally spaced layers 
for the calculation. However, in most cases we need to calculate the risks as well. To 
calculate the five treasury, three credit or Libor and eight volatility term structure risks 
plus convexities and Greeks, we need more than 40 price calculations. After a trial run 
of equally spaced layers, we can calculate the marginal contribution to the price of the 
option from each layer. We can then use about half as many layers, choosing them in 
such a way that the contribution from each layer, before expiration date, to the price of 
the option is about the same. For example, for an option whose contribution to price 
before expiration is $2.00 and where 20 layers have been used, we create a new tree 
structure with 10 layers. Suppose the contribution to the price for the first four layers 
is 0.06, 0.08, 0.1, and 0.13; we choose the first layer of the new distribution at a time 
between the second and third layer at a distance that is 60% away from the second 
layer.

For bond options that have discrete exercise dates, the layers must be scheduled 
on the allowable exercise dates. In most cases, there is a record date for callable bonds 
before the call exercise. The calculation for discrete options needs to be on the basis of 
the record date for each exercise date.

Once the dates of layers are selected, the forward price, yield, and volatility of the 
bond are calculated for each layer. To calculate the distribution of all yields, we need 
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to calculate the drift for each layer. Calculation of the drift can start by using the log-
normal distribution of rates’ drift (15.9), which is equal to −v t2 2/ , and solve iteratively 
to calculate the drift so as to satisfy the arbitrage-free requirement. Since calculating 
the price requires a significantly higher computation time, only one set of prices needs 
to be calculated centered about the mean of the distribution, using the initial drift. The 
drift is then calculated by maintaining the prices and shifting the distribution, instead 
of maintaining the distribution and recalculating the prices.

To measure the Libor risks of an option, we need two copies of the TSLR stored 
in memory. One copy is used for shifting the components of the curve, and the other 
copy with unshifted components. Since the TSYV is based on nominal rates, we need 
to calculate the forward Libor yield to calculate the relative yield volatility at all 
forward dates. The forward Libor yield can be calculated using the unshifted copy of 
the TSLR. 

Credit securities require calculation of the correlation parameters, depending on 
the correlation model used for their calculations. Even though in Section 15.9 we 
showed that, based on historical behavior, the pricing of credit markets is subject to 
arbitrage, for implementation we need to have arbitrage-free pricing, implying that 
at very low rates the correlation between treasury rates and credit spreads has to be 
positive. 

Consider the yield distribution of a bond at a forward time A that propagates to 
another distribution at time B. The yield (price) distributions of the bond at times A and 
B can be written using (14.19) as
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where y A0  is the implied forward yield of the security at tA. The implementation can be 
simplified by using the unit normal distribution function of the probability function as 
follows:
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Using an 81-point lattice (80 subintervals) that spans ±6σ, the yield at each point on 
the lattice is calculated as

y y e y f x
ixv t

x
i

= = =
−+

=
0 0

0

80

6
40

40
μ , (21.7)

where fx is the factor by which the forward yield is multiplied to calculate the yield at 
point i of the lattice. The distribution of rates and prices can be calculated for all the 
layers across the points of a normal distribution. Using 81 points for the normal distri-
bution provides a very high level of accuracy for each layer. However, given the number 
of calculations and propagations that each point in the distribution goes through, it is 
not overkill. If we use 20 layers, we need to calculate the price of the underlying security 
at 81 × 20 = 1620 points for calculating the price of an option; the remainder of the 
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calculations will be done by interpolation. If layers A and B are adjacent to each other, 
the volatility and drift parameters of diffusion from A to B are as follows:
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If the markets are inefficient or the calculation of the volatility surface is not accurate, 
there may be instances where the implied forward volatility is negative. If that happens, 
either layer A or B needs to be removed from the calculation.

The next step in calculating the price of an American option is to construct the 
exercise boundary. At the expiration date of an option or the last date that a callable 
bond can be exercised, if the option is in-the-money it will be exercised. We then ana-
lyze one layer before the last and calculate the present value of the option at all forward 
yields. At every yield, we create a diffusion process to the next layer using the volatility 
and drift from (21.8) and calculate the price of the underlying bond from its yield.

The forward price of the security is calculated by parabolic interpolation. The spac-
ing between different points on the lattice may be too large for linear interpolation and 
the effect of convexity cannot be ignored for long dated options. If the forward yield 
falls between points 5 and 6 of the lattice, we can use points 5, 6, and 7 or 4, 5, and 6 
for parabolic interpolation of the price of the underlying: 
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The weighted sum of the option price is calculated from the forward prices and is 
discounted by the appropriate discount function to the previous layer resulting in the 
unexercised price of the option. The discount function between layers is also a function 
of the forward yield. The same factor that scales the forward yield of the security in 
(21.7) is used to scale the yield of the discount function between layers. Thus, if yf ji0,  is 
the forward discount yield of the jth layer at point i, then

y y ff ji f ji x, ,= 0 (21.10)

By comparing the unexercised and exercised prices, we calculate the transition 
point or the exercise boundary at every layer. This process is performed for all the layers 
until the exercise boundary is calculated across the possible range of exercise times. On 
one side of the exercise boundary immediate exercise is economical, and on the other 
side the unexercised option is worth more. 

Starting from the first exercise date, we build the probability distribution of all 
yields. We divide the yields into 80 buckets, such that bucket j in layer i is defined in the 
range j j− +( )1

2
1
2,  and is denoted by (i, j). The buckets that are on the exercise side of 

the boundary are exercised and their net proceeds are discounted to the present time. 
Next, the unexercised buckets are propagated forward to the next layer where they are 
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distributed based on their probability weights. Since the buckets of two consecutive lay-
ers are not perfectly aligned, the end point of each diffusion path is distributed to two 
buckets. Suppose that bucket j from layer i, with a weight of wi j, , is propagated forward 
to the next layer to a point with a yield that corresponds to bucket k. The bucket index 
can be calculated from (21.7) as follows
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The probability weights of this transition are given by the interlayer volatility and drift 
(21.8) as follows: 
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If the landing point in the bucket (i+1, k) is higher than its half-way point, the weight is 
distributed between buckets k and k+1. Likewise, if the landing point is below the mid-
point of the bucket, its impact is distributed between buckets k –1 and k. Figure 21.1 
shows the propagation process between two layers.

 For example, if wi k+1,  is the weight of bucket k, then the contribution from bucket 
(i,j) to bucket k will be:

v1 = (40 * x) / 6 + 40.0 – 0.5
If( v1 > (double)k ) then

w[i+1,k] = w[i+1,k] + ro * w[i,k] * (1. – v1 + k )
w[i+1,k+1] = w[i+1,k+1] + ro * w[I,k] * (v1-k)

else
w[i+1,k] = w[i+1,k] + ro * w[i,k] * (1. + v1 - k )
w[i+1,k-1] = w[i+1,k-1] + ro * w[I,k] * (k-v1)

end

FIGURE 21.1 Propagation from bucket j to bucket k
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This process is repeated for all buckets in all layers until the option expiration. The 
impact of the bucket that the exercise boundary runs through is very small, but it can 
be broken down into exercise and no-exercise portions. At every layer, the buckets that 
are in the exercise zone are discounted to the present time using the bucket’s discount 
function and the sum of all contributions adds up to the option price. 

The above analysis is for Libor based bonds only or for treasuries assuming that they 
have the same TSYV. For corporate bonds with correlation, we need to take additional 
steps into consideration to ensure that we match the specified correlation. For every level 
of Libor, the correlation and beta define the distribution of the credit rates. The distribu-
tion of the credit rates for a given level of Libor is given by (15.53). If we use a lattice of 
81 points to evaluate the distribution of spread relative to Libor, the benefits of the addi-
tional computation time are very small. Using a lattice with 13–21 data points provides 
an accuracy that is well within the typical bid–ask spread for pricing such transactions. 

21.8 LINEAR PROGRAMMING

As we have shown throughout this book, linear programming is a very useful tool for 
fixed income management. While there are many LP software systems commercially 
available, the key to the usefulness of the software is its integration and automation 
with daily portfolio analytics and processes. Instead of developing one from scratch, 
one can build the product on the foundations of the open software that is currently 
available. We will not provide details of how this can be accomplished; however, we 
provide a few guidelines that can be helpful. There is a very good review and analysis 
of LP and computer code in Press et al. [15] that can be used as a reference. For LP to 
be useful for portfolio management, the following features are desirable:

 ▪ Scaling – the range of values in a portfolio optimization can be very large. A port-
folio with a market value of $100 million can have a constraint on yield that can be 
eight orders of magnitude smaller than the market value of the portfolio. For exam-
ple, to optimize a treasury portfolio with a duration of 4 years with the require-
ment that the duration weighted spread be larger than 1 basis point, we need the 
following constraints:
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where mi and vi are the market value and VBP of each bond in the universe. If the 
constraints are not scaled to comparable values, significant loss of accuracy will 
result. 

 ▪ Capacity – A typical LP for optimization of high grade corporates can have three to 
five thousand constraints, if there are constraints on the security or issuer level for 
market value as well as durations. There has to be capacity for all the constraints 
and a way to add them in an automated way.

 ▪ Flexibility – The constraints can have many different attributes imposed by policy, 
investment committee, portfolio manager, and analyst. The constraints typically 
involve ratings (Moody’s and S&P), duration, spread duration, and market value 
in absolute terms or in relation to the benchmark. 
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 ▪ Transaction costs – Transaction costs need to be properly accounted for in the 
optimization process to avoid unnecessary rebalancing. Usually, the portfolio or 
benchmark is priced at the bid. However, purchases are made at the offer price. 
Therefore, to sell securities from the portfolio the bid price has to be used, and for 
purchases the offer price. 

 ▪ Rounding – LP will result in market values that are generally not traded. The result 
will need to be rounded to more tradable values depending on the market value 
of the portfolio. For example, for a treasury portfolio of $100 million, where only 
three to six bonds are needed, face values can be rounded to about $0.5 million. On 
the other hand, for a corporate portfolio of the same size with 100–200 securities, 
the face values may have to be rounded to $50,000 per security.

 ▪ Clean-up – Transactions smaller than the rounding size need to be removed or 
rounded up. These last two steps will result in a portfolio that does not meet the 
exact constraints and the resulting market value can be larger than the available 
cash. If this is the case, some of the face values have to be rounded down to make 
sure that the market value does not exceed the available cash.

 ▪ Iteration – Quite often in optimizing corporate portfolios, some of the selected 
securities are not available or there can be bad pricing for some issues. For such 
portfolios, the portfolio construction is usually an iterative process where securities 
that are not available are taken out of the universe of securities and the optimiza-
tion process is repeated. It may take several days or weeks to construct a corporate 
portfolio using LP, since most of the time the cheapest securities are the least liquid.

 ▪ Trading – Due to market moves, the optimized prices are almost never available. It 
is best to trade in pairs if rebalancing a portfolio, buying a cheap security and sell-
ing a rich security making sure that the net transaction cost is not higher than the 
estimated bid–ask spread. For funding a portfolio, only securities that have moved 
less than the market should be traded on any given day. 

21.9 MORTGAGE ANALYSIS

Analysis of mortgage bonds is somewhat similar to the analysis of American bond 
options, but requires a few more steps as follows:

 ▪ From the daily historical TSIR and TSLR the monthly averages need to be calcu-
lated as well as the average 1x10 swaption volatility. These values will be used to 
estimate the expected historical current coupon using (18.13) or (18.14). The dif-
ference between the expected historical current coupon and the actual WAC of the 
mortgage pool is the discount or premium of the pool at the time of issuance. It is 
a measure of the creditworthiness of the borrowers, and we assume that the spread 
will carry forward to the present time.

 ▪ Using the current TSIR and TSLR, we calculate the forward level of Libor and 
slope of the treasury curve by calculating forward TSIR and TSLR. The forward 
term structure of rates can be calculated by finding five points on the forward curve 
and then calculating a curve that will run through all five points. This can be done 
efficiently by using key rate basis functions and equation (3.24) to calculate the 
forward TSIR in polynomial basis functions and convert the result to Chebyshev 
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basis functions. This calculation needs to be done only once for the analysis of all 
mortgage pools. Likewise, the forward 1x10 volatility can also be calculated from 
the TSLV for all forward points. The resulting parameters will be used to calculate 
the expected forward current coupons before prepayments can be calculated.

 ▪ Next, we need to calculate the shifted forward curves for the measurement of the 
sensitivity of the mortgages to interest rates and volatilities. This calculation needs 
to be done only once. For example, we shift the first component of the TSLV by ±5 
bps and calculate the shifts at all forward points (360). To calculate the duration 
of volatility of a mortgage, when we shift a component of the TSLV, all forward 
volatilities need to be adjusted to estimate the resulting forward current coupons. 
We can save significant computation time by performing this calculation only once 
and using the calculated shifts for the analysis of all bonds. 

 ▪ At each forward point, we calculate the implied forward coupon of 10-year Libor 
as well as the current coupon of the mortgage. The spread between these two cou-
pons is used to estimate the current coupon for the distribution of Libor rates. The 
distribution of forward Libor is calculated from its forward volatility, and at each 
node the forward coupon is calculated by adding the coupon spreads to the Libor 
rate. 

 ▪ Once the interest rate tree is constructed and all the cash flows calculated, we find 
the OAS that is required to match the market price of the mortgage bond. 

 ▪ At each node the expected factor of the bond is calculated by adding all the contri-
butions from the previous layer that end in the bucket of the node under consider-
ation. The factor is then used to calculate the corresponding burnout or prepayment 
incentive that will be used for further development of the tree.

 ▪ For the first 12 months we use monthly layers, for the following 12 months 
bimonthly then quarterly, then for the following 12 years semi-annually and the 
remainder annually. The cash flows for each layer are assumed to occur in the 
weighted average time for that layer. For example, for the third year when cash 
flows are analyzed on a quarterly basis, the cash flows for April, May, and June are 
assumed to occur at the end of May. There is an additional lag of 15 or 25 days for 
Freddie Mac and Fannie May cash flows, respectively.
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