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Preface

Whether you work in fund management, a business school, or a university eco-
nomics or mathematics department, the title of this book, Optimal Investment,
promises to be of interest to you. Yet its contents are, I guess, not as you would
expect. Is it about the practical issues of portfolio selection in the real world? No;
though it does not ignore those issues. Is it a theoretical treatment? Yes; though
often issues of completeness and rigour are suppressed to allow for a more
engaging account. The general plan of the book is to set out the most basic
problem in continuous-time portfolio selection, due in its original form to Robert
Merton. The first chapter presents this problem and some variants, along with a
range of methods that can be used for its solution, and the treatment here is quite
careful and thorough. There is even a complete verification of the solution of the
Merton problem! But the theorem/proof style of academic mathematical finance
quickly palls, and anyone with a lively imagination will find this too slow-moving
to hold the attention.1 So in the second chapter, we allow ourselves to run ahead of
proof, and present a large number of quite concrete and fascinating examples, all
inspired by the basic Merton problem, which rested on some overly specific
assumptions. We ask what happens if we take the Merton problem, and change the
assumptions in various ways: How does the solution change if there are transaction
costs? If the agent’s preferences are different? If the agent is subject to various
kinds of constraint? If the agent is uncertain about model parameters? If the
underlying asset dynamics are more general? This is a chapter of variations on the
basic theme, and many of the individual topics could be, have been, or will be
turned into full-scale academic papers, with a lengthy literature survey, a careful
specification of all the spaces in which the processes and variables take values, a
detailed and thorough verification proof, maybe even some study of data to explore
how well the new story accounts from some phenomenon. Indeed, this is very
much the pattern of the subject, and is something I hope this book will help to put

1 ... but anyone who wants to get to grips with the details will find exemplary presentations in
[30] or [21], for example.
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in its proper place. Once the reader has finished with Chapter 2, it should be
abundantly clear that in all of these examples we can very quickly write down the
equations governing the solution; we can very rarely solve them in closed form; so
at that point we either have to stop or do some numerics. What remains constitutes
the conventional steps of a formal academic dance. So the treatment of the
examples emphasizes the essentials—the formulation of the equations for the
solution, any reduction or analysis which can make them easier to tackle, and then
numerically calculating the answer so that we can see what features it has—and
leaves the rest for later. There follows a brief chapter discussing numerical
methods for solving the problems. There is likely little here that would surprise an
expert in numerical analysis, but discussions with colleagues would indicate that
the Hamilton-Jacobi-Bellman equations of stochastic optimal control are perhaps
not as extensively studied within PDE as other important areas. And the final
chapter takes a look at some actual data, and tries to assess just how useful the
preceding chapters may be in practice.

As with most books, there are many people to thank for providing support,
encouragement, and guilt. Much of the material herein has been given as a
graduate course in Cambridge for a number of years, and each year by about the
third lecture of the course students will come up to me afterwards and ask whether
there is any book that deals with the material of the course—we all know what that
signifies. At last I will be able to answer cheerfully and confidently that there is
indeed a book which follows closely the content and style of the lectures! But this
book would not have happened were it not for the invitations to give various short
courses over the years: I am more grateful than I can say to Damir Filipovic; Anton
Bovier; Tom Hurd and Matheus Grasselli; Masaaki Kijima, Yukio Muromachi,
Hidetaka Nakaoka, and Keiichi Tanaka; and Ralf Korn for the opportunities their
invitations gave me to spend time thinking through the problems explained in this
book. I am indebted to Arieh Iserles who kindly provided me with numerous
comments on the chapter on numerical methods; and I am likewise most grateful
to my students over the years for their inputs and comments on various versions of
the course, which have greatly improved what follows. And last but not least it is a
pleasure to thank my colleagues at Cantab Capital Partners for allowing me to
come and find out what the issues in fund management really are, and why none of
what you will read in this book will actually help you if that is your goal.

Cambridge, October 2012 Chris Rogers
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Chapter 1
The Merton Problem

Abstract The first chapter of the book introduces the classical Merton problems
of optimal investment over a finite horizon to maximize expected utility of terminal
wealth; and of optimal investment over an infinite horizon to maximize expected
integrated utility of running consumption. The workhorse method is to find the
Hamilton-Jacobi-Bellman equations for the value function and then to try to solve
these in some way. However, in a complete market we can often use the budget con-
straint as the necessary and sufficient restriction on possible consumption streams to
arrive quickly at optimal solutions. The third main method is to use the Pontryagin-
Lagrange approach, which is an example of dual methods.

1.1 Introduction

The story to be told in this book is in the style of a musical theme-and-variations;
the main theme is stated, and then a sequence of variations is played, bearing more
or less resemblance to the main theme, yet always derived from it. For us, the theme
is the Merton problem, to be presented in this chapter, and the variations will follow
in the next chapter.

What is the Merton problem? I use the title loosely to describe a collection of sto-
chastic optimal control problems first analyzed by Merton [28]. The common theme
is of an agent investing in one or more risky assets so as to optimize some objective.
We can characterise the dynamics of the agent’s wealth through the equation1

dwt = rtwt dt + nt · (dSt − rtStdt + δtdt)+ et dt − ct dt (1.1)

= rt(wt − nt · St)dt + nt · (dSt + δtdt)+ et dt − ct dt. (1.2)

1 Commonly, some of the terms of the wealth equation may be missing; we often assume e ≡ 0,
and sometimes δ ≡ 0.
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2 1 The Merton Problem

for some given initial wealth w0. In this equation, the asset price process S is a
d-dimensional semimartingale, the portfolio process n is a d-dimensional previsible
process, and the dividend process δ is a d-dimensional adapted process.2 The adapted
scalar processes e and c are respectively an endowment stream, and a consumption
stream.The process r is an adapted scalar process, interpreted as the riskless rate of
interest. The processes δ, S, r and ewill generally be assumed given, as will the initial
wealth w0, and the agent must choose the portfolio process n and the consumption
process c.

To explain a little how the wealth equation (1.1) arises, think what would happen
if you invested nothing in the risky assets, that is, n ≡ 0; your wealth, invested in a
bank account, would grow at the riskless rate r, with addition of your endowment e
and withdrawal of your consumption c. If you chose to hold a fixed number nt = n0
of units of the risky assets, then your wealth wt at time t would be made up of the
market values ni

0Si
t of your holding of asset i, i = 1, . . . , d, together with the cash

you hold in the bank, equal to wt − n0 · St . The cash in the bank is growing at rate
r—which explains the first term on the right in (1.2)—and the ownership of ni

0 units
of asset i delivers you a stream ni

0δ
i
t of dividends.

Next, if you were to follow a piecewise constant investment strategy, where you
just change your portfolio in a non-anticipating way at a finite set of stopping times,
then the evolution between change times is just as we have explained it; at change
times, the new portfolio you choose has to be funded from your existing resources, so
there is no jump in your wealth. Thus we see that the evolution (1.1) is correct for any
(left-continuous, adapted) piecewise constant portfolio process n, and by extension
for any previsible portfolio process.

If we allow completely arbitrary previsible n, we immediately run into absurdities.
For this reason, we usually restrict attention to portfolio processes n and consumption
processes c such that the pair (n, c) is admissible.

Definition 1.1 The pair (nt, ct)t≥0 is said to be admissible for initial wealth w0 if
the wealth process wt given by (1.1) remains non-negative at all times. We use the
notation

A (w0) ≡ {(n, c) : (n, c) is admissible from initial wealth w0} (1.3)

We shall write A ≡ ∪w>0A (w) for the set of all admissible pairs (n, c).

Notational convention. The portfolio held by an investor is sometimes characterized
by the number of units of the assets held, sometimes by the cash values invested in the
different assets. Depending on the particular context, either one may be preferable.
As a notational convention, we shall always write n for a number of assets, and θ
for what the holding of assets is worth.3 Thus if at time t we hold ni

t units of asset i,
whose time-t price is Si

t , then we have the obvious identity

2 The notation a · b for a, b ∈ R
d denotes the scalar product of the two vectors.

3 ... since the Greek letter θ corresponds to the English ‘th’.
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θ i
t = ni

tS
i
t .

From time to time, it will be useful to characterize the portfolio held in terms of the
proportion of wealth assigned to each of the assets. For this, we will let Δ i

t be the
proportion of wealth invested in asset i at time t, so that the notations

θ i
t = ni

tS
i
t = Δ i

t wt

all give the same thing, namely, the cash value of the holding of asset i at time t.

We have discussed the controls available to the investor; what about his objective?
Most commonly, we suppose that the agent is trying to choose (n, c) so as to obtain

sup
(n,c)∈A (w0)

E

[∫ T

0
u(t, ct) dt + u(T ,wT )

]
. (1.4)

The function u is supposed to be concave increasing in its second argument, and
measurable in its first. The time horizon T is generally taken to be a positive constant.
Special cases of this objective include

sup
(n,c)∈A (w0)

E

[∫ ∞

0
u(t, ct) dt

]
, (1.5)

the infinite-horizon problem, and

sup
(n,0)∈A (w0)

E[u(wT )], (1.6)

the terminal wealth problem.
This then is the problem: the agent aims to achieve (1.4) when his control variables

must be chosen so that the wealth processw generated by (1.1) remains non-negative.
How shall this be solved? We shall see a variety of methods, but there is a very
important principle underlying many of the approaches, worth explaining on its
own.

Theorem 1.1 (The Davis-Varaiya Martingale Principle of Optimal Control). Sup-
pose that the objective is (1.4), and that there exists a function V : [0,T ]×R

+ → R

which is C1,2, such that V (T , ·) = u(T , ·). Suppose also that for any (n, c) ∈ A (w0)

Yt ≡ V (t,wt)+
∫ t

0
u(s, cs) ds is a supermartingale, (1.7)

and that for some (n∗, c∗) ∈ A (w0) the process Y is a martingale. Then (n∗, c∗) is
optimal, and the value of the problem starting from initial wealth w0 is
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V (0,w0) = sup
(n,c)∈A (w0)

E

[∫ T

0
u(t, ct) dt + u(T ,wT )

]
. (1.8)

Proof From the supermartingale property of Y , we have for any (n, c) ∈ A (w0)

Y0 = V (0,w0) ≥ E[YT ] = E

[∫ T

0
u(t, ct) dt + u(T ,wT )

]
, (1.9)

using the fact that V (T , ·) = u(T , ·). Thus for any admissible strategy the value
is no greater than V (0,w0); when we use (n∗, c∗), the value is equal to V (0,w0)

since the (supermartingale) inequality in (1.9) becomes an equality. Hence (n∗, c∗)
is optimal. �

Remarks (i) The Martingale Principle of Optimal Control (MPOC for short) is a
very simple yet very useful result. It cannot be applied without care or thought, but
is remarkably effective in leading us to the right answer, even if we have to resort to
other methods to prove that it is the right answer.
(ii) Notice from the linearity of the wealth equation (1.1) that if (n, c) ∈ A (w) and
(n′, c′) ∈ A (w′), then (pn + (1 − p)n′, pc + (1 − p)c′) ∈ A (pw + (1 − p)w′) for
any p ∈ (0, 1). From the concavity of U we deduce immediately the following little
result.

Proposition 1.1 The value function V (t,w) is concave increasing in its second
argument.

1.2 The Value Function Approach

The most classical methodology for solving a stochastic optimal control problem is
the value function approach, and this is based on the MPOC. First we make the asset
dynamics a bit more explicit; we shall suppose that

dSi
t = Si

t

( N∑
j=1

σ ijdW j
t + μidt

)
, (1.10)

where the σ ij and theμi are constants, and W is an d-dimensional Brownian motion.
We shall also suppose that the riskless rate of interest r is constant, and that the
endowment process e and dividend process δ are identically zero. We express the
equation (1.10) more compactly as

dSt = St(σ · dW + μdt). (1.11)

Notice that the wealth equation (1.1) can be equivalently (and more usefully)
expressed as
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dwt = rwt dt + θt · (σdWt + (μ− r) dt)− ct dt. (1.12)

Howwould we find some function V satisfying the hypotheses of Theorem (1.1)?
The direct approach is just to write down the process Y from (1.7) and perform an
Itô expansion, assuming that V possesses sufficient regularity:

dYt = Vtdt + Vw dw + 1
2 Vww dwdw + u(t, c) dt

= Vw θ · σdW +
{

u(t, c)+ Vt + Vw(rw + θ · (μ− r)− c)+ 1
2 |σT θ |2Vww

}
dt.

The stochastic integral term in the Itô expansion is a local martingale; if we could
assume that it were a martingale, then the condition for Y to be a supermartingale
whatever (θ, c) was in use would just be that the drift were non-positive. Moreover,
if the supremum of the drift were equal to zero, then we should have that V was the
value function, with the pointwise-optimizing (θ, c) constituting an optimal policy.
Setting all the provisos aside for the moment, this would lead us to consider the
equation

0 = sup
θ,c

[
u(t, c)+ Vt + Vw(rw + θ · (μ− r)− c)+ 1

2 |σ Tθ |2Vww

]
. (1.13)

This (non-linear) partial differential equation (PDE) for the unknown value function
V is the Hamilton-Jacobi-Bellman (HJB) equation . If we have a problem with a
finite horizon, then we shall have the boundary condition V (T , ·) = u(T , ·); for an
infinite-horizon problem, we do not have any boundary conditions to fix a solution,
though in any given context, we may be able to deduce enough growth conditions
to fix a solution. There are many substantial points where the line of argument just
sketched meets difficulties:

1. Is there any solution to the PDE (1.13)?
2. If so, is there a unique solution satisfying boundary/growth conditions?
3. Is the supremum in (1.13) attained?
4. Is V actually the value function?

Despite this, for a given stochastic optimal control problem, writing down the HJB
equation for that problem is usually a very good place to start. Why? The point is
that if we are able to find some V which solves the HJB equation, then it is usually
possible by direct means to verify that the V so found is actually the value function.
If we are not able to find some V solving the HJB equation, then what have we
actually achieved? Even if we could answer all the questions (1)–(4) above, all we
know is that there is a value function and that it is the unique solution to (1.13);
we do not know how the optimal policy (θ∗, c∗) looks, we do not know how the
solution changes if we change any of the input parameters, in fact, we really cannot
say anything interesting about the solution!!

The philosophy here is that we seek concrete solutions to optimal control prob-
lems, and general results on existence and uniqueness do not themselves help us to
this goal. Usually, in order to get some reasonably explicit solution, we shall have to
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assume a simple form for the utility u, such as

u(t, x) = e−ρt x1−R

1 − R
, (1.14)

or
u(t, x) = −γ−1 exp(−ρt − γ x), (1.15)

where ρ, γ,R > 0 and R ⊇= 1. Since the derivative of the utility (1.14) is just
u′(t, x) = e−ρtx−R, in the case R = 1 we understand it to be

u(t, x) = e−ρt log(x). (1.16)

All of these forms of the utility are very tractable, and if we do not assume one of
these forms we will rarely be able to get very far with the solution.

Key example: the infinite-horizon Merton problem. To illustrate the main ideas
in a simple and typical example, let’s assume the constant-relative-risk-aversion
(CRRA) form (1.14) for u, which we write as

u(t, x) ≡ e−ρtu(x) ≡ e−ρt x1−R

1 − R
. (1.17)

The aim is to solve the infinite-horizon problem; the agent’s objective is to find the
value function

V (w) = sup
(n,c)∈A (w)

E

[∫ ∞

0
e−ρt c1−R

t

1 − R
dt

]
, (1.18)

and the admissible (n, c) which attains the supremum, if possible. We shall see that
this problem can be solved completely. The steps involved are:

• Step 1: Use special features to guess the form of the solution;
• Step 2: Use the HJB equation to find the solution;
• Step 3: Find a simple bound for the value of the problem;
• Step 4: Verify that the bound is attained for the conjectured optimal solution.

This strategy is applicable to many examples other than this one, and should be
regarded as the main line of attack on a new problem. Let us see these steps played
out.
Step 1: Using special features. What makes this problem easy is the fact that
because of scaling, we can write down the form of the solution; indeed, we can
immediately say that4

4 We require of course that the problem is well-posed, that is, the supremum is finite. We shall have
more to say on this in Section1.6.
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V (w) = γ−R
M u(w) ≡ γ−R

M
w1−R

1 − R
(1.19)

for some constant γM > 0. Thus finding the solution to the optimal investment/
consumption problem reduces to identifying the constant γM . Why do we know
that V has this simple form?

Proposition 1.2 (Scaling) Suppose that the problem (1.18) is well posed. Then the
value function takes the form (1.19).

Proof By the linearity of the wealth equation (1.12), it is clear that

(n, c) ∈ A (w) ⇔ (λn, λc) ∈ A (λw)

for any λ > 0. Hence

V (λw) = sup
(n,c)∈A (λw)

E

[∫ ∞

0
e−ρtu(ct) dt

]

= sup
(n,c)∈A (w)

E

[∫ ∞

0
e−ρtu(λct) dt

]

= sup
(n,c)∈A (w)

λ1−RE

[∫ ∞

0
e−ρtu(ct) dt

]

= λ1−RV (w).

�

Taking w = 1 gives the result.

Step 2: Using the HJB equation to find the value. Can we go further,
and actually identify the constant γM appearing in (1.19)? We certainly can, and as
we do so we learn everything about the solution. If we consider

V (t,w) = sup
(n,c)∈A (w)

E

[∫ ∞

t
e−ρs c1−R

s

1 − R
ds

∣∣∣ wt = w

]
,

then it is clear from the time-homgeneity of the problem that

V (t,w) = e−ρt V (w), (1.20)

where V is as defined at (1.18). In view of the scaling form (1.19) of the solution,
we now suspect that

V (t,w) = e−ρt γ−R
M u(w), (1.21)
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andwe just have to identify the constant γM . For this, we return to the HJB Eq. (1.13).
The HJB equation involves an optimization over θ and c, which can be performed
explicitly.

Optimization over θ . The optimization over θ is easy5:

(σσ T )θVww = −(μ− r)Vw,

whence

θ∗ = − Vw

Vww
(σσ T )−1(μ− r). (1.22)

Using the suspected form (1.21) of the solution, this is simply

θ∗ = wR−1 (σσ T )−1(μ− r). (1.23)

To interpret this solution, let us introduce the notation

ΔM ≡ R−1(σσ T )−1(μ− r), (1.24)

a constant N-vector, called the Merton portfolio. What (1.23) tells us is that for each
i, and for all t > 0, the cash value of the optimal holding of asset i should be

(θ∗
t )

i = wt Δ
i
M;

so the optimal investment in asset i is proportional to current wealth wt , with constant
of proportionality Δ i

M . Looking back, this form is hardly surprising, in view of the
scaling property of the objective.

Optimization over c. For the optimization over c, if we introduce the convex dual
function

ũ(y) ≡ sup
x

{u(x)− xy} (1.25)

of u, then we have for u(x) = x1−R/(1 − R) that

ũ(y) = − y1−R̃

1− R̃
, (1.26)

where R̃ = R−1. Thus the optimization over c develops as

sup
c

{u(t, c)− cVw} = e−ρt sup
c

{u(c)− ceρt Vw} = e−ρt ũ(eρt Vw).

5 Notice that the value function V should be concave in w, so Vww will be negative.
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Substituting in the suspected form (1.21) of the solution, this gives us

sup
c

{u(t, c)− cVw} = e−ρt ũ((γMw)−R) = −e−ρt (γMw)1−R

1 − R̃
= e−ρt R

1 − R
(γMw)1−R,

with optimizing c∗ proportional to w:

c∗ = γMw. (1.27)

Again, the fact that optimal consumption is proportional to wealth is not surprising
in view of the scaling property of the objective.

Putting it all together. Returning the candidate value function (1.21) to the
HJB Eq. (1.13), we find that

0 = e−ρt
[

R

1 − R
(γMw)1−R − ργ−R

M u(w)+ rwγ−R
M w−R + 1

2γ
−R
M w1−R|κ|2/R

]

= e−ρtw1−Rγ−R
M

1 − R

[
RγM − ρ − (R − 1)(r + 1

2 |κ|2/R)
]

where
κ ≡ σ−1(μ− r) (1.28)

is the market price of risk vector. This gives the value of γM :

γM = R−1{ρ + (R − 1)(r + 1
2 |κ|2/R)

}
, (1.29)

and hence the value function of the Merton problem (see (1.21)), VM(w) ≡ V (t,w),
as

VM(w) = γ−R
M u(w). (1.30)

We now believe that we know the form of the optimal solution to the infinite-horizon
Merton problem; we invest proportionally to wealth (1.23), and consume propor-
tionally to wealth (1.27), where the constants of proportionality are given by (1.24)
and (1.29) respectively.

Finishing off. There are two issues to deal with; firstly, what happens if the expres-
sion (1.29) for γM is negative? Secondly, can we prove that the solution we have
found actually is optimal?

The first of these questions relates to the question of whether or not the problem is
ill-posed, and the answer has to be specific to the exact problem under consideration.
The second question is actually much more general, and the method we use to deal
with it applies inmany examples. For this reason,we shall answer the second question
first, assuming that γM given by (1.29) is positive, then return to the first question.
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Suppose that the initial wealthw0 is given, and consider the evolution of thewealth
w∗ under the conjectured optimal control; we see

dw∗
t = w∗

t

{
ΔM · σdWt + (r + ΔM · (μ− r)− γM)dt

}
= w∗

t

{
R−1κ · dWt + (r + R−1|κ|2 − γM)dt

}

which is solved by

w∗
t = w0 exp

[
R−1κ · Wt + (r + 1

2R−2|κ|2(2R − 1)− γM)t
]

(1.31)

Step 3: Finding a simple bound. The proof of optimality is based on the trivial
inequality:

u(y) ≤ u(x)+ (y − x)u′(x) (x, y > 0), (1.32)

which expresses the geometrically obvious fact that the tangent to the concave func-
tion u at x > 0 lies everywhere above the graph of u. If we consider any admissible
(n, c) then, we are able to bound the objective by

E

[∫ ∞

0
e−ρt u(ct) dt

]
≤ E

[∫ ∞

0
e−ρt {

u(c∗
t )+ (ct − c∗

t )u
′(c∗

t )
}

dt

]

= E
∫ ∞

0
e−ρt u(c∗

t ) dt + E

[∫ ∞

0
(ct − c∗

t )ζt dt

]
,

(1.33)

where we have abbreviated

ζt ≡ e−ρtu′(c∗
t ) ∝ exp(−κ · Wt − (r + 1

2 |κ|2)t) (1.34)

after some simplifications using the explicit form of w∗. Now the key point is that ζ
is a state-price density, also called a stochastic discount factor; we have the property
that for any admissible (n, c)

Yt ≡ ζtwt +
∫ t

0
ζscs ds is a local martingale. (1.35)

This may be verified directly by Itô calculus from the wealth equation (1.1) in this
example, and we leave it to the reader to carry out this check. In general, we expect
that the marginal utility of the optimal consumption should be a state-price density,
which will be explained (in a non-rigorous fashion) later.6 The importance of the
statement (1.35) is that since the wealth and consumption are non-negative, the
process Y is in fact a non-negative supermartingale, and hence

6 See Section1.8.
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w0 = Y0 ≥ E[Y∞] ≥ E

[∫ ∞

0
ζscs ds

]
. (1.36)

Step 4: Verifying the bound is attained for the conjectured optimum.
One last piece remains, and that is to verify the equality

w0 = E

[∫ ∞

0
ζsc

∗
s ds

]
(1.37)

for the optimal consumption process c∗, and again this can be established by direct
calculation using the explicit form of c∗. Combining (1.33), (1.36) and (1.37) gives
us finally that for any admissible (n, c)

E

[∫ ∞

0
e−ρt u(ct) dt

]
≤ E

[∫ ∞

0
e−ρt u(c∗

t ) dt

]
, (1.38)

which proves optimality of the conjectured optimal solution (n∗, c∗).

1.3 The Dual Value Function Approach

This approach should be regarded as a variant of the basic value function approach
of Section1.2, in that it offers a different way to tackle the HJB equation, but all the
issues which arise there still have to be dealt with. We can expect this approach to
simplify the HJB equation, but we will still have to go through the steps of verifying
the solution; nevertheless, the simplifications resulting here are dramatic.

The basic idea is to take the HJB equation in its form (1.13) and transform it
suitably. Notice that we will require the Markovian setup with constant σ , μ, and
r, but we will not require any particular form for the utility U; all we ask is that it
is concave strictly increasing in its second argument, and continuous in its first, and
that

lim
x→∞ u′(t, x) = 0, (1.39)

which is necessary for the optimization to be well posed.
Since we know that the value function is concave, the derivative Vw is monotone

decreasing, so we are able to define a new coordinate system

(t, z) = (t, Vw(t,w)) (1.40)

for (t, z) in A ≡ {(t, z) : Vw(t,∞) < z < Vw(t, 0)}. Now we define a function
J : A → R by

J(t, z) = V (t,w)− wz, (1.41)
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and we notice that by standard calculus we have the relations

Jz = −w, (1.42)

Jt = Vt, (1.43)

Jzz = −1/Vww. (1.44)

Now when we take the HJB equation (1.13) and optimize over θ and c we obtain

0 = ũ(t, Vw)+ Vt + rwVw − 1
2 |κ|2

V 2
w

Vww
(1.45)

= ũ(t, z)+ Jt − rzJz + 1
2 |κ|2z2Jzz (1.46)

which is a linear PDE for the unknown J . Here, ũ(t, z) ≡ sup{u(t, x) − zx} is the
convex dual of u.

The key example again. To see this in action, let us take the infinite-horizonMerton
problem, and suppose that

u(t, x) = e−ρtu(x) (1.47)

for some concave increasing non-positive7 u,which we do not assume has any partic-
ular form. At this level of generality, the approach of Section1.2 is invalidated, since
it depended heavily on scaling properties which we do not now have. Nonetheless,
the dual value function approach still works.

In this instance, we know8 that V (t,w) = e−ρtv(w) for some concave function
v which is to be found. From the definition (1.41) of the dual value function J , we
have

J(t, z) = e−ρtv(w)− wz

= e−ρt(v(w)− wzeρt)

≡ e−ρt j(zeρt),

say. Notice that since u is non-positive, it has to be that V is also non-positive, and
that j is non-positive.

If we introduce the variable y = zeρt , simple calculus gives

Jt = −ρe−ρt j(y)+ ρzj′(y), Jz = j′(y), Jzz = eρt j′′(y)

and substituting into (1.46) gives the equation

7 The requirement of non-positivity is stronger than absolutely necessary, but is imposed to guarantee
that the problem is well posed. Without this, we would need to impose some rather technical growth
conditions on u which would be distracting.
8 Compare (1.20).
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0 = ũ(y)− ρj(y)+ (ρ − r) y j′(y)+ 1
2 |κ|2y2j′′(y) (1.48)

for j. This is a second-order linear ODE, which is of course much easier to deal with
than the non-linear HJB equation which we would have faced if we had tried the
value function approach of Section1.2. We can write the solution of (1.48) as

j(y) = j0(y)+ Ay−α + Byβ, (1.49)

where α < 0 and β > 1 are the roots of the quadratic

Q(t) ≡ 1
2 |κ|2t(t − 1)+ (ρ − r)t − ρ, (1.50)

and j0 is a particular solution. How will we find a particular solution? Observe that
the equation (1.48) can be expressed as

0 = ũ − (ρ − G )j, (1.51)

where G ≡ 1
2 |κ|2y2D2 + (ρ − r)yD is the infinitesimal generator of a log-Brownian

motion
dYt = Yt{|κ| dW + (ρ − r)dt}, (1.52)

so one solution would be to take9

j0(y) = Rρ ũ(y) ≡ E

[∫ ∞

0
e−ρt ũ(Yt) dt

∣∣∣∣ Y0 = y

]
, (1.53)

where Rρ is the ρ-resolvent operator of G . Since ũ is non-positive decreasing, it is
clear that j0 is also; moreover, since ũ is convex, and the dynamics for Y are linear, it
is easy to see that j0 must also be convex. The solution j which we seek, of the form
(1.49), must be convex, decreasing, and non-positive, so j0 is a possible candidate,
but what can we say about the terms Ay−α + Byβ in (1.49)? By considering the
behaviour of j near zero, we see that the only way we can have j (given by (1.49))
staying decreasing and non-positive is if A = 0. On the other hand, since j0 is
convex non-positive, it has to be that |j0(y)| grows at most linearly for large y, and if
B ⊇= 0, this would violate10 either the convexity or the non-positivity of the solution
j. We conclude therefore that the only solution of (1.48) which satisfies the required
properties is j0.

Remarks (i) Notice that the special case of CRRA u treated in Section1.2 works
through very simply in this approach; the convex dual ũ is a power (1.26), and so
the expression (1.53) for j0 can be evaluated explicitly. Verifying that this solution

9 ... provided the integral is finite ...
10 Recall that β > 1.
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agrees with the earlier solution for this special case is a wholesome exercise; do
notice however that the present dual approach is not restricted to CRRA utilities.
(ii) The expression (1.53) for j0 arose from the probabilistic interpretation of the
ODE that j has to solve, but one might suspect that there is a more direct story11

to explain why this is the correct form. This is indeed the case, and is explained in
Section1.4.

1.4 The Static Programming Approach

Wepresent in this section yet another completely different approach to the basicMer-
ton problem. This one works in greater generality; we do not require the Markovian
assumptions of the previous two Sections—the growth rate μ, the volatility σ and
the riskless rate r can be any bounded previsible processes.12 Once again, we sup-
pose that the dividend process δ and the endowment process e are identically zero,
but this is for ease of exposition only; it is not hard to extend the story to relax this
assumption. We also discuss only the infinite-horizon story for clarity of exposition,
but the argument goes through just as well for problems of the form (1.4) as well.
The utility13 u should be strictly concave, strictly increasing in its second argument,
continuous in its first, and satisfy (1.39), as in Section1.3.

There is a price to be paid for the greater level of generality, though; this approach
really only works in complete markets. In outline, the argument goes as follows. It is
not hard to show (without the completeness assumption) that any admissible (θ, c)
has to be budget feasible, that is, the time-zero value of all future consumption must
not exceed the wealth w0 available at time 0. The key point is that in a complete
market, any budget-feasible consumption stream is admissible for an appropriate
portfolio process θ ; this requires the (Brownian) integral representation of a suitable
L1 random variable. Thus we are able to replace the admissibility constraint on
(θ, c)—which is after all a dynamic constraint, requiring wt ≥ 0 for all t—with a
simple static constraint, that the time-zero value of the chosen consumption stream
should not exceed the initial wealth.

To begin the detailed argument, we suppose that the asset prices S evolve as

dSi
t = Si

t

( N∑
j=1

σ
ij
t dW j

t + μi
tdt

)
, (i = 1, . . . ,N) (1.54)

11 ... one which leads straight to (1.53) without the need to eliminate the spurious solutions to the
homogeneous ODE ..
12 We also require σ−1 bounded.
13 There is nothing to prevent us from having u(t, x) = u(ω, t, x), where (·, ·, x) is a previsible
process for each x; the arguments go through without modification.
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where σ , σ−1, μ and r are assumed bounded previsible. Next define the state-price
density process ζ by

dζt = ζt {−κt · dWt − rt dt}, ζ0 = 1, (1.55)

where κt ≡ σ−1
t (μt − rt) is a bounded previsible process, in view of the assump-

tions on the coefficient processes. We can express the state-price density process
alternatively as14

ζt = e− ∫ t
0 rs ds Zt ≡ e− ∫ t

0 rs ds exp

{
−

∫ t

0
κs · dWs − 1

2

∫ t

0
|κs|2 ds

}
, (1.56)

which represents the state-price density as the product of the discount factor
exp(− ∫ t

0 rs ds), which discounts cash values at time t back to time-0 values, and
the change-of-measure martingale15 Z . Using this, we can in the usual way define a
new probability P∗ by the recipe

dP∗

dP

∣∣∣∣
Ft

= Zt . (1.57)

The change-of-measure martingale Z changes W into a Brownian motion with drift
−κ , which means that the growth rates of the assets in the new measure P∗ are all
converted to rt . Thus the discounted asset prices are all martingales in the (pricing)
measure P∗. According to arbitrage pricing theory,16 the time-s price of a contingent
claim Xt to be paid at time t > s will be

Xs = E∗[e− ∫ t
s ru duXt

∣∣ Fs
] = ζ−1

s E
[
ζtXt

∣∣ Fs
]
. (1.58)

From this, the time-0 price of a consumption stream (ct)t≥0 should be calculated as

E

[∫ ∞

0
ζscs ds

]
, (1.59)

and for this consumption stream to be feasible its time-0 value should not exceed the
initial wealth w0. However, we are able to prove all of this directly, without appeal
to general results from arbitrage pricing theory. It goes like this. The process

Yt = ζtwt +
∫ t

0
ζscs ds (1.60)

14 Compare this expression with (1.34).
15 Since κ is bounded, the process Z is a martingale, by Novikov’s criterion.
16 Arbitrage pricing theory only requires that discounted assets should be martingales in some risk-
neutral measure, but under the complete markets assumption, there is only one. We do not actually
require anything from arbitrage pricing theory here—everything is derived directly.
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is readily verified to be a local martingale, just as we saw at (1.35). Since Y is
non-negative, it is a supermartingale, and thus we have the same inequality

w0 = Y0 ≥ E[Y∞] ≥ E

[∫ ∞

0
ζscs ds

]
. (1.61)

as we had at (1.36). This achieves the first part of the argument, that the time-0 value
of an admissible consumption stream cannot exceed the initial wealth.

For the second part, suppose that we are given some non-negative previsible
process c which satisfies the budget constraint (1.61). We then define the integrable
random variable

Y∞ =
∫ ∞

0
ζscs ds

and the (uniformly-integrable) martingale

Yt = E
[

Y∞
∣∣Ft

]
.

By the Brownian martingale representation theorem (see, for example, Theorem
IV.36.5 of [34]), for some previsible locally-square-integrable process H we have

Yt = E[Y∞] +
∫ t

0
Hs dWs; (1.62)

if we now use the control pair (n, c) defined by

ntSt = (σ T
t )

−1(ζ−1
t Ht + κt), (1.63)

then the wealth process w generated from initial wealth w′
0 = E[Y∞] satisfies

ζtwt +
∫ t

0
ζscs ds = Yt = E

[∫ ∞

0
ζscs ds

∣∣∣∣ Ft

]
. (1.64)

In particular,

ζtwt = E

[∫ ∞

t
ζscs ds

∣∣∣∣ Ft

]
≥ 0 (1.65)

since c ≥ 0. Thus the control pair (n, c) is admissible.
To summarise, then, any non-negative consumption stream c satisfying the budget

constraint (1.61) is admissible; there is a portfolio process n such that the pair (n, c)
is admissible.

Using this, the optimization problem

sup
(n,c)∈A (w0)

E

[∫ ∞

0
u(t, ct) dt

]
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becomes the optimization problem

sup
c≥0

E

[∫ ∞

0
u(t, ct) dt

]
subject to E

∫ ∞

0
ζtct dt ≤ w0.

This is now easy to deal with; absorbing the constraint with a Lagrange multiplier y,
we find the problem

sup
c≥0

E

[∫ ∞

0
(u(t, ct)− yζtct) dt

]
+ yw0, (1.66)

and we can just optimize this t by t and ω by ω inside the integral: the optimal c∗
satisfies

u′(t, c∗
t ) = yζt, (1.67)

or, equivalently,
c∗

t = I(t, yζt), (1.68)

where I is the inverse marginal utility, I(t, y) = inf{x : u′(t, x) < y}, a decreasing
continuous17 function of its second argument. This identifies the optimal consump-
tion c, up to knowledge of the multiplier y, which is as usual adjusted to make the
contraint hold:

E
∫ ∞

0
ζt I(t, yζt) dt = w0. (1.69)

Because of the assumptions on u, this equation will always have a solution y for any
w0 > 0, provided that for some y > 0 the left-hand side is finite.

This argument leads us to a candidate for the optimal solution, which needs to be
verified of course; but the verification follows exactly as for the verification step in
Section1.2, as the reader is invited to check.

1.5 The Pontryagin-Lagrange Approach

The idea of the Pontryagin-Lagrange approach is to regard the wealth dynamics as
a constraint to be satisfied by w, n and c. The view taken here is that this should be
treated as a principle, not a theorem; while we shall present a plausible argument
for why we expect this approach to lead to the solution of the original problem,
there are steps on the way that would only hold under technical conditions which
would probably be too onerous to check in practice.18 Our stance is consistent with

17 ... because of the strict concavity assumption ...
18 See Rogers [31], Klein &Rogers [22], which apply deep general results of Kramkov& Schacher-
mayer [23] to arrive at a result of this kind.
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that announced earlier, namely, we seek solutions, not general results which tell us
that solutions are characterized by relations which we cannot solve. In this spirit,
the Pontryagin-Lagrange principle is quite capable of leading us to a dual problem,
which we may in some situations be able to solve. In any given problem, we would
aim to prove optimality by a separate verification argument, rather than trying to
tighten up all the steps of the Pontryagin-Lagrange derivation.

To illustrate how this works, we take the standard continuous wealth dynamics

dwt = rtwt dt + nt · (dSt − rtSt dt)− ct dt (1.70)

with no dividend or endowment processes, along with the infinite-horizon objective

sup
(n,c)∈A (w0)

E

[∫ ∞

0
u(t, ct) dt

]
. (1.71)

Writing Bt ≡ exp(
∫ t
0 rs ds) for the value of the bank account at time t, we have as

usual for a self-financing portfolio that

wt = nt · St + ΩtBt, (1.72)

where Ωt denotes the number of units of the bank account held at time t (equivalently,
the cash value invested in the bank at time t is ΩtBt .)

Viewing (1.70) as a constraint on w, c, and n, it is natural to try to absorb this
constraint into the objective using the continuous Lagrangian semimartingale λt ,
resulting in the Lagrangian form of the problem:

L ≡ sup
n,c,w

E

[∫ ∞

0

{
u(t, ct) dt + λt{rtwt dt + nt · (dSt − rtSt dt)− ct dt} − λtdwt

}]

= sup
n,w

E

[∫ ∞

0

{
ũ(t, λt) dt + λt rtwt dt + λtnt · (dSt − rtSt dt)− λtdwt

}]

= sup
n,w

E

[∫ ∞

0

{
ũ(t, λt) dt + λt rtBtΩt dt + λtnt · dSt − λtdwt

}]

= sup
n,w

E

[∫ ∞

0

{
ũ(t, λt) dt + λt rtBtΩt dt + λtnt · dSt + wtdλt + dwtdλt

} − [λtwt]∞0
]

= sup
n,Ω

E

[∫ ∞

0

{
ũ(t, λt) dt + nt · d(λtSt)+ Ωtd(λtBt)

} + λ0w0

]
,

where we have used optimization19 over c, (1.72), integration by parts,20 and col-
lecting terms in the successive steps of the above development. The final expression

19 The optimization over c only yields a finite supremum if λt ≥ 0, so this is a dual-feasibility
condition on λ. Notice that the optimizing c satisfies U ′(t, ct) = λt .
20 We assume that limt→∞ λtwt = 0, a transversality condition.
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L = sup
n,Ω

E

[∫ ∞

0

{
ũ(t, λt) dt + nt · d(λtSt)+ Ωtd(λtBt)

} + λ0w0

]

is revealing; since the processes n and Ω are unrestricted, we see that the supremum
can only be finite if

λtSt, λtBt are martingales. (1.73)

This is a dual-feasibility condition on the Lagrange multiplier λ, and so by standard
Lagrangian duality theory, we expect that the value of the problem will be given by

inf E

[∫ ∞

0
ũ(t, λt) dt + λ0w0

]
, (1.74)

where the infimum is taken over all non-negative Lagrangian processes satisfying
the dual-feasibility condition (1.73). Thus the Pontryagin-Lagrange approach has
converted the original primal problem into the dual problem of minimizing the dual
objective

Φ(λ) ≡ E

[∫ ∞

0
ũ(t, λt) dt + λ0w0

]
(1.75)

over dual-feasible λ.
Pause for a moment to think what dual feasibility (1.73) means; if we write

Zt = λtBt , we have that Z is a positive martingale such that ZtSt/Bt is a martingale.
Regarding Z as a change-of-measure martingale, changing from measure P to P∗,
what this says is that

under P∗, the discounted asset price S/B is a martingale.

Thus P∗ is an equivalent martingale measure; the dual problem minimizes the dual
objective Φ over all equivalent martingale measures.

In general, the class of all equivalent martingale measures may be too large to
characterize simply, but one case where it is not is the case of a complete market,
where there is just one equivalentmartingalemeasure. This is the situation considered
in Section1.4, where the state-price density process is some multiple of the state-
price density ζ defined at (1.55). If we therefore write λt = yζt for some y > 0, the
Pontryagin-Lagrange dual problem is to obtain

inf
y>0

Φ(yζ ) = inf
y>0

E

[∫ ∞

0
ũ(t, yζt) dt + yw0

]
. (1.76)

Elementary calculus gives the derivative of the dual function ũ(t, ·) to be −I(t, ·), so
if we formally differentiate (1.76), we find that the minimizing y should satisfy

E

[∫ ∞

0
ζt I(t, yζt) dt

]
= w0, (1.77)
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a relation we saw before at (1.69). During the optimization of the Lagrangian, we
found that the optimal consumption c∗ is related to the dual variables λ by

u′(t, c∗
t ) = λt = yζt,

which is exactly the same as (1.67). It is clear that the static programming approach
of Section1.4 and the current Pontryagin-Lagrange approach are leading to the same
place.

1.6 When is the Merton Problem Well Posed?

We return now to the issue raised in Section1.2 when we calculated the solution to
the infinite-horizon Merton problem. We saw that the optimal rule was to invest in
the different assets proportionally to wealth, according to the Merton portfolio ΔM ,
and to consume proportionally to wealth, with constant of proportionality

γM = R−1{ρ + (R − 1)(r + 1
2 |κ|2/R)

}
.

It is possible that this constant γM is negative; what happens then? We cannot after
all consume at a negative rate in this example! Notice that this can only be an issue
if R ∈ (0, 1); and if R ∈ (0, 1), the utility is unbounded above. This raises the
possibility that the value function of the Merton problem might be infinite, if it were
possible to grow the (utility of the) investor’s wealth faster than the discounting rate
ρ. As we shall demonstrate in the following result, this can indeed happen, and the
condition for it not to happen is exactly the condition γM > 0.

Proposition 1.3 The infinite-horizon Merton problem (1.18) is well posed21 if and
only if γM > 0.

Proof One implication is already known; if γM > 0, then we derived the optimal
solution to the problem in Section1.2, and by direct calculation (left as an exercise!)
were able to find the value of the problem and show that it is finite. For the other
implication, we shall suppose firstly that γM < 0, and consider some linear rule for
investment and consumption, where we set θtSt = Δwt , and ct = γwt for some fixed
Δ ∈ R

N and γ > 0. Using this policy, the wealth evolves as

dwt = wt{r dt + Δ · (σdWt + (μ− r) dt)− γ dt },

so that
wt = w0 exp{ a · Wt + bt },

21 That is to say, the supremum on the right-hand side of (1.18) defining the value function is finite
for any w0 > 0.
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where a = σ TΔ and b = r +Δ · (μ− r)− γ − 1
2 |a|2. Using this rule gives the agent

the objective

Ω = u(γw0) E

[∫ ∞

0
exp(−ρt + (1 − R)a · Wt + (1 − R)bt) dt

]

= u(γw0)

∫ ∞

0
exp(−ρt + (1 − R)bt + 1

2 (1 − R)2|a|2t) dt (1.78)

which will be infinite if

0 ≤ − ρ + (1 − R)b + 1
2 (1 − R)2|a|2

= − (ρ + (R − 1)(b + 1
2 (1 − R)|a|2))

= − (ρ + (R − 1)(r + Δ · (μ− r)− γ − 1
2R|a|2))

If R ∈ (0, 1), this last expression is maximized over Δ when Δ = ΔM , to value
−(1 − R)γ − RγM . Since we are assuming that γM < 0, it follows that for small
enough γ > 0 we can generate an infinite value for the objective, and the problem
is therefore ill posed.

The final situation is the knife-edge case γM = 0. If we consumed nothing, and
invested according to the Merton portfolio, then wealth would evolve as

dwt = wt{r dt + ΔM · (σdWt + (μ− r) dt) };

let us write the solution of this SDE as w̄t . From the calculations just done, we know
that

Ee−ρtu(w̄t) = constant (1.79)

for all t. If now consume at time t at rate λwt/(1+ t) for some λ > 0, we shall have
the wealth dynamics

dwt = wt{r dt + ΔM · (σdWt + (μ− r) dt)− λ

1 + t
dt };

and solution wt = w̄t(1 + t)−λ. If we now take λ = (1 − R)−1. Thus the utility of
consumption is

u(ct) = u

(
λwt

1 + t

)
= u

(
λw̄t

(1 + t)1+λ

)
∝ u(w̄t)(1 + t)−(1+λ)(1−R).

If we take λ > 0 given by

1 + λ = 1

1 − R
,
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then using the fact (1.79) we learn that

E
∫ ∞

0
e−ρtu(w̄t) dt ∝

∫ ∞

0

dt

1 + t
= ∞,

and so the problem is ill posed.

1.7 Linking Optimal Solutions to the State-Price Density

When we solved the infinite-horizon Merton problem in Section1.2 by the value
function approach, we found that the state-price density process ζ , there defined as
ζt = u′(t, c∗

t ), works as a pricing kernel (see (1.35), (1.37)). Though this appeared
from explicit calculation, this property is no accident; indeed, it is a general principle,
as we shall now show.22 We shall discuss the solution to the infinite-horizon problem
(1.5) to fix ideas, though the general components work as well for other problems,
such as the terminal-wealth problem (1.6).

Suppose that the agent’s objective

E

[∫ ∞

0
u(t, ct) dt

]

is optimized at (n∗, c∗) ∈ A (w0). Fix 0 ≤ s < t, and some event F ∈ Fs. We
consider an infinitesimal change in the agent’s policy; if F happens, he decides to
consume at rate c∗· − τSi

s in the interval (s, s + h), where τ and h are small. He uses
the money saved to buy himself23 τh units of asset i, which he then sells at time t for
price τhSi

t , immediately consuming the proceeds in (t, t+h), raising his consumption
rate to c∗· + τSi

t . The overall increase in his objective is to leading order

� = E
[−u′(s, c∗

s )τhSi
s + u′(t, c∗

t )τhSi
t; F

]
.

Since (n∗, c∗) is optimal, this must be zero (to leading order), otherwise it would
benefit the agent to do this trade (or its reverse). Since F ∈ Fs is arbitrary, we
conclude that

u′(t, c∗
s )S

i
s = E

[
u′(t, c∗

t )S
i
t

∣∣ Fs
]
. (1.80)

22 The argument that follows would be familiar to any trained economist; see, for example, the
account of Breeden [5]. It is a principle, not a theorem, just like the Pontryagin-Lagrange approach;
it leads us to useful conclusions and insights, but other methods are needed to confirm these in any
given situation.
23 Of course, it is possible that this perturbed consumption is not feasible; it could become negative
at some point in (s, s + h). We ignore such issues, as we may once we let τ, h become infinitesimal.
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Thus ζt ≡ u′(t, c∗
t ) serves as a state-price density; we have that ζtSi

t is a martingale.
Notice that there was nothing special about the ith asset - the argument works for
any traded asset. Moreover, there is no need for the market to be complete.

1.8 Dynamic Stochastic General Equilibrium Models

One of the commonest mistakes inmathematical modelling is tomodel derived quan-
tities, not the fundamentals from which they are derived, and even in mathematical
finance, there are plenty of examples of this. The mistake is that because the derived
quantities are derived from some common driver, they will in general have to satisfy
various inter-relations, and if one simply imposes some arbitrary form for the derived
quantities, quite likely the necessary inter-relations will fail. One nice example of
this is exposed in Rogers & Tehranchi [35], which shows that24 it is impossible to
have an option implied volatility surface moving by parallel shifts. Another example
arises in the HJM approach to interest-rate modelling, which models the instanta-
neous forward rates. These are derived from a spot rate process, and must satisfy
various inter-relations; the drift and volatility of the forward rates cannot be cho-
sen arbitrarily. The original paper of Heath, Jarrow & Morton [18] identifies the
appropriate conditions.

At some level, the same applies to the common approach in mathematical finance,
which is to begin with the asset price processes. From an economist’s point of view,
asset prices are derived quantities, not fundamentals; the prices arise as market-
clearing prices in a general equilibrium, and the fundamentals are the fundamentals
of the general equilibrium, namely, the agents’ preferences, the holdings of the assets,
and the output processes of the assets. Typically, general equilibria are hard to solve,
and this is one of the reasons that certain features of a general equilibrium25 may be
extracted and used as a starting point for a theoretical discussion. Nonetheless, it is
worth attempting to work from fundamentals whenever this is feasible.

Let us see how this works in a dynamic stochastic situation. Suppose26 that
there is just one asset in the world, which delivers an output stream δt . There are J
agents, whose preferences over consumption streams are given by von Neumann-
Morgenstern preferences: agent j orders consumption streams c according to

Uj(c) ≡ E

[∫ ∞

0
uj(t, ct) dt

]
, (1.81)

24 ... under minor technical conditions ...
25 ... for example, supply and demand curves ....
26 .. for simplicity; the entire analysis goes throughwith only notational changes if there aremultiple
assets, and indeed multiple goods.
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where as usual uj(t, ·) is increasing, strictly concave, and we shall suppose satisfies
the Inada conditions.27

We aim to find an equilibrium price process S for the asset, and an equilibrium
interest rate r for riskless borrowing. What does this mean? Suppose we are given
S and r; then the wealth dynamics faced by each agent are the familiar dynamics of
(1.70),

dwt = rtwt dt + nt · (dSt − rtSt dt)− ct dt.

If (nj, cj) ∈ A (wj
0) is agent j’s choice which maximizes his objective (1.81) given

these dynamics, then (S, r) constitute equilbrium prices if the markets clear:

∑
j

cj
t = δt,

∑
j

wj
t = St . (1.82)

What this means is that at all times, the total output of the asset is being exactly
consumed, and the total wealth of all the agents is the asset itself. To amplify, it may
be at any time that some of the agents hold some of the asset, and some money in
the bank account, but that the aggregate holding of the asset is one unit, and the
aggregate holding of money is zero - the net supply of asset is one, the net supply
of money is zero.28 Section1.7 tells us what the individual agents’ optimal solution
looks like; we shall have that

u′
j(t, cj

t) = ζ
j
t (1.83)

defines the state-price density for agent j, which determines how agent j prices all
assets and contingent claims. Thus agent j will value the productive asset at time t as

Sj
t = (ζ

j
t )

−1E

[∫ ∞

t
ζ j

s δs ds

∣∣∣∣ Ft

]
, (1.84)

since holding the asset at time t is equivalent to receiving the output δs at all times
s ≥ t. However, since the asset is traded, all agents will agree on its price in
equilibrium—otherwise agents would immediately trade the asset on terms which
they each considered advantageous.

This is the general solution, and in general it is hard to say much more about
it. Even though all agents must agree on the price of the asset, they may disagree
on the prices of non-marketed contingent claims; the state-price densities ζ j are not
necessarily the same. If they are not all the same (up to constant multiples), there
is not much we can do; if they are, we can make progress. There are in effect three
special cases where we can assert that the state-price densities are the same (up to
constant multiples):

27 Thus limx◦0 u′(t, x) = ∞, limx↑∞ u′(t, x) = 0.
28 Of course, the net supply of money need not be zero; we just suppose this for now, for the purpose
of the discussion.
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1. a representative agent equilibrium;
2. a central planner equilibrium;
3. a complete market;

For the first, we assume that J = 1; there is just one agent in the economy. In
this case, for market clearing we must have29 that ct = δt , and hence the state-price
density is

ζt = u′(t, δt); (1.85)

see ((1.82), (1.83)). This gives the state-price density explicitly in terms of known
quantities, the agent’s utility, and the output process. Thus we have an expression
(1.84) for the asset price, and depending on the exact form of the problem, it may be
possible to evaluate the integrals appearing in (1.84). Likewise, if themarket is driven
by some Brownian motion, we can identify the equilibrium interest rate process by
performing an Itô expansion of ζt , since

ζ−1
t dζt = −rtdt + d(local martingale),

and hence we can pick out the riskless rate as the finite-variation part of ζ−1dζ .
A central planner equilibrium is really a representative agent equilibrium mas-

querading as something more general. The idea is that a central planner selects as
his objective

U (c) ≡ sup
{ ∑

j

αjUj(c
j) :

∑
j

cj
t = ct ∀t

}

=E

[∫ ∞

0
ū(t, ct) dt

]
,

where
ū(t, x) ≡ sup{

∑
j

αj uj(t, xj) :
∑

j

xj = x}, (1.86)

andαj are positiveweights. Thus the central planner receives the consumption stream
c, and splits it up between the agents so as to maximize the weighted sum of their
individual utilities. Solving the optimization problem implicit in the definition of ū
by the Lagrangian approach results in the information that

αju
′
j(t, xj) = λt

for some positive process λ. Thus if the central planner equilibrium has resulted in
assigning consumption stream cj to agent j, we see from (1.83) that

ζ
j
t = u′

j(t, cj
t) = α−1

j λt (1.87)

29 We omit the superfluous index for the sole agent.
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and so all the agents have the same state-price density to within a constant multiple.
Of course, this means that all the agents value every contingent claim the same.
Solving the central planner equilibrium is achieved by solving the representative
agent equilibriumwith preferences given byU , and then splitting the output between
the agents according to the recipe given by the optimization given by (1.86).

The third situation where the equilibrium can be solved explicitly is where there
is a complete market, in which case there can be only one state-price density (up
to constant mutiples); we have (1.87). Rearranging to make cj the subject, and then
summing over j, we learn that

δt =
∑

j

cj
t =

∑
j

Ij(t, ηjζt) (1.88)

for some positive constants ηj which are to be determined, using the knowledge of

the initial wealths wj
0 of the agents. Indeed, we must have that

wj
0 = E

[∫ ∞

0
ζtc

j
t dt

]
(1.89)

= E

[∫ ∞

0
ζt Ij(t, ηjζt) dt

]
, (1.90)

and these J conditions determine the J constants ηj, by the Knaster-Kuratowski-
Mazurkiewicz theorem (see Border [4]).

Example Suppose that there is just a single asset, whose dividend process is a log-
Brownian motion:

dδt = δt(σdWt + μdt),

a log-Brownian motion with constant drift and constant volatility. We shall write

xt ≡ log δt = log δ0 + σWt + (μ− 1
2σ

2)t.

We suppose that the agents’ utilities are of the form

uj(t, c) = e−ρtuj(c),

where ρ is common to all, and the uj are C2, strictly concave, increasing, and satisfy
the Inada conditions. Writing Ij for the inverse of u′

j, the market-clearing condition
(1.88) gives us the relation

δt =
∑

j

Ij(ηje
ρtζt),
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which can be inverted (only rarely explicitly) to tell us that

eρtζt = f̃ (δt) ≡ f (xt). (1.91)

Nevertheless, we can obtain the equilibrium solution remarkably explicitly here; it
is straightforward to calculate numerically, for example. We know from (1.84) that
the stock price can be expressed as St = Ω̃(δt) ≡ Ω(xt), where

Ω̃(δ) = Ω(x) = f̃ (δ)−1E

[∫ ∞

0
e−ρtδt f̃ (δt) dt

∣∣∣∣ δ0 = δ

]

= f (x)−1E

[∫ ∞

0
e−ρtext f (xt) dt

∣∣∣∣ x0 = x

]
. (1.92)

Since agent j’s consumption stream is cj
t = Ij(ηjeρtζt) ≡ qj(xt), a function of xt

alone, we can deduce the expression

wj(t) = ψj(xt) = f̃ (δt)
−1E

[∫ ∞

t
e−ρ(s−t) f̃ (δs) qj(xs) ds

∣∣∣∣ Ft

]

= f (xt)
−1E

[∫ ∞

t
e−ρ(s−t)f (xs) qj(xs) ds

∣∣∣∣ Ft

]
(1.93)

for the wealth process of agent j. How are we to simplify expressions such as (1.92,
1.93)? The answer is that we can use the resolvent operator Rρ of the diffusion: see
[33], III.3. We have then that

f (x)Ω(x) = (RρF)(x) (1.94)

f (x)ψj(x) = (RρQj)(x), (1.95)

where F(x) ≡ exf (x), Qj(x) = f (x)qj(x). The resolvent density in this instance is

rρ(x, y) = rρ(0, y − x) = exp

(
c(y − x)− |y − x|√c2 + 2ρσ 2

σ 2

)
/
√

c2 + 2ρσ 2,

(1.96)
where c = μ− 1

2σ
2. Hence

f (x)Ω(x) =
∫

rρ(x, y) eyf (y) dy =
∫

rρ(0, y − x) eyf (y) dy, (1.97)

in which we recognize a convolution integral, which can be evaluated numerically
using Fast Fourier Transform.
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For the special case where all the agents share a common30 CRRA utility, we
have that I(x) = x−1/R, and so f (x) = e−Rx . In this case we see from (1.92) that
St ∝ δt , which gives the Black-Scholes-Merton model for a stock paying dividends
at a constant proportional rate. Conceptually this is important because it assures us
that the most commonly-used model stands on firm economic foundations, even if
the representative agent assumption is an over-simplification.

1.9 CRRA Utility and Efficiency

When we come to study various examples in the next chapter, we shall find many
situations where the agent’s objective is of the infinite-horizon CRRA form (1.18),
but the dynamics are somehow altered; for example, the agent may not be allowed to
short the stocks; or the interest rate may be random; or the agent may only be able to
change his portfolio infrequently. When we solve these problems, we shall typically
find a value function V (w, x), where x is some auxiliary variable, which retains the
scaling behaviour of the basic Merton problem:

V (λw, x) = λ1−R V (w, x)

for all λ > 0. This means that we may write31

V (w, x) = VM(ν(x)w)

since both sides depend onw asw1−R. The point of doing this is that wemay interpret
ν(x) as the efficiencyof themodifiedproblem relative to the originalMertonproblem;
an agent with wealth 1 facing the modified problem would achieve the same value
as a standard Merton investor with wealthν(x). Often the modified problem will be
the Merton problem with additional restrictions or costs, such as transaction costs,
or short-selling constraints, and in such situations we shall find (of course!) that
ν(x) ∈ (0, 1).

The point of looking at the efficiency of themodified problem is that it standardizes
the effect of the modifications in a common fashion across different coefficients of
relative risk aversion; simply quoting the value of the modified problem as a number
would make it hard to understand just what the effect of the modification had been.

30 This is a representative agent equilibrium; typically these things are easy to solve, but of limited
interest because no interaction effects have been modelled.
31 We use VM to denote the value function of the Merton problem (1.30).



Chapter 2
Variations

Abstract The second chapter of the book studies a wide range of different examples
which are all in some sense variations on the basic Merton examples of Chapter 1.
We study what happens when preferences change; or asset dynamics are changed;
or objectives are changed.

Throughout this chapter, we shall be looking at variants of the basicMerton problem.
Often (but not always) we shall assume that the wealth of the agent evolves as

dwt = rwt dt + θt (σdWt + (μ− r)dt)− ct dt, (2.1)

which we shall refer to as the standard wealth dynamics. This choice implicitly
assumes that there is a single risky asset; multiple risky assets could be handled in
most instances with a proof which differs only notationally. Since our interest is
always in the new features of the problems being considered, we shall discard the
illusory generality afforded by a multi-asset formulation in favour of a more simple
notation. However, when there is a significant difference in the multi-asset case, we
will take care to distinguish such situations.

Frequently we shall assume that the agent’s objective is to obtain

sup
c,w≡0,θ

E

[∫ ≥

0
e−ρt u(ct ) dt

]
, (2.2)

which we shall refer to as the standard objective.
Where relevant, all of the studies which follow are illustrated by numerical exam-

ples. Various parameters have to be set in order to calculate these examples, and
unless mention is made to the contrary we shall use the default values

R = 2, ρ = 0.02, σ = 0.35, r = 0.05, μ = 0.14. (2.3)

L. C. G. Rogers, Optimal Investment, SpringerBriefs in Quantitative Finance, 29
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2.1 The Finite-Horizon Merton Problem

Our first example is a very gentle warm-up exercise. We briefly presented the finite-
horizon Merton problem at (1.4), but then proceeded to discuss almost exclusively
the more elegant infinite-horizon analogue. But the same techniques work for the
finite-horizon problem, and it is useful to record the form that the solution takes. For
simplicity, we will suppose that the utility u is separable, and CRRA in consumption.
The agent’s objective is therefore taken to be

sup E

[∫ T

0
h(t)u(ct ) dt + Au(wT )

]
(2.4)

for some strictly positive function h and constant A > 0, where u∪(x) = x−R for
some R > 0, R ∈= 1. Exploiting the scaling properties which are inherited from the
CRRA utility, we see that the value function

V (t,w) = sup E

[∫ T

t
h(t)u(ct ) dt + Au(wT )

∣∣∣∣wt = w

]
(2.5)

must have the form
V (t,w) = f (t)u(w) (2.6)

for some function f . The HJB equation for this problem is

0 = sup
θ,c

[
u(t, c)+ Vt + Vw(rw + θ · (μ− r)− c)+ 1

2σ
2θ2Vww

]
, (2.7)

directly from (1.13). Substituting the scaled form (2.6) into (2.7) gives

0 = sup
y,q

u(w)
[

ḟ +{r +y(μ−r)−q}(1−R) f − 1
2 R(1−R) σ 2y2 f +hq1−R]

, (2.8)

where we have y = θ/w, q = c/w. The optimality conditions are easily seen to be

y = πM , f = hq−R,

which tells us that

θ∞
t = πM wt , c∞

t = wt

(
h(t)

f (t)

)1/R

; (2.9)

investment is exactly as it always has been, but we no longer (in general) consume
at a rate which is a constant multiple of wealth.

Substituting these values back into (2.8) gives us a non-linear ODE for the
unknown function f :

http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
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ḟ − (R − 1)(r + κ2/2R) f + R f 1−1/Rh1/R = 0, f (T ) = A. (2.10)

If we substitute f (t) = g(t)R , then we get a first-order linear ODE for g which is
easily solved to give

g(t) = ebt
[

e−bT A1/R +
∫ T

t
e−bs h(s)1/R ds

]
, (2.11)

where b → (R − 1)(r + κ2/2R)/R.

Remark If we had h(t) = e−ρt , then it is tempting to guess that we should have
f (t) = ae−ρt for some a. However, if we substitute this into (2.10) we find that the
ODE is satisfied only if a = γ−R

M , which would only be correct if A = e−ρT γ−R
M .

This makes perfect sense; if this happens, then the residual value Au(wT ) is the value
of the infinite-horizon problem (see (1.21))!

2.2 Interest-Rate Risk

This time we take the wealth dynamics to be

dwt = rt wt dt + θ(σdWt + (μ− rt )dt)− ct dt

drt = σr d Bt + β(r̄ − rt )dt,

the salient difference being that the riskless rate is no longer supposed constant,
but follows a Vasicek process. The parameters σr and r̄ are constants, and the two
Brownian motions W and B are correlated, dW d B = ηdt . The objective will be

V (w, r) = sup E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣w0 = 0, r0 = r

]
(2.12)

where as usual u(w) = w1−R/(1 − R).
A moment’s reflection shows that the solution of the Merton problem now will

still scale, with the value function taking the form

V (w, r) = u(w) f (r).

Writing down the HJB equation for this problem, we find (with c = qw, θ = sw)

0 = sup
[
u(c)− ρV + 1

2σ
2θ2Vww + σσrηθVwr + 1

2σ
2
r Vrr + (rw + θ(μ− r)− c)Vw + β(r̄ − r)Vr

]
= sup u(w)

[
q1−R − q(1 − R) f − ρ f − 1

2 R(1 − R)σ 2s2 f + (1 − R)σσrηs f ∪ + 1
2σ

2
r f ∪∪

+ (r + s(μ− r))(1 − R) f + β(r̄ − r) f ∪].

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Now optimising this over q and s gives us

q = f −1/R,

s = (μ− r) f + σσrη f ∪

σ 2R f

and when substituted back in gives the following second-order ODE for the HJB
equations:

0 = R f 1−1/R −ρ f + r(1− R) f + (1− R)
{(μ− r) f + σσrη f ∪}2

2σ 2R f
+ 1

2σ
2
r f ∪∪ +β(r̄ − r) f ∪.

(2.13)

Numerics. The ODE (2.13) cannot be solved in closed form, but the numeri-
cal solution is not particularly difficult. The method used for this example was
to use policy improvement (Section3.6.1), by discretizing the diffusion for r
onto an equally-spaced grid centered on r≥, of width equal to 7 standard devi-
ations1 of the Vasicek process on either side—so the grid covered the interval
[r≥ − 7σ/

∗
2β, r≥ + 7σ/

∗
2β]. The boundary conditions at the two ends were

reflecting.
We obtain an interesting plot of efficiency as a function of r : see Fig. 2.1. The

parameter values are σr = 0.01, r̄ = 0.04828, β = 0.2 and η = 0.45, with other
parameters taking the default values (2.3). The surprising thing is that the efficiency2

Fig. 2.1 Efficiency with
Vasicek short rate model

1 As a check of the effect of the assumed boundary conditions, I calculated the efficiency at r = 0,
which came out to 0.6972201 using a 7-standard deviation grid, and a 9-standard deviation grid,
and a 5-standard deviation grid.
2 Compared with the Merton problem where we assume that r = r̄ .

http://dx.doi.org/10.1007/978-3-642-35202-7_3
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is greater than 1! But a moment’s thought shows that this may indeed be expected.
Part of the effect of the variable interest rate is to make the excess rate of returnμ−r
stochastic. Now the dependence of the Merton value on the excess rate of return is
convex,3 and so we should expect that the value of the averagedMerton problem will
be better than the value for the Merton problem with the average value for excess
return—Jensen! Of course, there are differences also in the effects of discounting,
so this argument is not conclusive, but it does at least indicate a mechanism which
could account for efficiencies in excess of 1. Another possible mechanism would be
that if r was very high, then the agent could earn a lot from riskless investment at
least for a while before the interest rate reverted back to its long-run average level.

2.3 A Habit Formation Model

Constantinides [8] proposed a model where the agent’s consumption is compared to
an exponentially-weighted historical average of past consumption. One motivation
for this was to try to explain the equity premium puzzle (EPP). The model proposed
by Constantinides helps a bit in explaining the EPP, but it is in any case an interesting
attempt to explore different objectives. The dynamics taken are a simple variant of
the usual wealth equation:

dwt = rwt dt + θt (σdWt + (μ− r)dt)− ct dt (2.14)

dc̄t = λ(ct − c̄t )dt. (2.15)

The agent’s objective in Constantinides’ account is

sup E
∫ ≥

0
e−ρt u(ct − c̄t ) dt

so that present consumption is in some sense evaluated relative to the exponentially-
weighted (EW) average c̄t of past consumption. If we use a CRRA utility u, then
what we find is that the consumption may never fall below c̄, so the agent must keep
c̄t/r in the bank account to guarantee that level of consumption, and then he invests
the remaining wealth wt − c̄t/r . very much as before; the equations are very easy to
derive, and we leave them to the reader as an exercise.

What we propose to do here is to keep the dynamics (2.14) and (2.15), but to take
as the objective

V (w, c̄) → sup E

[∫ ≥

0
e−ρt u(ct/c̄t ) dt

∣∣∣∣w0 = w, c̄0 = c̄

]
(2.16)

3 ... at least in the case R > 1 which we deal with here.
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which (more realistically) rewards the ratio of current consumption to the EW aver-
age. This objective permits current consumption to fall below the EW average of
past consumption at various times, again a more realistic feature.

The problem does not now admit a simple closed-form solution, in contrast to the
problem studied by Constantinides, but there is an obvious scaling, for any α > 0:

V (αw, αc̄) = V (w, c̄),

which allows us to write more simply

V (w, c̄) = V (w/c̄, 1) → v(w/c̄). (2.17)

The solution is a function of the scaled variable xt → wt/c̄t alone, so we must first
understand how this process evolves. We introduce the notation qt = ct/c̄t for the
scaled consumption rate. Some routine calculations with Itô’s formula give us the
dynamics of x :

dxt = r xt dt + ϕt (σdWt + (μ− r)dt)− (λxt + 1)qt dt + λxt dt, (2.18)

where ϕ = θ/c̄. This dynamic is interesting because, although the dependence on the
portfolio variable ϕ is conventional, the dependence on the consumption variable q
is not. One observation should be made straight away. It is always a feasible strategy
to come out of the risky asset completely (ϕ → 0), and to maintain x at its current
level; from (2.18), this implies that we could maintain q at the constant value

q(0) = (λ+ r)x

1 + λx
(2.19)

forever, guaranteeing that the value of the problem would be ρ−1u(q(0)). So the
value is bounded below by

v(x) ≡ ρ−1 u

(
(λ+ r)x

1 + λx

)
. (2.20)

For very small x , we would expect that the portfolio ϕ would have to be small, since
x has to be kept non-negative, and if ϕ remained bounded away from zero as x ↓ 0,
the volatility arising from the investment in the risky asset would carry x below zero.
This gives us the boundary condition

lim
x↓0 v(x)/u(x) = ρ−1 (λ+ r)1−R . (2.21)

We have reduced the problem to finding

v(x) → sup
ϕ,q

E

[∫ ≥

0
e−ρt u(qt ) dt

∣∣∣∣x0 = x

]
(2.22)
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where x evolves as (2.18). In these terms, the HJB equations become more simply

sup
ϕ,q

[
u(q)− ρv + {r x + ϕ(μ− r)− (1+ λx)q + λx} v∪ + 1

2ϕ
2σ 2v∪∪

]
= 0. (2.23)

As usual, optimal values of q and ϕ are found explicitly from

u∪(q) = (1 + λx)v∪(x), ϕ = −κv∪/σv∪∪.

We can transform to the dual equation (via z → v∪(x), J (z) = v(x) − xz), but the
second-order ODE which results:

ũ(z(1 − λJ ∪))− ρ J + (ρ − r − λ)z J ∪ + 1
2κ

2z2 J ∪∪ = 0 (2.24)

no longer admits a closed-form solution, so we are forced down a numerical path.

Numerics. Two different numerical solution methods were used here, and their
results compared. The first was policy improvement, where we insisted that the lower
bound (2.20) holds with equality at the two ends of the grid. The policy improve-
ment algorithm is therefore solving a Markov decision process which gets stopped
at the ends of the interval. The second numerical scheme was to solve the dual HJB
equation (2.24) by introducing the variable s → log z, which transforms the linear
differential operator into a constant-coefficient form. Then the Newton method (see
Section3.6.3) was applied to calculate the solution, with natural boundary conditions
at the two ends of the interval. The value of λ used was λ = 1. As a diagnostic for
comparison, we calculated the numerical value of θ when x = 1; the two methods
agreed in the first five significant figures. The results are plotted in Fig. 2.2.

The plots reveal very plausible behaviour, which accords more with the behaviour
we would expect than the predictions of the basic Merton model. As wealth w rises,
we see that the level of current consumption rises quite rapidly to begin with, but
then levels off. It requires a lot of wealth before the agent is ready to consume above
the averaged value c̄, as would be expected; increasing consumption has impact on
the future in that we will want to consume more in future to stay as happy, so we
are cautious about taking on that additional consumption. In fact, if we wanted to
maintain c/c̄ constant at some level q, we see from (2.15) that ct would have to grow
as exp(λ(q − 1)t), an exponential growth of consumption. If q were so large that
λ(q −1) > r then no initial wealth would be sufficient to support such consumption.
While this is not a conclusive analysis, it strongly suggests that the value is bounded
above by some strictly negative4 constant. The plot of log((1− R)v) against log(x)
fits with this; for small values of x what we see looks like a power law, but for large
values of x we appear to have convergence to a lower bound.

We also see that as wealth rises our consumption as a fraction of current wealth
falls, dropping to limit 0, again entirely as we would expect. As wealth rises, we see

4 Recall (2.3) that we are using R = 2.

http://dx.doi.org/10.1007/978-3-642-35202-7_3
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Fig. 2.2 Solution of the habit formation problem, λ = 1

that the fraction of wealth invested in the stock also goes up; plots calculated over
a larger interval show θ/w levelling off at just below 70%. This is again what we
would expect; a wealthy individual can be quite relaxed about risk and would be
prepared to venture more in risky ventures. We see that the proportion invested in
the risky asset is always higher than the Merton proportion. Similarly, the ratio c/c̄
rises gradually with wealth, levelling off at around the level 1.4.

2.4 Transaction Costs

Consider the situation where

d Xt = r Xt dt + (1 − ε)d Mt − (1 + ε)d Lt − ct dt

dYt = Yt (σdWt + μdt)− d Mt + d Lt ,

where Xt is value of holding of cash, Yt is value of holding of stock at time t ,
Mt (respectively, Lt ) the cumulative sales (respectively, purchases) of stock by time
t . The investor’s goal is to achieve

V (x, y) = sup E

[∫ ≥

0
e−ρt u(ct )dt

∣∣∣∣X0 = x,Y0 = y

]
,
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with u(x) = x1−R/(1− R) as in the Merton problem. Using the MPOC, we develop
the (super)martingale

Zt = e−ρt V (Xt ,Yt )+
∫ t

0
e−ρt u(ct ) dt (2.25)

using Itô’s formula to learn that

eρt d Zt
.= {−ρV + (r x − c)Vx + μyVy + 1

2σ
2y2 Vyy − u(c)

}
dt

+ [
Vy − (1 + ε)Vx

]
d L + [

(1 − ε)Vx − Vy
]

d M, (2.26)

where
.= signifies that the two sides differ by a (local) martingale. Since Z must be

a supermartingale always, and a martingale under optimal control, we deduce that
the three drift terms must be non-increasing. Therefore the HJB equations here are
three equations,

sup
[
u(c)− ρV + 1

2σ
2y2Vyy + μyVy + (r x − c)Vx

]
⊇ 0,

(1 − ε)Vx ⊇ Vy ⊇ (1 + ε)Vx .

We shall once again have scaling, so if we set V (x, y) = y1−R f (p), where p → x/y,
we can re-express this as

0 = ũ( f ∪)+ 1
2σ

2 p2 f ∪∪(p)+ (σ 2R − μ+ r)p f ∪(p)
+ {μ(1 − R)− ρ − 1

2σ
2R(1 − R)} f (p),

(1 − ε) f ∪ ⊇ (1 − R) f − p f ∪(p) ⊇ (1 + ε) f ∪.

Alternatively, if we write f (p) → g(log(p)), we simplify the HJB differential
operator quite a bit:

0 ≡ e−t (1−1/R)ũ(g∪(t))+ a2g∪∪(t)+ a1g∪(t)+ a0g(t)− ρg(t), (2.27)

0 ≡ (1 − ε + et )g∪(t)− (1 − R)et g(t), (2.28)

0 ≡ −(1 + ε + et )g∪(t)+ (1 − R)et g(t), (2.29)

where t → log(p), and

a2 = 1
2σ

2,

a1 = (σ 2R + r − μ− 1
2σ

2),

a0 = (R − 1)( 12σ
2R − μ).

Constantinides [7] solves a simplified form of this problem, and Davis & Norman
[10] analyse it quite completely. The main conclusion is that there is some no-trade
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interval K = [ts, tb] for t such that while t remains within [ts, tb], you make no
change in your portfolio; if ever t < ts you immediately sell enough stock to move
back into the interval K , and if ever t > tb you immediately buy sufficient stock to
move t back into the interval K .

No closed-form solution is known, but Davis & Norman show how the ODE for
g may be solved by iteratively solving the ODE with different initial conditions until
the solution closes in on one which satisfies the C2 pasting condition at the ends of
K . The solution method used here is policy improvement. In more detail, suppose
that we currently have a policy that we shall buy stock when t ⇔ Ωb, sell stock when
t ⇔ Ωs , and elsewhere we shall consume at rate c = yh(t). We then find that we
have to solve the (linear) ODE

0 = Φs(g, t) → (1 − ε + et )g∪(t)− (1 − R)et g(t) (t ⇔ Ωs),

0 = Φb(g, t) → −(1 + ε + et )g∪(t)+ (1 − R)et g(t) (t ⇔ Ωb),

0 = Φ0(g, t; h) → {
u(h(t))− h(t)e−t g∪(t)

} + a2g∪∪(t)+ a1g∪(t)+ a0g(t)− ρg(t) else.

Having solved this for g, we then go back and compute the functionals Φs(g, t),
Φb(g, t), suph Φ0(g, t; h) for all t , and update the policy according to what we find;
we choose to sell in the region whereΦs(g, t) is the largest, buy in the region where
Φb(g, t) is largest, and elsewhere we consume at rate given by the maximising value
of h.

We show in Figs. 2.3 and 2.4 what the solution looks like for this problem, for
the default values (2.3) taking ε = 0.005. The first plot, Fig. 2.3 displays the three
inequalities (2.27), (2.28) and (2.29) at once the solution has been found, and Fig. 2.4
shows the form of g found, with the changeover points shown by the vertical bro-
ken lines. The Merton proportion for this problem is 36.73%, and we sell stock
when the fraction of our wealth in stock rises to 41.98%, we buy when it falls to
30.39%. This no-trade interval is remarkably wide, bearing in mind that the propor-

tional transaction cost was only 0.5%. In fact, the loss of efficiency is O(ε
2
3 )—see

[32, 38]. This last tells us that when we consider typical values for the transaction

Fig. 2.3 The three inequali-
ties for the transaction costs
example
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Fig. 2.4 The function g and its first two derivatives

cost (of the order of 1% or less), the impact on efficiency will be small, even though
the optimal trading policy will look very different from the Merton rule.

2.5 Optimisation under Drawdown Constraints

In this problem, which you will find treated thoroughly by Elie & Touzi [13], we
assume the (by now) standard dynamics

dwt = r(wt − θt )dt + θt (σdWt + μdt)− ct dt

for the wealth and objective

sup E
[ ∫ ≥

0
e−ρt u(ct )dt

]
, u∪(x) = x−R,



40 2 Variations

but now we shall impose the constraint

wt ≡ bw̄t = b sup
s⊇t

ws, ≤t, (2.30)

where b ⇔ (0, 1) is fixed. This is called a drawdown constraint, in a natural terminol-
ogy. Drawdown constraints are of practical importance for fund managers, because
if their portfolio loses too much of its value, the investors are likely to take their
money out and that is the end of the story, however clever (or even optimal!) the rule
being used by the fund manager. For this problem, the value function

V (w, w̄) = sup E
[ ∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = w, w̄0 = w̄
]

evidently scales like

V (w, w̄) = w̄1−R V (w/w̄, 1) = w̄1−R v(w/w̄) = w̄1−R v(x), x = w/w̄ ⇔ [b, 1].

So the HJB equation here is

sup
c,θ

[
u(c)− ρV + 1

2
σ 2θ2Vww + (r(w − θ)+ μθ − c)Vw

]
= 0

with the boundary condition that Vw̄ = 0 at w = w̄. Thus the HJB equation is

ũ(Vw)− ρV + rwVw − 1

2
κ2

V 2
w

Vww
= 0,

where as before κ = (μ− r)/σ . In terms of v this gives

ũ(v∪)− ρv + r xv∪ − 1

2
κ2
(v∪)2

v∪∪ = 0, (2.31)

(1 − R)v(1) = v∪(1) (2.32)

(indeed, (1− R)v(x)−xv∪(x) ⊇ 0 always, with equality when x ≡ 1). The boundary
condition at 1 can be understood as saying that we extend v to (1,≥) by v(x) =
x1−Rv(1) (x ≡ 1), and this extension is C1.

The solution of this problem is achieved by using the dual variable technique of
Section1.3: setting

z → v∪(w)

as the new variable, and
J (z) = v(w)− wz

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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as the new function, then as a little calculus confirms, we have

J ∪(z) = −w, J ∪∪(z) = −1/v∪∪(w).

Now (2.31) becomes simply

ũ(z)+ 1
2κ

2z2 J ∪∪ + (ρ − r)z J ∪ − ρ J = 0, (2.33)

−(
1 − 1

R

)
J (z)+ z J ∪(z) ⊇ 0, (2.34)

with equality in (2.34) when J ∪(z) ⊇ −1.
One other observation is required: asw ↓ bw̄, the portfolioweight θ ∝ 0, because

otherwise at the boundary the constraint (2.30) would get violated. But recall that
the optimal portfolio is

θ = (μ− r)Vw

σ 2Vww
;

this implies that v∪∪(b) = +≥, J ∪∪(v∪(b)) = 0. Thus there exist zb = v∪(b) > z1 =
v∪(1) such that the solution J has the form

J (z) =
⎧⎨
⎩

A0ũ(z) for z ⊇ z1;
A1(z/zb)

−α + B1(z/zb)
β + qũ(z) for z1 ⊇ z ⊇ zb;

qũ(zb)+ A1 + B1 + b(zb − z) for z ≡ zb

where q = −1/Q(1− R−1), and Q(t) → 1
2κ

2t (t −1)+ (ρ−r)t −ρ is the quadratic
whose roots are −α < 0 < β. In order that the problem is well posed, it is necessary
and sufficient that q > 0. The constants A0, A1, B1, z1, and zb are to be determined
from the conditions

(i) J is C2 at zb;
(ii) J is C1 at z1.

Thus if we pick zb, we know that J ∪(zb) = −b, J ∪∪(zb) = 0, so the ODE (2.33)
gives us

ρ J (zb) = −(ρ − r)zbb + ũ(zb).

We also have the condition that J ∪(z1) = −1 = −A0z−1/R
1 , giving us the relation

z1 = AR
0 . Using these conditions it is not too hard to find (numerically) the solution

J , and hence the original value function v.
To explain in a little more detail, the ratio J (z)/ũ(z) must be constant in (0, z1)

and is C1 at z1. Examining the derivative of this ratio at z1 gives us the equation

α + 1 − 1/R

β − 1 + 1/R
=

(
z1
zb

)α+β
.
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We are therefore able to deduce the value of z1 given zb. But since A0 = z1/R
1 , we

now know what the value of J must be on the left at z1, and we adjust the value of
zb until we have continuity at z1.

We see in Fig. 2.5 the solution when taking b = 0.8, other parameters as at
(2.3). The efficiency in this case has fallen to 90.06%, representing a fairly substan-
tial loss. If we chose b = 0.6, for example, the efficiency would be 96.53%. The
impact on investment and consumption is also very noticeable. The Merton propor-
tion is 36.73%, but under the drawdown constraint the fraction of wealth in the risky
asset never exceeds 27%. The optimal rate for consuming in the Merton problem is
4.326%, but with the drawdown constraint it reaches a maximal value of 4.106%
only. While it may feel like a good idea to insist on a drawdown constraint, not many
funds would operate drawdown control in the way this example recommends; doing
so has an unpleasant tendency to lock in losses.

Fig. 2.5 Investment in stock and consumption rate as a function of w/w̄
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2.6 Annual Tax Accounting

What is the effect on the Merton problem of an annual tax on capital gains? Suppose
that u is again CRRA, and at each time t = nh we have to pay tax on wealth gain
over the last time period of length h. Thus wnh = wnh− − τ(wnh− − wnh−h) =
(1 − τ)wnh− + τwnh−h . If we do this, then the problem becomes a finite-horizon
problem,

V (w) = sup E

[∫ h

0
e−ρsu(cs)ds + e−ρhu(τw + (1 − τ)wh)

]
.

Clearly by scaling again, there is some positive constant A such that V (w) = Au(w),
so we have to consider

sup E

[∫ h

0
e−ρsu(cs)ds + Ae−ρhu(τw + (1 − τ)wh)

]
.

As we saw in Section1.4, by (1.67) the optimal terminal wealth w∞
h and running

consumption c∞ are related to the state-price density process ζ by

e−ρt u∪(c∞
t ) = e−r t Zt = λζt , Zt = Et [erh Ae−ρh(1 − τ)u∪(τw + (1 − τ)w∞

h)],

where ζt = exp{−r t − κWt − 1
2κ

2t} is the state-price density, ζ0 = 1. We deduce
that c∞

t = I (λeρtζt ) and

λζh = e−rh Zh = Ae−ρh(1 − τ)u∪(τw + (1 − τ)w∞
h);

rearranging to make w∞
h the subject of the equation gives us

w∞
h = 1

1 − τ

{
−τw + I

(
λeρhζh

A(1 − τ)

)}
.

We now need to relate λ to initial wealth w:

w = E

[∫ h

0
ζuc∞

udu + ζhw∞
h

]

= E

[∫ h

0
ζ
1−1/R
t λ−1/Re−ρt/Rdt − ζh

τw

1 − τ
+ ζ

1−1/R
h

1 − τ
λ−1/Re−ρh/R A1/R(1 − τ)1/R

]

= − τwe−rh

1 − r
+ λ−1/R 1 − e−γ h

γ
+ λ−1/R A1/R(1 − τ)1/R−1e−γ h .

http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Thus

w

(
1 + τe−τh

1 − τ

)
= λ−1/R

(
1 − e−γ h

γ
+ A1/R(1 − τ)1/R−1e−γ h

)
. (2.35)

Now we need to compute the value,

V (w) = E

[∫ h

0
e−ρt u(c∞

t )dt + Ae−ρhu(τw + (1 − τ)w∞
h)

]

= E

[∫ h

0
e−ρt (λeρtζt )

1−1/R

1 − R
dt + Ae−ρh

1 − R

(
λeρhζh

A(1 − τ)

)1−1/R
]

= λ1−1/R

1 − R
E

[∫ h

0
e−ρt/Rζ

1−1/R
t dt + A1/Re−ρh/R(1 − τ)1/R−1ζ

1−1/R
h

]

= λ1−1/R

1 − R

(
1 − e−γ h

γ
+ A1/R(1 − τ)1/R−1e−γ h

)
. (2.36)

Now from the Eq. (2.35), λ−1/R = Bw/K , where B = 1 + τe−rh/(1 − τ) and
K = γ−1(1 − e−γ h) + A1/R(1 − τ)1/R−1e−γ h , so we have that λ = (Bw/K )−R ,
and from (2.36) we deduce that

V (w) = u(w)

(
B

K

)1−R

K = u(w)B1−R K R = Au(w).

This implies that

A1/R = K B1/R−1 = B(1−R)/R
(
1 − e−γ h

γ
+ A1/R(1 − τ)

1−R
R e−γ h

)
.

We can now make A1/R the subject of this equation:

A1/R = γ−1(1 − e−γ h)B1/R−1

1 − e−γ h(((1 − τ)B)1/R−1)
,

expressing A (and hence the value) explicitly in terms of the variables of the problem.
The efficiency can now be expressed explicitly as

θ = (Aγ R)1/(1−R).

We are now able compute numerical values quite explicitly. Figure2.6 exhibits the
remarkable conclusion that for higher tax rates, the efficiency can actually be greater
than 1! Though it appears counterintuitive, it is not wrong. The effect of tax is to
reduce the mean of the net gain by time h, but it also reduces the variance of the
net gain. Smaller mean is bad, but smaller variance is good, and these two effects
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Fig. 2.6 Efficiency as it
depends on the tax rate

act against each other. Eventually the improvement due to smaller variance prevails,
and the efficiency begins to rise again as tax increases. Notice that the changes in
efficiency are in any case quite small. Notice also that the story we have told here
is unrealistic; an investor does not get a tax repayment if he makes a loss, he gets a
tax credit which he can carry forward to offset against tax he would have to pay on
future profits. This makes the story more complicated.

2.7 History-Dependent Preferences

This is an attempt tomake amodel where preferences depend somehow on integrated
consumption over a period, rather than just a consumption rate. We postulate the
dynamics

dwt = rwt dt + θt (σdWt + (μ− r)dt)− ct dt (2.37)

dξt = λ(cαt − ξt )dt. (2.38)

Here, λ > 0 and α ⇔ (0, 1) are constants. The process ξ has the representation

ξt =
∫ t

−≥
λeλ(s−t)cαs ds. (2.39)

The objective is to obtain

V (w, ξ) → sup E
[ ∫ ≥

0
e−ρt u(ξt ) dt

∣∣w0 = w, ξ0 = ξ
]
. (2.40)
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In some sense, we might ideally like to take α = 1; this is a degenerate problem,
as we will shortly explain. Note however that because of the concave dependence
on c in the definition of ξ , we will prefer to have flows of c that are not too bumpy.
Despite the fact that there are now two state variables, there is still a nice scaling
behaviour which makes it possible to get a one-variable problem. We notice that for
any a > 0,

V (aw, aαξ) = a(1−R)αV (w, ξ), (2.41)

from which it follows easily that

V (w, ξ) = ξ1−Rv(wξ−1/α) → ξ1−Rv(z), (2.42)

for v(x) = V (x, 1), writing also z → w/ξ1/α . The HJB equations for the problem
are

sup
c,θ

[
u(ξ)−ρV +(rw+θ(μ−r)−c)Vw + 1

2σ
2θ2Vww +λ(cα−ξ)Vξ

]
= 0. (2.43)

Utilising the scaling property (2.42), writing θ = πw and c = qw, a few calculations
reduce (2.43) to

sup
q,π

[
u(1)−ρv+(r +π(μ−r)−q)zv∪+ 1

2σ
2π2z2v∪∪+λ(qαzα−1){(1− R)v−zv∪/α}] = 0.

(2.44)

The optimal choices5 of q and π are easily found:

π = − (μ− r)v∪

zσ 2v∪∪ , (2.45)

q = z−1
{

v∪

λ(α(1 − R)v − zv∪)

}1/(α−1)

. (2.46)

Inserting these values into the HJB equation, we obtain

u(1)− ρv + r zv∪ − κ2(v∪)2

2v∪∪ − λA + 1 − α

α
(λαA)1/(1−α)(v∪)−α/(1−α) = 0, (2.47)

where
A = (1 − R)v − zv∪/α.

5 The reason we do not allow α = 1 is that the dependence on q is linear, and the problem
degenerates; in effect, in this situation it is always possible to transfer an amount of wealth directly
into ξ by a delta-function transfer, so the problem is degenerate.
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Fig. 2.7 Solving the history-dependent preferences problem of Section2.7: plots of π = θ/w and
q = c/w against w, and of log((1 − R)v) against logw. These plots use α = 0.7, λ = 0.5, and
assume that ξ = 1

Numerics. We show in Fig. 2.7 plots of π = θ/w, q = c/w and the log of the value
for the situation where α = 0.7, λ = 0.5, with ξ held at 1. The plots were calculated
using the policy improvement algorithm (see Section3.6.1). The dashed lines in the
top two plots are the solutions to the standardMerton problem for the same parameter
values. The proportion of wealth in the risky asset quickly settles down to a value
which is a lot higher than for the standardMerton problem. This is not surprising; the
investor’s preferences in this example are much less fearful of periods when wealth
and consumption are low, so we would expect that he will be more risk seeking. The
consumption rate gradually rises with increasing wealth, in contrast to the Merton
solution. Notice however that the growth is really quite slow. The final plot shows
how the value changes with wealth; the log-log plot is quite close to a straight line.

2.8 Non-CRRA Utilities

The use of a CRRA utility is convenient because it allows us to exploit scaling to
simplify problems, as we have seen. If we try to solve the Merton problem for u
which are not of the usual CRRA form, there are various ways we can proceed. We

http://dx.doi.org/10.1007/978-3-642-35202-7_3
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can use the dual value function approach, from Section1.3, in particular, we can use
the representation (1.53) of the dual value function. It turns out to be computationally
and conceptually simpler to work not with the log-Brownian motion Y of (1.52) but
with Xt → log(Yt ), a Brownian motion with constant volatility κ and with drift
m = (ρ − r − 1

2κ
2). In terms of that we may write the dual value function J as

(writing x → log(y))

J (y) = E

[∫ ≥

0
e−ρt ũ(Yt ) dt

∣∣∣∣Y0 = y

]

= E

[ ∫ ≥

0
e−ρt ũ(eXt ) dt

∣∣∣∣X0 = x

]

=
∫

rρ(x, v) ũ(ev) dv, (2.48)

where rρ(x, v) is the resolvent density for X . This needs to be made more precise,
and may be expressed in terms of the two roots α− < 0 < α+ of the quadratic

t ◦∝ 1
2κ

2t2 + mt − ρ

as6

rρ(x, v) = rρ(v−x) → (m2+2ρκ2)−1/2 exp
(
α+ min{0, x−v}+α− max{0, x−v} )

.

(2.49)
This allows us to write J (y) from (2.48) as the convolution integral

J (y) =
∫

rρ(v − x) ũ(ev) dv. (2.50)

If we write

r̄ρ(x) →
∫ x

−≥
rρ(v) dv,

we can perform an integration by parts in (2.50) to express the dual value as

J (y) = [
r̄ρ(v − x)ũ(ev)

]≥
−≥ +

∫
r̄ρ(v − x) ev I (ev) dv, (2.51)

exploiting the fact that ũ∪ = −I . If we have enough control on the behaviour of
ũ at infinity, the evaluation between the limits will vanish, and we are left with a
convolution integral solely in terms of the inverse marginal utility I . This may be
helpful numerically, because we may be able to specify the utility more easily in
terms of I than in terms of ũ.

6 We slightly abuse notation here; rρ(x, v) is a function of the difference v − x only, so we write
rρ(z) for rρ(0, z).

http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
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The representation in (1.53) of the dual value function is not the onlywaywe could
approach this problem; we could for example attempt to solve the non-linear ODE
(1.48) directly, or we could solve the HJB equation itself by policy improvement.
These are entirely workable routes, but they require consideration of appropriate
boundary conditions, which may be hard to understand in the case of fairly general
choices of the utility. The convolution integral approach we have presented here
avoids consideration of the boundary conditions (indeed, they were dealt with on
the way to the representation (1.53)), and allows us to reduce the numerics to an
application of the Fast Fourier Transform, which is spectacularly efficient.

Numerics. We illustrate the preceding with the example where the inverse marginal
utility is

I (x) = (x1/R1 + x1/R2)−1, (2.52)

where R1 = 3 and R2 = 0.8. For large x , this looks like x−1/R2 and for small x it
looks like x−1/R1 , so we will expect that for large wealth the behaviour should be
like that of an agent with coefficient of relative risk aversion R1, and for small wealth
the behaviour should be like an agent with coefficient of relative risk aversion R2.
This gives us a utility which tends to zero at zero, and is bounded above. For large
wealth, this agent is more risk averse, so we would expect the proportion of wealth
he invests in the risky asset to fall with wealth to the Merton proportion for R = R1.
His consumption rate should tend to γM calculated with R = R1 for large wealth.
What do we actually find? The results are plotted in Fig. 2.8. For large wealth, the
value function climbs to its asymptotic maximal value. The proportion of wealth
invested falls from πM calculated with R = R2 to the value calculated with R = R1,
as expected; the two values of πM are plotted as dashed lines. We see a similar
picture for the consumption rates, but interestingly this rises very slightly above the
γM value for R = R1 before falling back. This is a genuine feature, not a numerical
imprecision; it appears in all the different ways of calculating the solution.

2.9 An Insurance Example with Choice of Premium Level

Here we consider the problem of an insurance company, which is able to invest in a
riskless bank account, and a single risky asset, but is also conducting an insurance
business, where the volume of business underwritten is determined by the premium
charged—the higher the premium, the less business the firm does. For various rea-
sons, it is preferable to treat the volume of business q as the choice variable, and to
view the premium rate p as a function of q, that is, p = p(q). The wealth dynamics
are taken to be

dwt = rwt dt + θt (σdWt + (μ− r)dt)− ct dt + qt pt dt − dCt , (2.53)

http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Fig. 2.8 Plots of the value, portfolio and consumption rates for the two-R example of (2.52). For
low wealth, behaviour is like an agent with coefficient of relative risk aversion equal to 0.8, and for
high wealth the behaviour is like an agent with coefficient of relative risk aversion equal to 3

where C is the total claims process, an increasing compound Poisson process with
variable rate qt . What this means is that Ct = Y

( ∫ t
0 qs ds

)
, where Y is a compound

Poisson process with jumps distributed as F , independent of W :

E exp(−λYt ) = exp

{
−t

∫ ≥

0
(1 − e−λx ) F(dx)

}
.

The consumption rate process c could here be interpreted as a rate of payment of
dividends to the shareholders. However we want to understand it, we will propose
the objective

V (w) → sup E

[∫ τ

0
e−ρt u(ct )dt − K e−ρτ | w0 = w

]
, (2.54)

where K is a penalty for the firm going bankrupt, and τ is the time of bankruptcy,
τ → inf{t : wt ⊇ 0}. The presence of the jumps in C means that there is always a
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risk that the firm could go broke. Taking the jumps into account, the HJB equation
for this problem becomes

0 = sup
θ,q,c

[
u(c)− ρV (w)+ {rw + θ(μ− r)− c + qp(q)}V ∪(w)+ 1

2σ
2θ2V ∪∪(w)

+ q
∫ ≥

0
{V (w − x)− V (w)} F(dx)

]
. (2.55)

The optimization over q is a novel feature, the optimization over θ and c being as
so often before. The other novelty is the integral term arising from the jumps.7 We
will suppose that the utility u is bounded below on (0,≥), otherwise there may
come a time when the bankruptcy penalty may be more desirable than continuing to
consume. For an interesting question, then, we shall suppose that u(0) = 0, and in
the examples studied numerically, we shall have u bounded above as well.

The natural first choice for solving (2.55) is some form of policy improvement,
and this can indeed be carried out, with some suitable modifications. We need to
modify the method because for a given choice of policy (θ, c, q), the linear system
to be solved will not be sparse, due to the presence of the integral term in (2.55). If
we want to have more than a few hundred grid points, solving a non-sparse system
will in general collapse under accumulated errors. So what we do is to generate a
sequence Vn of approximations to the value, starting from V0 being the value we
would get if there was no insurance business: q → 0. This problem we showed how
to solve in Section2.8. Having found approximation Vn , we generate the next choice
of controls by the obvious recipe

cn = I (V ∪
n), (2.56)

θn = −(μ− r)V ∪
n/σ

2V ∪∪
n , (2.57)

{qn p∪(qn)+ p(qn)}V ∪
n =

∫
{Vn(·)− Vn(· − x)} F(dx). (2.58)

Then we find the next approximation to the value function by solving

0 =u(cn)− ρV (w)+ {rw + θn(μ− r)− c + qn p(qn)}V ∪(w)+ 1
2σ

2θ2n V ∪∪(w)

+ qn

∫ ≥

0
Vn(w − x) F(dx)− qn V (w). (2.59)

Notice particularly that inside the integral there appears the already-known function
Vn , so the linear system to be solved for V is sparse. The interpretation of this is
that once the first jump occurs, carrying wealth level from w to w − x , the remaining
reward received isVn(w−x), which is the best you could have got at the previous level
of the recursive solution. It is clear that V1 ≡ V0, because V0 is the best value which
could be achieved if you were not allowed to participate in the insurance market,

7 Of course, we have V (w) = −K for all w < 0.
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and V1 is an improvement, because you are allowed to participate in the insurance
market until the first claim. Strictly speaking, we should now hold V0 fixed inside
the integral, and carry out the policy improvement iteration until we have the value
for the problem where we are allowed to participate in the insurance market up to the
first claim; but it seems in practice to be unnecessary to do this. This illustrates the
point that the policy improvement algorithm can work so long as the improvements
at each step are indeed improvements; they do not have to be optimal choices.

Numerics. In the numerical example, we used the form p(q) = q−β with β = 0.8,
the penalty for bankruptcy was K = 100, the claim distribution F was exponential
with mean 1, and the utility was the same as used in the example in Section2.8, with
inverse marginal utility (2.52). For boundary conditions, we suppose that for very
large wealth the value will be close to the maximal value Vmax = supx u(x)/ρ, and
will be assumed to have the form

V (w) = Vmax + A(u(w)− u(≥)) (2.60)

for some A > 0. For zero wealth, there will be no investment in the risky asset, as
this would immediately bankrupt the firm. Instead, we find ourselves looking at the
condition

0 = sup
q,c

[
u(c)− ρV (0)+ {qp(q)− c}V ∪(0)− q(K + V (0))

]
(2.61)

which gives the boundary condition at 0.
The plots in Fig. 2.9 show what happened. The value is visibly higher than the

value for the problem with no access to the insurance market, shown as a dashed
line. Both lines asymptote to the maximal value Vmax, but a separate plot (Fig. 2.10)
of the relative value

Vmax − V (·)
Vmax − V0(·)

is steadily increasing, showing that the advantage of having access to the insurance
market continues to grow as the firm gets more wealthy, as would be expected, since
the risk of default recedes. The optimal value of business falls with wealth, but not
to zero; when wealth is zero, it will be optimal to invest nothing in the risky asset,
but there is an incentive nevertheless to invest in the insurance business, since there
will be premium income before the first claim, and this boosts the growth of wealth
and consumption. The level of business starts slowly, but levels off to an asymptotic
value. Looking at the wealth in the risky asset, and the consumption rate, we see that
these are always both greater than the corresponding values for the problem with no
insurance business, and that the surge in the increase happens for the same wealth
values where the volume of business surges, all growing quite rapidly between the
values w = 6 and w = 15. The price charged, shown in Fig. 2.10, falls rapidly as the
size of the firm grows.
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Fig. 2.9 Plots of the value, portfolio, consumption rate and level of business for the insurance
problem

2.10 Markov-Modulated Asset Dynamics

Here we suppose that there is some Markov chain ξ taking values in the finite set
I = {1, 2, . . . , N }, which is independent of the driving Brownian motion W . We let
Q denote the N × N matrix of jump intensities. The volatility and the growth rate
of the stock depend on the value of ξ , so that the dynamics of the single risky asset
become

d St/St = σ(ξt )dWt + μ(ξt )dt (2.62)

for some functions σ , μ of the chain, and the wealth dynamics become

dwt = rwt dt + θtσ(ξt )(dWt + κ(ξt )dt)− ct dt, (2.63)

where κ(ξ) = σ(ξ)−1(μ(ξ)−r) is the market price of risk. There are two8 radically
different situations to be dealt with:

8 Combinations of the two cases could be considered, where the function σ takes more than 1 value,
but fewer than N . This could be handled by similar techniques, but we omit discussion as it is not
particularly relevant.
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Fig. 2.10 Plots of the relative value, portfolio proportion, consumption rate divided by wealth, and
price charged for the insurance problem of Section2.9

1. The function σ is one-to-one;
2. The function σ is constant.

In the first situation, by observing the quadratic variation of the stock, we can deduce
the value of ξ ; in the second, the value of ξ has to be filtered from the observations.
The treatment of the second situation is more complicated, but we can deal with both.

Case 1: ξ is observed. The value of the problem depends on ξ as well as on w, so
the value function

V (w, ξ) → sup E
[ ∫ ≥

0
e−ρsu(cs) ds

∣∣w0 = w, ξ0 = ξ
]

will satisfy the HJB equations9

0 = sup
θ,c

[
u(c)− ρV + 1

2θ
2σ 2 Vww + (rw − c + θ(μ− r))Vw + QV

]
.

9 We use the notation QV as a shorthand for the function (QV )(w, ξ) defined to be (QV )(x, ξ) →∑
j⇔I qξ j V (x, j).
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From scaling it is clear that V (w, ξ) = u(w) f (ξ), so after substituting this form of
V and simplifying we learn that

0 = R f 1−1/R − {ρ + (R − 1)(r + 1
2κ

2/R)} f + Q f. (2.64)

Numerical solution of (2.64) is relatively simple; we just recursively solve the linear
equations

{ρ + (R − 1)(r + 1
2κ

2/R)} fn − Q fn = R f 1−1/R
n−1

from some suitable positive starting point f0, and this is very quick.

Case 2: ξ has to be filtered. This is the situation where the volatility σ is constant, so
that the volatility of the stock price does not reveal the underlying Markovian state.
Let us write

dYt → dWt + κ(ξt )dt, (2.65)

which is observable.10 Let (Yt )t≡0 be the (usual augmentation11 of) the filtration
generated by the process Y . The wealth dynamics can now be expressed in the form

dwt = rwt dt + θtσdYt − ct dt (2.66)

= rwt dt + θtσ(d Nt + κ̂t )− ct dt, (2.67)

where κ̂ is the Y -optional projection of the process κt → κ(ξt ), and N is the innova-
tions process, a Y -Brownian motion. This is a familiar story from filtering theory;
see, for example, [34], VI.8 for more background.

If we write πt (x) = P(ξt = x |Yt ), x ⇔ I , for the posterior of ξ given the
observations, then the evolution of π is given12 by the system of equations:

dπt (x) = πt (x)(κ(x)− κ̂t )d Nt + (QTπt )(x)dt, (x ⇔ I ). (2.68)

Now (2.66) and (2.68) together form an (N + 1)-dimensional SDE driven by Y , or
equivalently, N , and this can in principle be solved.13

Let us now specialize to the case of N = 2, so that I = {1, 2} and

Q =
(−α α

β −β
)
.

We write pt → πt (1) = 1 − πt (2). In terms of this, we have

κ̂t = ptκ1 + (1 − pt )κ2,

10 The process Y is the log of the discounted asset, divided by σ .
11 See [33], II.67.
12 See [34], VI.11.
13 Notice that κ̂t = ↑πt , κ∀, so that the drift in dY is expressed in terms of πt .
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and we have the coupled equations

dwt = rwt dt + θσ (d Nt + κ̂t )− ct dt, (2.69)

dpt = pt (κ1 − κ̂t )d Nt + {β(1 − pt )− α}dt. (2.70)

Now the value function for this problem is a function of both w and p

V (w, p) → sup
(n,c)⇔A (w)

E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = w, p0 = p

]
,

satisfying the HJB equations

0 = sup
c,θ

[
u(c)− ρV (w, p)+ {rw + θσ (pκ1 + (1 − p)κ2)− c}Vw(w, p)

+ 1
2θ

2σ 2Vww(w, p)+ σθp(1 − p)(κ1 − κ2)Vw p(w, p)

+ 1
2 p2(1 − p)2(κ1 − κ2)

2Vpp(w, p)
]
.

Optimizing over c and θ gives

c = V −1/R
w ,

σθVww = −p(1 − p)(κ1 − κ2)− (pκ1 + (1 − p)κ2).

As usual, for CRRA u we deduce the scaling relation V (w, p) = u(w) f (p); substi-
tuting this back into the HJB equations yields

0 = R f 1−1/R − ρ f + r(1 − R) f + (β − (α + β)p) f ∪ + 1
2 p2(1 − p)2(κ1 − κ2)

2 f ∪∪

+ (1 − R)
{

p(1 − p)(κ1 − κ2) f ∪ + (pκ1 + (1 − p)κ2) f
}2
/2R f (2.71)

after some simplifications. This is easily solved by policy improvement, or more
simply by iterative solution, as explained in Section3.6.2.

Numerics. A numerical example has been calculated using α = 0.15, β = 0.20,
μ(1) = 0.07 and μ(2) = 0.17, and the results are shown in Fig. 2.11. The horizontal
axis in each plot is the posterior probability of being in state 1, the low-growth state.
As this rises, we see that the efficiency, consumption rate and proportion of wealth
invested in the risky asset all decrease, as would be expected. The efficiency drops
from 1.03 to 0.97, which is relatively insubstantial, as is the fall in the consumption
rate. However, the proportion of wealth invested in the risky asset falls from 49%
to 7%, a very substantial reduction. The relative insensitivity of the efficiency and
consumption rate to the posterior probability of being in the low-growth state is to
some extent to be explained by the fact that with ρ = 0.02 the agent has a very
long horizon, of mean 50 years, whereas the state of the chain is switching every
5–6 years on average. Thus the effect which this patient agent sees will be quite like
the average value; he will not reduce or expand consumption much from the Merton

http://dx.doi.org/10.1007/978-3-642-35202-7_3
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Fig. 2.11 Plots of efficiency, consumption rate and proportion of wealth in risky asset for the model
of Section2.10, compared to the values for the standard Merton problem where the growth rate μ
is constant and equal to the mean of the growth rate of the hidden Markov chain

values for the average growth rate, because over the timescales he cares about bad
times and good times will even out. Nevertheless, he varies his investment mix quite
substantially as the posterior probabilitymoves, to take advantage ofwhichever asset,
the stock or the bank account, is better for him at any given time.

2.11 Random Lifetime

Suppose that an agent lives for a random time τ which is independent of the evolution
of the assets, and has a distribution specified in terms of its (deterministic) hazard
rate h : R+ ∝ R

+ by

P[τ > t] = exp
(−

∫ t

0
h(s) ds

)
(t > 0). (2.72)

The agent’s objective is to maximize

E

[∫ τ

0
ϕ(s)u(cs) ds

]
(2.73)
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where ϕ is some deterministic function which reflects the agent’s preferences over
the different times of consumption; for example, it may be that the agent cares more
about consumption in his old age. What is the agent’s optimal behaviour?

Assuming as we often do that u∪(x) = x−R for some positive R different from 1,
we have that the value function

V (t,w) → sup E

[∫ τ

t
ϕ(s)u(cs) ds

∣∣∣∣wt = w, τ > t

]
(2.74)

will have the familiar scaling form

V (t,w) = f (t)u(w) (2.75)

for some function f which is to be found. For this problem, the HJB equation is

0 = sup
c,θ

[
ϕ u(c)+ Vt + (rw + θ(μ− r)− c)Vw + 1

2σ
2θ2Vww − hV

]

= sup
x,z

[
ϕ u(wx)+ u(w) f ∪ + w(r + z(μ− r)− x)Vw + 1

2σ
2z2w2Vww − hV

]

= sup
x,z

[
ϕ u(wx)+ u(w) f ∪ + (1 − R) f (r + z(μ− r)− x)u(w)− 1

2σ
2z2R(1 − R) f u(w)− h f u(w)

]

= sup
x,z

u(w)
[
ϕ x1−R + f ∪ + (1 − R) f (r + z(μ− r)− x)− 1

2σ
2z2R(1 − R) f − h f

]
(2.76)

where we have written θ = wz, c = wx in the development. Now the optimization
over x and z is easy to do, and we find optimal values

z∞ = μ− r

σ 2R
→ πM , x∞ =

(
ϕ(t)

f (t)

)1/R

. (2.77)

The message therefore is that we invest according to the Merton proportion, but
the consumption rate is not a constant times the wealth, but depends on time in a
deterministic way. The form of the optimal solution is hardly surprising, but we can
offer more than just some verbal description of the form of the solution; we can in
fact find the optimal solution, by solving the HJB equation for f , which here is a
non-linear first-order ODE:

0 = f ∪ − (h + (R − 1)(r + κ2/2R)) f + Rϕ1/R f 1−1/R, (2.78)

as we find by substituting back the values (2.77) into (2.76).
Remarkably, some well-chosen substitutions reduce the ODE (2.78) to a much

simpler ODE which we can solve. If we set b → (R − 1)(r + κ2/2R), and

ψ(t) = exp
( − bt −

∫ t

0
h(s) ds

)
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then g(t) → f (t)ψ(t) is easily seen to solve

g∪(t)+ ϕ̃(t)g(t)1−1/R = 0, (2.79)

where
ϕ̃(t) → R(ϕ(t)ψ(t))1/R

is a known function. Thus

d

dt

[
g(t)1/R] = − ϕ̃(t)

R
. (2.80)

All we need to solve this is some boundary condition; probably the simplest thing to
do is to assume that ϕ(t) = 0 for all t ≡ T0 for some fixed T0 > 0, which then fixes
f (T0) = 0, and so

g(t)1/R =
∫ T0

t

ϕ̃(s)

R
ds. (2.81)

2.12 Random Growth Rate

This example is quite similar to the example in Section2.2 where the interest rate is
not assumed to be constant, but evolves as an OU model. Here we take the wealth
dynamics to be

dwt = rwt dt + θ(σdWt + (μt − r)dt)− ct dt

dμt = σμd Bt + β(μ̄− μt ) dt,

where now the growth rate is no longer supposed constant, but follows anOUprocess.
The parameters σμ and μ̄ are constants; let us suppose that the twoBrownianmotions
W and B are correlated, d BdW = ηdt . The objective of the agent is to obtain

V (w, μ) = sup E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣w0 = 0, μ0 = μ

]
(2.82)

where as usual u(w) = w1−R/(1− R). Amoment’s reflection shows that the solution
of the Merton problem will still scale, with the value function taking the form

V (w, r) = u(w)g(μ).
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Seeking the HJB equation for this problem, we find (substituting q = c/w, s = θ/w)

0 = sup
[
u(c)− ρV + 1

2σ
2θ2Vww + ησσμθVwμ

+ 1
2σ

2
μVμμ + (rw + θ(μ− r)− c)Vw + β(r̄ − r)Vr

]
= sup u(w)

[
q1−R − q(1 − R)g − ρg − 1

2 R(1 − R)σ 2s2g + (1 − R)ησσμsg∪ + 1
2σ

2
μg∪∪

+ (r + s(μ− r))(1 − R)g + β(μ̄− μ)g∪].
Now optimising this over q and s gives us

q = g−1/R,

s = ησσμg∪ + (μ− r)g

σ 2Rg
,

and when substituted back in gives the following second-order ODE for the HJB
equations:

0 = Rg1−1/R −ρg + r(1− R)g + (1− R)
(ησσμg∪ + (μ− r)g)2

2Rσ 2g
+ 1

2σ
2
μg∪∪ +β(μ̄−μ)g∪.

(2.83)
Here, κ = (μ− r)/σ 2R. As before, Eq. (2.83) cannot be solved in closed form, but
the numerical solution is not particularly difficult.

It isworth comparing theHJBequation (2.83) obtained herewith theHJBequation
(2.13) obtained in Section2.2 for the example with stochastic interest rate. At first
glance, apart from trivial notational switches, they appear to be identical. But they are
not; in (2.83)μ is a variable and r is a constant, and in (2.13) it is the other way round.

Notice that the problem considered here is rather unrealistic; we would not in
practice know what the value of μ is, so the solution is academic. A more interesting
version of this problem is treated in Section2.27, where we have to estimate μ from
the observed prices.

Numerics. We show in Fig. 2.12 plots of efficiency, consumption rate q = c/w and
portfolio proportion s = θ/w for an example where we took σμ = 0.05, μ̄ = 0.14,
η = 0.6, and β = 0.5. In the plot of efficiency, the level 1 is marked with a dashed
line; in the plot of consumption rate, the dashed line shows the consumption rate that
would hold in the Merton problem where μ was constant and equal to μ0; and in
the plot of portfolio proportion, the dashed line shows the fraction of wealth to be
invested in the risky asset ifμwere constant and equal toμ0. The problemwas solved
numerically using policy improvement with reflecting boundary conditions at the end
of a wide interval containing the region plotted. Unsurprisingly, efficiency rises as
μ0 rises, once μ0 gets far enough away from 0. The plot of the proportions invested
in the risky asset shows little difference in what is optimal and what would be optimal
for the Merton problem with constant μ. However, the plot of the consumption rate
shows substantial differences; if the growth rate is high and is constant, then we will
want to consume rapidly, because we expect to get good returns for ever, but if the
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Fig. 2.12 Plots of efficiency, consumption rate, and proportion of wealth in the risky asset for the
problem of Section2.12 with randomly-varying growth rate. Parameter values were σμ = 0.05,
μ̄ = 0.14, η = 0.6, and β = 0.5

growth rate is high and random, we are more cautious, since the growth rate will
soon fall back to more normal levels.

Different choices of the parameters σμ, μ̄, η and β can produce quite different
plots. For example, changing η to −0.1 gives efficiencies in excess of 1 everywhere.
Making β = 0.15 again leads to efficiencies in excess of 1 everywhere, but not by
so much. Changing σμ to 0.15 leads to efficiencies in excess of 1.65 everywhere, a
striking difference!

2.13 Utility from Wealth and Consumption

Herewe shall once again assume standardwealth dynamics (2.1) but that the objective
of the agent is

V (w) → sup E

[∫ ≥

0
e−ρt u(ct ,wt ) dt

∣∣∣∣w0 = w

]
. (2.84)
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We could arrive at such an objective if we wanted to model the phenomenon that
consuming more makes an agent happier, but if his rate of consumption is too large
a fraction of his current wealth, then the happiness is diminished. The HJB equation
for this problem is by now easy to write down:

0 = sup
c≡0,θ

[−ρV + u(c,w)+ {rw + θ(μ− r)− c}Vw + 1
2σ

2θ2Vww
]
. (2.85)

With the notation ũ(y,w) = supc{u(c,w) − yc} we can perform the optimizations
over c and θ to obtain

0 = −ρV + ũ(Vw,w)+ rwVw − 1
2κ

2 V 2
w

Vww
. (2.86)

Again, without scaling properties it is hard to advance further. But if we assume that

u(c,w) = wαcβ

1 − R
(2.87)

for some α, β of the same sign as 1 − R, α + β = 1 − R, then scaling gives us that
V (λw) = λ1−R V (w) for all λ > 0, and hence

V (w) = Au(w)

for some positive A, where u(w) = w1−R/(1− R). Substituting this form into (2.85)
we find that

0 = −ARγM +
(
(1 − R)A

β

)β/(β−1)

(1 − β).

Rearranging gives us that

A1/(β−1) =
(

β

1− R

)−β/(β − 1) RγM

1 − β
. (2.88)

As might have been anticipated, we find that the optimal investment rule is just the
Merton rule, and that we consume proportionally to wealth, though the constant of
proportionality is in general not γM . As a check, we must find that if α = 0 we
recover the solution to the original Merton problem; indeed, in this case we have
β = 1− R, and the expression (2.88) tallies with the original Merton solution (1.9).

2.14 Wealth Preservation Constraint

In this version of the Merton problem, the wealth dynamics are the standard ones
(2.1), but we shall impose the constraint that the wealth of the agent is preserved, in
the sense that

http://dx.doi.org/10.1007/978-3-642-35202-7_1


2.14 Wealth Preservation Constraint 63

wt ≡ bw̄t → b
∫ t

−≥
λeλ(s−t)ws ds, (2.89)

where b ⇔ (0, 1) is a constant, as is λ > 0. We make the convention that ws = w0 for
all s < 0. This models the notion that we will not want our wealth to fall too much
below what it has been in the past, as represented by the exponentially-weighted
moving average w̄t . The dynamics of w̄ are given by

dw̄ = λ(w − w̄)dt. (2.90)

The objective of the agent is to obtain

V (w, w̄) → sup E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = w, w̄0 = w̄

]
. (2.91)

Using the dynamics (2.1) and (2.90), the HJB equations can be written down:

0 = sup
c≡0,θ

[−ρV +u(c)+{rw+θ(μ−r)−c}Vw+ 1
2σ

2θ2Vww+λ(w−w̄)Vw̄.
]
, (2.92)

As so often, there is little we can do here without some scaling assumptions, so if
we assume that u is CRRA, u∪(x) = x−R for some R > 0 different from 1, then we
have the scaling relation

V (w, w̄) = w̄1−R v(x) → w̄1−R v(w/w̄). (2.93)

Exploiting this form of V in (2.92) leads to the form

0 = sup
s≡0, q

[−ρv + u(s)+ (r x + q(μ− r)− s)v∪ + 1
2σ

2q2v∪∪ + λ(x − 1)((1 − R)v − xv∪)
]

= −ρv + ũ(v∪)+ r xv∪ − 1
2κ

2 v∪2
v∪∪ + λ(x − 1)((1 − R)v − xv∪). (2.94)

Once again, there appears to be no prospect of solving this except numerically.

Numerics. At the lower boundary x → w/w̄ = b, it has to be that the agent comes
out of the risky asset entirely, because the right-hand side of (2.89) is differentiable,
whereas the left-hand side will have quadratic variation if there is non-zero holding
of the risky asset, and the inequality will be immediately violated.Moreover, wemust
insist that the consumption rate is not so large that the drift of w − bw̄ is negative.

For very large values of x , the dominant effect is that the exponentially-weighted
mean w̄ is rising very fast, so x is falling very fast. We shall impose the boundary
condition that to the right of some suitably large x∞ the agent is not allowed to invest
in the risky asset. As can be found by varying x∞, this makes almost no difference to
the solution even when x∞ is not very big.
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Fig. 2.13 Plots of the value, portfolio and consumption rates for the wealth preservation example
of Section2.14. The Merton solution is shown as dashed lines. Values used were b = 0.9, λ = 0.01

With b = 0.9 and λ = 0.01, and supposing that w0 = w̄0 = 1, the efficiency
is 0.9479. The plots in Fig. 2.13 show the value, portfolio and consumption rates
as functions of x . The value lies everywhere below the Merton value, as would be
expected, and we see that the effect on consumption is relatively small. The effect
on the portfolio is also quite localized; at the critical value b the portfolio of course
drops down to zero, but it climbs quite quickly back to the Merton solution as x
rises. Overall, then, the effect of this restriction on the agent’s behaviour is small,
even when the small value of λmeans that the lower barrier moves quite slowly. This
is probably explained by the fact that the wealth of the Merton investor is growing at
rate (r + κ2(1 + R−1)/2 − ρ)/R which for the default values is positive. Thus the
wealth process is moving away from its historical values generally, so the constraint
that w should not fall below bw̄ is unlikely to bite often.

2.15 Constraint on Drawdown of Consumption

This is a problem solved by Arun Thillaisundaram [1]. The wealth dynamics are the
standard wealth dynamics (2.1), but we now insist that there is limited drawdown of
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consumption rate:
ct ≡ bc̄t → b sup

u⊇t
cu (2.95)

for some constant b ⇔ [0, 1). Otherwise, the agent has the standard objective (2.2),
and seeks to obtain the value

V (w, c̄) = sup
c,θ

E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = w, c̄0 = c̄

]
. (2.96)

Using the Martingale Principle of Optimal Control, we find the HJB equations

0 ≡ sup
c≡bw,θ

[−ρV + u(c)+ (rw + θ(μ− r)− c)Vw + 1
2σ

2θ2Vww
]

(2.97)

0 ≡ Vc̄, (2.98)

with at least one of the inequalities holding with equality at each x . This implicitly
assumes that the maximal consumption rate c̄ will only get increased on a set of
zero Lebesgue measure, as is typical of a local time. This hypothesis needs to be
substantiated by a proper verification argument, but is correct.

Assuming a CRRA felicity u∪(x) = x−R allows us to make a scaling and express

V (w, c̄) = c̄1−R V (w/c̄, 1) → c̄1−Rv(w/c̄) → c̄1−Rv(x). (2.99)

We expect that if wealth w is large enough relative to c̄, then it will make sense to
raise c̄, but otherwise we do not. So this leads us to suspect that there will be some
critical value x∞ of x → w/c̄ such that when x > x∞ we will raise c̄ to move x down
to x∞. By inspection of the scaling relation (2.99), this tells us that to the right of
x∞ we must have v(x) ∨ x1−R , that is, v(x) = Au(x) to the right of x∞ for some
positive A.

Another feature of the solution is that there is a minimal possible level of wealth
consistent with maintaining consumption at the level bc̄; indeed, if wealth falls to
bc̄/r , thenwemust put all ourmoney into the bank account, and consume the interest,
which is paid at rate bc̄. If we do that, then the value of the objective will be u(b)/ρ.
Thus we have determined that

v(b/r) = u(b)/ρ. (2.100)

Using the scaling relation (2.99) again, the second condition (2.98) is now simply
the condition

0 ≡ (1 − R)v(x)− xv∪(x). (2.101)

The first condition (2.97) needs a bit more development. Using the scaling relation,
we obtain
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0 ≡ −ρv + r xv∪ − 1
2κ

2 (v
∪)2

v∪∪ + sup
b⊇z⊇1

[u(z)− zv∪]

= −ρv + r xv∪ − 1
2κ

2 (v
∪)2

v∪∪ + ũb(v
∪), (2.102)

where we define

ũb(z) → sup
b⊇y⊇1

[u(y)− yz] (2.103)

= (u(1)− z)I{z<u∪(1)} + ũ(z)I{u∪(1)⊇z⊇u∪(b)} + (u(b)− bz)I{u∪(b)<z}.

This of course invites us to use the dual variable z = v∪(x), with J (z) = v(x)− xz,
converting the non-linear ODE into the linear dual ODE

0 ≡ 1
2κ

2z2 J ∪∪ + (ρ − r)z J ∪ − ρ J + ũb(z). (2.104)

The condition (2.101) converts to (1 − 1/R)J − z J ∪ ≡ 0.
Solving the dual HJB Equation (2.104) with equality gives the solution J as

J (z) =
⎧⎨
⎩

u(1)/ρ − z/r + A2z−α + B2zβ (z ⊇ u∪(1) = 1)
γ−1

M ũ(z)+ A1z−α + B1zβ (1 ⊇ z ⊇ u∪(b))
u(b)/ρ − bz/r + A0z−α (u∪(b) ⊇ z)

.

Herewe have in each interval found a particular solution, and added a general solution
to the homogeneous ODE to get this form. Notice that in (u∪(b),≥) there can be no
term of the form zβ , because β > 1, and such a term would either destroy convexity
of J , or monotonicity. Moreover, the coefficient A0 must be non-negative for the
solution to be convex.

Once A0 is determined, we deduce A1, B1, A2, B2 from the C1 condition at u∪(b)
and at u∪(1), so the solution J is determined up to the constant A0. To solve this,
what we can do is to work out what the C1 solution g(z)would be if we took A0 = 0,
and then of course J (z) = g(z)+ A0z−α .

There are two further requirements. One is to make A0 (and hence v) as large as
possible; and the other is that at some z we must find that

(
1 − 1

R

)
J (z) = z J ∪(z), (2.105)

because at this place we pass from the piecewise-defined solution above to some
multiple of ũ(z), corresponding to the observation that for x ≡ x∞ the value has the
form v(x) = Au(x). Since J (z) = g(z)+ A0z−α , what (2.105) says is

(
1 − 1

R

)
(g(z)+ A0z−α) = z{g∪(z)− αA0z−1−α}.
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Rearranging gives

A0 = zg∪(z)− (1 − 1/R)g(z)

1 + α − 1/R
. (2.106)

Now we just maximize the right-hand side over z to find z∞ and A0, and this gives
the entire solution.

Numerics. The only parameter to be specified in addition to the default values (2.3)
is the parameter b, taken in this numerical study to be equal to 0.7. The plots in
Fig. 2.14 show the value function v, the consumption, and portfolio as a function of
the state variable x = w/c̄, and as a check the two operators applied to v, the HJB
operator (2.102) and the first-order operator (2.101).

There are as expected four distinct regions. In the lowest region, [b/r,
−J ∪(u∪(b))] = [14, 18.2815], there is consumption at the minimum possible level,
and the investment in the risky asset gradually rises from 0. In the next region
[−J ∪(u∪(b)),−J ∪(1)] = [18.2815, 23.9055], the wealth level is high enough to per-
suade the agent to risk some higher consumption. The next region is [−J ∪(1), x∞] =
[23.9055, 28.5487] where the agent consumes at the maximal level c̄ but is not will-
ing to raise that level. The final region lies to the right of x∞, where the agent raises
the consumption level immediately to bring x → w/c̄ back down to x∞.

Fig. 2.14 Plots of the value, consumption, portfolio as a function of x = w/c̄ for the problem with
bounded drawdown of consumption, together with the check of the HJB variational inequality
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The fourth plot shows that the maximum of the two is everywhere zero, as it
should be, with the HJB holding with equality everywhere except the right-most
region, where the linear operator applied to v is zero, again as expected.

2.16 Option to Stop Early

In this example, we once again assume the standard wealth dynamics (2.1), but we
allow the possibility that the agent may choose to stop at some stopping time τ of
his choice; when he stops he receives an immediate reward of F(wτ ), and that is the
end of consumption. Thus the agent’s objective is to obtain

V (w) = sup
c≡0,θ,τ

E

[∫ τ

0
e−ρt u(ct ) dt + e−ρτ F(wτ )

∣∣∣∣w0 = w

]
. (2.107)

The Martingale Principle of Optimal Control tells us that

Yt = V (wt )e
−ρt I{t<τ } + F(wτ )e

−ρτ I{t≡τ } +
∫ t∧τ

0
e−ρsu(cs) ds

is a supermartingale and a martingale under optimal control. Using Itô’s formula, we
deduce that

0 ≡ sup
[−ρV + u(c)+ (rw + θ(μ− r)− c)V ∪ + 1

2σ
2θ2V ∪∪] (2.108)

V ≡ F, (2.109)

with equality in at least one of these for each w. Even if we assume that u is CRRA,
there is no scaling simplification possible because of the option to stop. However,
we can still get a long way with this problem.

Firstly, notice that even though we have not assumed that F is concave, we may
without loss of generality assume that it is, by replacing F by its least concave
majorant F̄ . This is because if we were at some wealth level w where F(w) < F̄(w),
we could turn up the value of θ to some vast number for a short time, until we reached
one end or the other of the interval [a, b] containing w in which F < F̄ . For vast
values of θ , the volatility of the wealth process overwhelms the drift, so what we
see is in effect a Brownian motion; accordingly, if we were at w we would have the
option to stop at whichever of a or b the Brownian motion reached first, and the
expected stopping value would just be the convex combination of F̄(a) = F(a) and
F̄(b) = F(b), that is, F̄(w). So the agent wanting to stop at wealth level w could by
this device improve his reward from F(w) to F̄(w), and would of course do so.

We see from the HJB Equation (2.108) that the second derivative V ∪∪ must be
everywhere non-positive, so we seek a concave function V dominating the concave
function F . Taking dual variable z → V ∪, and setting J (z) = V (w) − zw, we have
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J ∪ = −x , J ∪∪ = −1/V ∪∪, and the dual HJB equations become

0 ≡ ũ(z)− ρ J (z)+ (ρ − r)z J ∪(z)+ 1
2κ

2z2 J ∪∪(z) (2.110)

J (z) ≡ F̃(z). (2.111)

Example. Naturally, we have to be more explicit about the form of F and u in order
to make more progress, so we shall assume that u∪(x) = x−R1 and F ∪(x) = x−R2

for some R2 > R1 > 1. Since F converges to zero much faster than u as x ∝ ≥,
we expect that the optimal rule will be to stop if and only if w ≡ w∞ for some critical
value w∞ of w. In terms of the dual variable, this is equivalent to the statement that
for z ⊇ z∞ = V ∪(w∞) we have equality in (2.111), else we have equality in (2.110).
Hence we shall have for some constants A and B that

J (z) = F̃(z) (z ⊇ z∞)

= − ũ(z)

Q(1 − R−1
1 )

+ A(z/z∞)−α + B(z/z∞)β (z ≡ z∞)

where −α < 0< 1<β are the roots of the quadratic Q(t)→ 1
2κ

2t (t − 1)+ (ρ − r)
t − ρ.

For large z, in order that J remains convex and decreasing, it has to be that B = 0
(since β > 1), so we just have to choose A and z∞ to make J a C1 function.

The equations determining A and z∞ are (with q = −Q(1 − R−1
1 ))

F̃(z∞) = A + ũ(z∞)/q
(1 − R−1

2 )F̃(z∞) = −αA + (1 − R−1
1 )ũ(z∞)/q

which gives
(α + 1 − R−1

2 )F̃(z∞) = (α + 1 − R−1
1 )ũ(z∞)/q

whence

(z∞)R−1
1 −R−1

2 = α + 1 − R−1
1

q(α + 1 − R−1
2 )

and

z∞ =
{
α + 1 − R−1

1

q(α + 1 − R−1
2 )

}R1R2/(R2−R1)

.

This is a pleasingly explicit solution, though without some special features as in this
example we will be forced to seek a numerical solution.
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2.17 Optimization under Expected Shortfall Constraint

In this example, we suppose the standard asset dynamics (2.1), but with zero con-
sumption: the goal here is to maximize a terminal wealth objective

sup
θ

Eu(wT ) subject to E[(w̄ − wT )
+] ⊇ α (2.112)

for some constants α and w̄. As we have seen in Section1.4, we may choose any
terminal wealth wT subject to the budget constraint

E[ζT wT ] = w0,

so we now have an optimization problem constrained by two scalar constraints.
We may rewrite the expected-shortfall constraint in terms of the function g(w) →
min{0,w − w̄} to read

E[g(wT )] + α = z ≡ 0

for the non-negative slack variable z. At this stage we translate the problem into
Lagrangian form with multipliers λ, η to become

L(λ, η) = sup
wT ,z≡0

E
[
u(wT )+ λ(w0 − ζT wT )+ η{α + g(wT )− z}],

and observe that non-negativity of z forces η ≡ 0 for dual feasibility, and ηz = 0.
Therefore the optimization problem in Lagrangian form is simply

L(λ, η) = sup
wT ≡0

E
[
u(wT )+ λ(w0 − ζT wT )+ η{α + g(wT )}

]
, (2.113)

where η is understood to be non-negative. The function f (w) → u(w) + ηg(w) is
therefore concave increasing, and the optimization of theLagrangian form is achieved
when

f ∪(wT ) = λζT .

Substituting this into the Lagrangian form, the maximized value is

L(λ, η) = E
[
ũ(λζT ) : λζT < u∪(w̄)

] + E
[
u(w̄)− λζT w̄ : u∪(w̄) < λζT < η + u∪(w̄)

]
+ E

[
ũ(λζT − η)− ηw̄ : λζT > u∪(w̄)+ η

] + λw0 + ηα. (2.114)

Now we have that ζt = exp(−κWt − (r + 1
2κ

2)t), so the first two of the expectations
appearing in (2.114) can be evaluated explicitly in terms of the cumulative Gaussian
distribution function. In more detail,

λζT < q ⇔ WT > {log λ− (r + 1
2κ

2)T − log q}/κ → ψ(q).

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Writing b = ψ(u∪(w̄)) and a = ψ(η + u∪(w̄)), and assuming that u∪(x) = x−R for
some R ∈= 1 we find that the first expectation in (2.114) is expressed as

ũ(λ)E
[
(ζT )

1−1/R : WT > b
]
,

the second as

u(w̄)P[a < WT < b] − λw̄E[ζT ; a < WT < b],

and the third as
E[ũ(λζT − η) : WT < a] − ηw̄P[WT < a].

With the exception of the expectation in the last of these terms, everything can be
evaluated explicitly in terms of the standard Gaussian distribution function, and even
this expectation can be rapidly evaluated as it is a one-dimensional integral of a
well-behaved function.

Numerics. For a numerical example, take w0 = 1, T = 10, and α = 0.01, with the
other parameters as usual (2.3). Suppose that the shortfall value w̄ to be compared
with is the value that the initial cash would have achieved if invested solely in the
bank account, for this example, w̄ = 1.6487. The unconstrainedMerton investor will
finish with terminal wealth equal to I (λ∪ζT ) for some λ∪ which matches the initial
wealth condition,14 whereas the terminal wealth of the shortfall-constrained investor
will be a different function of the state-price density at time T . Figure2.15 shows
the wealth achieved by the constrained investor as a function of the wealth of the
unconstrained investor, with the diagonal shown as a dashed line. The efficiency of
the constrained investor in this example is 92.75%.

Fig. 2.15 Plot of the wealth
achieved by the constrained
investor as a function of
the wealth achieved by the
unconstrained investor

14 In fact, we have λ∪ = exp(−γ0RT )w−R
0 , where γ0 = (R − 1)(r + κ2/2R)/R.
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The qualitative features are very natural; for very high wealth, the unconstrained
investor is getting more, but for wealths around the comparison value w̄ the con-
strained investor receives just the riskless return (in this example, the risk-neutral
probability that the constrained agent receives only the risk-neutral return is 56.68%,
and the time-0 cost of funding this certain payout in the event that it should be required
is 0.4576). Once the wealth levels get very low, the wealth of the constrained agent
falls below the wealth of the unconstrained agent, though this is somehow unimpor-
tant since these outcomes are very unlikely.

2.18 Recursive Utility

This example takes the usual wealth dynamics (2.1) but now has the unconventional
recursive utility objective of maximizing U0, where (Ut )0⊇t⊇T is a recursive utility
process satisfying

Yt → Ut +
∫ t

0
F(s, cs,Us) dt = E

[∫ T

0
F(s, cs,Us) ds + G(wT )

∣∣∣∣Ft

]
(2.115)

where we suppose that F is concave increasing in its last two arguments, and that G
is concave increasing. In general, it is not obvious that there should be any process
U to solve the Eq. (2.115); any such process U solves an SDE, but with a terminal
condition UT = G(wT ). General results on the existence and uniqueness of such
backward SDEs (BSDEs) are well known, however; see [12] for an excellent survey
of various applications in finance. In the simple setting of time-invariant dynamics,
we expect that it will be possible to express Ut = V (t,wt ) for some function V
which we need to find. If this is the case, then theMPOCwould lead us to expect that
the process Y will be a supermartingale under any control, and a martingale under
optimal control. This gives us the HJB equation

0 = sup
c≡0,θ

[
Vt + (rw + θ(μ− r)− c)Vw + 1

2θ
2σ 2Vww + F(t, c, V )

]
. (2.116)

To illustrate how this would work, we shall take an example where

F(t, c, V ) = e−ρt cαV β (2.117)

for some constants ρ > 0, α, β ⇔ (0, 1).We conjecture that V (t,w) = e−νtϕ(w) for
some constant ν, which surprisingly turns out not to be the discount rate ρ appearing
in the definition of F . Indeed, if we substitute the conjectured form of V into (2.116),
this becomes
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0 = sup
c≡0,θ

e−νt [−νϕ + (rw + θ(μ− r)− c)ϕ∪ + 1
2θ

2σ 2ϕ∪∪ + e−ρt cαeν(1−β)tϕβ
]
,

(2.118)
which leads to a time-invariant solution only if

ν = ρ/(1 − β). (2.119)

Assuming this, optimizing over c gives the optimal choice:

αcα−1 = ϕ∪/ϕβ, (2.120)

and optimizing the quadratic gives finally

0 = −ν + rwϕ∪ − 1
2 (κϕ

∪)2/ϕ∪∪ + (1 − α)(αϕ∪)α/(α−1)ϕβ/(1−α). (2.121)

This non-linear ODE is not soluble in closed form, but we can use dual variables to
transform the problem to the more tractable form

0 = −ν J + (ν− r)z J ∪ + 1
2κ

2z2 J ∪∪ + (1−α)(αz)α/(α−1)(J − z J ∪)β/(1−α). (2.122)

Numerics. Figure2.16 presents plots of the value function ϕ, the optimal portfolio
divided by wealth, and the optimal consumption rate divided by wealth. The para-
meters used for the plots are α = 0.5, β = 0.4. Notice how the middle (portfolio)
plot falls with wealth, while the lower (consumption) plot rises with wealth, and
contrast this with Fig. 2.7. In this situation, raising consumption is doubly important,
not just because the running integral contribution to the objective rises directly with
consumption, but also because it rises indirectly with consumption through the effect
of higher Ut .

2.19 Keeping up with the Jones’s

This is an example with two agents each playing the standard wealth dynamics (2.1),
but where the utility of each agent depends on how much the other is consuming:
the objective of agent i this time is to obtain

sup E
∫ ≥

0
Ui (ci (t), c1−i (t)) dt (i = 0, 1). (2.123)

We can treat this by the static programming approach explained in Section1.4. If the
other agent has fixed his choice of consumption stream, then we must have

U ∪
i (ci (t), c1−i (t)) = λiζt (2.124)

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Fig. 2.16 Plots of the value, portfolio and consumption rates for the recursive utility example of
Section2.18

for some scalars λ0, λ1 chosen to satisfy the budget constraints. This gives us two
equations for two unknowns which should in principle be soluble. To help us make
progress, we shall suppose the simple form

Ui (ci , c1−i ) = c1−Ri
i

1 − Ri

(
c1−i

ci

)αi

, (2.125)

where we will assume that Ri > 1, and αi > 0 so as to guarantee the property that as
the other agent consumesmore, you feel less happy, but you are always happier when
you consume more. Some straightforward calculations now lead to the conclusion
that

ci ∨ ζ−βi (2.126)

where

βi → α0 + α1 + R1−i

R0R1 + α1R0 + α0R1
. (2.127)
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Structurally this looks like each agent behaves like a standard Merton investor with
coefficient of relative risk aversion equal to

R̃i = R0R1 + α1R0 + α0R1

α0 + α1 + R1−i
= Ri + αi (R1−i − Ri )

α0 + α1 + R1−i
. (2.128)

Thus each agent’s effective coefficient of relative risk aversion gets moved towards
the other’s; the more risk averse becomes less risk averse, and vice versa.

2.20 Performance Relative to a Benchmark

Frequently a fund manager will be judged by his ability to beat a benchmark. Thus
if the benchmark process is the positive semimartingale q, the objective of the fund
manager is

sup E u(wT /qT ) (2.129)

where T > 0 is some fixed time horizon, and u is a given utility. Performance relative
to a benchmark is really only an interesting question if there are many assets to invest
in, so we shall assume the standard completemultivariate market (1.10). At one level,
the solution is very easy. Using the static programming approach, Section1.4, we
see that we may achieve any terminal wealth wT subject to the budget constraint

E[ζT wT ] ⊇ ζ0w0,

so we simply absorb this constraint with a Lagrange multiplier, and solve the uncon-
strained problem

sup E
[
u(wT /qT )+ λ(ζ0w0 − ζT wT )

]
(2.130)

and then directly optimizing we obtain that

u∪(wT /qT ) = λζT qT , (2.131)

which characterizes the optimal terminal wealth up to a relatively unimportant scalar
multiple. Thus the optimal wealth process is represented as

ζt wt = Et
[
ζT qT I (λζT qT )

]
, (2.132)

which in the case of a CRRA utility u becomes simply

ζt wt = λ−1/R Et
[
(ζT qT )

1−1/R]
. (2.133)

The extent to which we can solve this problem explicitly depends on the extent to
which we can represent the martingale (2.133).

http://dx.doi.org/10.1007/978-3-642-35202-7_1
http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Note that most market indices, such as the FTSE100, the DJIA, the S&P500
are arithmetic averages of the individual component prices; the FT30 however is
a geometric average, so the mathematically tractable idealization of a geometric
average does exist, even if it is a bit unusual.

2.21 Utility from Slice of the Cake

Here is an example where an agent’s preferences over consumption streams depend
on what is happening to others, as in the example of keeping up with the Jones’s,
Section2.19.

A continuous-timemodel of an economy contains a single productive asset, whose
output process (δt )t≡0 evolves as

dδt = δt (σdWt + μdt), (2.134)

where W is a standard Brownian motion. Agent i ⇔ {1, . . . , J } has preferences over
consumption streams (ci

t )t≡0 given by

E
∫ ≥

0
e−ρi t ui (p

i
t ) dt, (2.135)

where

pi
t = ci

t∑
j c j

t

(2.136)

and ui : (0,≥) ∝ R is C2, strictly increasing and strictly concave, u∪
i (0) =

≥, u∪
i (≥) = 0. Agent i initially holds a fraction π i

0 of the productive asset; what is
the equilibrium allocation of the output of the economy?

In equilibrium, there are no mutually beneficial trades remaining between the
agents. So let’s consider a deal to be entered into at time s to receive an infinitesimal
quantity of consumption Y at later time t . The marginal priceΠ i

st (Y ) which agent i
would be prepared to pay for this would satisfy

Πst (Y ) e−ρi su∪
i (p

i
s)(1 − pi

s)/Cs = Es[Y e−ρi t u∪
i (p

i
t )(1 − pi

t )/Ct ] (2.137)

whereCt = ∑
j c j

t , since increasing ci by infinitesimal ε increases pi by infinitesimal

ε(1 − pi )/C . Thus agent i’s state-price density process is of the form

ζ i
t = e−ρi t u∪

i (p
i
t )(1 − pi

t )

Ct
. (2.138)
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Since the filtration is that of a univariate Brownian motion, the market is complete,
and therefore all agents have the same state-price density process (up to a scalar
multiple). Hence for some λi > 0,

e−ρi t u∪
i (p

i
t )(1 − pi

t )

Ct
= λiζt , (2.139)

where ζ is the common state-price density.
Noticing that x ◦∝ gi (x) → u∪

i (x)(1− x) is decreasing from ≥ to 0 on (0, 1), we
may re-express this as

gi (p
i
t ) = λi e

ρi tζt Ct ,

so if hi is inverse to gi we learn that

pi
t = hi (λi e

ρi tζt Ct ). (2.140)

Summing on i gives the market-clearing condition

1 =
∑

i

hi (λi e
ρi tζtδt ), (2.141)

since the total consumption must match the total output. One consequence of this is
that for a given set of λi , for each t the product ζtδt is deterministic. Thus pi

t is a
function only of t , since when markets clear we have Ct = δt . The equilibrium price
of the asset is given by

St = ζ−1
t Et

[ ∫ ≥

t
ζsδs ds

]
(2.142)

= ϕ(t)δt (2.143)

for some deterministic function ϕ, but this is about as far as we can get in general.
Notice that if ρi = ρ for all i , then from (2.141) it must be that eρtζtδt is constant.

Looking at (2.140), we conclude that the fraction of the cake being consumed by
agent i never changes!

2.22 Investment Penalized by Riskiness

Suppose we have a standard complete multi-asset log-Brownian market (1.10):

d Si
t /Si

t =
d∑

j=1

σi j dW j
t + μi dt,

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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and you appoint a manager to invest your initial wealth w0 up until time T . If he
chooses portfolio proportions π , then the wealth of the portfolio evolves as

dwt/wt = rdt + πt (σdWt + (μ− r)dt).

The manager claims to be able to detect trends in the asset prices, but you are
sceptical; you do not know his secret methods, but you can certainly observe the
volatility |σ Tπt | of the wealth process, and you agree to pay him at time T the
amount

xT → awT exp
( − 1

2ε

∫ T

0
|σ Tπs |2 ds

)
,

where a, ε > 0. By penalizing him according to the realized volatility of his strategy,
you hope to prevent him pursuing risky strategies at your expense. If the manager’s
objective is to maximize Eu(yT ), where u is CRRA, u∪(x) = x−R , what will he do?

To see what happens, define

xt → wt exp
( − 1

2ε

∫ t

0
|σ Tπs |2 ds

)
,

and let
V (t, x) = sup Et [u(xT ) | xt = x]

be the value function for the manager. The evolution of x is given by

dxt = xt
[
rdt + πt · (σdWt + (μ− r)dt)− 1

2ε|σ Tπt |2dt
]
,

and hence from the Martingale Principle of Optimal Control, we deduce the HJB
equations

0 = sup
π

[
Vt + x(r + π · (μ− r)− 1

2ε|σ Tπ |2)Vx + 1
2 |σ Tπ |2x2Vxx

]
.

Now by scaling, we expect that V (t, x) = f (t)u(x) for some function f of time,
and substituting this form into the HJB equations we learn that

0 = sup
π

u(x)
{

ḟ + (1− R) f (r +π · (μ−r)− 1
2ε|σ Tπ |2)− 1

2 (1− R)R f |σ Tπ |2}.
Thus the optimal portfolio choice for the manager is to use

π = (R + ε)−1 (σσ T )−1(μ− r),

which is the optimal portfolio choice for a Merton investor with constant coefficient
of risk aversion R + ε; by introducing the penalty for portfolio volatility, you have
increased the manager’s effective risk-aversion by ε!
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2.23 Lower Bound for Utility

This example15 assumes the standard wealth dynamics (2.1) with running consump-
tion, but nowwe suppose that the utility of the agent is bounded below, but his wealth
is not. The basic example concludes that as an agent’s wealth falls lower and lower,
so does his consumption; but this does seems to be counter to human behaviour. If
an individual’s wealth is so low that he would be reduced to starving gradually to
death, we do not expect him meekly to accept his demise; in reality, he would beg,
borrow or steal the wherewithal of living. The worst that could happen to him would
be that he gets found out and thrown into jail, and that would be the same outcome
whether he had borrowed $2000 or $2M. So we will suppose that the agent may
borrow or steal money to support a higher-than-starvation level of consumption; in
other words, we relax the constraint that wealth should be non-negative.

Once we do this, there have to be other modifications to the problem specification
to prevent it becoming trivial. If he is allowed to go into negative wealth, why does
he not just borrow indefinitely and enjoy himself with other people’s money? So
we introduce the possibility of his finances being reviewed, according to a variable
intensity

G(w, θ2) = (b|w|m + aθ2)I{w<0}, (2.144)

where a, b, m are positive. If the agent gets reviewed while his wealth is negative,
he is found out and thrown into jail, incurring a (large) negative penalty −K . Thus
his objective is

V (w) = sup
θ,c

E

[∫ τ

0
e−ρt u(ct ) dt − e−ρτ K

∣∣∣∣w0 = w

]
, (2.145)

where τ denotes the time of the first review.
A few comments on the modelling assumptions are needed here. Firstly, we

assume the review intensity is zero while wealth is positive. This is not to say that
an individual’s affairs might not be scrutinized while his wealth is positive, but if
they were, then he would be found to be living honestly and allowed to continue.
So we lose nothing by ignoring such reviews. Next, the requirement that the review
intensity depends on θ2 corresponds to a plausible feature, that if the agent was
investing enormous amounts in the risky asset he would attract the attention of regu-
lators; mathematically, we need this feature, because otherwise the agent faced with
negative wealth could turn up θ to some huge value, and then move rapidly through
negative values of wealth until he got back to positive wealth again. For very large
θ , the volatility of the wealth overwhelms any drift effect, so we are seeing wealth
evolve in effect as a very fast Brownian motion; what we have is a doubling strategy.
To rule this out, we suppose that large risky positions greatly increase the chances
of detection. The final observation is that unless the risk of detection got higher the

15 An extended account can be found in Muraviev & Rogers [29].
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more negative wealth becomes, then the impoverished agent could simply come out
of the risky asset entirely, eliminate the risk of discovery, and borrow indefinitely to
fund consumption.

At the random time τ of discovery, the agent’s value falls from V (wτ−) to −K .
Using the Martingale Principle of Optimal Control on the value function, we deduce
the HJB equation for this problem:

0 = sup
c,θ

[−ρV + u(c)+ (rw + θ(μ− r)− c)V ∪ + 1
2σ

2θ2V ∪∪ − G(w, θ2)(K + V )
]
.

(2.146)
It is clear that the value for this problem must be always at least −K , so V cannot
be globally concave. This alters the HJB equation somewhat, because when we
optimize over θ , in places the term 1

2σ
2θ2V ∪∪ will be positive; the only thing that

prevents the optimization over θ from becoming trivial is the presence of the final
term −G(w, θ2)(K + V ), which is negative, and also quadratic in θ . This makes the
problem more delicate numerically than many we have seen, and the route taken in
[29] involves a variable transformation to restore concavity to the HJB equation; the
interested reader is directed to [29] for all the details, but we will here just present
some numerical results and leave it at that.

Numerics. It turns out to be notationally simpler to write a = σ 2ν2/2 in (2.144).
In the example we present here, the values taken were m = ν = 2, K = 60 and
b = 10. We show the form of the value, the portfolio and the consumption rate for
positive wealth values in Fig. 2.17. The dashed lines show the corresponding solution
to the standardMerton problem, proportional towealth in portfolio and consumption,
as we know. Notice that as wealth increases, we see the solution approaching the
Merton solution, not surprisingly; the very wealthy do not need to worry about
bankruptcy!

We show in Fig. 2.18 the corresponding plots for negative wealth, and the first
thing to notice is that the vertical scale is of a completely different order of magnitude
from the plots for positive wealth; this was the reason for plotting them separately.
The value falls gently to the asymptotic value −K = −60, but the portfolio rises
dramatically; when wealth is −3.5, the cash value of the agent’s holding of the risky
asset is about 20, whereas you would need a positive wealth of about 50 to get such
a large holding of the risky asset! What is happening is that the insolvent agent is
gambling; the risky asset has a higher rate of return, so he is taking a chance that
the higher growth rate will help him get back to positive wealth. At the same time,
the rates of consumption are gigantic; in positive wealth, the consumption rate in the
plot does not get above about 2, whereas in negative wealth the rate has exceeded
1000 when wealth has dropped to −2! You could interpret this as the agent turning
to crime—he has abandoned hope of ever becoming honest again, and plunders as
much as he can before being caught.
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Fig. 2.17 Plots of the value, portfolio in the risky asset, and consumption rate for positive values
of wealth, for the example of utility bounded below, Section2.23

2.24 Production and Consumption

The story here is a little different; there is no financial market in which the agent is
choosing to invest, but rather a real production process which generates an output.
The agent’s choice is how much of this output to consume.16 We shall take the
dynamical specification to be

d Kt = (It − δKt )dt (2.147)

Yt = Zt f (Kt ) = It + Ct . (2.148)

Here, Kt is the available capital at time t , which depreciates at rate δ and is replenished
from output at rate It . The agent has to choose how to split the output Yt between
consumptionCt and investment. The output depends on Kt andon a random factor Zt ,
where f is an increasing concave production function, and d Zt = Zt (σdWt +μdt)
is a log-Brownian motion. The agent has objective

16 This is a very classical growth problem; see, for example, the book by Romer [36] for more
background. We take here what is perhaps the simplest form of the problem.
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Fig. 2.18 Plots of the value, portfolio in the risky asset, and consumption rate for negative values of
wealth, for the example of utility bounded below, Section2.23. The consumption plot is truncated
at 1000

V (z, k) → sup E

[∫ ≥

0
e−ρt u(Ct ) dt

∣∣∣∣Z0 = z, K0 = k

]
; (2.149)

as usual, and there is a conflict between consuming now, and investing more to
generate more output (and potentially more consumption) at later time.

To solve this, we can write down the HJB equation for the problem

0 = sup
C

[−ρV + u(C)+ μzVz + 1
2σ

2z2Vzz + (z f (k)− δk − C)Vk
]
, (2.150)

where as usual we will assume that u is constant relative risk aversion, u∪(x) = x−R

for some R > 1 (the problem is ill posed if 0 < R < 1). At this stage, we usually
look for scaling properties to allow us to reduce the number of independent variables
in the equation; but things are not so simple this time. Notice that if we were to
double Z , we could look at (2.148) and think that we could then double I and C ;
but it’s not that simple, because if we doubled investment the path of K would have
changed. However, if we assume that

f (K ) = AK α (2.151)
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for some A > 0 and 0 < α ⊇ 1, then if we take the time-0 state (z, k) and rescale to
(λ1−αz, λk) for some λ > 0, then we have scaled I and C by λ, and therefore have
scaled the objective by λ1−R , that is,

V (λ1−αz, λk) = λ1−R V (z, k)

from which we conclude that

V (z, k) = k1−R V (kα−1z, 1) → u(k) h(x), (2.152)

where we have taken x → kα−1z.
Before we develop the HJB equation further, let us notice that the problem as

originally posed can be reduced to the situation where δ = 0, by setting

K̃t = eδt Kt , Ĩt = eδt It , C̃t = eδt Ct , Z̃t = e(1−α)δt Zt

so that the dynamics read

d K̃t = Ĩt dt, eδt Yt = Z̃t f (K̃t ) = Ĩt + C̃t ,

and the objective has become

E
∫ ≥

0
e−ρt eδ(R−1)t u(C̃t ) dt.

By changing ρ to ρ∪ → ρ − δ(R − 1) we reduce the original problem to the case
where δ = 0, but we also learn that we need the condition

ρ − δ(R − 1) > 0. (2.153)

This condition has the following natural interpretation. Suppose that Z had dropped
to zero; then there would be no output, and the only utility we could derive would be
fromconsuming the capital.We therefore need to solve the deterministic optimization
problem

sup
∫ ≥

0
e−ρt u(Ct ) dt subject to

∫ ≥

0
Ct dt = K0. (2.154)

This problem is only well-posed if condition (2.153) holds, and in this case the
optimal choice of C is

Ct = K0 e−ρt/Rρ/R.
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The value of the problem is then seen to be (finite if (2.153) holds and then equal to)

u(K0)

(
R

ρ

)R

= u(K0)h(0), (2.155)

which tells us the value of h at zero.
Now we resume the analysis of the HJB equation. Using the scaling relationship

(2.152) the equation (2.150) takes the form (with y = C/k, and recalling that δ = 0
now)

0 = sup
y

u(k)
[−ρh + y1−R + μxh∪ + 1

2σ
2x2h∪∪ + {(1 − R)h + (α − 1)xh∪}(Ax − y)

]

= u(k)

[
−ρh + μxh∪ + 1

2σ
2x2h∪∪ − {(R − 1)h + (1 − α)xh∪}Ax

+ R

(
h + 1 − α

R − 1
xh∪

)(R−1)/R]
. (2.156)

The optimal choice of y is

y∞ = C∞

K
=

(
h + 1 − α

R − 1
xh∪

)−1/R

. (2.157)

Using the abbreviation b = (R − 1)/(1 − α), and expressing h(x) = g(w) with
w → log x turns (2.156) into

0 = −ρg +μg∪ + 1
2σ

2g∪∪ −{(R −1)g +(1−α)g∪}Aew + R

(
g + 1 − α

R − 1
g∪

)(R−1)/R

(2.158)

Numerics. For the numerical example, we took α = 0.7 and A = 2; the depreciation
δ was supposed to be zero, as explained above. The first plot shows the value function
h, and below it the consumption rate y = C/K .

Interestingly, the consumption rate appears almost proportional to Z ; the expres-
sion (2.157) for y∞ as a function of x is nearly linear in x . However, near to x = 0 the
consumption does not fall away entirely to zero, because even if the random factor
Z (and therefore output) is very small, the agent will still consume out of the capital
(Fig. 2.19).

2.25 Preferences with Limited Look-Ahead

The standard objective (2.2) of an agent involves consideration of consumption at
all future times, and its analysis is based on strong assumptions to be made on the
dynamics of the processes for all time. In practice, such assumptions are hard to
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Fig. 2.19 Plots of the value and consumption rate for the example of Section2.24 of an economy
with production and consumption

defend, and the mental picture of an agent reflecting on the possible outcomes of his
investments 60years into the future is not one thatmost peoplewould be familiarwith.

So what would be a more plausible story? One answer would be one in which the
agent cares about his consumption over the next T units of time, but thereafter he
accepts that his uncertainty is so great that really all that he can say is that he would
prefer to get through the next T units of time with more wealth rather than less. So
we might propose that what the agent cares about is

Et

[∫ t+T

t
u(s − t, cs) ds + g(wt+T )

]
(2.159)

for some increasing concave g. We shall suppose that the agent takes the wealth
dynamics (2.1) as given,17 and aims to optimize his objective—but what does that
mean? He might decide now at time t what his best actions would be, but at some
later time t + h < t + T he would have a different objective, and he might then want
to (and would be able to) change what he had planned to do at time t . Such problems
have been considered by Ekeland & Lazrak [11] and by Björk & Murgoci [3] who

17 We even assume that the parameters are known.
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formulate the problem as a game between the agent now and his later selves. The
notion of solution is a Nash equilibrium; a choice of current actions which could not
be improved if all of the later selves were to stick with their chosen actions.18

To explain this more concretely, suppose that the agent chooses to consume at rate
ct = c(wt ) and invest θt = θ(wt ) in the risky asset, for some suitable well-behaved
functions c, θ . Then the controlled wealth process evolves as

dwt = rwt dt + θ(wt )(σdWt + (μ− r)dt)− c(wt )dt, (2.160)

which is an autonomous diffusion. This being the case, we can in principle find the
transition density of the diffusion, and could then calculate

ϕ(t,w) = E

[∫ T

t
u(s, c(ws)) ds + g(wT )

∣∣∣∣wt = w

]
,

which solves the Cauchy problem

∂ϕ

∂t
+ u(t, c(w))+ L ϕ(t,w) = 0, ϕ(T,w) = g(w),

where L is the infinitesimal generator of the diffusion:

L → 1
2σ

2θ(x)2
∂2

∂x2
+ {r x + θ(x)(μ− r)− c(x)} ∂

∂x
.

The notion of solution is that ϕ should satisfy the HJB equations for the value at time
0:

sup
c,θ

[
∂ϕ

∂t
(0,w)+u(0, c)+ 1

2σ
2θ2

∂2ϕ

∂x2
(0,w)+{rw+θ(μ−r)−c} ∂ϕ

∂x
(0,w)

]
= 0

(2.161)
and that the supremum is attained by c = c(w), θ = θ(w).

In general it will be hard to make progress on this problem, but there is a simple
example which can be worked through, and shows clearly the features of interest
here. Let us suppose that u(t, c) = h(t)u(c), g(w) = Au(w), where u∪(c) = c−R

as in Section2.1. The agent there (with a fixed time horizon T ) will invest a fixed
proportion πM of his wealth in the risky asset at all times. However, he will in general
not consume at a rate which is a constant multiple of his current wealth; see (2.9). In
the present example where the agent has a fixed but rolling horizon, consumption is
at a fixed multiple of wealth for all time; how do we decide what the agent does?

Suppose that the agent consumes at rate ct = awt ; then the wealth process is

wt = w0 exp(σπM Wt + (b − a)t)

18 In this case, because of the time-invariance of the problem, they would in fact be choosing the
same actions as the current agent.
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where
b → r + πM (μ− r)− 1

2σ
2π2

M .

Routine calculations lead to the conclusion that

Eu(wt ) = u(w0) emt

where
m = (R − 1)(a − (r + κ2/2R)). (2.162)

Accordingly,

ϕ(t,w) = u(w)

[∫ T

t
h(s) em(s−t) a1−R ds + Aem(T −t)

]
,

and
ϕ̇(t,w)+ mϕ(t,w) = −u(w) a1−R h(t).

For brevity, we write

Q =
∫ T

0
h(s) ems a1−R ds + AemT , (2.163)

so that the equation (2.161) to be solved becomes

sup
c,θ

[−m Qu(w)− a1−Ru(w)h(0)+ (rw + θ(μ− r)− c)Qu∪(w)− 1
2σ

2θ2Qu∪∪(w)+ h(0)u(c)
] = 0.

(2.164)
Optimizing leads to the conclusion that

c = w(h(0)/Q)1/R, θ = πM w. (2.165)

Now Q depends in a reasonably complicated fashion on a, and for the choice a to
constitute a Nash equilibrium choice we have to have

c

w
= a =

(
h(0)

Q

)1/R

, (2.166)

which is an implicit equation to be solved for a. If a solves this equation, then it can
be shown that (2.164) holds.

Let us see how this works out in the case where we take h(t) = exp(−εt) for
some ε > 0. In this case,

Q = 1 − e−(ε−m)T

ε − m
a1−R + AemT
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Fig. 2.20 Plots of the con-
sumption rates for the investor
with limited look-ahead and
the corresponding Merton
investor (Section2.25)

where m depends on a as (2.162). This is to be compared with what happens when
we do the usual finite-horizon optimization, as in Section2.1. We saw there that the
value function has the form f (t)u(w) where f solves

ḟ − (R − 1)(r + κ2/2R) f + R f 1−1/Rh1/R = 0, f (T ) = A. (2.167)

Numerics. In the numerical example we took ε = 0.1, A = 6, and T = 10. The
results are shown in Fig. 2.20. As expected, the consumption rate of the investor
with limited look-ahead remains constant, and below the consumption rate of the
Merton investor. When the time horizon is still quite large, the two values are not
far apart, 0.1132 compared with 0.1170. By the end of the time period, the Merton
investor’s consumption rate has risen to 0.2476. At the beginning of the time period,
the difference in the solutions is relatively small, because the time horizon is 10 and
the discounting rate ε is 0.1, so by the time horizon, the discounting has had quite
an effect; nevertheless, the limited-lookahead investor is still being more cautious.

2.26 Investing in an Asset with Stochastic Volatility

In this section we will study a simple stochastic volatility model introduced in [20].
This model is an interesting stochastic volatility model because it gives rise to a
complete market, so derivatives have unique prices.

The asset dynamics
d St = St (σt dWt + μ dt) (2.168)
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have stochastic volatility, but instead of supposing that this is driven by some inde-
pendent process, we let the volatility be driven by the asset itself. In more detail,
writing Xt → log St , we define the offset process Z by

Zt =
∫ t

−≥
λeλ(s−t)(Xs − Xt ) ds (2.169)

which measures how far the exponentially-weighted average of past log-price is
above the current value. The stochastic volatility is now simply σt = f (Zt ) for some
function f to be specified. We have by some straightforward Itô calculus that

d Zt + λZt dt = −d Xt

= − {
f (Zt ) dWt + (μ− 1

2 f (Zt )
2) dt

}
(2.170)

which exhibits Z as the solution19 of an autonomous SDE, and therefore a diffusion.
The agent has the standard objective, so we have to identify the value function

V (w, z) = sup E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = w, z0 = z

]
. (2.171)

The value function solves the HJB equation

0 = sup
c,θ

[−ρV + u(c)+ (rw + θ(μ− r)− c)Vw

−(λz + μ− 1
2 f (z)2)Vz + 1

2 f (z)2
{
θ2Vww − 2θVwz + Vzz

}]
.

Assuming that u is CRRA as usual, scaling gives us the product form V (w, z) =
u(w)g(z) for the value, and the HJB equation now becomes (with c = wx, θ = wq)

0 = sup
x, q

u(w)
[−ρg + x1−R + (1 − R)(r + q(μ− r)− x)g − (λz + μ− 1

2 f 2)g∪

+ 1
2 f 2

{
R(R − 1)q2g − 2(1 − R)qg∪ + g∪∪}]. (2.172)

The optimizing choices are

x = g−1/R, q = (μ− r)g − f 2g∪

Rg f 2
, (2.173)

and the HJB equation for g finally becomes

0 = −ρg+Rg1−1/R +r(1−R)g−(λz+μ− 1
2 f 2)g∪+ 1

2 f 2g∪∪+(1−R)
((μ− r)g − f 2g∪)2

2Rg f 2
.

(2.174)

19 Of course we need some conditions on f ; bounded Lipschitz is quite sufficient.
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Fig. 2.21 Plots of efficiency, c/w and θ/w for the Hobson-Rogers stochastic volatility model of
Section2.26

Numerics. Figure2.21 shows the results of a numerical study taking

f (z) = σ(1 + z2)

2 + z2
, λ = 0.1. (2.175)

The plots in Fig. 2.21 show the features of the solution as it depends on the offset z. In
the top plot, we see the efficiency. To understand what this shows, when we compare
the value V (w, z) = u(w)g(z) with the value for the Merton problem, we need to
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specify which Merton problem; the natural thing to do is for each z to compare
for the Merton problem where the volatility is constant and equal to f (z). We note
that the Merton value γ−R

M u(w) is decreasing with σ , all else being kept constant.
So when z is near zero and volatility is at its lowest value, the stochastic volatility
alternative should be worse, since the volatility can only get bigger if it changes. Far
away from zero, we argue the other way round; the Merton situation with fixed high
volatility is undesirable, but the stochastic volatility example has the chance to move
back to lower volatility, so can be expected to do better. The asymmetry of the plot
is explained by the fact that the SDE for the offset Z is not symmetric.

For consumption, the Merton investor with lower volatility will consume at a
faster rate,20 and a similar unimodal shape for the optimal consumption is visible,
though smeared out as one would expect due to the variability of the volatility.
Similar considerations apply for the portfolio proportions, though these are in fact
remarkably close.

2.27 Varying Growth Rate

This is a story of a Bayesian agent, as in Section2.32, but in this situation we do not
suppose that the growth rate of the single risky asset is a constant, rather that it is
evolving as a Brownian motion of small variance. This completely changes the form
of the solution and the methods used to study it.

In this story, the risky asset dynamics are

d St = St (σ dWt + μt dt), (2.176)

where σ is constant, but μt , the growth rate process, varies with time and has to be
filtered from the observed prices. We denote by

Yt → σ−1 log St (2.177)

the observation process with dynamics

dYt = dWt + αt dt = dWt + (μt − 1
2σ

2) dt/σ (2.178)

and we propose that α is itself a Brownian motion with volatility ε:

dαt = ε dW ∪
t (2.179)

where W ∪ is a Brownian motion independent of W . The observation process Y
generates a filtration Yt → σ(Ys : s ⊇ t).

20 Recall that R = 2 > 1.
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We are now in the setting of the Kalman-Bucy filter (see, for example, [34], VI.9),
which for simplicity we shall assume is in steady state. Defining the innovations
Brownian motion ν by

dYt = dνt + α̂t dt (2.180)

where α̂ is the Y -optional projection of α, it can be shown (see [34], VI.9) that

dα̂t = ε dνt . (2.181)

The pair of Eqs. (2.180) and (2.181) are a compact representation of the asset dynam-
ics. Now suppose that the agent has the standard objective (2.2) to optimize:

V (w, a) = sup E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = 0, α̂0 = a

]
. (2.182)

Assuming as so often that u is CRRA (u∪(x) = x−R) leads to the scaling relationship
V (w, a) = u(w) f (a) for some function f to be found. The HJB equation for this
problem is

0 = sup
c,θ

[−ρV +u(c)+ {
rw+θ(σa + 1

2σ
2−r)−c

}
Vw + 1

2σ
2θ2Vww +θεσVwa + 1

2 ε
2Vaa

]
.

Utilizing the scaling form of the solution, writing x = c/w, q = θ/w, we find the
HJB equation becomes

0 = sup
x,q

u(w)
[−ρ f + x1−R + (1 − R)

{
r + q(σa + 1

2σ
2 − r)− x

}
f

− 1
2 R(1 − R)σ 2q2 f + 1

2ε
2 f ∪∪ + (1 − R)σεq f ∪].

Calculus gives the optimality conditions

x−R = f, σ 2Rq = σa + 1
2σ

2 − r + σε f ∪/ f, (2.183)

which turns the HJB equation into

0 = −ρ f + R f 1−1/R +r(1− R) f + 1
2ε

2 f ∪∪ + (1 − R) f

2σ 2R
(σa + 1

2σ
2−r +σε f ∪/ f )2.

(2.184)

Numerics.The plots in Fig. 2.22 showhowefficiency, consumption rate and portfolio
vary with the posterior mean for the example where ε = 0.2. The efficiency is
calculated by comparison with a standard Merton problem where the true mean is
constant and equal to the posterior mean. We see that for α̂ near to zero the efficiency
is high, then it drops away, then rises again.We can understand the peak at 0 by noting
that if the mean is constant and equal to zero, then the stock is a bad investment,
giving risk but no return; but if the posterior mean is zero, then there is the likelihood
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Fig. 2.22 Plots of efficiency, c/w and θ/w as a function of posterior mean for the example of
Section2.27

that at some time in the future the growth rate will move away from zero and the
stock will become more attractive. So it is better to be at zero posterior mean in the
model where the growth rate can change than it would be to be at a certain zero
mean which never changed. As we move to more extreme posterior means, the asset
is very desirable, and is not likely to change over moderate timescales, so we see a
performance not unlike what we would get with constant but extreme growth rate.
The consumption and portfolio plots reinforce the message that if the posterior mean
is far from zero the stock is a good buy (if α̂ is positive). The dashed plots show the
values whichwould be obtained for theMerton problemwith the corresponding fixed
value of the growth rate.. Notice that with variable growth rate we find the optimal
behaviour is more cautious than it would be with the same fixed growth rate—if we
knew the growth rate with certainty, we would consume more rapidly, and we would
take a more extreme portfolio position.
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2.28 Beating a Benchmark

The idea here is that the agent has a terminal wealth objective, but he is constrained
always to generate at least some multiple of a benchmark process ξ . This would be
the objective of a fund manager who takes money from investors and promises that
they will always get at least 70% of the S&P500 index, for example. This constraint
is expressed as wT ≡ bξT , where 0 < b < 1 and the benchmark process is started
at the same value ξ0 = w0. We shall assume the standard wealth dynamics (2.1)
without consumption.

The time-0 cost of the guarantee bξT is bw0 so the manager has to set aside this
much money at time 0 to buy the guarantee, and may invest freely with the remaining
x0 = (1 − b)w0 to generate a non-negative wealth xT at time T . His optimization
problem is therefore

sup
xT ≡0

E[u(bξT + xT )] subject to E[ζT xT ] = x0. (2.185)

In Lagrangian form, the problem is

sup
xT ≡0

E
[
u(bξT + xT )+ λ(x0 − ζT xT )

]
,

and the first-order conditions for the problem are

u∪(bξT + xT )− λζT ⊇ 0, (2.186)

with equality when xT > 0. The optimal solution x∞
T is therefore of the form

x∞
T = (I (λζT )− bξT )

+ (2.187)

for some λ > 0 chosen to match the budget constraint.

So how would it look in an example? Suppose that we take w0 = 1, and let ξ be
the stock S, so that

ξT = exp(σWT + (μ− 1
2σ

2)T ).

Take u to be CRRA as we often do, u∪(x) = x−R , and then

I (λζT ) = λ−1/R exp

(
κ

R
WT + r + 1

2κ
2

R
T

)
.

Notice that κ/σ R = πM , the Merton proportion. It is reasonable to suppose that
πM < 1; we do not expect investors to go out and borrow money to put everything
into the stock. In that case, a little thought shows that I (λζT ) > bξT if and only if
WT < a for some a determined from the parameters of the problem. After some
routine calculation, the budget constraint appears as
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1 − b = λ−1/R exp
{
(1 − R)(r + 1

2κ
2)T/R + κ2(1 − R)2T/2R2}Φ

(
c + κ(R − 1)T/R∗

T

)

− b exp
{
(μ− 1

2σ
2 − r − 1

2κ
2)T + 1

2 (σ − κ)2T
}
Φ

(
c − (σ − κ)T∗

T

)
, (2.188)

where
c = {

(r + 1
2κ

2)T − (μ− 1
2σ

2)RT − log λ
}
/(σ R − κ),

and Φ is the standard normal distribution function.

Numerics. We see a plot of the solution in Fig. 2.23. The time horizon was T = 1,
and the promise was to pay out at least 70% of the benchmark. Notice that the
investors will receive the benchmark if the benchmark has done reasonably well,
but will exceed the benchmark if it does poorly; as expected, this fund will protect
investors to some extent against a fall of the benchmark.

As a comparison, we next show how the problem and its solution would change
if the fund manager promised that the gain in the investors’ wealth would be at least
70% of the gain in the S&P500 index. The solution is show in Fig. 2.24. Once again,
the guarantee is what you get for extreme values of wealth, it is only in the middle
range that the strategy improves on the guarantee. The range of improvement is much
smaller this time than when the guarantee only promised to beat 70% of the terminal
value, but that is not surprising; this time, the lower bound as a function of wealth is a
straight line of slope 0.7 passing through the point (1, 1), but in the first formulation,
the guarantee was a straight line with slope 0.7 passing through (0, 0), and this is
always below the value of the guarantee defined in terms of the gain.

Fig. 2.23 Optimal terminal
wealth as a function of the
underlying benchmark value
if the manager has promised to
pay at least 70% of the value
of the benchmark at time T
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Fig. 2.24 Optimal terminal
wealth as a function of the
underlying benchmark value
if the manager has promised
that the gain in the fund will
be at least 70% of the gain in
the benchmark by time T

2.29 Leverage Bound on the Portfolio

This example has been studied by Phil Dybvig and Yajun Wang. The story is a small
variation of the basic Merton problem, but already this introduces features that need
to be handled carefully. We suppose that the agent has the standard wealth dynamics
(2.1), with the standard objective (2.2), but that the portfolio process θ is constrained:

θt ⊇ awt (2.189)

for some positive constant a. The HJB equation for the value function

V (w) → sup
c≡0,θ⊇aw

E

[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣ w0 = w

]
(2.190)

is just the analogue of the familiar HJB equation but with a constraint on the portfolio
variable:

0 = sup
c≡0, θ⊇aw

[−ρV + u(c)+ (rw + θ(μ− r)− c)V ∪ + 1
2σ

2θ2V ∪∪]. (2.191)

If we were to suppose that u is CRRA to allow us to use some scaling, then we have
assumed away all the interesting behaviour: the ratio θt/wt would be the constant
πM for the Merton investor, and now for the constrained investor the best that can
be done will be to take θt/wt = min{a, πM }.

So we are forced to consider other utilities with variable coefficient of relative
risk aversion. If we take
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u(x) = x1−R1

1 − R1
+ A

x1−R2

1 − R2
(2.192)

for some positive constants R1 < R2, thenwe have an investorwho for large values of
wealth behaves like a CRRA investor with coefficient R1 of relative risk aversion, but
for small values of wealth he behaves like a more cautious investor with coefficient
R2 of relative risk aversion.

Numerics. In the numerical example, R1 = 1.2 and R2 = 2.5, with A = 1, and
K = 0.469. The plots of the portfolio divided by wealth, and of consumption divided
by wealth perform as we would expect. As wealth rises, and we become more risk
tolerant, the fraction of wealth we invest in the risky asset rises from the (low)Merton
proportion (μ − r)/σ 2R2, but gets capped at the value K . The proportional rate of
consumption falls as wealth rises, but continues to fall even after the portfolio has
hit its bound; this is not surprising, because after all the consumption has not been
pushed up to any bound, and should be free to adapt to the rising wealth (Fig. 2.25).

2.30 Soft Wealth Drawdown

The constraint on drawdown studied in Section2.5 is arguably too severe, and in
practice leads to trading which locks in losses, which is certainly not desirable. As
an alternative, we might consider the standard wealth dynamics (2.1), with objective

V (w, w̄) → sup E

[∫ ≥

0
e−ρt

{
u(ct )+ C

{(
wt

w̄t

)−a

− 1

}
u(w̄t )

}
dt

∣∣∣∣w0 = w, w̄0 = w̄

]

(2.193)
where w̄t → sup0⊇s⊇t ws as before, and u is CRRA, u∪(x) = x−R , and C > 0. We
shall also require that (R − 1)a > 0. The effect of this objective is to penalise times
when w is a small fraction of w̄, that is, when we are experiencing large drawdown.
However, the penalty is less absolute than the example of Section2.5.

A familiar scaling argument tells us that V (λw, λw̄) = λ1−R V (w, w̄) for any
λ > 0, and the HJB equation for this problem is just

0 = sup
c≡0, θ

[
−ρV + u(c)+ C

{(
w

w̄

)−a

− 1

}
u(w̄)+ {rw + θ(μ− r)− c}Vw + 1

2σ
2θ2Vww

]

(2.194)
along with the boundary derivative condition

Vw̄(w,w) = 0 ≤w > 0. (2.195)

We therefore have a solution of the form V (w, w̄) = w̄1−R v(x), where x → w/w̄.
Rewriting (2.194) in terms of this gives us
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Fig. 2.25 Plots of consumption divided by wealth, and holding of the risky asset divided by wealth
for the example of a leverage bound on the portfolio, Section2.29

0 = sup
s≡0, q

w̄1−R [−ρv+u(s)+C(x−a −1) u(1)+{r x +q(μ−r)−s}v∪ + 1
2σ

2q2v∪∪]
(2.196)

along with the boundary derivative condition

(1 − R) v(1) = v∪(1). (2.197)

Optimizing in (2.196) gives us finally

0 = −ρv + ũ(v∪)+ C(x−a − 1) u(1)+ r xv∪ − 1
2 (κv∪)2/v∪∪. (2.198)
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Numerics. This problem can be solved numerically by discretizing the variable x
onto a grid x1 < x2 < · · · < xN = 1, and using policy improvement. We have a
boundary condition at x = 1, but it is not so clear what we should do at the lower
end x = x1. Everything depends on the relative sizes of a → R∪ − 1 and R − 1. If
R∪ > R, then for very low wealth levels it is only the drawdown contribution to the
objective (2.193) which matters, but if R > R∪, then the consumption contribution
dominates.

In the second case, we expect that v(x) ∼ u(x) for very small x—that is, the
value for this problem scales very much like the value for the Merton problem. If
on the other hand21 R∪ → a + 1 > R, then the value for small x should scale like
v(x) ∼ x−a .

Figure2.26 shows an example of the first kind, with a = 0.5, C = 10 and default
values (2.3) for all the other parameters. By contrast, Fig. 2.27 show the same plot
with a = 1.5, C = 10. The dashed lines show the values which would be used in
the standard Merton solution. Notice how consumption drops as w falls when we
are more concerned about the effect of wealth drawdown, in Fig. 2.27. When we
are more concerned about consumption effects, then the shape of the consumption
curve, in Fig. 2.26, is convex. The efficiency for the first example is 0.96180, and for
the second is 0.89329.

2.31 Investment with Retirement

This is a pretty example presented by Lim & Shin [25], who discuss the case of
general u; as usual, we will just deal with the case of CRRA utility for simplicity of
exposition.

In this example, we consider the situation of an agent who is investing in the
standard market, but who is working, generating income at a fixed rate ε, with a
utility penalty for working. At a moment of his choosing, the agent retires, ceases
to receive his income, but also benefits by not having the disutility of working. How
should he invest, and when should he choose to retire?

If τ denotes the time the agent chooses to retire, then the wealth dynamics are
slightly modified from (2.1). We have instead

dwt = r wt dt + θt (σdWt + (μ− r) dt)+ ε I{t⊇τ } dt − ct dt. (2.199)

The agent’s objective we shall assume is to achieve

V (w) → sup E

[∫ ≥

0
e−ρt {

u(ct )− λI{t⊇τ }
}
dt

∣∣∣∣w0 = w

]
. (2.200)

21 We omit consideration of the case R = R∪, which is a knife-edge case.
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Fig. 2.27 Plots of consumption divided by wealth, and holding of the risky asset divided by wealth
for the soft wealth drawdown example of Section2.30

It is reasonable to guess that the agent’s optimal policy will be to retire as soon as w
reaches some critical value w∞. If this is so, then the HJB equations will be

0 = sup
[−ρV + u(c)− λI{w⊇w∞} + (rw + θ(μ− r)+ ε I{w⊇w∞} − c)V ∪ + 1

2σ
2θ2V ∪∪]

= −ρV + ũ(V ∪)− λI{w⊇w∞} + (rw + ε I{w⊇w∞})V ∪ − 1
2κ

2 (V
∪)2

V ∪∪ . (2.201)

It is moreover clear that for w ≡ w∞ we must have

V (w) = VM (w) = γ−R
M u(w), (2.202)

because once the agent’s wealth has got up to the critical value he is just a standard
Merton investor. So if we just restrict attention to w < w∞ for now, the HJB equation
(2.201) says

0 = −ρV + ũ(V ∪)− λ+ (rw + ε)V ∪ − 1
2κ

2 (V
∪)2

V ∪∪ .

This cries out for the dual variable transformation; in the customary notation, the
equation for the dual value function J is
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0 = ũ(z)− λ+ εz − ρ J + (ρ − r)z J ∪ + 1
2κ

2z2 J ∪∪, (2.203)

at least in the region z ≡ z∞ = V ∪(w∞). This linear second-order ODE has the explicit
solution

J (z) = −ũ(z)

Q(1 − 1/R)
− λ

ρ
+ εz

r
+ Az−α + Bzβ, (2.204)

where −α < 0 < 1 < β are the roots of the quadratic Q defined at (1.50). In order
that J remains concave and monotone decreasing for very large z, it has to be that
B = 0, and so we have that J is defined by22

J (z) = γ−1
M ũ(z) (z ⊇ z∞) (2.205)

= γ−1
M ũ(z)− λ

ρ
+ εz

r
+ A

(
z

z∞

)−α
(z ≡ z∞) (2.206)

for some z∞ and A chosen to make J defined by (2.205), (2.206) to be C1 at z∞.
Solving the equations gives us explicitly that

z∞ = λrα

ερ(1 + α)
, A = λ

ρ(1 + α)
. (2.207)

The critical value of wealth is now given by

w∞ = −J ∪(z∞) = γ−1
M (z∞)−1/R . (2.208)

2.32 Parameter Uncertainty

The dynamics of wealth are as usual

dwt = rwt dt + θt · σ {dWt + (α − rσ−11)dt} − ct dt (2.209)

which we have written in a slightly unusual way, because we intend now to suppose
that the parameter α is not known with certainty, rather that we shall have a prior
N (α̂0, τ

−1
0 ) distribution for it. The volatility matrix σ is n × n, and assumed known

and non-singular.
This means that we shall have to filter the value of α from the observed price of

the stock. Thus we see the processes log Si
t /Si

0 = ∑
j σi j (W

j
t + α j t) − 1

2vii t , or

equivalently the processes X j
t → W j

t + α j t , and must filter α from that.

22 We used the easily-verified fact that Q(1 − 1/R) = −γM .

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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The slick way to do this is to write down the likelihood for a path (Xs)0⊇s⊇t with
respect to Wiener measure:

exp(α · Xt − 1
2 |α|2t), (2.210)

according to theCameron-Martin-Girsanov theorem.Multiplyingby the prior density
of α gives us the posterior for α given (Xs)0⊇s⊇t , which is proportional to

exp

[
α · Xt − 1

2 |α|2t − 1
2 (α− α̂0) · τ0(α− α̂0)

]
∨ exp

[
− 1

2 (α− α̂t ) · τt (α− α̂t )

]
,

where

τt → τ0 + t I, (2.211)

α̂t → τ−1
t (τ0α̂0 + Xt ). (2.212)

We see that the posterior for α is again multivariate Gaussian. It is a simple result of
filtering theory (see, for example, [34], VI.8) that the observation process X can be
expressed as

d Xt = dWt + αdt

= dŴt + α̂t dt, (2.213)

where Ŵ is a martingale in the observation filtration Gt → σ({Xu : 0 ⊇ u ⊇ t}).
Observing that the quadratic variation process of X is t , we see that Ŵ is actually a
Brownian motion. Now X and α̂ are related via (2.212), so applying integration-by-
parts, we deduce the key relation

dα̂t = τ−1
t dŴt . (2.214)

It should not be a surprise that the finite-variation parts vanish, since α̂t = E
[
α |Gt

]
is a martingale.

If we now switch to the filtration (Gt ), the wealth dynamics (2.209) gets changed
to

dwt = rwt dt + θt · σ {dŴt + (α̂t − rσ−11)dt} − ct dt.

But we know how to proceed to solve this sort of problem; we find the state-price
density process, and express the solution in terms of it. In this instance, the state-price
density process satisfies

ζ−1
t dζt = −rdt + (rσ−11 − α̂t )dŴt , (2.215)

since this is what discounts at the riskless rate, and changes the rate of growth of the
risky assets to r . We now abbreviate κt → α̂t − rσ−11 and notice that
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dκt = τ−1
t dŴt . (2.216)

Looking at (2.215), we see that we need to simplify

κt dŴt = κt · τt dκt

= d{ 1
2κt · τt κt } − 1

2 |κt |2dt − 1
2 tr(τ

−1
t )dt.

We may now re-express the state-price density much more simply:

ζt = exp
[ − r t − 1

2κt · τt κt + 1
2κ0 · τ0 κ0 +

∫ t

0

1
2 tr(τ

−1
s )ds

]

=
{
det τt

det τ0

}1/2

exp
[−r t − 1

2κt · τt κt + 1
2κ0 · τ0 κ0

]
. (2.217)

Expressing optimal consumption in terms of ζ , we have

e−ρt u∪(c∞
t ) = λ0ζt

for some λ0 > 0 which is determined by the budget equation

w0 = E

[∫ ≥

0
ζsc∞

s ds

]

= λ
−1/R
0 E

[∫ ≥

0
e−ρs/Rζ

1−1/R
s ds

]
(2.218)

→ λ
−1/R
0 ϕ(α̂0, τ0), (2.219)

say. The optimised objective is

E
∫ ≥

0
e−ρt u(c∞

t )dt = λ
1−1/R
0

1 − R
E

[∫ ≥

0
e−ρs/Rζ

1−1/R
s ds

]

= λ
1−1/R
0

1 − R
ϕ(α̂0, τ0)

= u(w0) ϕ(α̂0, τ0)
R . (2.220)

The extent to which we may express the solution to this problem explicitly depends
on the extent to which we can simplify the expression for ϕ. We can go quite far, but
not all the way. The integral expression (2.219) shows that we will need a simpler
expression for Eζ b

t , where b = 1−R−1 in this case. The variable ζt is the exponential
of a squared Gaussian, so we are able to compute the required expectation in closed
form. After some calculations, we obtain finally
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Eζ b
t =

(
det τ0

det(bt + τ0)

)1/2 (
det τt
det τ0

)b/2
exp

{
− tb(1 − b)

2
κ0 · τ0(bt + τ0)

−1κ0 − rbt

}
.

(2.221)

To evaluate ϕ, we have to integrate (2.221) with respect to t ; while this is easy enough
to do numerically, it cannot be done in closed form. Nevertheless, if all that we are
concernedwith is theMertonwealth problem (that is,maximising the expected utility
of wealth at time T ), then (2.221) is all we need, and the problem can be done entirely
explicitly.

Writing λt → λ0ζt and thinking what the budget equation (2.219) becomes at time
t , we see that

c∞
t = wt

ϕ(α̂t , τt )
, (2.222)

wt = e−ρt/Rλ
−1/R
t ϕ(α̂t , τt ), (2.223)

θ∞
t = R−1σ−2(σ α̂t − r1)+ σ−1τ−1

t ∇ logϕ(α̂t , τt ), (2.224)

this last coming from expanding wt by Itô’s formula, and matching the coefficient
of dŴ .

Observe that the optimal portfolio consists of two terms, the first being theMerton
proportion when the posterior mean for α is substituted for the (true, supposed-
known, value), the second of which is the alteration required to account for the fact
that the mean is not known precisely. Notice that as t ∝ ≥, this second term goes
to zero (some checking of the properties of ϕ is needed to decide this).

What about the efficiency of the Merton investor who faces uncertainty in the
value of α? Let us take some typical values for the parameters in the case of a single
risky asset, and see what we get.

Taking r = 0.05, σ = 0.25, α̂0 = 0.56, ρ = 0.02, R = 2 and τ0 = 10, we find
that efficiency drops to 73.19% ! The initial proportion that should be invested in the
risky asset changes from 73.37% in the standard Merton problem to 40.96% once
we take account of parameter uncertainty, another substantial difference. The rate at
which we consume initially is 4.36% of wealth, in contrast to the 5.10% of wealth
that the standard Merton investor would follow!

Let us look at one final question before finishing with our study of the effects
of uncertainty about α, and that is to understand what would happen if we faced
parameter uncertainty, but just used the naive policy of investing and consuming
according to the standard Merton rule, simply substituting in our posterior mean for
α at time t as if it were known and fixed. For simplicity, let us restrict to the case of
a single risky asset.

The effect of this is that we hold proportion

π̂t = σ α̂t − r

σ 2R
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of our wealth in the risky asset at time t , and are consuming at rate

γ̂t = R−1[ ρ + (R − 1)(r + 1
2σ

2Rπ̂2
t )

]

at time t . The wealth dynamics are

dw = rwdt + π̂wσ(dŴ + (α̂ − r/σ)dt)− γ̂wdt

so that
w−1dw = σ π̂dŴ + {(r − ρ)/R + 1

2σ
2π̂2(R + 1)}dt,

after some calculations. As before, the stochastic integral term can be simplified:

σ π̂dŴ = d( 12σ
2Rπ̂2τt )− (2Rτt )

−1dt − 1
2σ

2Rπ̂2dt,

which leads to the expression

wt = w0 exp
[
1
2σ

2Rπ̂2
t τt − 1

2σ
2Rπ̂2

0 τ0
]
e−(ρ−r)t/R

(
τ0

τt

)1/2R

(2.225)

for the wealth process. The value of the objective is

E
∫ ≥

0
e−ρt u(γ̂t wt ) dt,

and this can be evaluated numerically at least. When we do this for the numeri-
cal example studied above, we find that this naive policy achieves an efficiency of
72.61%, hardly any lower than the optimum achieved by the investor who adjusts
his portfolio and consumption proportions according to the full Bayesian analysis!

The message from this example is that pretending that we know α may not lead
us to follow rules which are suboptimal by very much; however, it will lead us to be
grossly over-optimistic about how well we are doing.

2.33 Robust Optimization

The title of this section is arguably an oxymoron; if we have optimized, then it would
have to be with respect to a specific model, whereas the essence of robustness is that
our conclusions should be insensitive to precise modelling assumptions.

Let us take an example where we have the standard wealth dynamics (2.1) and the
standard objective (2.2), but the growth rate μ is not supposed known; all we shall
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assume is that a ⊇ μ ⊇ b for some23 a ⊇ r ⊇ b. If the (Merton) investor knows
the value of μ, then he follows the optimal policy of investing the Merton proportion
πM = (μ − r)/σ 2R of his wealth in the risky asset, and consuming at rate γM wt ,
where

γM = {
ρ + (R − 1)(r + κ2/2R)

}
/R.

The value he achieves is then given by (see (1.30))

VM (w) = γ−R
M U (w) .

Now the term ‘robust’ is often interpreted to mean ‘minimax’, which is to say that
an opponent chooses which probability model from a pre-specified set will be used,
with the aim of making your value as small as possible. So in this setting we have
the problem of

inf
a⊇μ⊇b

sup
(n,c)⇔A (w)

Ψ (n, c;μ) → inf
a⊇μ⊇b

sup
(n,c)⇔A (w)

Eμ
[∫ ≥

0
e−ρt u(ct ) dt

∣∣∣∣w0 = 0

]

= inf
a⊇μ⊇b

γ−R
M U (w).

Inspection of the explicit form of γM reveals that the best choice for your opponent
is to pick μ = r , resulting in κ = 0. If this is the value of μ, then πM = 0 and you
invest all of your wealth only in the bank account. The minmax inequality

inf
a⊇μ⊇b

sup
(n,c)⇔A (w)

Ψ (n, c;μ) ≡ sup
(n,c)⇔A (w)

inf
a⊇μ⊇b

Ψ (n, c;μ) (2.226)

clearly holds with equality when on the right-hand side the policy chosen is to invest
nothing in the risky asset, and to consume at the rate γ 0

M wt , where

γ 0
M → {

ρ + (R − 1)r
}
/R;

compare with the definition of γM . If you choose to use that policy, then it does not
matter what drift μ your opponent chooses!

Thus in this situation, the minimax solution is for you to put nothing in the risky
asset, and this is very typical of minimax solutions; they are generally over-cautious.

So what could we do instead? If we are to consider the performance of an invest-
ment strategy faced with a set of possible alternative models, a Bayesian approach
has always seemed to me to be more attractive than a minimax approach, and our
earlier example of Section2.32 presents such an analysis. Other than this, we may
try to resort to some intelligent heuristic. Here is an example.

23 The assumption that a ⊇ r ⊇ b is merely for expositional convenience. You are invited to work
out what happens if this condition does not hold.

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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Suppose that you have N advisors, each of whom thinks that the (d-dimensional)
log-price vector Xt → log St of some asset is a Lévy process in R

d . These advisors
may invest in a riskless bank account, or in the assets; at time 0, you split your initial
wealth 1 among the advisors, entrusting advisor j with initial wealth w j

0. Suppose
that advisor j has objective

Vj (w) = sup E j [u(wT )] (2.227)

for some (large) T , where E j is expectation with respect to advisor j’s probability
P j , which we assume is given by a density Λ j

T with respect to some reference
probability P . We shall also assume that u is CRRA, so that the optimal investment
for advisor j would be to put fixed fractions π j of wealth into the risky assets—a
so-called fixed-mix rule. Now assuming that the different advisors have a common24

state-price density process ζ , it would have to be that the optimal wealth process w j

for advisor j would satisfy the relation

Λ
j
T u∪(w j

T ) = α j ζT (2.228)

for some constant α j . Turning this around, and using the fact that u is CRRA, we
learn that

Λ
j
T = α j ζT (w

j
T )

R . (2.229)

Now this is an intriguing relation, because it tells us that (apart from the constants α j )
the relative degrees of belief in the different advisors’ modelling hypotheses at time
T are proportional to (w j

T )
R , that is, proportional to the Rth powers of the wealth

the advisors generated by their fixed-mix investment strategies. To simplify matters,
let us now suppose that R = 1; all of your advisors (and you) have log preferences.
Taking expectations on both sides of (2.229) reveals that

1 = α j E
[
ζT w j

T

] = α j w
j
0,

so that α j = 1/w j
0.

If you started at time 0 with prior beliefs (p j ) in the different advisors (that is,
you initially believed that advisor j had the correct model with probability p j ), then
at time T your beliefs about the true model are summarized in your likelihood-ratio
martingale

Λ̄T =
∑

j

p jΛ
j
T = ζT

∑
j

p jα j w j
T . (2.230)

Assuming that you also share the same state-price density process ζ , your optimal
wealth w̄T at time T would satisfy the analogue of (2.228), namely,

24 This assumption would be correct if the Lévy process was a Brownian motion with drift, when
the market is complete, but is otherwise a big ask.
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Λ̄T u∪(w̄T ) = Λ̄T /w̄T = β ζT ,

from which using (2.230) we discover that

w̄T =
∑

j

p jα j w j
T =

∑
j

p j
w j

T

w j
0

. (2.231)

This simple statement reveals two interesting consequences: firstly, we just sit back
and let the advisors work without any interference; and secondly, the distribution of
our wealth among the available assets is according to the averaged fix-mix rule π̄
satisfying

w̄t π̄t =
∑

j

p j w j
t

w j
0

π j ; (2.232)

that is, we weight the portfolio choice π j of advisor j according to his current
contribution to our overall wealth!

Now we can see the shape of a method emerging. under the original hypothesis
that each advisor believes that the assets are log-Lévy, we would have to look at
each advisor’s assumed model, and compute the corresponding π j ; but in fact, all
that matters at the aggregate level is what π j the advisors used, not what log-Lévy
model they assumed. So we simply need to consider a set of fixed-mix rules, and
weight our investment according to how well those fixed-mix rules performed up to
the current time. The next step would be to consider the set of all possible fixed-mix
rules, and weight according to howwell they had done up to the current time; and the
example of Section2.32 does exactly that in the situation with log Brownian assets
and a Gaussian prior over the growth rates. In more detail, for a log investor with a
finite time horizon, the wealth process wt is proportional to ζ

−1
t , where ζt is given

by (2.217). From the dynamics (2.216) of κt , we deduce after some calculations that
the log investor will invest proportionally to wealth at time t with the weights

πt = (σ T )−1κt = (σσ T )−1(μ̂t − r1).

To simplify the discussion we now suppose that r = 0, τ0 = 0. Remembering that
μ = σα, the optimal portfolio weights at time t become

πt = (σσ T )−1μ̂t = (σ T )−1 α̂t . (2.233)

Now an advisor who believes that the true value of α is a will invest according to
the fixed-mix rule with proportions p = (σσ T )−1μ = (σ T )−1a. This advisor will
generate wealth

wa
t = exp

{
p · σ(Wt + αt)− 1

2 |σ T p|2t
} = exp

{
a · Xt − 1

2 |a|2t
}

(2.234)
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by time t . If we follow the course of action determined by the rough argument just
outlined, we should weight the advisors according to the outcomes wa

t of their fixed-
mix investments, which would mean that we weight the beliefs about a according
to the posterior Gaussian distribution with mean Xt/t = α̂t . Weighting the portfolio
choices of the advisors according to this distribution would mean that we use port-
folio proportions equal to the mean of p = (σ T )−1 a under this posterior, namely,
πt = (σ T )−1 α̂t . In other words, in this special (but interesting) situation, the rough
argument leads us to carry out the optimal investment.

There is another natural thing we could do in this situation, and that would be
to consider the wealths wa

t that would have arisen from all possible fixed-mix rules,
pick the best one at time t , and then follow the recommendation of that advisor.
This is the approach of Cover’s universal portfolio algorithm [9]. Cover presents this
approach as an ansatz, without any supporting modelling background; but if we look
at the form of (2.234), we see that following the advice of the current best advisor
would lead us to choose a = α̂t . For a Gaussian distribution, the mean and the mode
are the same, so the universal portfolio algorithm agrees here with the true optimum.

2.34 Labour Income

In this section, we suppose that the agent can not just invest and consume, but may
also work for a fixed wage rate a > 0. His wealth dynamics now become

dwt = rwt dt + θ(σdWt + (μ− r) dt)+ aLt dt − ct dt, (2.235)

where Lt ≡ 0 is the rate of working. We suppose that the agent’s objective will be
to obtain

V (w) = sup E

[∫ ≥

0
e−ρt u(ct , Lt ) dt

∣∣∣∣w0 = w

]
. (2.236)

The utility function u is supposed to be concave, increasing in c and decreasing in
L . As usual, we can apply the Martingale Principle of Optimal Control, and derive
the HJB equation for this problem:

0 = sup
c,L ,θ

[−ρV + u(c, L)+{rw + θ(μ− r)+ aL − c} Vw + 1
2σ

2θ2Vww
]
. (2.237)

Previously we would have made the problem easier by assuming some scaling prop-
erties, but this is not really possible in this situation. Nevertheless, the problem is not
so very far away from those we have considered to date; if we define

ũ(λ) → sup
c,L

{u(c, L)+ λ(aL − c)} (2.238)
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then clearly ũ is a convex function (though not in general increasing), and we can
rewrite the HJB equation as

0 = −ρV + ũ(Vw)+ rwVw − 1
2κ

2 V 2
w

Vww
. (2.239)

This is in a form to which we can apply the dual variable transformation z = Vw,
J (z) = V (w)− zw, to give the second-order linear ODE

0 = ũ(z)− ρ J + (ρ − r)z J ∪ + 1
2κ

2z2 J ∪∪. (2.240)

The extent to which we can solve this depends now on the form of ũ and any special
properties this function may have. In general, we can use the representation dis-
cussed in Section2.8 for the dual value function. However, we can also use the static
optimization approach of Section1.4, as we shall now show.

As a simple example, we propose the form

u(c, L) = c1−R

1 − R
− ALb (2.241)

for some constants R, b > 1 and A > 0. The agent is going to choose to consume
the stream ct − aLt , which must satisfy the budget constraint

E

[∫ ≥

0
ζt (ct − aLt ) dt

]
= w0. (2.242)

The aim is to maximize the objective (2.236) subject to this constraint, so by setting
the optimization up in Lagrangian formwe discover that the conditions for optimality
will be

uC (ct , Lt ) = λeρtζt , uL(ct , Lt ) = −aλeρtζt (2.243)

for some Lagrange multiplier λ > 0 chosen to match the budget constraint (2.242).
This conclusion is generic; but for the simple special case under study here, the
marginal utilities uC and uL are simply powers of c and L respectively, so we are
able to express

ct = (
λeρtζt

)−1/R
, Lt =

(
aλeρtζt

Ab

)1/(b−1)

. (2.244)

Introducing the abbreviation

h(ν, q) → E
∫ ≥

0
e−νtζ

q
t dt = (

ν + rq + 1
2κ

2q(1 − q)
)−1

, (2.245)

http://dx.doi.org/10.1007/978-3-642-35202-7_1


112 2 Variations

Fig. 2.28 Plots of the value, portfolio in the risky asset, and consumption rate, and rate of working
for the labour income example of Section2.34. The constants used were A = 10, a = 5, and
b = 2.2

the budget constraint becomes

w0 = λ−1/R h(ρ/R, 1−R−1)−
(

aλ

Ab

)1/(b−1)

a h(−ρ/(b−1), b/(b−1)), (2.246)

and the objective is

V (w0) = λ1−1/R

1 − R
h(ρ/R, 1 − R−1)− A

(
aλ

Ab

)b/(b−1)

h(−ρ/(b − 1), b/(b − 1)).

(2.247)
Of course, in order that the integral defining h(ν, q) is well defined we shall have
to have that ν + rq + 1

2κ
2q(1 − q) > 0 which raises a question about h(−ρ/(b −

1), b/(b−1)); this is only going to bewell defined if−ρ/(b−1)+rq+ 1
2κ

2q(1−q) >
0, where we write q for b/(b−1). A little rearrangement turns this into the condition
Q(q) < 0, which is equivalent to saying that q → b/(b − 1) < β, where β is the
larger root of the quadratic Q defined at (1.50).

http://dx.doi.org/10.1007/978-3-642-35202-7_1
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This is not a surprising condition to demand; it tell us that unless b is large enough,
the problem is ill posed.What happens if b is too small is that the penalty for working
does not get large sufficiently rapidly to stop the agent working arbitrarily hard, to
gain arbitrarily large consumption. Surely no-one could argue with that.

Figure2.28 shows the form of the optimal solution. The range for wealth includes
negative values, since the agent has the possibility to work very hard to recover from
debt; this may be a slightly unrealistic assumption, but that is what the model gives
us. It has features in common with the situation of Section 2.23 where utility was
bounded below. The plots show that as the agent gets more wealthy, he consumes
more, and works less, and indeed once his level of wealth gets high enough he
effectively stops working. At these high wealth levels then, the agent will behave
rather like aMerton investor, andwe see the portfolio and consumption rates growing
linearly there as we would expect. What is perhaps a little surprising is that for
negative values of the wealth the agent will choose to increase his investment in the
risky asset. This may make some kind of sense; he is having to work very hard, and
consume little, so he is willing effectively to borrow a lot to avail himself of the
superior rate of return on the risky asset.



Chapter 3
Numerical Solution

Abstract The third chapter of the book presents the main numerical methods that
are useful in calculating solutions to the optimal control problems of earlier chapters
when analytic methods fail. The main technique is policy improvement, but this
requires an effective translation of an optimization problem for a controlled diffusion
into an optimization problem for a controlled Markov chain, and various techniques
for this are discussed.

We have seen in Chapter1 a range of techniques for solving optimal investment/
consumption problems, and in Chapter2 a range of different variants on the basic
problems, each approachable by one or other of the standard techniques. But explicit
solutions are only available rarely, and at that point there is little we can do except
prove general results; and numerics. This chapter is about numerical solution, but
it is important to realize that this is not a theoretical account of numerical solution
of PDEs; there is no discussion of rates of convergence, error estimates, solution
concepts, regularity of solutions, uniqueness of solutions. This is mainly because I
am not familiar with the literature of PDE, but also in part because I have not found
the literature very helpful when it comes to actually computing a numerical solution!
More generally, PDE is a theory that includes many areas of application besides
probability, but I have always found that for applications that arise in probability, the
methods of probability are at least as effective.

In the context of stochastic optimal control, the principal viewpoint expounded in
this chapter is that we first approximate the controlled diffusion by a controlled finite-
state Markov chain; and then we exactly solve the control problem for that finite-state
Markov chain. The book of Kushner & Dupuis [24] takes the same overall view, but
treats it much more completely. If we want to estimate how close the numerical
solution is to the true solution, it is usually quite effective to study the nature of the
stochastic approximation and work from that. In practice however, it is quicker (and
tempting!) simply to refine the grid of the discretization, or to move the boundaries
out a bit and see to what extent the solution changes; this is not conclusive, but gives

L. C. G. Rogers, Optimal Investment, SpringerBriefs in Quantitative Finance, 115
DOI: 10.1007/978-3-642-35202-7_3, © Springer-Verlag Berlin Heidelberg 2013
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one a pretty good idea how good the numerics are. There is a limit to the amount of
time one wants to spend on one example.

The main probabilistic tool is the policy improvement algorithm, explained for
finite-stateMarkov chains inSection3.1.This is a simple, intuitive, and robustmethod
for iteratively calculating the value of a stochastic optimal control problem, and most
of the numerical methods presented subsequently proceed by firstly approximating
the original problem by an optimal control problem for a finite-state Markov chain,
and then applying policy improvement in a suitable form.

Generically, the HJB equation can be written as

L V + sup
a
δ (DV, a) = 0, (3.1)

whereθ(·, a) is some linear function of the vector1 DV ≡ (V, V ≥, V ≥≥, V̇ ) of deriva-
tives2 of V , and a is the control variable. The operatorL is a linear differential oper-
ator which does not depend on the control variable. Inmost of the examples studied in
Chapter2, δ did not depend on V̇ ; the form of the problem was time-homogeneous.
For such problems, we approach the approximation of the controlled diffusion (in
one dimension firstly, Section3.2) by approximating the state space by a finite grid
of points, and then setting up the jump intensities of a continuous-timeMarkov chain
to mimic the evolution of the controlled diffusion. This one-dimensional approach
can be extended to higher dimensions, as is explained in Section3.3.

This approach is not suitable for problems where the value function depends on
time also. The Markov chain approximations constructed in Sections3.2 and 3.3
accurately approximate the probabilities of jumping to nearby states, and also the
mean times to jump to nearby states, but if the value function depends on time also,
we really have to know when the chain jumped. Different methods are therefore
required. If we consider the situation where there is no control, so (3.1) takes the
form

L V + δ (DV ) = 0,

we are looking at a parabolic PDE. If we consider the simplest possible parabolic
PDE, the one-dimensional heat equation

1
2 V ≥≥ + V̇ = 0 (3.2)

with some terminal condition V (T, ·) = g(·) given, then the most obvious Markov
chain approximation to the (space-time) Brownian motion is a symmetric simple
randomwalk on some gridwith time stepΔt and space stepΔx . This certainlyworks,
but is not a very good numerical method; to match the moments of the Brownian

1 We explain the method assuming that the state variable is one-dimensional, but the methodology
works also in higher dimensions.
2 For an infinite horizon problem, the value is not time dependent, so the time derivative V̇ of V
does not appear.

http://dx.doi.org/10.1007/978-3-642-35202-7_2
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motion, we have to have Δt = O(Δx2), so if we want a (modest) resolution of
the order of 10−3 in the spatial variable, we will need millions of time-steps to
compute the answer. The method of choice for (3.2) is the famous Crank-Nicolson
implicit finite-difference scheme,which is globally stable, and all in all a fantastically
good numerical method. If we have to use Crank-Nicolson to solve the parabolic
PDE without any control element, we should expect to look for something similar
to the Crank-Nicolson scheme when we have a controlled diffusion where time
enters explicitly into the value function; and indeed this is what we find. For a
controlled diffusion, the natural analogue of the Crank-Nicolson scheme is quite a
bit more complicated, as will be explained in Section3.4. While the solution of the
heat equation byCrank-Nicolson reduces to a sequence of solutions of sparse systems
of linear equations, something more intricate is going on with control. Each step of
the (dynamic programming) calculation has to be solved by a recursive method. The
paper of Forsyth & Labahn [16] presents and compares the classical successive over-
relaxation method, and the use of policy improvement, and concludes that the second
is better for stochastic control problems. We will give a very abbreviated account of
[16] in Section3.4 and refer the reader to the original paper for a thorough treatment.

The next section of this chapter, Section3.5, discusses treatment of boundary
conditions. This is usually a delicate issue in stochastic optimal control problems,
and in most calculations you will spend longer getting the boundary conditions right
than you will in getting the PDE right in the interior of the region. In a sentence, the
recommendation of Section3.5 is to tell a good probabilistic story at the boundaries.
This is backed up with some examples of the kinds of story that could be told, and
the kinds of boundary conditions which result.

The chapter finishes in Section3.6 with a rather superficial discussion of some
numerical approaches which are based on bluntly discretizing the differential equa-
tion. What is presented there is quick and dirty, quite often does not work for reasons
which I hope others can illuminate, but is worth knowing about because it is usually
a lot simpler to code than a full policy improvement story, and when it works it is
fast and accurate.

3.1 Policy Improvement

This section deals with a very effective numerical method for solving stochastic
optimal control problems for finite-state controlled Markov chains. The situation we
consider is of a controlled continuous-time3 Markov process (Xt )t∪0 with values
in the finite set I , and controlled by a control variable a ∈ A. At one stage of the
argument (3.5), we need to be able to assume that certain suprema over a ∈ A are
finite and attained,whichwill certainly always happen if A is also finite. If the process
is in state i , the jump intensity to state j ∞= i is qi j (a), a function of the control used;
of course, the choice of control may depend on the state i , and we make the common

3 The method works with the obvious changes also for discrete-time Markov chains.
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notational convention for the diagonal entries of the intensity matrix

qii (a) ≡ −qi (a) = −
∑
j ∞=i

qi j (a).

The objective of the controller is to achieve

V (i) = sup E

[∫ →

0
exp{−

∫ t

0
σ(Xs, as)ds} f (Xt , at )dt

∣∣∣∣ X0 = i

]
. (3.3)

Here, the functions σ : I × A ∗ (0,→) and f : I × A ∗ R
+ are the discount rate,

and the reward function respectively. Typically in the past we have supposed that σ
is constant, but there is no need to assume this.

We shall say that a map ρ : I ∗ A is a policy; the interpretation is that ρ(i)
is the action that the policy would tell you to take when the state of the chain is
i . The policy improvement algorithm is a recursive methodology, which starts with
any policy ρ(0), and sequentially improves it by solving systems of linear equations.
Here are the steps of the policy improvement algorithm to take us from policy ρ(n)

to policy ρ(n+1):

1. Calculate and store the Q-matrix Q(n) defined by

Q(n)
i j = Qi j (ρ

(n)(i))

and functions σ(n)(i) ≡ σ(i, ρ(n)(i)), f (n)(i) ≡ f (i, ρ(n)(i));
2. Solve the linear equation system

Q(n)V (n) − σ(n)V (n) + f (n) = 0 (3.4)

for V (n);
3. For each i , calculate

ρ(n+1)(i) = argmaxa∈A

{∑
j

qi j (a)V
(n)
j − σ(i, a)V (n)

i + f (i, a)
}
. (3.5)

The working of the algorithm can be described very simply. Choose some policy
ρ(n) and work out the value of using that policy; this is what V (n) is. Now check each
state in turn, and see if there is an alternative action a available in that state which is
‘better’, in the sense that

∑
j

qi j (a)V
(n)
j − σ(i, a)V (n)

i + f (i, a)

>
∑

j

qi j (ρ
(n)
i )V (n)

j − σ(i, ρ(n)i )V (n)
i + f (i, ρ(n)i ) = 0,
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this last equality because of (3.4). What we will see in the proof is that if policy
ρ(n+1) is better in this local sense than ρ(n), then it is also better globally.

To implement the algorithm, we have to be able to solve a system of linear equa-
tions, and to carry out a maximization4 of some scalar function over the control
variable. In applications, we find that not too many iterations are required, perhaps
ten to twenty, so the whole algorithm runs fast. Just as importantly, as the following
result shows, it runs stably. To avoid discussion of tiresome side issues, it is just
stated under the assumption that A is finite.

Theorem 3.1 Suppose that A is finite. The policy improvement algorithm generates
a sequence of approximations to the value function V which increase monotonically:

V (0) ≤ V (1) ≤ . . . ≤ V (3.6)

and for some n large enough,
V (n) = V . (3.7)

Proof If ρ is a policy, define the operator L ρ by

L ρg(i) = E

[∫ γ1

0
exp

( −
∫ t

0
σ(Xs, as) ds

)
f (Xt , at ) dt

+ exp
( −

∫ γ1

0
σ(Xs, as) ds

)
g(Xγ1)

∣∣∣∣ X0 = i

]
, (3.8)

where γ1 is the first time the chain changes state. Using basic properties of Markov
chains, and writing qi ≡ −qii (ρ(i)) we see that

L ρg(i) = f (i, ρ(i))

qi + σ(i, ρ(i))
+ 1

qi + σ(i, ρ(i))

∑
j ∞=i

qi j (ρ(i))g( j). (3.9)

Now we know from (3.4) that L ρ(n)V (n) = V (n). If we write L ρ(n+1)
V (n)(i) ≡

V (n)
i + λi , and abbreviate ρ

(n+1)
i = ai , qi ≡ −qii (ρ

(n+1)), what (3.9) tells us is that

(qi + σ(i, a))(V (n)
i + λi ) = f (i, a)+

∑
j ∞=i

qi j (a)V
(n)
j . (3.10)

4 In fact, exact maximization is not required in (3.5); finding some control which improves things
will be enough provided we do not cycle round the algorithm not picking up enough gain. It is hard
to state a sufficient set of conditions, but an inspection of the proof of Theorem 3.1 shows how the
idea would work.
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Rearranging this, and using (3.5) then (3.4), we learn that

(qi + σ(i, a))λi =
∑

j

qi j (a)V
(n)
j − σ(i, a)V (n)

i + f (i, a)

∪
∑

j

qi j (ρ
(n))V (n)

j − σ(i, ρ(n))V (n)
i + f (i, ρ(n))

= 0. (3.11)

The conclusion is that λi ∪ 0, and if there is a strict improvement at (3.5) then there
will be strict inequality at (3.11), so λi will be strictly positive. The claim (3.6) is
established (each V (n), being the value of some policy, is bounded above by the
optimal V ).

If the policy improvement algorithm is applied repeatedly, at any time when
there is no change to the policy (3.5), then the value V (n) satisfies the dynamic
programming equation so must be optimal. But in view of the finiteness of the set
of policies being searched, a strict improvement can only be delivered finitely often,
and eventually the algorithm terminates. �

3.1.1 Optimal Stopping

A special form of optimal control problem is the optimal stopping problem, where
the only control available is either to continue letting theMarkov chain evolve, or else
to stop it. This problem can be cast into the form studied above, but is sufficiently
commonly encountered that it is worth making explicit the form that the policy
improvement algorithm takes for such a problem.

Suppose then that we are given a finite-state Markov chain with statespace I and
jump intensity matrix Q. If we choose to stop when in state i we receive reward r(i),
and while we are in state i but not yet stopped we receive reward at rate f (i). For
simplicity of exposition, let us suppose that all rewards are discounted at constant
rate σ > 0, though as before this can be relaxed. The policy improvement algorithm
sequentially constructs stopping sets S(0) = I ⊇ S(1) ⊇ . . . and corresponding value
functions V (0) = r ≤ V (1) ≤ . . . which after finitely many steps of the algorithm
will have found the optimal stopping rule, and which has the property that for each n

V (n)
i = ri ⇔i ∈ S(n). (3.12)

Here is how the algorithm takes us from stopping set S(n) with corresponding value
V (n) to stage n + 1.

1. Calculate the vector y ≡ QV (n) − σV (n) + f , and then set

S(n+1) = S(n) \ {i : yi > 0}; (3.13)
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2. Define V (n+1) by setting V (n+1)
i = ri for all i ∈ S(n+1); by solving

0 = f j − σx j +
∑

k ∞∈S(n+1)

q jk xk +
∑

k∈S(n+1)

q jkrk ( j ∞∈ S(n+1)) ; (3.14)

and finally setting V (n+1)
j = x j for j ∞∈ S(n+1).

The reader should verify to his/her satisfaction that this algorithm achieves the opti-
mal solution.

Remark An important use of the policy improvement algorithm just presented is in
finding the least concave majorant (LCM) of some data {(xi , yi ) : i = 1, . . . , N }.
Here we suppose that x1 < x2 < . . . < xN , and we want to find a sequence (zi )

N
i=1

with the properties

1. zi ∪ yi for all i ;
2. the piecewise linear function defined by {(xi , zi ) : i = 1, . . . , N } is concave, so

zi − zi−1

xi − xi−1
is decreasing in i;

3. (zi )
N
i=1 is minimal with properties 1 and 2.

If we define a Q-matrix by

qi,i+1 = (xi+1 − xi )
−1 (i = 2, . . . , N − 1);

qi+1,i = (xi+1 − xi )
−1 (i = 1, . . . , N − 2);

q1 j = qN j = 0 (i = 1, . . . , N )

qi j = 0 if |i − j | > 1

with row sums zero, then the LCM is just the solution of the optimal stopping
problem for this Markov chain with stopping reward function (yi ). Using the policy
improvement algorithm is probably the fastest numerical method for calculating the
LCM. It can be applied in higher dimensions also.

3.2 One-Dimensional Elliptic Problems

In most of the examples we studied in Chapter2, time did not enter as an argument
of the value function, so the HJB equation involved only derivatives with respect to
one spatial variable. We intend to use policy improvement to solve such problems,
but the first step is to spell out how we go about approximating a one-dimensional
diffusion as a finite-state continuous-time Markov chain. Once we know how to do
that, at each stage of the policy improvement algorithm we know how to set up the
linear equations to be solved.

http://dx.doi.org/10.1007/978-3-642-35202-7_2
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Suppose that we have a one-dimensional second-order linear ODE of the form

L f (x)+ h(x) = 0 (3.15)

that we wish to solve in some interval [a, b] with Dirichlet boundary conditions:
f (a) = ya , f (b) = yb. The differential operator L is

L = 1
2κ(x)

2 d2

dx2
+ μ(x)

d

dx
− σ(x) (3.16)

where σ is non-negative, and we shall suppose that κ , σ and μ are continuous
(otherwise a discretization onto a grid has no hope of working).

We introduce a grid I = {a = x0 < x1 < . . . < xn = b}, not necessarily equally
spaced, and intend to discretize the problem onto that grid. The operator (3.16) is the
generator of a diffusion process, and we propose to approximate this by a Markov
chain taking values in I . By the strong Markov property, it is enough to understand
the behaviour of the process started at xi ∈ (a, b) and stopped at the stopping time
γ = inf{t : Xt = xi+1 or Xt = xi−1}, because the complete path is made up of
pieces of this form. Now the approximating Markov chain up to time γ is simple
enough to describe; there is an intensity ζ± of jumping from xi to xi±1. Thus for the
Markov chain,

Pxi [Xγ = xi+1] = ζ+
ζ+ + ζ−

, (3.17)

E xi [γ ] = 1

ζ+ + ζ−
. (3.18)

Compare this with what happens to the diffusion. At each grid point xi ∈ (a, b),
we approximate the diffusion by a Brownian motion with constant drift μi = μ(xi )

and constant volatility κi = κ(xi ). The exit properties of a Brownian motion with
constant drift are well known. If we define c = 2μi/κ

2
i , then the scale function s is

characterized by s≥(x) = exp(−cx), and so

Pxi [Xγ = xi+1] = s(xi )− s(xi−1)

s(xi+1)− s(xi−1)

= e−cxi − e−cxi−1

e−cxi+1 − e−cxi−1

= e−cz−cxi − e−cz−cxi−1

e−cz−cxi+1 − e−cz−cxi−1
(3.19)

where cz = max{−cxi−1,−cxi+1}. It is of course trivial that the last two are math-
ematically equivalent; they are not however numerically equivalent. The point is
that we are certain that the arguments of all the exponentials in the final expression
are non-positive, and so will present no problems numerically; the previous expres-
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sion might involve differences of exponentials of large positive values, and this is
numerical disaster.

Finally, if we want to compute the mean exit time, we set g(x) = E x [γ ] and
observe that this must solve the ODEL g + 1 = 0 with zero boundary conditions at
the two ends of the interval. This is solved by

g(x) = Ae−cx + B − x/μ (3.20)

where A and B are chosen to match the boundary conditions; we find that

A = xi+1 − xi−1

μ(e−cxi+1 − e−cxi−1)
, (3.21)

B = xi−1e−cxi+1 − xi+1e−cxi−1

μ(e−cxi+1 − e−cxi−1)
. (3.22)

From this, we calculate for the drifting Brownian motion the exit probability (3.19)
and the mean exit time (3.20), and then choose ζ± to make the two expressions
(3.17), (3.18) match up. Of course, this calculation must be done for each grid point
separately, since the values of μi and κi are local; nevertheless, this is not a problem.

One point to note is that the previous analysis assumed that the mean was non-
zero, otherwise we are dealing with a martingale, and the expressions for the exit
probabilities and mean exit times are given by limiting forms. This has to be coded
as an exception case, since expressions such as (3.19) are numerically unstable for
very small values of c.. The other exception which has to be dealt with is when the
volatility κi is very small. In this case, the process locally looks like a constant drift
μ, and this tells us what to do. If μi > 0, then we just take ζ+ = μi/(xi+1 − xi ),
and ζ− = 0.

This analysis tells us howwe approximate the diffusion in the centre of the region,
but what do we do at the endpoints? This needs some care, and is dealt with in
Section3.5; we postpone discussion till then, because the next topic is howwe extend
this approximation tale into higher dimensions.

3.3 Multi-Dimensional Elliptic Problems

The kinds of approximation techniques developed in Section3.2 can serve again in
higher dimensions, but there are some difficulties in applying them straight away.We
shall explain these difficulties (and how to get round them) only in two dimensions,
where simple plots illustrate what is going on. Once the reader has understood the
two dimensional case, it will be obvious what to do in higher dimensions. We shall
also suppose without any real loss of generality that we are going to try build a
Markov chain approximation on a regularly-spaced grid G = Z

2.
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So we will suppose that we are given a diffusion in R2 with generator

G ≡ 1
2 ai j (x)Di D j + μi (x)Di (3.23)

where a(·) is smooth, positive-definite symmetric 2 × 2, and μ(·) is smooth, with
values in R

2, and of course Di ≡ α/αxi . The simplest situation to handle is that
in which the matrix a is diagonal, for then the two components of the diffusion are
independent, and each of them can be approximated by an independentMarkov chain
onZ. At each grid point (k, β) ∈ G, we calculate intensitiesζ(i)± , i = 1, 2 as explained
in Section3.2, taking drift μi (k, β) and volatility

≤
aii (k, β) in the construction of

ζ
(i)
± for i = 1, 2. Then the Markov chain at the central point (k, β) in Fig. 3.1 will

jump to (k ± 1, β) with intensities ζ(1)± , and to (k, β± 1) with intensities ζ(2)± .
What is to be done if the diffusion matrix is not diagonal? The problem is best

understood in an example where μ ≡ 0 and a(k, β) has two eigenvectors not aligned
with the coordinate axes, with one of the eigenvalues extremely small. Then the
diffusion is locally in effect a one dimensional Brownian motion moving along a
line that is slanted, as in Fig. 3.2. If we have a Markov chain jump from (k, β) to one
of the four nearest neighbours (k, β± 1), (k ± 1, β), then it is impossible to achieve
zero variance in the direction orthogonal to the slanting direction of diffusion.

This is at first sight very hard to deal with, but if we realize that the generator
is an operator applied to functions, and we suppose that the function values at the
grid points should be thought of as being interpolated in some suitable fashion from
the values at the grid points, a way forward emerges. By inscribing a circle into the
convex hull of the nearest neighbours, as illustrated in Fig. 3.3, we can then identify
eigenvectors of a(k, β) (shown in Fig. 3.3 as the cross in the circle). Now those
components of the diffusion are locally independent, and can be dealt with as we

Fig. 3.1 The grid in two
dimensions
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Fig. 3.2 A very elongated
diffusion two dimensions

Fig. 3.3 How to interpolate
function values to deal with a
general diffusion

dealt with independent diffusions aligned with the coordinate axes. Doing so gives
us four jump intensities from the central point (k, β) to the ends of the cross. If the
chain jumped with intensity ω from the central point (now for simplicity assumed
to be the origin) to (x1, x2) in the first orthant, the interpolated value of the function
there would be just

f (x1, x2) = (1 − x1 − x2) f (0, 0)+ x1 f (1, 0)+ x2 f (0, 1). (3.24)

Thus we ascribe an intensity ωx1 of jumping from the origin to (1, 0) and an
intensity ωx2 of jumping from the origin to (0, 1). Other contributions come from
the jumps to the other ends of the cross.
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This is not the only possible way of thinking of the interpolation. We could
instead think of jumping from the origin to the corners of the unit square, (±1,±1),
illustrated in Fig. 3.4 with the large black dots. This time, we would inscribe a circle
inside the unit square, and identify the eigenvectors of a(0, 0) as shown in Fig. 3.5.
If (x1, x2) ∈ [−1, 1]2 is one of the ends of the cross, then we can see that as a convex
combination

(
x1
x2

)
=p1 p2

(
1
1

)
+ p1(1 − p2)

(
1
−1

)

+ (1 − p1)p2

(−1
1

)
+ (1 − p1)(1 − p2)

(−1
−1

)
, (3.25)

where pi = (1+ xi )/2, i = 1, 2. This is a smoother way of interpolating the values
at the corners of the square, which may be preferable in some situations.5 However,
we cannot use the original grid Z

2; we have to use 2Z2 ∝ ((1, 1)+ 2Z2).

Fig. 3.4 Jumping to the
corners of the square

5 Of course, in two dimensions, we could apply the second smooth interpolation recipe to the
situation considered first, just by turning the picture through 45◦, but this does not work in higher
dimensions. The convex set we inscribed the circle into is the unit β1-ball in the first situation, with
2d vertices in d dimensions, whereas in the second situation we are working with the unit β→-ball,
with 2d vertices.
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Fig. 3.5 The notional jumps
of the Markov chain

3.4 Parabolic Problems

For simplicity of presentation, let us just discuss the case of a one-dimensional
controlled diffusion6

d Xt = κ(Xt , at ) dWt + μ(Xt , at ) dt (3.26)

where at is the control process, and the objective is

sup E

[∫ T

0
f (s, Xs, as) ds + F(XT )

]
.

The value function

V (t, x) ≡ sup E

[∫ T

t
f (s, Xs, as) ds + F(XT )

∣∣∣∣ Xt = x

]
(3.27)

solves the HJB equation

0 = sup
a

[
V̇ (t, x)+ 1

2κ(x, a)2V ≥≥(t, x)+ μ(x, a)V ≥(t, x)+ f (t, x, a)
]

(3.28)

with the boundary condition V (T, ·) = F(·).
In order to solve this numerically, we shall suppose a grid 0 = t0 < t1 < . . . <

tK = T of time points has been given, and that a grid x1 < . . . < xN of points
on the line has been chosen. We shall make a finite-difference approximation to the

6 We could allow the coefficients of the SDE to depend on time, but for notational simplicity we
eschew this apparent generality.
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differential operator L (a) defined on a smooth test function Ω by

L (a)(Ω)(x) = 1
2κ(x, a)2Ω≥≥(x)+ μ(x, a)Ω≥(x). (3.29)

Noticing that

Ω≥(xi ) ↑ Ω(xi+1)− Ω(xi−1)

Δ+ +Δ−
(3.30)

Ω≥≥(xi ) ↑ Δ−{Ω(xi+1)− Ω(xi )} −Δ+{Ω(xi )− Ω(xi−1)}
Δ+Δ−(Δ+ +Δ−)

(3.31)

whereΔ+ = xi+1−xi ,Δ− = xi −xi−1, it is possible to approximate the differential
operator L (a) as a (sparse) tridiagonal matrix, which we shall denote by L(a). If
we abbreviate Ω(xi ) ≡ Ωi , κi = κ(xi , a), μi = μ(xi , a), then the form of L(a) is
(for 1 < i < N )

(L(a)Ω)i = q+
i Ωi+1 − qi Ωi + q−

i Ωi−1, (3.32)

where

q+
i = κ 2

i

2Δ+
+ μi

qi = 1
2κ

2
i (Δ

−1+ +Δ−1− )

q−
i = κ 2

i

2Δ−
− μi .

The analysis of Forsyth & Labahn [16] requires in its simplest form that

Assumption P : q±
i are positive for all i and for all a,

and from now on we shall assume this condition.7 It is clear that qi will always be
positive, and if the step sizesΔ± are all quite small, the positive contribution κ 2

i /2Δ±
to q±

i will likely dominate the term |μi |, so for a reasonably finely-spaced x-grid we
may expect that Assumption P holds, though the requirement that positivity holds
for all a can be problematic.

Now we discretize the partial differential operator appearing in the HJB equa-
tion (3.28) onto the chosen time and space grid, writing V n

i ≡ V (tn, xi ), and
V n = (V n

i )i=1,...,N . What we obtain is

V n+1 − V n

tn+1 − tn
+Φ {L(a)V n+ f (tn, ·, a)}+(1−Φ){L(a)V n+1+ f (tn+1, ·, a)}, (3.33)

7 Quite possibly this condition is not needed; at the time of writing, this issue is not decided.
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where Φ ∈ [0, 1] determines the type of finite-difference scheme; Φ = 0 is the explicit
scheme, Φ = 1 is the fully implicit scheme, and (most interesting for us) Φ = 1

2 is
the Crank-Nicolson scheme. For simplicity, we shall assume that the values V n

1 and
V n

N are fixed for every n = 1, . . . , K , so that in effect there are absorbing boundary
conditions at the ends of the x-range.

The way this discretized system of equations is going to be used is to do dynamic
programming, starting at the final time tK = T and stepping backwards. The dis-
cretized form of (3.28) would tell us that

0 = sup
a

[
V n+1 − V n

tn+1 − tn
+ Φ {L(a)V n + f (tn, ·, a)}

+ (1 − Φ) {L(a)V n+1 + f (tn+1, ·, a)}
]

for each n = 0, . . . , K − 1. We shall recursively determine the optimal controls
an

i to be used at position xi at time tn by solving the optimization problems (n =
0, . . . , K − 1)

0 = sup
a

[
V n+1 − V n

tn+1 − tn
+ Φ {L(a)V n + f (tn, ·, a)}

+ (1 − Φ) {L(an+1)V n+1 + f (tn+1, ·, an+1)}
]

and defining the optimal choice8 of a to be an . This leaves just two questions to be
answered:

• How do we start the recursion?
• How do we do the optimization?

To start the recursion, the natural thing to do is to take Φ = 1 to begin with when
n = K − 1, so that we just solve a fully implicit scheme to get going, and we do not
need to make any statement about what control we plan to use at the terminal time
tK . At all steps of the algorithm, because of Assumption P, the optimization over a is
the solution of an (elliptic) stochastic optimal control problem which can therefore
be achieved using policy improvement!! We can choose Φ = 1

2 if we want to.
This approach of Forsyth and Labahn is a delightful combination of two of the

slickest numerical methods—policy improvement and Crank-Nicolson—and is a
very effective solution methodology for such problems.

8 . . . for simplicity assumed to exist and be unique . . .
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3.5 Boundary Conditions

As has already been said, getting the boundary conditions correct for a problem
is usually critical to the effectiveness of the numerical scheme. The viewpoint of
this chapter is that numerically solving a stochastic control problem is about exactly
solving the analogous stochastic control problem for a finite-stateMarkov chain; and
to do that, we have to tell a probabilistic story about how the Markov chain is going
to behave when it gets to the boundary of the region.

The simplest story is to say that once the process hits the boundary, the process
stops moving, and there is some terminal reward received. This was done in the habit
formation example, Section2.3, where we assumed at the lowest and highest grid
point the value was given by assuming that the agent would come out of the risky
asset completely, and receive the value he would get by consuming at constant rate
(2.19) for ever. The probabilistic thinking behind this was that for very small values
of wealth, the agent would have to keep his wealth volatility very small; and for very
large values of wealth it would not really matter very much how he invested.

In some cases, such as the interest-rate risk example, Section2.2, we imposed
reflecting boundary conditions at the ends of a very large interval.While this is simple
to do, it can be probabilistically rather implausible; if the state variable was wealth,
for example, and the value were known to be an increasing function of wealth,9 then
for wealth values near to the lowest grid point we would not fear the wealth falling
any lower, because the reflecting boundary assumption would cause the wealth to
reflect back up. In such situations, all one can do is to push the boundary points to
ever more extreme locations, and hope that (i) the numerics do not fail; (ii) in the
middle of the region the solutions settle down. For the interest-rate risk example,
reflecting boundaries at the ends are not stupid, because the state variable r is an
OU process, and far away from its mean value the drift pushes strongly inwards
in any case. The situation is rather analogous to the use of Fast Fourier Transform
techniques for Fourier integrals; we know that any discretization of a Fourier integral
will be a Fourier series, and therefore periodic, which is a property that the Fourier
transform will not possess. Nevertheless, if we set the range of integration and the
step size suitably, the Fourier series can be an excellent approximation to the Fourier
integral over a desired range. The FFTmethodology is just too powerful for this ‘end
effect’ issue to make us abandon it, and the use of reflecting boundaries has a similar
flavour.

But what else can we do? A better story would be to say that once the diffusion
passes outside the region S where we are calculating the solution, some fixed controls
are applied until the process re-enters S, when the controlled behaviour resumes. This
is better than the first story, where we stop upon exit from S and receive the reward
due if we used fixed controls from that time on, because we only lock down the
controls while we are outside S, not for all time after we first exit S. Let us see how
this works in one dimension.10

9 The non-CRRA utility example of Section2.8 is such an example.
10 In higher dimensions, the story is much more complicated.

http://dx.doi.org/10.1007/978-3-642-35202-7_2
http://dx.doi.org/10.1007/978-3-642-35202-7_2
http://dx.doi.org/10.1007/978-3-642-35202-7_2
http://dx.doi.org/10.1007/978-3-642-35202-7_2
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Suppose that the solution region is the interval S = [x, x̄], and that outside S the
controlled process evolves as a diffusion with generator

G = 1
2κ(x)

2 d2

dx2
+ μ(x)

d

dx
. (3.34)

Writeτ+
σ (respectively,τ−

σ ) for the
11 non-negative increasing (respectively, decreas-

ing) solution to
(σ − G )τ = 0,

so that the resolvent density may be expressed as12

rσ(x, y) = 2

κ(y)2 W (y)
τ+
σ (y∀x) τ−

σ (y∨x) ≡ h(y)τ+
σ (y∀x) τ−

σ (y∨x), (3.35)

where W is the Wronskian

W (x) = τ−
σ (x)Dτ

+
σ (x)− τ+

σ (x)Dτ
−
σ (x). (3.36)

Consider nowwhat would happen if the process started at some point x > x̄ , diffused
with generator G until it hits x̄ , when it receives value V (x̄). We would then be able
to represent the value function at x as

V (x) = E x
[∫ γ

0
e−σt f (Xt ) dt

]
+ E x [e−σγ ] V (x̄), (3.37)

where γ is the first passage time to x̄ . Rearranging this gives

V (x)− V (x̄)

x − x̄
=

E x
[∫ γ

0 e−σt f (Xt ) dt
]

− E x [1 − e−σγ ] V (x̄)

x − x̄
. (3.38)

The left-hand side of (3.38) tends to V ≥(x̄) as x ∧ x̄ , so we want to understand
the limiting behaviour of the right-hand side. The resolvent density rασ (x, y) of the
diffusion killed on first hitting x̄ is given for x̄ < x < y by

rασ (x, y) = h(y)τ−
σ (y){τ+

σ (x)− τ+
σ (x̄) τ

−
σ (x)/τ

−
σ (x̄)}

and the derivative q+
σ (y) of this with respect to x at x = x̄+ is easily seen to be

q+
σ (y) = h(y)τ−

σ (y)
W (x̄)

τ−
σ (x̄)

= 2

κ(y)2
τ−
σ (y)

W (y)

/
τ−
σ (x̄)

W (x̄)
. (3.39)

11 Unique up to scalar multiples...
12 See Theorem V.50.7 in [34].
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The boundary condition (3.38) therefore becomes in the limit as x ∧ x̄ the condition

V ≥(x̄) =
∫ →

x̄
q+
σ (y){ f (y)− σV (x̄)}dy, (3.40)

which is a simple linear boundary condition of the form

AV (x̄)+ BV ≥(x̄)+ C = 0 (3.41)

at the top boundary point x̄ . For the region below x we obtain analogously the
derivative of the resolvent density is given by

q−
σ (y) = h(y)τ+

σ (y)
W (x̄)

τ+
σ (x̄)

= 2

κ(y)2
τ+
σ (y)

W (y)

/
τ+
σ (x̄)

W (x̄)
, (3.42)

leading to a boundary condition analogous to (3.40).
Notice that if we were to stop the process once it leaves S and give the agent a

terminal reward, as we first discussed, this gives a boundary condition of the form
(3.41) with A = 1, B = 0; if we reflect the diffusion at x̄ we get a boundary condition
of the form (3.41) with A = 0 = C , B = 1, so in every case we end up with a linear
boundary condition of this form.

Example 1 If we take the generator to be

G = 1
2κ

2D2 + μD

for constant κ and μ, then

q+
σ (y) = 2

κ 2 exp(−ω+(y − x̄)) (y > x̄) (3.43)

q−
σ (y) = 2

κ 2 exp(ω−(y − x)) (y < x) (3.44)

where ω+ > 0 and −ω− < 0 are the roots of 1
2κ

2t2 + μt − σ = 0.

Example 2 If we take the generator to be

G = 1
2κ

2x2D2 + μx D

for constant κ and μ, then

q+
σ (y) = 2

κ 2y2

(
y

x̄

)1−ω+
(y > x̄) (3.45)

q−
σ (y) = 2

κ 2y2

(
y

x

)1+ω−
(y < x) (3.46)

where ω+ > 0 and −ω− < 0 are the roots of 1
2κ

2t (t − 1)+ μt − σ = 0.
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3.6 Iterative Solutions of PDEs

This short section is rather speculative, and very unfinished. All that is done here
is to set down the form of the HJB equations quite generally, and then guess at
possible recursive schemes which might be used to solve them; sometimes these
quick-and-dirty schemes work, but I have no understanding at a theoretical level.

The form of the HJB equation for the value function V in an optimal investment
problem can be written as

L V + sup
a
δ (DV, a) = 0 (3.47)

where θ(·, a) is some linear function of the vector13 DV ≡ (V, V ≥, V ≥≥, V̇ ) of
derivatives14 of V , and a is the control variable. The operatorL is a linear differential
operator which does not depend on the control variable. Notice that the equation
(3.47) states that a function of the state variable is zero;L V andδ (DV, a) are each
functions of the state variable.

Usually the optimization over control variable a can be achieved in closed form,
and we may write

sup
a
δ (DV, a) = δ̄ (DV ) (3.48)

explicitly. The function δ̄ is evidently convex in DV , and we shall suppose that it is
C1 in DV . When convenient in what follows, we shall suppose that the supremum
in (3.48) is uniquely attained at the value a∗(DV ) of a.

The general form of the problem suggests possible recursive schemes.

3.6.1 Policy Improvement

As we have seen, probably the most effective general method is policy improvement.
We begin by choosing some policy a0, which is of course a function of the state
variable, specifying what control is to be used in each state of the statespace. Then
we set n = 0 and perform the iterative scheme:

(1) Find Vn+1 by solving the linear system

L Vn+1 + δ (DVn+1, an) = 0; (3.49)

(2) Define the next choice of policy by

13 We explain the method assuming that the state variable is one-dimensional, but the methodology
works also in higher dimensions.
14 For an infinite horizon problem, the value is not time dependent, so the time derivative V̇ of V
does not appear.
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an+1 = a∗(DVn+1); (3.50)

(3) Go to (1).

In the treatment of policy improvement inSection3.1weemphasized the probabilistic
nature of the discretization used. However, just looking at the algorithm as it is
listed above, it is tempting to just jump in and apply policy improvement using the
finite-difference approximations to the differential operators, using natural boundary
conditions. This has the drawback that now the linear system being solved does not
necessarily have a probabilistic interpretation; but it has the advantages that it is
easier to do, especially in higher dimensions.

3.6.2 Value Recursion

Another scheme we could try would be to suggest an initial guess V0 for the value
function, and then iteratively calculate Vn by

L Vn+1 + δ̄ (DVn) = 0 (n = 0, 1, . . .), (3.51)

which is a sequence of linear equations. If we are lucky, the sequence of approxi-
mations Vn will converge, and when this happens, it is an easy coding exercise, and
the computations run very fast.

Notice that this is not the same as the algorithm known as value improvement,
which is an essentially discrete-time algorithm. Value improvement starts with a first
guess V (0) at the value function, and then asks what would be the value we would
obtain if we made one step and thereafter received V (0): recursively, we solve

V (n+1)(x) = sup
a

[
f (x, a)+ βE{yV (n)(X1)

∣∣ X0 = x, a0 = a}y

]
, n = 0, 1, . . . .

(3.52)
under some boundedness conditions, the Contraction Mapping Principle applies,
and we can deduce geometrically-rapid convergence of the V (n) to the true value
function. As far as I am aware, there are no results telling us when and how rapidly
value recursion converges to the true value function.

3.6.3 Newton’s Method

Newton’s method starts by making a guess for V0, and then calculates successive
approximations by writing Vn+1 = Vn + η. We expect that η will be small if the
methodworks at all, so the equationL Vn+1+δ̄ (DVn+1) = 0may be approximated
by a Taylor expansion of the non-linear term:
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L (Vn + η)+ δ̄ (DVn)+ ∼δ̄ (DVn).Dη = 0. (3.53)

This then gives us a linear equation for η, which we can solve to find the next
approximation Vn+1. This is the classical Newton method for finding a root of N
simultaneous non-linear equations. It has the strengths andweaknesses of theNewton
method: very rapid convergence if you are near to a solution, but small regions of
convergence.



Chapter 4
How Well Does It Work?

Abstract The final chapter of the book takes a look at data, and finds virtually all
of the models of the earlier part of the book to be wanting. Stylized facts of return
data, well known to econometricians, are surprisingly robust across asset classes,
and do not sit comfortably with the assumptions made in most of the theoretical
literature.

For those who bought this book in the hope that it would help them to become rich,
the short answer to the question of the title must be a disappointment: the answer is,
‘Not very well at all’. There are two main reasons why this is the case:

(A) The actual dynamics of virtually any asset is not correctly modelled by the
log-Brownian assumptions we have made;

(B) Even if the log-Brownian model were correct, it is hard to estimate the parame-
ters of the model correctly.

We shall see in Section4.1 below how simple exploratory data analysis conclu-
sively rejects the standard log-Brownian model for an asset. We shall also see
that it rejects most other commonly-used models for asset returns. Nevertheless,
the situation is not as bleak as it seems. Most assets exhibit time-varying volatil-
ity on various scales; certainly within a day’s trading there is a typical pattern
where in the middle of the day the volatility is lower, which can be explained by
a lunchtime effect, or more likely by the story that traders are particularly active
at the beginning of a day when positions are adjusted for the coming day’s trad-
ing, and at the end of the day when the aim is to leave the book in a safe state
for the overnight period. If we look at daily prices, we observe that there are times
when an asset may be quite heavily traded, and other times when there is less activ-
ity. A natural hypothesis is that there is some business time or market clock, an
increasing process bt , such that the observed asset price process St may be repre-
sented as

St = S∗(bt ) (4.1)
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where the process S∗ is somehow more homogeneous and regular; this natural idea
has been proposed in many places, the first of which appears to be Clark [6]. It
turns out that this is actually quite a good story; if we scale daily asset returns
by some estimate of current volatility, what we see is plausibly stationary, with a
level of volatility which varies randomly but not too much. This is a very helpful
observation; it means that we can rescale asset returns and then hope to estimate
the more nearly time-homogeneous structure of those returns. From the point of
view of the portfolio manager, it does not matter whether he specifies the posi-
tion he is going to hold tomorrow in terms of the original asset, or in terms of
the vol-rescaled asset, and the rescaled asset is much easier to understand statisti-
cally.

From the point of view of an investment bank selling and hedging derivatives, this
observation is less useful, because although the underlying asset in business timemay
well look very like a log-Brownian model, the expiry of any option is not a fixed time
in business time. So the writer of a derivative is exposed to the random fluctuation
of the business time clock before expiry. Nonetheless, the understanding that the
underlying asset is a log-Brownian motion sampled at a random time change is a
powerful modelling insight, which converts the modelling problem into a problem of
modelling the increasing business-time process. A number of popular and successful
asset models, such as the variance-gamma model (see Madan and Seneta [26]), the
CGMY and Meixner processes (see for example Madan and Yor [27] and references
therein) have this structure.

So we see that the challenges posed by variable volatility are less of a problem
to the portfolio manager than the derivatives business, which gives us a chance
that Problem A will not matter so much here, and this is broadly correct. However,
ProblemB cannot be circumvented so easily, and there will be little advice here about
how to deal with it, though there is some discussion of the nature and scale of the
problem: see Sections4.2 and 4.3. These econometric issues remain tough.

In the previous Chapters then, we followed the orthodoxy of mathematical
research, and drew strong conclusions from strong assumptions; is there no value
in any of this? If I believed this activity was valueless I would not have given so
much of my time to it, but it is important to understand what the value is. In prac-
tice, we will never be able to say that the kinds of strong assumptions made1 are
valid, and even if we were so brave as to assume the form of asset dynamics, we
would be foolish to assume that we knew the true parameter values exactly. But
the examples studied earlier can give us guidance if not exact answers. For exam-
ple, in the study of parameter uncertainty in Section2.32, we saw that if we do
not know the growth rate of the asset, then simply plugging the current posterior
mean into the Merton proportion gives us an investment policy that is not far off
optimal. If we care about the costs of trading, then the results of Section2.4 tell
us how we would modify the Merton trading/consumption recommendations, and
we see that the portfolio bounds are remarkably wide (in fact, O(ε1/3)—see [32]),

1 ... that asset dynamics are log-Brownian, with known parameters ...

http://dx.doi.org/10.1007/978-3-642-35202-2
http://dx.doi.org/10.1007/978-3-642-35202-2
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and the impact of the transaction costs is remarkably small (in fact, O(ε2/3)—see
Shreve and Soner [32, 38] again). This can already be helpful in formulating trad-
ing behaviour. If we want to control drawdown, then the results of Sections2.5
and 2.30 at least suggest the form of the solution to use. Learning from our ide-
alized studies, the relative magnitudes of the impact on efficiency of transaction
costs, taxes, parameter uncertainty, infrequent portfolio review already help us to
understand which market imperfections we need to worry about, and which are less
important.

The remainder of this Chapter presents several topics. Firstly in Section4.1 we
take a look at some of the stylized facts of asset return data, and discover that market
prices look very different from the log-Brownian story in fundamental ways. We
follow this in Sections4.2 and 4.3 by looking at some of the econometric issues
around asset return data.

4.1 Stylized Facts About Asset Returns

Our working assumption through most of this book has been that assets are log
Brownian motions, so in particular the daily log returns will be independent
identically-distributed random variables. Is that in fact what the data shows? We
shall take four large US stocks, the 3M Corporation (MMM), Alcoa Inc. (AA),
Apple Inc. (AAPL), and American Electric Power Company Inc. (AEP) from 24th
July 2000 to 19th July 2010.

Are returns actually Gaussian? The usual way to do this is to do a q − q plot.
How this works is you take the observed log returns Xi , i = 1, . . . , N , and then
re-order them to be increasing: X(1) ≤ X(2) ≤ . . . ≤ X(N ). Now you calculate the
quantiles qi = Φ−1((i − 1

2 )/N ), i = 1, . . . , N of the standard normal distribution
functionΦ, and you plot the pairs (qi , X(i)). If the Xi were normally distributed, the
i th order statistic would be approximately μ + σqi , so the plot would appear as a
straight line. What we see is plotted in Fig. 4.1, for four large US stocks. Marked in
the plots are vertical lines at −2 and 2; roughly 95% of the data should lie between
these. The straight line approximation may not be too bad in the middle of the region,
but it is visibly not a convincing story across the whole range. We could do some
more serious statistics at this point, but if you do some q − q plots for many more
assets you will be forced to accept that the Gaussian story does not fit the observed
data.

Are returns stationary? The standard modelling assumption asserts that the returns
are stationary. One nice diagnostic which explores this assumption is to plot the

http://dx.doi.org/10.1007/978-3-642-35202-2
http://dx.doi.org/10.1007/978-3-642-35202-2
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Fig. 4.1 q − q plots of log returns for four US stocks

cumulative sum of squared returns; if the process were stationary2 then we would
expect the cumulative sums to go up linearly, and they evidently do not (Fig. 4.2).

Are returns autocorrelated? In view of the evidence against stationarity, you might
(and should) be feeling uneasy about calculating the sample autocorrelation of asset
returns, but please suspend disbelief a while, because the evidence continues to
build. We calculate the sample autocorrelations of the returns of our four stocks in
Fig. 4.3, and see that at positive lags, the numerical values are small; the dashed lines
are at ±0.1. Is there perhaps still some flicker of hope for the IID hypothesis? But
no; Fig. 4.4 showing the autocorrelations of the absolute returns really extinguishes
this—the autocorrelations remain substantially positive for a long time.

These little analyses are very simple to perform, and demonstrate well-known
stylized facts of asset return data; see Granger et al. [17] for a more thorough study
of what we find. You can amuse yourself with other such exploratory data analyses
(and there are further examples at http://www.statslab.cam.ac.uk/~chris/Data.html,

2 .. and square-integrable. Enthusiasts for heavy-tailed distributions may look at 4.2 and declare
that this shows evidence for heavy-tailed returns—as they would when looking at 4.1. But if you
simulate the cumulative sum of squared heavy-tailed random variables, it looks quite unlike what
we see in 4.2; the big jumps in the simulations are quite clearly visible, whereas the plots from the
data do not show any noticeable discontinuities.

http://www.statslab.cam.ac.uk/~chris/Data.html
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Fig. 4.2 Realized quadratic variation of four US stocks

but what they show is that the maintained assumption of IID Gaussian returns does
not fit the facts. Even more, the assumption of IID returns of any law is seen not to
fit the facts, which is a damaging observation for any attempt to model asset returns
as log Lévy.

By contrast, if we firstly rescale the asset returns by a rolling estimate of the
volatility3 then we see somewhat different pictures. The q − q plots are a little more
regular, the realized quadratic variation is much closer to a straight line, as expected,
the autocorrelation of returns is still small, and the autocorrelation of absolute returns
is a bit smaller, but still quite someway from zero. Sowhat we can conclude from this
is that by vol-scaling asset returnswe are able to produce returnswhich are reasonably
stationary, which look a bit more Gaussian, have negligible autocorrelation, but still
have persistent positive autocorrelation of absolute returns.

These stylized facts can be explained by some sort of stochastic volatility model;
returns are zero mean, but the magnitudes of those returns do not stay constant,
varying in some random fashion, with periods of large (or small) absolute returns
persisting for some time. Really any stochastic volatility model would exhibit such
behaviour; we could try some diffusion-based model, such as the Heston model (see

3 In the plots that follow this was calculated as σ̂ 2
t = ∑

j≥0(1 − β)β j r2t− j with β = 0.975, and
rt ≡ log(pt/pt−1), where pt is the close price on day t .
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Fig. 4.3 Sample autocorrelation of four US stocks

[19]), we could try a GARCH model, popular with econometricians, we could take
some Markov chain regime-switching model, for example.

For those unfamiliar with GARCH modelling, the basic GARCH(1,1) model for
a process xt in discrete time is defined by the recursive recipe

xt+1 = xt + vt+1εt+1

vt+1 = α0 + α1vt + βε2t

for positive α0, β and α1 ∈ (0, 1). The εt are usually taken to be IID standard Gaus-
sians, and of course, some starting values have to be given. Although the GARCH
model is well established, I find it an unattractive modelling choice for a number of
reasons (Figs. 4.5, 4.6, 4.7 and 4.8):

1. It is a discrete-time model which cannot be embedded into any continuous-time
model; that is, there is no time-homogeneous continuous-time process4 Xt which,
when viewed at integer times, is a GARCH process;

4 Of course, we could just have a continuous time process which jumps only at integer times, but
this would not be time homogeneous.
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Fig. 4.4 Sample autocorrelation of the absolute returns of four US stocks

2. Aggregation does not work for a GARCH process; if Xn is a GARCH process,
then X2n is nothing in particular;

3. Multiple assets do not fit well into the framework. If we assume (reasonably)
that we need to be able to model co-dependence of different GARCH series, how
is this to be done naturally? In the basic GARCH story, the process generates
its own volatility, yet a stylized fact of asset returns is that they all experience
high volatility at the same time. The plot Fig. 4.9 shows what happens when we
plot exponentially-weighted moving averages of squared daily returns for 29 US
stocks. We could perhaps take yesterday’s squared returns of all the assets, and
use an average value of this to provide the increment for the volatility of each
of the assets, but this kind of thinking is taking us towards modelling a market
clock, and if that is where we are going, we would probably have been better not
to start with GARCH.

To conclude our brief scan of market data then, we see that the paradigm model
used extensively throughout this book fails significantly to match stylized facts. This
can be rescued to some extent by working with volatility-rescaled returns, but some
kind of stochastic volatility model is required to do a decent job on the stylized facts.
The examples from Sections2.10 and 2.26 are the only ones we have studied with
this character.

http://dx.doi.org/10.1007/978-3-642-35202-2
http://dx.doi.org/10.1007/978-3-642-35202-2
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Fig. 4.5 q − q plots of scaled log returns for four US stocks

4.2 Estimation of µ: The 20s Example

This little example, which requires no more than an understanding of basic statistical
concepts, should be remembered by anyone who works in finance. It is memorable
because all the numbers appearing are something to do with 20.

Suppose we consider a stock, with annualised rate of returnμ = 0.2 = 20%, and
annualised volatility σ = 0.2 = 20%. We see daily prices for N years, and we want
to observe for long enough that our 95% confidence interval for σ (respectively, μ)
is of the form [σ̂ −0.01, σ̂ +0.01] (respectively, [μ̂−0.01, μ̂+0.01])—so we have
a 19 in 20 chance of knowing the true value to one part in 20.

How big must N be to achieve this precision in σ̂?

Answer : about 13 years;

How big must N be to achieve this precision in μ̂?

Answer: about 1580 years !!
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Fig. 4.6 Realized (scaled) quadratic variation of four US stocks

The message here is that the volatility in a typical financial asset overwhelms the
drift to such an extent that we cannot hope to form reliable estimates of the drift
without centuries of data. This underscores the pointlessness of trying to fit some
model which tells a complicated story about the drift; if we cannot even fit a constant
reliably, what hope is there for fitting a more complicated model?

Could we improve our estimates if we were to observe the asset price more
frequently, perhaps every hour, or every minute? In principle, by doing this we could
estimate σ to arbitrary precision, because the quadratic variation of a continuous
semimartingale is recoverable path by path. But there are practical problems here.
Most assets do not fluctuate at the constant speed postulated by the simple log-
Brownianmodel, and the departures from this aremore evident the finer the timescale
one observes5; thus we will not arrive at a certain estimate just by observing the price
every 10s, say. The situation for estimation of the drift is even more emphatic; since

5 In recent years, there has been an upsurge in the study of realized variance of asset prices; an early
reference is Barndorff-Nielsen and Shephard [2], a more recent survey is Shephard [37], and there
have been important contributions from Aït-Sahalia, Jacod, Mykland, Zhang and many others. This
literature is concerned with estimating what the quadratic variation actually was over some time
period, which helps in deciding whether the asset price process has jumps, for example. However,
there is no parametric model being fitted in these studies; the methodology does not claim or possess
predictive power.
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Fig. 4.7 Sample autocorrelation of scaled returns of four US stocks

the sum of an independent gaussian sample is sufficient for the mean, observing
the prices more frequently will not help in any way to improve the precision of the
estimate of μ; the change in price over the entire observation interval is the only
statistic that carries information about μ.

The most important thing to know about the growth rate of a financial asset is that
you don’t know it.

4.3 Estimation of V

The conclusion of the 20s example suggests that the estimation of σ is less prob-
lematic than the estimation of μ; we may be able to form a decent estimate of σ in a
decade or so, perhaps less if we sample hourly during the trading day. However, the
situation is not as neat as it appears. Firstly, the assumption of constant σ is soundly
rejected by the data; this, after all, was a major impetus for the development of
GARCH models of asset prices. Secondly, and just as importantly, the estimation of
σ in multivariate data is fraught with difficulty. To show some of the issues, suppose
that we observe daily log-return data X1, . . . , XT on N assets, where Xt = (Xi

t )
N
i=1,
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Fig. 4.8 Sample autocorrelation of the absolute scaled returns of four US stocks

Xi
t = log(Si

t /Si
t−1). The canonical maximum-likelihood estimator of the mean of

Xt is to use

μ̂ = T −1
T∑

t=1

Xt

and to estimate the variance we use the sample covariance

V̂ = T −1
T∑

t=1

(Xt − μ̂)(Xt − μ̂)T . (4.2)

Just to get an idea, we display in Fig. 4.10 the correlations between some 29 US
stocks; as can be seen, correlations are generally positive, and range widely in value
from 0 to around 0.7. Such behaviour is quite typical.

But what are the snags?

1. For N = 50, there are 1275 independent parameters to be estimated in V ;
2. The estimator ofV is not veryprecise (ifT = 1000, and N = 50, fromsimulations

we find that the eigenvalues of V̂ typically range from 0.6 to 1.4, while the true
values are of course all 1.)
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Fig. 4.9 Rolling volatility estimates of 29 US stocks

Fig. 4.10 Correlation plot

3. To form the Merton portfolio, we must invert V ; inverting V̂ frequently leads to
absurdly large portfolio values.

All of these matter, but perhaps the first matters most; the number of parameters
to be estimated will grow like N 2, and for N of the order of a few score—not
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Fig. 4.11 Efficiency plot

an unrealistic situation—we have thousands of parameters to estimate. The only
reasonable way to proceed is to cut down the dimension of the problem. One way
in which to do this would be to insist that the correlations between assets were
constant. This is a pretty gross assumption. Another thing one could do would be to
perform a principal-components analysis, which in effect would just keep the top few
eigenvalues from the spectrum of V̂ , which in any case account for most of the trace
in typical examples. Yet another approach would be to suppose that the asset returns
are linear combinations of the returns on a fairly small set of economic indicators
which are considered important. All of these approaches are used in practice, and the
literature is too large to survey here; one could begin with Fan and Lv [15] or Fan,
Liao and Mincheva [14], for example.

How sensitive is the value of the Merton problem to the choice of the portfolio
proportions and the consumption rate? If the agent chooses a consumption rate γ ,
and to keep proportions π = πM + ε of his wealth in the risky assets, then we can
use (1.78), expressing the value of the objective as

u(γw0)

R(γM − γ )+ γ − 1
2 R(R − 1)|σ T ε|2 , (4.3)

which we see reduces to the Merton value γ−R
M u(w0) when γ = γM and ε = 0.

This allows us to find the efficiency of an investor who uses sub-optimal policy
(γ, πM + ε), namely,

http://dx.doi.org/10.1007/978-3-642-35202-1
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θ =
(

γ R
M γ

1−R

R(γM − γ )+ γ − 1
2 R(R − 1)|σ T ε|2

)1/(1−R)

. (4.4)

The plot Fig. 4.11 shows how the efficiency varies as we change γ and π , using
the default values (2.3), What is most noteworthy is that the efficiency is not much
affected by the wrong choice ofπ and γ . Indeed, we can vary γ in the interval (0.033,
0.053) without losing more than 5% efficiency, and we can vary the proportion π in
the range (0.22, 0.52) with the same loss. This is very robust, though on reflection
not a great surprise. The efficiency will be a smooth function of (γ, π), which is
maximized at the Merton values, but it will of course have vanishing gradient there,
and so the variation in efficiency for an O(h) error in the choice of (γ, π) will be
O(h2).

http://dx.doi.org/10.1007/978-3-642-35202-1


References

1. T. Arun, The Merton problem with a drawdown constraint on consumption. arXiv
1210:5205v1 (2012)

2. O.E. Barndorff-Nielsen, N. Shephard, Econometric analysis of realized volatility and its use
in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B 64, 253–280 (2002)

3. T. Björk, A. Murgoci, A general theory of Markovian time inconsistent stochastic control
problems. Technical report, Department of Finance, Stockholm School of Economics, 2010

4. K.C. Border, Fixed Point Theorems with Applications to Economics and Game Theory
(Cambridge University Press, Cambridge, 1985)

5. D.T. Breeden, Consumption, production, inflation and interest rates: a synthesis. J. Financ.
Econ. 16, 3–39 (1986)

6. P.K. Clark, A subordinate stochastic process model with finite variance for speculative prices.
Econometrica 41, 135–155 (1973)

7. G.M. Constantinides, Capital market equilibrium with transaction costs. J. Politi. Econ. 94,
842–862 (1986)

8. G.M. Constantinides, Habit formation: a resolution of the equity premium puzzle. J. Politi.
Econ. 98, 519–543 (1990)

9. T.M. Cover, Universal portfolios. Math. Financ. 1, 1–29 (1991)
10. M.H.A. Davis, A. Norman, Portfolio selection with transaction costs. Math. Oper. Res. 15,

676–713 (1990)
11. I. Ekeland, A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium in

continuous time. Technical report, University of British Columbia, 2006
12. N. El Karoui, S. Peng, M.C. Quenez, Backward stochastic differential equations in finance.

Math. Financ. 7, 1–71 (1997)
13. R. Elie, N. Touzi, Optimal lifetime consumption and investment under a drawdown

constraint. Financ. Stoch. 12, 299–330 (2006)
14. J. Fan, Y. Liao, M. Mincheva, High dimensional covariance matrix estimation in

approximate factor models. Ann. Stat. 39, 3320–3356 (2011)
15. J. Fan, J. Lv, A selective overview of variable selection in high dimensional feature space.

Stat. Sin. 20, 101–148 (2010)
16. P.A. Forsyth, G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs

in finance. J. Comput. Financ. 11, 1–43 (2007)
17. C.W.J. Granger, S. Spear, Z. Ding, Stylized facts on the temporal and distributional

properties of absolute returns: an update. in Statistics and Finance: An Interface. Proceedings
of the Hong Kong International Workshop on Statistics in Finance, 2000

18. D. Heath, R. Jarrow, A. Morton, Bond pricing and the term structure of interest rates: a new
methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

L. C. G. Rogers, Optimal Investment, SpringerBriefs in Quantitative Finance,
DOI: 10.1007/978-3-642-35202-7, � Springer-Verlag Berlin Heidelberg 2013

151



19. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

20. D.G. Hobson, L.C.G. Rogers, Complete models of stochastic volatility. Math. Financ. 8, 27–
48 (1998)

21. I. Karatzas, S.E. Shreve, Methods of Mathematical Finance (Springer, New York, 1998)
22. I. Klein, L.C.G. Rogers, Duality in constrained optimal investment and consumption

problems: a synopsis. Math. Financ. 17, 225–247 (2007)
23. D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal

investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)
24. H.J. Kushner, P.G. Dupuis, Numerical Methods for Stochastic Control Problems in

Continuous Time (Springer, New York, 2000)
25. B.H. Lim, Y.H. Shin, Optimal investment, consumption and retirement decision with

disutility and borrowing constraints. Quant. Financ. 11, 1581–1592 (2011)
26. D.B. Madan, E. Seneta, The variance gamma (VG) model for share market returns. J. Bus.

63, 511–524 (1990)
27. D.B. Madan, M. Yor, Representing the CGMY and Meixner Lévy processes as time changed

Brownian motions. J. Comput. Financ. 12, 27–48 (2008)
28. R.C. Merton, Optimum consumption and portfolio rules in a continuous-time model. J. Econ.

Theory 3, 373–413 (1971)
29. R. Muraviev, L.C.G. Rogers, Utilities bounded below. Ann. Finance
30. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 6th edn.

(Springer, Berlin, 2012)
31. L.C.G. Rogers, Duality in constrained optimal investment and consumption problems: a

synthesis. in Paris-Princeton Lectures on Mathematical Finance, vol. 1814 of Lecture Notes
in Mathematics (Springer, Berlin, 2003), pp. 95–131

32. L.C.G. Rogers, Why is the effect of proportional transaction costs Oðd2=3Þ? in Mathematics of
Finance: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on
Mathematics of Finance, 22–26 June 2003, Snowbird, Utah, Contemporary Mathematics,
vol. 351, ed. by G. Yin, Q. Zhang (American Mathematical Society, Providence, 2004),
pp. 303–308

33. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, vol. 1, 2nd edn.
(Cambridge University Press, Cambridge, 2000)

34. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, vol. 2, 2nd edn.
(Cambridge University Press, Cambridge, 2000)

35. L.C.G. Rogers, M.R. Tehranchi, Can the implied volatility surface move by parallel shifts?
Financ. Stoch. 14, 235–248 (2010)

36. D. Romer, Advanced Macroeconomics, 2nd edn. (McGraw Hill, New York, 2001)
37. N. Shephard, Stochastic Volatility: Selected Readings (Oxford University Press, Oxford,

2005)
38. S.E. Shreve, H.M. Soner, Optimal investment and consumption with transaction costs. Ann.

Appl. Probab. 4, 609–692 (1994)

152 References



Index

20’s example, 144

A
Admissible, 2
Advisors, 108
Annual tax accounting, 43
Asset price process, 2
Autocorrelation, 140

B
Bankruptcy, 50
Bayesian analysis, 108
Beating a benchmark, 94
Benchmark, 75
Black–Scholes–Merton model, 28
Boundary condition, 130

linear, 132
reflecting, 130

Brownian integral representation, 14, 16
BSDE, 72
Budget constraint, 94
Budget feasible, 14
Business time, 137

C
Cameron–Martin–Girsanov theorem, 103
Central planner, 25
Change of measure martingale, 15
Complete market, 14, 25
Compound Poisson process, 50
Consumption stream, 2
Contraction mapping principle, 135
Crank–Nicolson scheme, 117, 129
CRRA utility, 6

D
Default parameter values, 29
Depreciation, 81
Drawdown constraint

on wealth, 39
Drawdown constraint

on consumption, 64
Dual feasibility, 19
Dual HJB equation, 19

drawdown constraint on consumption, 66
drawdown constraint on wealth, 40
habit formation, 35
labour income, 111
stopping early, 69

Dual objective, 19
Dual value function, 11, 48

retirement, 101

E
Efficiency, 28
Elliptic problem, 121

multi-dimensional, 123
Endowment, 2
Equilibrium, 23, 76
Equilibrium interest rate, 24
Equilibrium price, 27
Equivalent martingale measure, 19
Estimation of V, 146
Expected shortfall, 170

F
Fast Fourier Transform, 149
Filtering, 102
Financial review, 79
Finite-horizon Merton problem, 30
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F (cont.)
Fixed-mix rule, 108
Forward rates, 23

G
GARCH model, 142

H
Habit formation, 33
Hamilton–Jacobi–Bellman. See HJB equation
Heat equation, 116
Heston model, 141
History-dependent preferences, 45
HJB equation, 5

drawdown constraint
on consumption, 65

drawdown constraint on wealth, 40
finite horizon, 30
generic, 116
habit formation, 35
history-dependent preferences, 46
labour income, 110
leverage bound, 96
limited look-ahead, 86
Markov-modulated asset dynamics, 54, 56
penalty for riskiness, 78
production and consumption, 82
random growth rate, 60
random lifetime, 58
recursive utility, 72
retirement, 101
soft wealth drawdown, 97
stochastic volatility, 89
stopping early, 68
transaction costs, 37
utility bounded below, 80
utility from wealth and consumption, 62
varying growth rate, 92
Vasicek interest rate process, 31
wealth preservation, 63

I
Implied volatility surface, 23
Inada conditions, 24
Infinite horizon, 3
Infinitesimal generator, 13
Innovations process, 55, 92
Insurance example, 49
Integration by parts, 18
Interest rate risk, 31

Interpolation, 124
Inverse marginal utility, 17

J
Jail, 79
Jones, keeping up with, 73
Jump intensity, 116
Jump intensity matrix, 53, 118

K
Kalman-Bucy filter, 92
Knaster–Kuratowski–Mazurkiewicz

theorem, 26

L
Labour income, 110
Lagrange multiplier, 17
Lagrangian

expected shortfall, 70
Lagrangian semimartingale, 18
Later selves, 86
Least concave majorant, 68, 121
Leverage bound, 96
Limited look-ahead, 84
Linear investment rule, 20
Log utility, 6

M
Marginal utility, 10
Market clearing, 23, 77
Market clock, 137
Market price of risk J, 9
Markov chain, 53
Markov chain approximation, 115, 122, 123
Markov-modulated asset dynamics, 53
Martingale principle of optimal

control, 3, 65, 68
transaction costs, 37

Merton consumption rate, cM, 9, 20
Merton portfolio pM, 8
Merton problem, 1, 14
Merton problem, well posed, 20
Merton value, 9
Minimax, 107

N
Nash equilibrium, 83
Negative wealth, 79
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Net supply, 24
Newton method, 135

habit formation, 35
Non-CRRA utilities, 47
No-trade region, 38
Numerical solution, 115

O
Objective, 3
Offset process, 89
Optimal stopping, 120
Optional projection, 92
OU process, 59

P
Parabolic problems, 127
Parameter uncertainty, 102
Pasting, 38
PDE for dual value function, 12
Penalty for riskiness, 78
Policy improvement, 117, 134

history-dependent preferences, 47
Markov-modulated asset

dynamics, 56
random growth rate, 60
transaction costs, 38
Vasicek interest rate process, 32

Pontryagin-Lagrange approach, 17
Portfolio process, 2
Portfolio proportion, 3
Preferences

history-dependent, 45
Production, 81
Production function, 81

Q
q-q plot, 139

R
Random growth rate, 59
Random lifetime, 57
Recursive utility, 72
Reflecting boundary conditions, 60

Vasicek interest rate process, 32
Regime-switching model, 142
Representative agent, 25
Resolvent, 13, 27, 48
Resolvent density, 131
Retirement, 99

Riskless rate, 2
Robust optimization, 106

S
Scale function, 122
Scaling, 6

annual tax accounting, 43
drawdown constraint on consumption, 65
drawdown constraint on wealth, 40
finite horizon, 30
habit formation, 34
history-dependent preferences, 46
Markov-modulated asset dynamics, 55
production and consumption, 83
random growth rate, 59
random lifetime, 58
transaction costs, 37
varying growth rate, 92
wealth preservation, 63

Slice of cake, utility from, 76
Soft wealth drawdown, 97
Standard objective, 29
Standard wealth dynamics, 29
State-price density, 10, 15, 19

marginal utility, 22
State-price density process

uncertain growth rate, 103
Static programming approach, 14
Stochastic optimal control, 115
Stochastic volatility, 88
Stochastic volatility model, 141
Stopping early, 68
Stopping sets, 120
Stylized facts, 139
Successive over-relaxation method, 117

T
Tax credit, 45
Time horizon, 3
Transaction costs, 36

U
Universal portfolio algorithm, 110
Utility bounded below, 79
Utility from wealth and consumption, 61

V
Value function, 4
Value improvement
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V (cont.)
insurance example, 51

Value recursion, 134
Varying growth rate, 91
Vasicek interest rate process, 31
Verification, 10, 11, 17

W
Wealth equation, 2
Wealth preservation, 62
Wronskian, 131
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