STATE UNIVERSITY OF TELECOMMUNICATIONS

EDUCATIONAL AND SCIENTIFIC INSTITUTE OF INFORMATION
TECHNOLOGIES

Department of software engineering

Explanatory note

to bachelor thesis
for the bachelor's degree of higher education

on the topic: «CREATION OF BOOK COLLECTION APPLICATION USING
THE C# LANGUAGE»

Done by: student of the 4th year, group PD-42
121 Software engineering

(mmp 1 Ha3Ba creniadbHOCTI/Crieniami3arii)

Idrissi Hesham

(Ipi3BHIIE Ta iHiIiaNN)

Head
Gamaniuk .M.

(mpi3BHILE Ta iHIIATN)

Penenzenr

(mpi3BuIIe Ta iHiIiaTHN)

Kyiv —2023

STATE UNIVERSITY OF TELECOMMUNICATIONS

EDUCATIONAL AND SCIENTIFIC INSTITUTE OF INFORMATION
TECHNOLOGIES

Department of software engineering
Degree of higher education - «Bachelory
Specialty — 121 «Software engineering»

I APPROVE
Head of Department
Software engineering
Negodenko O.V.
“« o 2023
TASK

FOR THE STUDENT'S BACHELOR THESIS

IDRISSI HESHAM

(npi3Buie, iM’s1, 0 6ATHKOBI)

1. The topic:_«Creation of book collection application using the C# language»
Head: Gamaniuk [.M., senior lecturer

(mpi3BuILe, iM’s1, 10 OATHKOBI, HAYKOBHH CTYIiHb, BUCHE 3BaHHS)

Approved by order of higher education « 24 » February 2023 No 26.
2. Deadline for submission of work by the student « 1 » June 2023
3. Input data to work
3.1 Scientific and technical literature on issues related to accounting software;
3.2 Online editor of UML diagrams;
3.3 Visual Studio integrated development environment;
4. Content of the settlement and explanatory note (list of issues to be developed)
4.1 Accounting of the book collection as a component of the collection process;
4.2 Analaysis of available tools and technologies for organizing accounting of
books in the collection;
4.3 Information system modeling and design;

4.4 Testing;
5. List of demonstration material (name of the main slides)

5.1. Title slide

5.2. Purpose, object and subject of research
5.3. Tasks of the graduate thesis

5.4. Analysis of analogues

5.5. Software requirements

5.6. Implementation software

5.7. Functional requirements

5.8. Put in information about the book
5.9. Object iteraction

5.10. Book presentation and business logic layers

5.11. State diagram

5.12. Object diagram
5.13. Architecture design
5.14. Screen forms

5.15. Conclusions

6. Issue date of the task « 25 » February 2023

CALENDAR PLAN
Ne | The name of the stages of the bachelor's | The term of performance Note
in work of work stages
order
1 Selectlon of scientific and technical 5.02.23-27.02.23 Done
literature
2 | Analysis and research of existing 78.02.23-10.03.23 Done
analogues
3 | Modeling, system design 13.03.23-24.03.23 Done
4 | Development of the main functionality 27.03.23-28.04.23 Done
of the system
5 | Conclusions and design of the work 08.05.23-12.05.23 Done
6 | Development of mandatory | 5 (593 960523 Done
demonstration materials
7 | Preliminary work protection 23.05.23 Done
8 | Submission of work 01.06.23

Student Idrissi Hesham
(mimmmc) (mpi3BuILe Ta iHi{iamm)
Head of work Gamaniuk .M.

(migmue) (mpi3BHILE Ta iHiI[iaIN)

ABSTRACT

The text part of the bachelor thesis: 47 pp., 1 table, 40 figures, 2 appendices, 15
sources.

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE), CRUD
REQUESTS, JSON FORMAT, UNIFIED MODELING LANGUAGE (UML).

Keeping records of a book collection involves a large amount of data, inefficient
processing by human resources and a high risk of errors.

Object of study: The process of accounting for books in the collection.

Subject of study: Application for accounting of books in the collection.

The purpose of the work: Automatisation of the accounting process of books in
the collection.

Research methods are a unified process of creating software.

Based on the results of the completed work, an application for book collection
accounting was developed, which allows implementing information support and
updating the database.

Using the created application will allow you to get reliable and timely

information about the availability of books in the collection.

CONTENT

INTRODUCGTION. cctttttttieeeeeee et e ettt ettt ee s e s e e e e e e e eeetetnbabaa s saseeeeeeeseteaessssansaasasseeeeeeesesesensnsassesennneesnnseensnnns 8
1 ACCOUNTING OF THE BOOK COLLECTION AS A COMPONENT OF THE COLLECTION PROCESSccc.uuuun.... 9
1.1 Organization of accounting in the modern collection ProCess.......cccvvcurieeeeeerciiieee e 9
1.2 Accounting in conditions of digitization of life........cceeveiiiiiii i 9

2 ANALYSIS OF AVAILABLE TOOLS AND TECHNOLOGIES FOR ORGANIZING ACCOUNTING OF BOOKS IN THE
COLLECTION. ..t ttttttttteeeee e et e ettt ettt e e e e e e e e e e et e et aeb e s b e seseeeeeaeasaaeessssaas s seseeeeeeesssesssssssnnsssnsseeseeeesesennnn 11
2.1 Analysis of existing programs for accounting of books in the collection..........ccccceeeeiieieeeeennnnnl. 11
2.2 Selection of software development technologies and toOls..........ccccccvieeeiiiiiiiii e, 16
B @ =Y V= VT = SRRt 16
2.2.2 Visual Studio integrated development enVironmMeNt........ccccveeeeeiiciiiieececciieee e 17
2.2.3 The .Net Framework platform...... ..o 18
2.2.4 Online UML diagram editor UMLEtINO......ccovviiiiiii i 18
2. 2.5 JSON FOMMIAT.ciiuiiiiiiiiie ettt ettt sttt e s b e bt s b e s b e e sabeesabeesaneesaneeeeeas 19
3 INFORMATION SYSTEM MODELING AND DESIGN......uuuiiiiiiititttiiteeteeaeeeee ettt e eeeeeeeena e e e e eeeennaeeeas 21
I VA oY W) o YTy (=T o o SRRSOt 21
3.1 Analysis of the subject area MOEL...........ooeiiiiiiiiiii e 23
3.1.1 Electronic tables for displaying the subject area..........cccccoeeciieeieiicciiieee e, 23
3.2 MOdEl Of PrECEABNTS.......viiiiii it e e e e et e e e e s bt a e e e e e ssbtaeaeeaaaaaaaeeseeeeeeeeseennnnes 27
TG B B 1Ty P o o Yo [SRR 31
TR T8 Yot 41V YA o =Ty T o DU SUR SRR 31
3.3.2 Designing the sequence of method calls and object interaction.........ccceeeveeviiiciiiiinninnnnnnn.. 33
R TR 0] o 1<) =) <RSPPI 35
3.3.4 Designing classes and relationships between objects.........cccccevveciiieeiiiiciieee e, 37
TG TR T) =Y (i [Ty = o RPNt 39
3.3.6 System deployment deSIZN......ccuii i a e e e e e 41
R\ ol o 11 (=T U TP ST P R PPPPRPP 42
A TESTING. ettt ettt ettt ettt st e bt e bt e bt st e st e e s a bt e sh et e sb et e b et e beesab e e sa b e e sab e e saneeabee e beeesaanraneeeeannres 44
CONCLUSIONS. .. et e ettt ettt e e e e e e e e e e e e e et e ae e e ba s e e s e eeeeeeeeeenessssaaa s e eeaaesenansaeennssarnnnssanenn 45
REFERENGCES......ceeeeeeiitiiie ettt et et e e e e e e e e e e e bbbt e et e et e e e eeeaeeeeeesaaaaa e nasenbsebaeeebna s eeeeeeesnnasaeaanee 46
ANINEX A et e e e e e e et ettt ettt b e e e e e e e e e e et et et e bt e eeeeeeeee ettt e e bt ba i aaeeeeeeee et enan e e araeeeaaans 48

ANNEX Bttt e e e e e et a e e e et aa s 58

INTRODUCTION

Today, people and information technologies are closely related to each other. In
the conditions of modern information development, it is necessary to continuously
improve the current activity of people by automating its life processes. Involvement of
information technologies in book collection accounting will allow reliable storage of
data, make their display more convenient, speed up search, dramatically increase
processing speed and accuracy of results.

There are a certain number of programs for accounting for a book collection. In
most cases, it is a cumbersome piece of software that covers almost every aspect of a
person's book collection accounting and is not convenient when a private, lightweight
application is needed.

Therefore, the chosen topic of work is relevant.

Object of study: The process of accounting for books in the collection.

Subject of study: Application for accounting of books in the collection.

The purpose of the work: Automatisation of the accounting process of books in
the collection.

The following tasks were solved in the study:

- study of the method of organizing the accounting process of books in the
collection;

- definition of basic functions;

- application development according to modeling.

Research methodology: unified software creation process.

Practical significance of the results: this product can be used to account for a

collection of books.

9
1 ACCOUNTING OF THE BOOK COLLECTION AS A COMPONENT OF THE
COLLECTION PROCESS

1.1 Organization of accounting in the modern collection process

The purpose of human activity is to create value. One of the types of value
creation 1s book collecting. The process of book collecting plays an important role,
because book collecting as a component of the overall process of value creation is the
final stage of the movement of a product from the entertainment sphere to the sphere of
cultural heritage.

Clear, timely, properly organized accounting of books in the collection
contributes to strengthening control over the availability of books, providing collectors
with information and accelerating the exchange of books between collectors.

The software allows a person to compile book accounting records of book

purchases and book movement in terms of book exchange between collectors.

1.2 Accounting in conditions of digitization of life

The growing role of information technologies as a factor in social life led to the
transition to an information society and the formation of digitization of life, which is a
defining trend of global socio-economic development. The latest stage is characterized
by constant technological innovations, the production of information products and
services, the use of computer networks and the global information space for effective
communication.

Significant technological changes stimulate the modernization of accounting
science, contribute to the development of the methodology and organization of the
accounting process, and also actualize the problem of positioning the accounting

system.

10

Further scientific achievements in this area are extremely important - new
concepts, development of certain types of accounting, because in the conditions of the
development of the information society and the digital economy, a number of
prerequisites for the formation of a new accounting paradigm arise.

Digital technologies are currently used in all areas of social life: in the system of
public administration, economy, business, social sphere. Such a transformation speeds
up economic and social processes, makes them more qualitative.

At the same time, under the influence of modern information systems and
information technologies, significant changes are taking place in accounting
methodology and practice, which actualize the feasibility of developing an accounting
paradigm adequate to the new conditions.

At the same time, during the last decades, problems related to the decrease in the
functionality of accounting have accumulated, caused by its conservatism, the lack of
informational value of accounting information for interested parties, which led to a
number of studies at the fundamental level, and at the practical level - the search for
ways to update accounting and increase the level of its compliance information to user

requests [1].

11
2 ANALYSIS OF AVAILABLE TOOLS AND TECHNOLOGIES FOR
ORGANIZING ACCOUNTING OF BOOKS IN THE COLLECTION

2.1 Analysis of existing programs for accounting of books in the collection

The book accounting program in the collection is an important tool for effective
collecting. Automated systems can improve collection productivity. With their help, you
can optimize not only the book exchange process, but also book accounting. Control of
the number and balance of books of the same type helps to optimize the planning of
their exchange.

Software products contain functionality that facilitates the performance of many
operations. When they are used, it is possible to exchange information faster and
improve collection productivity.

The most popular programs in this niche are:

1. “Reading List: Book Tracker”

Easily track books you’ve read, books you’re reading, and books you want to
read. Record your progress by adding the start and finish date of your books. [2].

The program has the following interface (Figure 2.1 — 2.4):

Log your books

To Read. Reading. Finished,

Figure 2.1 — Registration of your books

i
s
-
-
3
=
-
-
a-

Record progress

Status. Start. Finish. Read Time.

Figure 2.2 — Record reading progress

View statistics

Learn about your reading habits.

Figure 2.3 — Overview of statistics

12

13

Powerful search

Check if you've read it.

Figure 2.4 — Information search

2. “Turn - Reading Tracker & Timer”

Turn - Reading Tracker is designed as a book tracker and library tracker to help
you track your reading habits and organize your book collection effortlessly while you

read. Some of the features are detailed below [3].

The program interface is as follows (Figure 2.5, 2.6):

Track your reading
with ease

ol rweiding

e
el -F.':-'.- ox

: Hﬁ)| :

2=
e

Figure 2.5 — Tracking the reading

Search or scan to

add books
02:16 .
X Search Online
the hobbit

RS0l The Hobbit, Or, There and Back ...

B John Ronald Reuel Tolkien

- The Hobbit, Or, There and Back ...

J. R. R. Tolkien

The Hobbit (Enhanced Edition)

R. R. Tolkien

| The Hobbit, Or, There and Back ...

John Ronald Reuel Tolkien
|

Al & The Hobbit: Illustrated Edition
wEm® . R. R. Tolkien

S

Figure 2.6 — Search and add books

3. “Bookmory - reading tracker”

Bookmory helps you track your reading, manage your books, build a lasting

reading habit, and better remember what you read.

Add books, e-books or audiobooks to your bookshelf.

Use the timer to track your reading. Improve your reading habits with insightful
stats. Stay motivated with reading goals.

Remember what you read by writing and reviewing notes. [4].

The program interface is as follows (Figure 2.7, 2.8):

14

Write & Check

Winte how far wou have read

S DeEN COvVErosd

St

h o]

b]
Too read lacer

AR 3 A S S

Figure 2.7 — Reading progress

Remember

Read and remember
your notes

Sapiens

Sapiens

Figure 2.8 — Actions with notes

16
So, the above-mentioned programs have a convenient interface and good
functionality, but they lack privacy, ease of use, lightweight, and ease of maintenance.
However, the created project takes this into account.
The results of the image analysis are in the Table 2.1.

Table 2.1 — Analysis of analogues

Reading List: Book|Turn - Reading|Bookmory - reading|BookSea
Tracker Tracker & Timer tracker
Private - - - +
Simple using + - + +
Lightweight + + - +
Ease of maintenance | - + + +

2.2 Selection of software development technologies and tools

To create software for accounting of books in the collection, it is necessary to
choose development tools. Development tools include: programming language,
integrated development environment, database management system, editor of UML

diagrams.

2.2.1 C# language

To implement this project in the Microsoft Visual Studio development
environment, the C# programming language is used, which is an element of the .Net
Framework. For the development of any application on the Windows operating system,
the .Net environment is created, while the C# language is used together with the .Net
Framework. Therefore, at the moment, the combination of C# and .Net is the most
productive for programmers.

C# is a modern, universal, object-oriented programming language developed by

Microsoft.

17

This programming language is very easy to learn. It is important to note that an
application written in C# can be deployed on any operating system such as Android,
10S, Windows, or a cloud platform.

There are many important features of C# that make it more useful and unique
compared to other languages:

- very fast, its compilation and execution time do not take much time;

- has a rich set of library functions and data types;

- is one of the modern programming languages;

- is type-safe code that can only access a memory location and has execute
permission. Thus, it improves the security of the application;

- to solve large problems, programming in C# divides the problem into smaller
modules called functions or procedures, each of which has a specific responsibility,
which is why C# is called a structured programming language.

- very fast, its compilation and execution time do not take much time.

But C# also has certain disadvantages:

- is completely based on the Microsoft .Net platform, so this language is not
flexible;

- after making changes in the written code, it must be recompiled [6].

2.2.2 Visual Studio integrated development environment

An Integrated Development Environment (IDE) is software for creating programs
that combines common developer tools into a single Graphical User Interface (GUI).

An IDE consists of:

- source code editor: a text editor that can help you write software code with
features such as syntax highlighting with visual hints, language-specific
autocompletion, and error checking as you write code.

- local build automation: compilation of computer source code into binary code,
packaging of binary code and launch of automated tests.

- debugger: a program for testing other programs that can graphically display the

location of the error in the original code [7].

18
Microsoft Visual Studio is an integrated environment created by Microsoft
Corporation for developing graphical user interface, console, web applications, web
applications, mobile applications, cloud applications and web services, etc. With the
help of this IDE, you can make managed, as well as write your own code. Visual Studio
(VS) uses various software platforms, which include: Windows Store, Microsoft
Silverlight, Windows API. VS is used to write code in such languages as: C#, C++, VB
(Visual Basic), Python, JavaScript, etc. [8].

2.2.3 The .Net Framework platform

.Net Framework is a software development platform produced by Microsoft
Corporation for building and running Windows applications. The platform consists of
developer tools, programming languages, and libraries for writing desktop and web
applications, as well as web services and games. It supports various programming
languages. Thus, developers can choose the language to develop the required
application. Visual Basic and C# are popular.

The .NET Framework has a set of standard class libraries. A class library is a set
of methods and functions that can be used for a given task. Programs using the .NET

framework can run on all Windows platforms [9].

2.2.4 Online UML diagram editor UMLetino

UMLetino is an online tool for building and editing UML diagrams.

Main features: web application without installation, export of files in PNG, EPS,
PDF, JPG, SVG formats, simple modifications of UML elements based on markup,
saving of diagrams in browser storage, support for all types of UML diagrams.

UMLetino supports the following types of UML diagrams: class diagrams, use
case diagrams, sequence diagrams, state diagrams, deployment diagrams, activity
diagrams, and others [5].

It looks like this (Figure 2.9):

& C @& umletino.com/umletino.html = ¥ 0O o :

‘ UML Common Elements v ‘

Version 15.1

KeyInfo

File Import
File Export

%2 Import
33 Export

Save

Double-click on an element to add it to the diagram (or use drag&drop)

<Import> uxf Files using the Menu or simply drag them into the diagram
<Export> diagrams to Standalone-UMLet-compatikle uxf or png
<Save> diagrams to persistent browser storage

Only new elements wark in standalone and web umlet

Please report bugs at https://github.com/umlet/umlet/

Properties
Space for diagram notes

Figure 2.9 — UMLetino interface

2.2.5 JSON format

There i1s information: a list of books, a list of authors, a list of author
endorsements for books, etc. The question is where to store all this information.

Currently, a popular way to implement data storage in applications is to use files
in JSON format.

JSON (Figure. 2.10) is a text format for exchanging data between computers.
JSON is text-based and human-readable. This format allows you to describe objects and
other data structures. It is mainly used to transmit structured information over the
network.

JSON is based on two rules:

1. a set of name-value pairs (embodied in different languages as an object, record,
structure, dictionary, hash table, key list or associative array);

2. an ordered list of values (implied in many languages as an array, vector, list, or

sequence).

20

"Id":1,

"Title":"C# 8.8 and .NET Core 3.8",

"IssueDate”:"20819-18-31T00:00:80",

"Summary”:"In C# 8.8 and .MNET Core 3.8 ‘\u2813 Modern Cross-Platform Development, Fourth
Edition, expert teacher Mark J. Price gives you ewverything you need to start programming C#
applications.”

Ty
{

"Id":2,

"Title":"Head First C#",

"IssueDate":"2021-01-26TE0:80:00",

"Summary":"Dive into C# and create apps, user interfaces, games, and more using this fun and
highly wisuwal introduction to C#, .MET Core, and Visual Studio.”

Fs
{

"Id":3,

"Title":"C# 8.0 Pocket Reference",

"IssueDate”:"2019-12-10TG0:00:80",

"Summary”: "When you need answers about using C# 8.8, this tightly focused and practical book
tells you exactly what you need to know without long intros or bloated samples.™

h
1

Figure 2.10 — JSON example

It is advantageous to use json files when you need to store loosely coupled
structures, but JSON becomes inefficient when storing structures that are tightly

coupled.

21
3 INFORMATION SYSTEM MODELING AND DESIGN

3.1 Vision of the system

A system vision is a conceptual document that defines the place and role of the

information system under development.

Vision of the system

Date of amendment: 01.05.2022

Version: Final version.

Date: 01.05.2022

Description: Final version. All clarifications are taken into account.

Introduction:

A reliable private application.

Positioning:

Economic prerequisites:

- Existing software products are free, have a convenient interface and good
functionality, but do not provide privacy, their use without the Internet, ease and
simplicity of maintenance.

- To ensure the operation of the application, it is not planned to spend money on
the Internet and support by programming specialists.

- To reduce the costs of using existing database management systems, it is
planned to store data in JSON format.

Formulation of the problem:

- It 1s necessary to create an application that records the books in the collection,
but which ensures privacy, does not involve the use of the Internet and database
management systems, and also does not involve the support of programming specialists.

System place:

- The system is intended for private use. It does not interact with other systems.

22

- The system is intended for a person who likes to collect books. It records the
books in the collection.

Interested persons:

- User - for accounting of books in the collection.

Basic high-level tasks:

- Accounting of books in the collection;

- Search and presentation of information about books in the collection.

User level tasks:

- Management of information about books

- Search for books by information

- Management of information about authors

- Search for authors by information

Review:

- Product perspective: the system will serve only the user and will not interact

with other systems (Figure 3.1).

N

User

Figure 3.1 — Context diagram

A Context Diagram shows the interaction between the system and other actors
(external factors) with which the system is designed to interact. The context diagram
shows the entire system as a single process [10].

Advantages of the system:

- Private system.

- Does not require funds for use and support.

Assumptions and dependencies:

23

- It is assumed that the application will be interesting for private individuals and
they will buy it.

Cost and pricing:

- Cost of system development calculated separately.

Licensing and installation:

- It 1s planned to carry out licensing (certification) of the system.
Install the system after licensing.

Main properties of the system:

- Management of information about books.

- Search for books by information.

- Management of information about authors.

- Search for authors by information.

Other requirements and restrictions:

- The application must be private.

- Internet will not be required when using.

- Will not use a lot of computer RAM.

- Use the .NET framework.

- Use JSON data format.

3.1 Analysis of the subject area model

3.1.1 Electronic tables for displaying the subject area

Spreadsheets can be used to represent the subject environment. With its help, it is
easier to understand the structure of the construction of the UML diagram of the subject
area, and later to write the code.

For this, several tables are created (Figure 3.2, 3.3):

Book
Id [Title IssueDate |Summary
In C# 8.0 and .MET Core 3.0 — Modern Cross-
Platform Development, Fourth Edition, expert
teacher Mark J. Price gives you everything you
1|1C# 8.0 and NET Core 3.0 |31 Oct. 2019 |need to start programming C# applications.
Dive into C# and create apps, user interfaces,
games, and mare using this fun and highly visual
2|Head First C# 26 Jan. 2021 |introduction to C#. MET Core, and Visual Studio.
WWhen you need answers about using C# 8.0, this
tightly focused and practical book tells you
exactly what you need to know without long intros
J|C# 8.0 Pocket Reference [10 Dec. 2019|or bloated samples.
Author
Id FirstName |LastName
1|Mark J. Price
2lAndrew Stellman
JlJospeh Albahari
4|Ben Albahari

Figure 3.2 — Book and Author spreadsheets

BookAuthor
Id Bookld Authorld
1 1 1
2 2 2
3 3 3
4 3 4

Figure 3.3 — Fixing spreadsheets of books by authors

24

One book can have many authors and one author can have many books. Thus, the

relation here is many to many.

Based on the tables, we can construct the following diagram of the subject area

(Figure 3.4):

Book Authaor
Id . Id
BookMame Wi FirstMame
SecondMame

BookAuthar
Id
Bookld
Authorld

Figure 3.4 — Domain model diagram

JSON notation objects are formatted using code (Figure 3.5 — 3.7):

internal class Book : IId

{

public int Id { get; set; }

ﬁﬁbfif string Title { get; set; }

public DateTime IssueDate { get; set; }

ﬁﬁbfif-string Summary { get; set; }

public Book(string title, DateTime issueDate, string summary)
{

Title = title;

IssueDate = issueDate;

Summary = sSummary;

}

public override string ToString()
{
return string.Format(Id + " " + Title + " " + IssueDate + " " + Summary);

b

Figure 3.5 — Book model

25

26

internal class Author : IId

{
public int Id { get; set; }
puE{ic string FirstName { get; set; }
ﬁﬁéiié-string LastName { get; set; }
puE{ic Author(string firstName, string lastName)
{
FirstName = firstName;
LastName = lastName;
}
ﬁﬁﬁfiﬁ-nverride string ToString()
{
return string.Format(Id + " " + FirstName + " " + LastName];
}
]

Figure 3.6 — Author model

internal class BookAuthor : IId

{
public int Id { get; set; }
public int BookId { get; set; }
ﬁﬂﬁfié-int AuthorId { get; set; }
puE{ic BookAuthor(int bookId, int authorId)
{
BookId = bookId;
AuthorId = authorId;
Y
puB{ic override string ToString()
{
return string.Format(Id + " " + BookId + " " + AuthorId);
b
}

Figure 3.7 — BookAuthor model

27

3.2 Model of precedents

The UML diagram of precedents (Use-Case Diagram) models the behavior of the
system. This diagram defines the interactions between the system and its participants
(actors). Use cases and actors in diagrams describe what the system does and how
participants use it, but not how the system works internally [11].

A diagram of book precedents is presented in Figure 3.8.

System

Book CRUD

User

FindBookByYear

Figure 3.8 — User actions on books

The Book CRUD precedent is implemented at three levels: Presentation Layer,
Business Logic Layer, and Data Access Layer. At the Business Logic Layer, Book
CRUD is implemented in the BookBLL class (Figure 3.9).

28

iH%érnal class BookBLL

{
DE db;

public BookBLL(DE db)
{
this.db = db:

r

b

R

public int CreateBook(string title, DateTime issueDate, string summary)
i

Book book = new Book(title, issueDate, summary);

return db.DBBook.AddItem(book);

ublic Book GetBookById(int id)

i T O

return db.DBBook.GetItemById(id);
}

pubfif bool DeleteBookByBook({Book book)
{

return db.DBBook.DeleteltemByItem(book);
b

public bool UpdateBook(Book oldBook, string title, DateTime issueDate, string summary)
{

Book newBook = new Book(title, issueDate, summary);
return db.DBBook.Update(oldBook, newBook);

Hﬁfic List<Book> GetAllBooks()

s = IR

return db.DEBook.Items;

Figure 3.9 — CRUD methods

The Find book by author precedent is implemented at three levels: Presentation
Layer, Business Logic Layer, and Data Access Layer. At the Business Logic Layer, the
precedent is implemented in the BookServiceBLL class by GetBooksByAuthorld()
method (Figure 3.10).

29

public List<Book> GetBooksByAuthorId({int id)

f
List<Book> booksByAuthorId = new List<Book=();
foreach (Author a in db.DBAuthor.Items)
{

if (a.Id == id)
{

foreach (Bookfuthor ba in db.DBBookfAuthor.Items)
{

if (a.Id == ba.AuthorId)

{
foreach (Book b in db.DBBook.Items)
f
if (b.Id== ba.BookId)
f
booksByAuthorId.Add(b);
1
}
}

}
1

return booksByAuthorId;

Figure 3.10 — Find book by author method

The Find book by year precedent is implemented at three levels: Presentation
Layer, Business Logic Layer, and Data Access Layer. At the Business Logic Layer, the

precedent is implemented in the BookServiceBLL class by GetBooksByYear() method
(Figure 3.11).

public List=Book> GetBooksByYear(int year)
{
List<Book> books = new List<Book=(];
foreach (Book b in db.DBBook.Items)
{

if (b.IssueDate.¥Year == year)
{
books . Add(b) ;
1
¥

return books;

Figure 3.11 — Find book by year method

A diagram of book precedents is presented in Figure 3.12.

30

System

Uzer

FindAuthorsByBook

Figure 3.12 — User actions on authors

The Author CRUD precedent is implemented at three levels: Presentation Layer,
Business Logic Layer, and Data Access Layer. At the Business Logic Layer, the
precedent is implemented in the AuthorBLL class (Figure 3.13).

public int CreateAuthor(string firstName, string lastMName])
f
Author auther = new Author(firstName,K lastName);
return db.DBAuthor.AddItem(auther];
}

public Author GetAwthorById(int id)
{

return db.DBAuthor.GetItemById(id);
b

ﬁdbfﬁc-buul DeleteAuthorByAuthor{Author author)
i

return db.DBAuthor.DeleteltemByItem{author);
b

ﬁﬁbfic-bnul Updatefuthor(Author oldAuther, string firstName, string lastName)
{

Author newAuther = new Author(firstMame, K lastName]l;

return db.DBAuthor.Update(oldAuthor, newAuthor);
b

ﬁuﬁfif-Lis:<A¢trcrr GetAllAuthors()
{

return db.DBAuthor.Items;
¥

Figure 3.13 — CRUD methods

31

The Find authors by book precedent is implemented at three levels: Presentation

Layer, Business Logic Layer, and Data Access Layer. At the Business Logic Layer, the

precedent i1s implemented in the AuthorServiceBLL class by GetAuthorsByBook()
method (Figure 3.14).

public List=futhor> GetAuthorsByBook{int id)
{
List<Author> authers = new List<Author=();
foreach (Book book in db.DBBook.Items)
{
if (book.Id == id)
{
foreach (Bookfuthor ba in db.DBBookAuthor.Items)
{
if {(book.Id == ba.BookId)
{
foreach (Author a in db.DBAuthor.Items)
{
if (a.Id == ba.AuthorId)
{
authors.Add{a);

}

§
}
lreturn authors;

b

Figure 3.14 — Find authors by book method

3.3 Design model

3.3.1 Activity design

Activity diagrams are graphical representations of workflows of stepwise
activities and actions with support for choice, iteration and concurrency. In the Unified
Modeling Language, activity diagrams are intended to model both computational and
organizational processes (i.e., workflows), as well as the data flows intersecting with the
related activities. Although activity diagrams primarily show the overall flow of control,
they can also include elements showing the flow of data between activities through one
or more data stores. [12].

The diagram shown in Figure 3.15 describes the workflow for entering

information about books and the authors who wrote them.

32

?

i ™y

Put in information Checking already recorded
about the book information about the book

e A

)]

W

i ™
~ |Put in information

kabc.ﬂ: the a.JthDrJ [ro information]

add mare J/

add more book

Figure 3.15 — Workflow for entering information about books and the authors

At the Presentation Layer, the workflow is implemented in the BookPL class by
CreateBook() method (Figure 3.16).

private bool CheckBookAvailability(string title, DateTime issueDate)
f

return bookBLL.CheckBookAvailability(title, issueDatel;
1

public woid CreateBook({bool addAuthor)

i
string title = Helper.StringInputCheck{"Create Book Title?: ", 58);
DateTime issueDate = Helper.DateTimeInputCheck("Issue Date?: ");

bool isAvailable = CheckBeokAvailability(title, issueDate];

if (lisAvailable)
i
string summary = Helper.StringInputCheck("Summary?: ", 158);

int bookId = beoekBLL.CreateBook(title, issueDate, summary);

while (addAutheor)

i
int authorId = autherPL.CreateAuthor(]};
bookAthorBLL.CreateBookAuthor(bookId, autheorId);
Console.WriteLine("Add more authors?(y/nl): "J);
if ("y" != Console.ReadlLine(])
i

addAuthor = false;

¥

]

i

else { Console.WriteLine("The beek is Available"); }

Figure 3.16 — Create book method

3.3.2 Designing the sequence of method calls and object interaction

33

A sequence diagram or system sequence diagram (SSD) shows process

interactions arranged in time sequence in the field of software engineering. It depicts the

processes and objects involved and the sequence of messages exchanged between the

processes and objects needed to carry out the functionality. Sequence diagrams are

typically associated with use case realizations [13].

The following diagram (Figure 3.17, 3.19) describes the interaction of objects

implementing the user case for obtaining information about all books and the authors

who wrote them.

‘BookServicePL

GetAllBooksAuthars

‘BookServiceBLL

ametaclasss

| | Console
| | I
| |
> | |
I bookAuthorVMs = GEtAIIE‘.DCkE:’-\UII"DﬁIﬂIH :
|
| | |
|EDDJ : : :
[BookAuthdrVM ba in bookAuthorVis] :
|
WriteLine({ka) : |
I 'l
|
|

Figure 3.16 — GetAllBooksAuthors() method on Presentation Layer

public woid GetAllBooksAuthors()
{

List<BookAuthorVM> bookAuthorVMs = bookServiceBLL.GetAllBooksAuthors();

foreach (BookAuthorVM ba in bookAuthorVMs)
{
Console.WritelLine(bal;

}

Figure 3.17 — The implementation of the sequence diagram shown in Figure 3.16

At the Business Logic Layer, objects interact as shown in Figure 3.18.

‘BookServiceBLL

GetAllBooksfuthors .‘:

new . booksAuthors:List=BookAuthorV V=

loop J |

[Book b in cat:.DBBook_Items]

T
loop J 1
[

[BookA

=

thaor ba in dn.DBBDDI{AuthD-’_It%ms]

opt]

[b.Id 3= ba.Bookld]

4 - L

loop

[Author a in db.DBAuthor Items]
|

oot)

[ald == ba_Authorld]

bookfuthorVM = newl(b.Title,

a. FirstMame, a.LastName].‘

Add(bookfuthorVM)

:BookAuthorVM

>

{ booksAuthors

Figure 3.18 — GetAllBooksAuthors() method on Business Logic Layer

34

Figure 3.19 shows the GetAllBooksAuthors() method in code on Business Logic

Layer.

public List<BookAuthorVM> GetAllBooksAuthors()
{

List<BookAuthorVM> booksAuthors = new List<BookAuthorVM=();

foreach (Book b in db.DBBook.Items)

BookAuthorVM bookAuthorVM = new BookAuthorVM(b.Title, a.FirstMName, a.lLastMame);

{
foreach{BookAuthor ba in db.DBBookAuthor.Items)
{
if (b.Id == ba.BookId)
{
foreach (Author a in db.DBAuthor.Items)
{
if {(a.Id == ba.AuthorId)
{
booksAuthors.Add(bookAuthorVM) ;
}
}
}
i
1

return booksAuthors;

Figure 3.19 — The implementation of the sequence diagram shown in Figure 3.18

35

3.3.3 Object states

We have a precedent for entering information about the book, as well as adding

the authors who wrote it (Figure 3.20).

Checking already

«includes _ t]
- recorded book information

=extends
oy

.

User -
Create author

Figure 3.20 — Precedent for adding a book to a collection

Pesynbrar BukoHaHHs mnpereacHTy Create book 300pakeHO Ha jgiarpamax

o0'exTiB (Pucynok 3.21, 3.22).

db:IDE

| DBAuthor : IDBItem<Author=> | DEBook : IDBItem<Book> | ‘ DEBookAuthor : IDEItem<BookAuthor>
Items : List<Author> Items : List<Book> Items : List<BookAuthor>
Count=5 Count=5 Count=6&
[0] : Author [0] : Book [0] : BookAuthor
Id=1 Id=1 Id =1
Firsthame = "FN1" Title = "T1™ Bookld =1
LastMame = "LN1" IssueDate = "10.05.67" Authorld=1
Summary = "51"
[1] : Author [1] : BookAuthor
. [1] : Book .
Id=2 — Id=2
FirstName = "FN2" d=2 Bookld = 1
LastMame = "LN2" '_I'|t|e ="T2 Authorld= 2
IzssueDate = "05.09.45"
Summary = "52"
[2] : Author [2] : BookAuthor
Id=3 [2] : Book Id=3
Firstlame = "FN3” Id=23 Bookld =2
LastMame = "LN3" Title = "T3" Authorld=3
IssueDate = "01.10.37"
Summary = "53" [3] : BookAutheor
Id=4
Bookld =3
Authorld= 3

Figure 3.21 — Before event - add book and authors

db: IDB

N T

DBAuthor : IDBItem<Author>

DEBook : IDBItem<Book=>

DEBookAuthor : IDBItermn<BookAuthor:

authors

Items : List<Author= Itemns : List<Book> Items : List<BookAuthor>
Count=5 Count=5 Count=6
[0] : Author [0] : Bock [0] : BookAuthor
Id=1 Id=1 Id="1
FirstMame = "FN1" Title="T1" Bookld =1
LastMame = "LN1" IssueDate = "10.05.67" Authorld= 1
Summary = 51"
[1] : Author [1] : BookAuther
. [1] : Bock -
Id=2 — Id=2
FirstName = "FN2" d=2 Bookld = 1
LastMame = "LMN2" T'tle ="T2 Authorld=2
IssueDate = "05.09 45"
Summary = "52"
[2] : Author [2] : BookAuthor
Id=3 [2] : Book Id=3
Firsthlame = "FN3" 1d=3 Bookld =2
LastMame = "LN3" Title = "T2" Authorld=3
IssueDarte = "01.10.37"
[3] : Authar Summary = "33" [3] : BookAuthor
Id=4 Id=4
FirstName = "FN4” (2] : Book Bookld =3
LastName = "LN4" Id=4 Authorld=3
Title = "T4"
IssueDate = "17.05.23" N
[4] : Author Summary = "54" [4] : BookAuthor
Id=5 Id=5
Firsthame = "FN5" BooklId =4
LastMame = "LN5" Authorld=4

Before the precedent was executed, there were 3 books in the DBBook database, 3

in DBAuthor,

[5] : BookAuthor

Id=6
Bookld =4
Authorld=5

Figure 3.22 — After event - add book and authors

and 4 author fixations for books

36

in DBBookAuthor.

After the precedent, there were 4 books in the DBBook database, 5 authors in

DBAuthor, and 6 author fixations for books in DBBookAuthor.

3MmiHy KiIbKOCTi 00'ekTiB B 6a31 nanux DBBook moxHna cnioctepiratu i B Visual

Studio mig gac po3pobku (Pucynox 3.23).

37

IBookBLL bookBLL;
TAuthorPL au 4 F3 bookBLL | {BookProject.BusinessLogiclayer.BookBLL} 51
IBookAthorBLLT] 4 g2 db 0| {BookProject. DataAccessLa}rer DB}
¢ A DBAuthor {BookProject.DataAccessLayer.DBltem<BookProject.BusinessLogiclayer.Models.Author=

public BookPL(IBd 4 M DEBook 4| {BookProject. DataAccessLa)rer9?|tem<BookF'm_|ect Eus!nessLogchayer .Models.Book= }

: v |4 Jtems 45| @ Mpocmotp = Count = 4 [Layer.DBltem<BookProject.BusinessLogiclayer.Models.BockAuthor:
this.bookBLL = | * (0] {171 10.05.1967 0:00:00 surmmaryl}
this.authorPL = a| ® @ [1] {2 T2 05.09.1945 0:00:00 surmary2}
this.bookAthorsLL ® & [2] {3 T3 01.10.1937 0:00:00 surnmary3}

} v 03] {474 17.05.2023 0:00:00 54}

¢) Bazoeoe npeacTaBnenne

Figure 3.23 — After event - add book and authors (4 books)

3.3.4 Designing classes and relationships between objects

In software engineering, a class diagram in the Unified Modeling Language
(UML) is a type of static structure diagram that describes the structure of a system by
showing the system's classes, their attributes, operations (or methods), and the
relationships among objects [14].

The class diagram related to the book on the Presentation Layer and Business
Logic Layer is presented in Figure 3.24.

The BookPL class has the IBookPL interface and belongs to the Presentation
Layer. It has a reference to an object of type BookBLL, which has the interface
IBookBLL and belongs to the Business Logic Layer. At the Presentation Layer, the
BookPL class has methods that interact with the user and use View Model classes to
display information for the user. Also, the methods of the BookPL class refer to the
methods of the BookBLL class to implement the corresponding services at the Business
Logic Layer.

On the Business Logic Layer, the BookBLL class has methods that implement
business logic and interact with models, and also refer to the Data Access Layer classes
to implement the corresponding services on the Data Access Layer.
Also, the BookPL class refers to the AuthorPL class and the BookAuthorBLL class to

implement the service of pinning authors for the books they have written.

winterfaces BaookPL

db : IDB

CreateBookAuthor(int bookld, int authorld) @ int
DeleteBookAutherByBookAuthor{BookAuthor bookAuther) @ bool
GetAllBookAuthors() : List<BookAuthor=

GetBookAuthorByld(int id) : BookAuthor

UpdateBookAuthor{BookAuther oldBockAuther, int bookld, int authorld) : bool

[BookPL bookBLL * IBookBLL
BookCreate() authorPL : IAuthorPL
CreateBook() : int bookAthorBLL : IBookAthorBLL
DeleteBook() BookCreate()
GetAllBooks() - CreateBook() © int
GEtBDCkE}‘IdEJ DeleteBook()
UpdateBook{) GetAllBooks()
___________ I ; GetBookByld()

e | P UpdateBook()

| vuse

: «interfaces

| IBookELL

: CreateBooklstring title, DateTime issueDate, string summary) : int

| DeleteBookByBook{Book book) : bool

| GetAllBooks() : List<Book>

: GetBookByld(int id) : Book

| UpdareBook(Book oldBock, string title, DateTime issueDate, string summary) : bool

! 2

«LI%E!O 1

| BookBLL

|

| db : IDBE

: CreateBook(string title, DateTime issueDate, string summary) : int

| DeleteBookByBook({Book book) : bool

| GetAllBooks() : List<Books

| GetBookByld(int id) : Book

: UpdateBook{Book oldBock, string title, DateTime issueDate, string summary) : boal

|

|

TelEes T T T T T 7 a

| AY4

: «interfaces

| IBookAthorBLL

| CreateBookAuthor(int bookId, int authorld) : int

: DeleteBookAuthorByBookAuthor(BookAuthor bookAuthor) @ bool

| GetAllBookAuthors() ! List<BookAuthors

i GetBookAuthorByld(int id) : BookAuthor

: UpdateBookAuthor{BookAuthor oldBookAuthor, int bookld, int authorld) @ bool

I JrAN

! !

|

| BookAthorBLL

|

|

|

|

|

|

|

|

|

|

-
Ny AuthorPL
«interfaces authorBLL : IAuthorBLL
TAuthorPL bookAthorBLL : IBookAthorBLL
AuthorCreate(int bookId) @ int AuthorCreate(int bookId) @ int
CreateAuthor() @ int CreateAuthor() : int
DeleteAuthor() Kl-------- DeleteAuthor()
GetAllAuthaors() GetAllAuthors()
GetAuthorByld() GetAuthorByld()
UpdateAuther() UpdateAuthor()

Figure 3.24 — Class diagram related to the book

3.3.5 State design

A state diagram is a diagram that highlights the event-driven behavior of an

object. It consists of states, transitions, events and actions. It is used to illustrate the

dynamic view of the system. A state diagram is especially important for modeling

interface behavior [15].

The following diagram of the menu states (Figure 3.25) shows the process of
transition from the main menu to the menu of information services about books, to the
menu of information services about authors, and to the menu of management of books

and authors. These three menus are also divided into sub-menus. From each menu there

1s an exit to a lower level.

I/_ Book service menu

1. Find books by author
2. Find books by year
3. Exit

!

Main menu i\l

- 1. Find authors by book
. Book service menu /_% 2 Exit
. Author service menu 2
. CRUD menu

. Exit l'_

l’/_ Author service menu

oY

-b-wru—x_h\\

{_ CRUD menu _\\I

_ Author CRUD menu

. Book CRUD menu

. BookAthor CRUD menu
. Ewit

Pl B0 =

613

;/_ Book-athor CRUD menu _\1‘

1. Create book-athor
3. Get book-athor by Id
4. Delete book-athor
&. Update book-athor
6. Exit

Figure 3.25 — Menu states

fr Author CRUD menu \\q

s RN R SR N

Create suthor
Get all author
Get author by Id
Delete author
Update author
Exit

Book CRUD menu

~

e mon e e Y

Create book
Create book and author
Get all books

Get all books and authors

Get book by Id
Delete book
Update book
Exit

/

The main menu is implemented by the code presented in Figure 3.26.

internal class MainMenu : IMenu
IMenu bookServiceMenu;
IMenu authorServiceMenu;
IMenu crudMemnuw;

e Rt
(e

puh{ic MainMenu({IMenu bookServiceMenu, IMenu authorServiceMenu, IMenu

this.bookServiceMenu = bookServiceMenu;
this.authorServiceMenu = authorServiceMenu;
this.crudMenu = crudMenu;

}

pdﬁfic void Run(]) {
bool flag = true;
while (flag)

{
Console. Writeline("l - Book Service Menu");
Console.Writeline("2 - Author Service Menu®);
Console. WritelLine("3 — CRUD Menu"):
Console.WritelLine("4 — Exit™);
int menuNumber = Helper.IntInputCheck("-> "J;
switch (menuNumber) {
case 1:
bookServiceMenu.Run{);
break;
case 2:
authorServiceMenu.Run();
break;
case 3:
crudfenu.Run();
break;
case 4:
flag = false;
break;
default:
Console. WriteLine{"Error"};
break;
}
¥

Figure 3.26 — Main menu code

crudMenu] {

40

3.3.6 System deployment design

The application is deployed as shown in Figure 3.27.

adevices
:PC

aE¥SCUTIioN environments
* Windows

BookProject.exe D

T
|
|l wgCcesse

DE Vi
Book json D
Aouthor json D

Bookfouthor json D

Figure 3.27 — Deployment diagram

41

42
3.5 Architecture

The application consists of three layers: Presentation Layer, Business Logic

Layer, Data Access Layer.

The architecture is represented by a package diagram (Figure 3.28).

Presentation Layer |

Book_PL
BDCI-(SEI"‘.I'iEE_PL| Menu —

i BookPL
EBookServicePL AuthorCRUDMenu "7 1BockPL
[EookServicePL . | AuthorServiceMenu P _

4 BookCRUDMenu - -
1 BookServiceMenu -
- . Author_PL
./ | CRUDMenu Ty =
¢ | 1Menu x\ J_"'.utm:urF’L
AuthorService_PL 5:; MainMenu \ TAuthorPL
AuthorServicePL \\
[AuthorServicePL "\ BookAuthor PL
2d BookAutharPL
[BookAuthorPL
T
|
Av
Business Logic Layer
Book_BLL
BookBLL BookService_BLL
[BookBLL % 4 BookService BLL
b Medels s * |1BookServiceBLL
Author_BLL | "\ [Author [’
| Book
AuthorBLL L _ _ | BookAuthor N
[AuthorBLL BookAuthorVM ~ . :
ﬂ d ~ | AuthorService_BLL
- _ s AuthorServiceBLL
BookAuther BLL | L [AuthorServiceBLL
BookAuthorBLL ‘
[BookAuthorBLL
T
i
A"

Data Access Layer |

DE_DAL DBItern_DAL

DB ____:_> DBItemn
IDBE IDBItemn

Figure 3.28 — Architecture

VY mporpami naketu BUTIsAaI0Th Tak (PucyHnok 3.29):

F]

04 Pewenne "BookProject” (1 npoekTa 1)
4 BookProject
b0 3aEmcumocti

E1 BusinessLogiclayer

v

B3 Author BLL

B3 AuthorServiceBLL
Bl Book BLL

B3 BookAuthor BLL
1 BookService_BLL
E1 Models

E] DatahccessLayer
EJ PresentationLayer

Bl Author_PL

B0 AuthorService PL
1 Book_PL

Bl BookService_PL
EJ Menu

ol B v v

C# Helper.cs

B

Ct Prograrm.cs

Figure 3.29 — View of packages in the project

43

4 TESTING

Unit testing was performed in this project.

44

Testing was done on the DBItem<T> class. The DBItemTest class has methods

that test:

1. Addltem_Toltems(): whether a new object is added to the database;

2. AddItemAdd1Told(): is added to Id 1;

3. GetltemGetByld(): is it possible to find the desired object by Id;

4. Deleteltem_Test(): whether the item is deleted;

5. UpdateltemTrue(): whether the selected item changes correctly;

6. UpdateltemFalse(): does the selected item change correctly;

7. UpdateltemOldListAndNewListAreEquivalent(): whether the selected item in

the collection changes.

The test results are presented below (Figure 4.1):

* A X
ol
A Mpeaynpexy € Cwnbok: 0

OBo3zpeeatens TeCTOR
P -F & - [- Mowck (Ctrl+[)
3anyck TecToB 3aBeplueH: Tectoes 3anywero & 303 mo 7 (npofigeno: 7, He nporgeno: 0, npomyweno: 0).
Tectvposanue Anvrenshoc lNpusHakn | Coobwenwe ofb ownbre
a9 BookProjectTest (7) 28 mc
49 BookProjectTest (7) 28 mc
4 @ DBitemTest (7) 28 mc
@ Additem_Add1Told 1 mc
@ AdditemToltems 22 mc
@ DeleteltemTest 1 mc
@ Getltem_GetByld 2 Mc
@ Updateltem_False 1 mc
] Updateltem_OldListAndMNewLlist... 1 mc
(] Updateltern_True < 1 mc

Figure 4.1 — Test results

Ceogra no rpynne
BookProjectTest
Tectwl B rpynne: 7
(5) OBLLaR AnUTENEH]

Pe3ynbTatkl
@ 7Npoiipen

45

CONCLUSIONS

1. The model of the subject field (diagram of the subject field) has been
modulated.

2. Modulated the case model (case set and use case diagram).

3. The design model (diagrams of activities, sequences, classes) has been
modulated.

4. The application has been created.

46
REFERENCES

1. Accounting in the digital economy [Electronic resource] — Resource access
mode: http://ibo.wunu.edu.ua/index.php/ibo/article/view/405.

2. Reading List: Book Tracker [Electronic resource] — Resource access mode:
https://apps.apple.com/us/app/reading-list-book-tracker/id1217139955.

3. Turn - Reading Tracker & Timer [Electronic resource] — Resource access
mode: https://play.google.com/store/apps/details?id=com.jackwradford.readingtracker.

4. Bookmory - reading tracker [Electronic resource] — Resource access mode:
https://play.google.com/store/apps/details?id=net.tonysoft.bookmory.

5. UMLet - Free UML Tools for fast UML diagrams [Electronic resource] —
Resource access mode: https://www.umlet.com.

6. Advantages of C# [Electronic resource] — Resource access mode:
https://www.codeguru.com/csharp/c-sharp-advantages.

7. What Is An IDE (Integrated Development Environment)? [Electronic
resource] — Resource access mode: https://aws.amazon.com/what-is/ide/.

8. Introduction to Visual Studio [Electronic resource] — Resource access mode:

https://www.geeksforgeeks.org/introduction-to-visual-studio/.

9. What is .NET Framework? Explain Architecture & Components [Electronic

resource] — Resource access mode: https://www.guru99.com/net-framework.html.

10. Context diagram | IST Project Management Office - University [Electronic
resource] — Resource access mode: https://uwaterloo.ca/ist-project-management-
office/tools-and-templates/tools/context-diagram#:~:text=Context%20diagrams
%20show%20the%20interactions,system%20will%20be%20part%20of.

11 Use-case diagrams [Enexktponnuii pecypc] — Pexum nmoctymy 0 pecypey:
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case.

12. Activity diagram [Electronic resource] — Resource access mode:
https://en.wikipedia.org/wiki/Activity diagram.

13. Sequence diagram [Electronic resource] — Resource access mode:

https://en.wikipedia.org/wiki/Sequence diagram.

https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.guru99.com/net-framework.html
https://www.geeksforgeeks.org/introduction-to-visual-studio/
https://www.umlet.com/
http://ibo.wunu.edu.ua/index.php/ibo/article/view/405

47

14. Class diagram [Electronic resource] — Resource access mode:
https://en.wikipedia.org/wiki/Class _diagram.

15. All You Need to Know about State Diagrams - Visual Paradigm [Electronic

resource] — Resource access mode: https://www.visual-paradigm.com/guide/uml-

unified-modeling-language/about-state-diagrams.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/about-state-diagrams/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/about-state-diagrams/

48

ANNEX A

STATE UNIVERSITY OF TELECOMMUNICATIONS

Educational and scientific institute of INFORMATION
TECHNOLOGIES

Department of software engineering

Creation of book collection application using the C#
language

Performed by a 4th year student
group PD-42

Idrissi Hesham

Head of work

Senior lecturer of the Depariment of Software Engineering Gamaniulk |gor Mykhailovych
Wy — 2023

PURPOSE, OBJECT AND SUBJECT OF RESEARCH

+ The purpose of the work: Automatisation of the accounting process
of books in the collection.

» Object of study: The process of accounting for books in the
collection.

+ Subject of study: Application for accounting of books in the
collection.

TASKS OF THE GRADUATE THESIS

Analysis of existing similar applications
Define of the business model.

Define of functional requirements
Define of non-functional requirements
Develop application design

Develop the program architecture
Implement the application

NG R W N

ANALYSIS OF ANALOGUES

Turn - Reading Tracker & Timer

Reading List: Book Tracker Bookmory - reading tracker

4

ANALYSIS OF ANALOGUES

Reading List: Turn - Bookmory -
Book Tracker Reading reading
Tracker & tracker
Timer
Private - -
Simple using + - +
Lightweight + -
Ease of - + +

maintenance

SOFTWARE REQUIREMENTS

Functional reguirements:

Management of information about books
Search for books by information
Management of information about authors
Search for authors by information

Mon-functional requirements:

Private, Simple using
Lightweight

NET application

JSON data interchange format

BookSea

50

IMPLEMENTATION SOFTWARE

e
£

0

FUNCTIONAL REQUIREMENTS

*
ﬁ;ao}ﬂ}ﬂm \'\
—

— ™, | —~..
/ 4—(F|-:|E:q:k3‘_-'re=_r5 \\\ {»_:T__ﬂ.,«)
J‘: e T———

RS \\f"ﬂ____"‘a \-}df—l:n;z—_hﬁﬁ
Author CRUD) “m,______,/l
--_____,-o—"'-'
S

l\>’_FF|n|:.ﬂutl' :'5&:{3;3
. -

Use case diagram 8

PUT IN INFORMATION ABOUT THE BOOK

t"
i "

~ |Purt in informarion Chedking already recorded
abouwt the book nformation about the ::':'k_,u

~ [Pt in informaton
about the author

[na irformation]

W

s
i > T
add more book - e
))
L

Activity diagram 9

OBJECT INTERACTION. PRESENTATION LAYER

:BookServicePL :BookServiceBLL wmetaclasss
Console

GetAllBoocksAuthaors !

>

T
I
I
i
I bookAuthorVMs = GetAllBooksAuth Dfs.‘fb:
i
I
I
I
I
I
i
I

loop J |
[BookA L.-t"l-:l VM ba in bookAuthorVMs]

: WriteLine{ba)

>

Sequence diagram 10

52

OBJECT INTERACTION. BUSINESS LOGIC LAYER
Ceral Daoks.:unars'_: o — .
p—

1
T
]
|Book b in dh DRRook Treme]
i

T
]
1
1
i
'
lexopa .-I ' :
[Bookiythor ba m dio. DDDookSuthor. ::1:!|rr| =]
1
[ope T :

[bld == ba.Bookld] .

1

1

1

i

'

i

I:u:hp'.J

[Aurthor ain dix DEAuThor Jreres]
i

L

o nr__,J

[ald a= ba AuthorTd] i

bookAuthorYM = mewlb. Digle, !a.l-:r:c‘\la m=, a.LastMam =]h| ‘Boc kAt horsbd

]

'
AddlbookAuthory i) H F

T
~ booksAuthors \
L h

Sequénce diagram 11

BOOK PRESENTATION AND BUSINESS LOGIC LAYERS

sinterfaces BookPL
IBookPL bookBLL : IBookBLL
BookCreate() authorPL - lhurthorPl
Creat=Book() & imt bookAthorBLL © IBookAthorBLL
DeleteBook() BookCreat=()
EE::”EE:.HTE::;'I =1 CreateBook() - int
. selBoakByl DeleteBoak(])
Class diagram |ueds=beskl) GetAllBooks()
: GerBookByld()
U pdare B ook
| =USE=
'l

=inTarfacss
IBosakBILL

CreateBook]{string title, DateTime issuseDate, string summany) : int

DelereBookByBook] Book book) - bool

GetallBcoks(] @ List<Book:»

GetBookByld{int id) ' Book

Updat=Book{ Book oldBook, string tite, DateTime issusDate, string summany) © bool
iy

BookBLL

db - IDE

CreateBook({string title, DateTime issueDate, string summary) ! int
DelereBookByBook| Book book) : bool

GetallBocoks(]) - List<Boak:»

GetBookByld{int id) ' Book

Updat=Book{ Book oldBook, string title, DateTime issusDate, string summary) © bool ‘1 2

'

Main menu

1. Book service menu
2. Author service menu

MENU

—

EC'C‘k STMVILS MEnJg _H\'

1. Find books by author
2. Find books by year
3. Exit

o A

o~

Author service menu _H\I

1. Find authors by book

2. Exit

54

3. CRUD menu
4. Exit

0 s

CRUD menu _\L
1. Author CRUD menu

2. Book CRUD menu

3. BookAthor CRUD menw

4 Exmic

State diagram 13

BEFORE EVENT - ADD BOOK AND AUTHORS

rII:' mB

’“”\\

DBAuthor | IDBItem-<Author> DBBook | IDBiterm<Bogks> | DEBeokAuthor - IDETrem-BookAuthors

Iterns ¢ List<Author= Itemns ! List<Book> Iterns ¢ List<BookAuthors
Count=1 Count =1 Count=1
[0] * Barthor [0] : Bock [0] : BookAuthor
Id=1 Id=1 d=1
FirsiName = "FN1" Trde = "T Bookld =1
Lasthlarme = "LM1" lzzueDare = 1000567 Autharld= 1
Summary = "517 —

Object diagram 14

AFTER EVENT - ADD BOOK AND AUTHORS

Object diagram

= ., ——
.-d""-f h""\-—._
DRAuthar - IDBlem<Autars | DEBook - IDB=m<Baoks | D88ankAurhor | IDElterm<BoakAuthors
[terns ¢ List<Authors Items ¢ LiszeBook= Irmrmis & Lisz<BaookAuthars
Coumt=3 Count =35 Count=6
- [0) : Bock | - |
[0] : Auchar p— [{1] : Bookdurhos [1] : Bookauhor
=t -'En'l..;- - ld=1 Jd=3
Firsthlame = 'I'FN":' IzsueDane = "10.05.67" Boakld =1 EI: akld =2
LaztMame = "LM Surmmang = "51" Authorld=1 Authorld=1
[1] - Atk 1] Bog [2] : Bocstunhi
ld=2 ld=2 Id=1%
FirstMame = "FNZ" Tide = "T2" Booklc =2

LastMame = "LHZ"

IssueDate = "05.09.45°
Surmmary = “52°

Authorld= 2 ‘1 5

ARCHITECTURE DESIGN

Presentation Layer

*Menu

Book_PL
Author_PL
BookAuthor_PL
BookService_PL

Autharsenaca_PL
T

W
Business Lagic Layer

Book_BLL
#Author_BLL
Bookiuthor_BLL
BookSernce_BLL
Authorsenice_BLL
Wodels

T
i
i
Data Access Layer

DE DAL
DBTrerm_Dal

Package diagram

16

55

56

APPROVAL OF RESEARCH RESULTS

1) Idricci Hesham T. Using a sequence diagram to simulate the case of
getting a list of all books and the authors that written them into a book
collection accounting application / T. Hesham Idricci | |.M. Gamaniuk//
International scientific and practical conference "Modern aspects of
digitization and informatization in software and computer engineering”.
Accepted for publication.

18

CONCLUSIONS

1. The model of the subject field (diagram of the subject field) has been
modulated.

2. Modulated the case model (case set and use case diagram).

3. The design model (diagrams of activities, sequences, classes) has been
modulated.

4. The application has been created.

19

THANK YOU FOR YOUR ATTENTION!

57

ANNEX B

using BookProject.BusinessLogiclLayer.Models;
using BookProject.DataAccesslLayer;

namespace BookProject.BusinesslLogiclLayer.Author_BLL

{
internal class AuthorBLL : IAuthorBLL
{
IDB db;
public AuthorBLL(IDB db)
{
this.db = db;
}
public int CreateAuthor(string firstName, string lastName)
{
Author author = new Author(firstName, lastName);
return db.DBAuthor.AddItem(author);
}
public Author GetAuthorById(int id)
{
return db.DBAuthor.GetItemById(id);
}
public bool DeleteAuthorByAuthor(Author author)
{
return db.DBAuthor.DeleteItemByItem(author);
}
public bool UpdateAuthor(Author oldAuthor, string firstName, string lastName)
{
Author newAuthor = new Author(firstName, lastName);
return db.DBAuthor.Update(oldAuthor, newAuthor);
}
public List<Author> GetAllAuthors()
{
return db.DBAuthor.Items;
}
}
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.BusinesslLogiclLayer.Author_BLL

{
internal interface IAuthorBLL
{
int CreateAuthor(string firstName, string lastName);
bool DeleteAuthorByAuthor(Author author);
List<Author> GetAllAuthors();
Author GetAuthorById(int id);
bool UpdateAuthor(Author oldAuthor, string firstName, string lastName);
}
}

using BookProject.BusinessLogiclLayer.Models;
using BookProject.DataAccesslLayer;

namespace BookProject.BusinesslLogiclLayer.AuthorServiceBLL

{

internal class AuthorServiceBLL : IAuthorServiceBLL

58

IDB db;

public AuthorServiceBLL(IDB db)

{
this.db = db;
}
public List<Author> GetAuthorsByBook(int id)
{
List<Author> authors = new List<Author>();
foreach (Book book in db.DBBook.Items)
{
if (book.Id == id)
{
foreach (BookAuthor ba in db.DBBookAuthor.Items)
{
if (book.Id == ba.BookId)
{
foreach (Author a in db.DBAuthor.Items)
{
if (a.Id == ba.AuthorId)
{
authors.Add(a);
}
}
}
}
}
}
return authors;
}

3
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.BusinesslLogiclLayer.AuthorServiceBLL

{
internal interface IAuthorServiceBLL
{
List<Author> GetAuthorsByBook(int id);
}
}

using BookProject.BusinesslLogiclLayer.Models;
using BookProject.DataAccesslLayer;

namespace BookProject.BusinesslLogiclLayer.Book_BLL

{
internal class BookBLL : IBookBLL

{
IDB db;

public BookBLL(IDB db)
{

this.db = db;
}

public int CreateBook(string title, DateTime issueDate, string summary)

{

60

Book book = new Book(title, issueDate, summary);
return db.DBBook.AddItem(book);

}
public Book GetBookById(int id)
{
return db.DBBook.GetItemById(id);
}
public bool DeleteBookByBook(Book book)
{
return db.DBBook.DeleteItemByItem(book);
}
public bool UpdateBook(Book oldBook, string title, DateTime issueDate, string
summary)
{
Book newBook = new Book(title, issueDate, summary);
return db.DBBook.Update(oldBook, newBook);
}
public List<Book> GetAllBooks()
{
return db.DBBook.Items;
}
public bool CheckBookAvailability(string title, DateTime issueDate)
{
bool isAvailable = false;
foreach (Book b in db.DBBook.Items)
{
if (b.Title == title && b.IssueDate == issueDate)
{
isAvailable = true;
break;
}
}
return isAvailable;
}

}
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.BusinesslLogiclLayer.Book_BLL

{
internal interface IBookBLL
{
int CreateBook(string title, DateTime issueDate, string summary);
bool DeleteBookByBook(Book book);
List<Book> GetAllBooks();
Book GetBookById(int id);
bool UpdateBook(Book oldBook, string title, DateTime issueDate, string summary);
bool CheckBookAvailability(string title, DateTime issueDate);
}
}

using BookProject.BusinessLogiclLayer.Models;
using BookProject.DataAccesslLayer;

namespace BookProject.BusinesslLogiclLayer.BookAuthor_BLL

{
internal class BookAthorBLL : IBookAthorBLL

{
IDB db;

61

public BookAthorBLL(IDB db)

{ this.db = db;

}

public int CreateBookAuthor(int bookId, int authorId)

{ BookAuthor bookAuthor = new BookAuthor(bookId, authorId);
return db.DBBookAuthor.AddItem(bookAuthor);

iublic BookAuthor GetBookAuthorById(int id)

{ return db.DBBookAuthor.GetItemById(id);

;ublic bool DeleteBookAuthorByBookAuthor(BookAuthor bookAuthor)

{ return db.DBBookAuthor.DeleteItemByItem(bookAuthor);

;ublic bool UpdateBookAuthor(BookAuthor oldBookAuthor, int bookId, int authorId)

{ BookAuthor newBookAuthor = new BookAuthor(bookId, authorId);
return db.DBBookAuthor.Update(oldBookAuthor, newBookAuthor);

iublic List<BookAuthor> GetAllBookAuthors()

{ return db.DBBookAuthor.Items;

}

}
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.BusinesslLogiclLayer.BookAuthor_BLL

{
internal interface IBookAthorBLL
{
int CreateBookAuthor(int bookId, int authorId);
bool DeleteBookAuthorByBookAuthor(BookAuthor bookAuthor);
List<BookAuthor> GetAllBookAuthors();
BookAuthor GetBookAuthorById(int id);
bool UpdateBookAuthor(BookAuthor oldBookAuthor, int bookId, int authorId);
}
}

using BookProject.BusinessLogiclLayer.Models;
using BookProject.DataAccesslLayer;

namespace BookProject.BusinesslLogiclLayer.BookService_BLL

{
internal class BookServiceBLL : IBookServiceBLL

{
IDB db;

public BookServiceBLL(IDB db)
{
this.db = db;
}
public List<BookAuthorVM> GetAllBooksAuthors()
{

List<BookAuthorVM> booksAuthors = new List<BookAuthorVM>();
foreach (Book b in db.DBBook.Items)
{
foreach (BookAuthor ba in db.DBBookAuthor.Items)
{
if (b.Id == ba.BookId)
{
foreach (Author a in db.DBAuthor.Items)
{
if (a.Id == ba.AuthorId)
{
BookAuthorVM bookAuthorVM = new BookAuthorVM(b.Title,
a.FirstName, a.LastName);
booksAuthors.Add(bookAuthorVM);

}
}
return booksAuthors;
}
public List<Book> GetBooksByAuthorId(int id)
{
List<Book> booksByAuthorId = new List<Book>();
foreach (Author a in db.DBAuthor.Items)
{
if (a.Id == id)
{
foreach (BookAuthor ba in db.DBBookAuthor.Items)
{
if (a.Id == ba.AuthorId)
{
foreach (Book b in db.DBBook.Items)
{
if (b.Id == ba.BookId)
{
booksByAuthorId.Add(b);
}

}
}
return booksByAuthorlId;
}
public List<Book> GetBooksByYear(int year)
{
List<Book> books = new List<Book>();
foreach (Book b in db.DBBook.Items)
{
if (b.IssueDate.Year == year)
{
books.Add(b);
}
}

return books;

62

}

using BookProject.BusinesslLogiclLayer.Models;

namespace BookProject.BusinesslLogiclLayer.BookService_BLL

{

}

internal interface IBookServiceBLL

{

List<BookAuthorVM> GetAllBooksAuthors();
List<Book> GetBooksByAuthorId(int id);
List<Book> GetBooksByYear(int year);

namespace BookProject.BusinesslLogiclLayer.Models

{

}

internal class Author : IId

{

public int Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

public Author(string firstName, string lastName)

{
FirstName = firstName;
LastName = lastName;

}

public Author()
{
}

public override string ToString()

{

return string.Format(Id + " " + FirstName + " " + LastName);

}

namespace BookProject.BusinesslLogiclLayer.Models

{

internal class Book : IId

{

public int Id { get; set; }

public string Title { get; set; }
public DateTime IssueDate { get; set; }
public string Summary { get; set; 1}

public Book(string title, DateTime issueDate, string summary)

{
Title = title;
IssueDate = issueDate;
Summary = summary;

}

public Book()
{
}

public override string ToString()

{

63

64

return string.Format("\n" + Id + " " + Title + " " +
IssueDate.ToShortDateString() + "\n" + Summary);
}
}
}
namespace BookProject.BusinessLogicLayer.Models
{
internal class BookAuthor : IId
{
public int Id { get; set; }
public int BookId { get; set; }
public int AuthorId { get; set; }
public BookAuthor(int bookId, int authorId)
{
BookId = bookId;
AuthorId = authorlId;
}
public BookAuthor()
{
}
public override string ToString()
{
return string.Format(Id + " " + BookId + " " + AuthorId);
}
}
}
namespace BookProject.BusinessLogiclLayer.Models
{
internal class BookAuthorVM
{
public string Title { get; set; }
public string AuthorFirstName { get; set; }
public string AuthorLastName { get; set; 1}
public BookAuthorVM(string title, string authorFirstName, string authorLastName)
{
Title = title;
AuthorFirstName = authorFirstName;
AuthorLastName = authorLastName;
}
public override string ToString()
{
return string.Format(Title + " " + AuthorFirstName + " " + AuthorLastName);
}
}
}
namespace BookProject.BusinesslLogiclLayer.Models
{
internal interface IId
{
int Id { get; set; }
}
}

namespace BookProject.DataAccesslLayer

{

65

internal class Configuration
{
public static string DBPath { get; set; } = @"C:\Temp2\BookDB";
}
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.DataAccesslLayer
{
internal class DB : IDB
{
public DBItem<Book> DBBook { get; set; } = new DBItem<Book>();
public DBItem<Author> DBAuthor { get; set; } = new DBItem<Author>();
public DBItem<BookAuthor> DBBookAuthor { get; set; } = new DBItem<BookAuthor>();
public DB()

{
Initialize();
H
public void DbSerialize()
{
DBBook.SerializeJSON(Q);
DBAuthor.SerializeJSONQ);
DBBookAuthor.SerializeJSON(Q);
}
private void Initialize()
{
DBBook.DeserializeJSONQ);
if (DBBook.Items.Count == 0)
{
BookInitialize();
}
DBAuthor.DeserializeJSON();
if (DBAuthor.Items.Count == 0)
{
AuthorInitialize();
}
DBBookAuthor.DeserializeJSON();
if (DBBookAuthor.Items.Count == 0)
{
BookAuthorInitialize();
}
H
private void BookInitialize()
{

Book bookl = new Book("C# 8.0 and .NET Core 3.0", DateTime.Parse("31 Oct.
2019"), "In C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development, Fourth Edition,
expert teacher Mark J. Price gives you everything you need to start programming C#
applications.");

DBBook.AddItem(bookl);

Book book2 = new Book("Head First C#", DateTime.Parse("26 Jan. 2021"), "Dive
into C# and create apps, user interfaces, games, and more using this fun and highly
visual introduction to C#, .NET Core, and Visual Studio.");

DBBook.AddItem(book2);

Book book3 = new Book("C# 8.0 Pocket Reference", DateTime.Parse("10 Dec.
2019"), "When you need answers about using C# 8.0, this tightly focused and practical
book tells you exactly what you need to know without long intros or bloated samples.");

DBBook.AddItem(book3);

}

}
}

66

private void AuthorInitialize()

{

}

Author authorl = new Author("Mark", "J. Price");
DBAuthor.AddItem(authorl);

Author author2 = new Author("Andrew", "Stellman");
DBAuthor.AddItem(author2);

Author author3 = new Author("Jospeh", "Albahari");
DBAuthor.AddItem(author3);

Author authortd = new Author("Ben", "Albahari");
DBAuthor.AddItem(authord);

private void BookAuthorInitialize()

{

BookAuthor bookAuthorl = new BookAuthor(l, 1);
DBBookAuthor.AddItem(bookAuthorl);
BookAuthor bookAuthor2 = new BookAuthor(2, 2);
DBBookAuthor.AddItem(bookAuthor2);
BookAuthor bookAuthor3 = new BookAuthor(3, 3);
DBBookAuthor.AddItem(bookAuthor3);
BookAuthor bookAuthord4 = new BookAuthor(3, u);
DBBookAuthor.AddItem(bookAuthord);

using System.Text.Json;
using BookProject.BusinesslLogiclLayer.Models;

namespace BookProject.DataAccesslLayer

{

internal class DBItem<T> : IDBItem<T> where T : IId

{

private int counter = 1;
public List<T> Items { get; set; } = new List<T>();
public int AddItem(T item)

{

}

item.Id = counter++;
Items.Add(item);
return item.Id;

public T GetItemById(int id)

{

}

T result = default(T);
foreach (T item in Items)

{
if (item.Id == id)
{
result = item;
break;
}
}

return result;

public bool DeleteItemByItem(T item)

{
}

return Items.Remove(item);

public bool Update(T oldItem, T newItem)

{

}

67

newItem.Id = oldItem.Id;

bool result = Items.Remove(oldItem);
Items.Add(newItem);

return result;

public bool SerializeJSON()

{

}

//string path = @"C:\Temp2\BookDB";
string path = Configuration.DBPath;
if (Directory.Exists(path))

{

path = path + @"\";
}
else
{

path = string.Empty;
}

string jsonString = string.Empty;

string fileName = String.Format(path + Items.ToString() + ".json");
try

{

jsonString = JsonSerializer.Serialize(Items);

File.WriteAllText(fileName, jsonString);
}
catch (Exception ex) { Console.WriteLine(ex.Message); return false; }
return true;

public List<T> DeserializeJSON()

{

" .jsonu));

string path = Configuration.DBPath;
if (Directory.Exists(path))

{
path = path + @"\";

}

else

{
path = string.Empty;

}

string jsonString = string.Empty;

try

{
jsonString = File.ReadAllText(String.Format(path + Items.ToString() +
Items = JsonSerializer.Deserialize<List<T>>(jsonString);
counter = GetMaxId();
return Items;

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);
Console.WriteLine("Verify that entity classes and their base classes have

a default constructor");

}

return null;

}

private int GetMaxId()

{

int maxId = 1;
foreach (T item in Items)

{
if (item.Id > maxId)
{
maxId = item.Id;
}
}

return (maxId + 1);

}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.DataAccesslLayer

{
internal interface IDB
{
DBItem<Author> DBAuthor { get; set; }
DBItem<Book> DBBook { get; set; }
DBItem<BookAuthor> DBBookAuthor { get; set; }
void DbSerialize();
}
}

using BookProject.BusinessLogiclLayer.Models;

namespace BookProject.DataAccessLayer

{
internal interface IDBItem<T> where T : IId
{
List<T> Items { get; set; }
int AddItem(T item);
bool DeleteItemByItem(T item);
T GetItemById(int id);
bool Update(T oldItem, T newItem);
bool SerializeJSON(Q);
List<T> DeserializeJSON();
}
}

using BookProject.BusinesslLogiclLayer.Author_BLL;
using BookProject.BusinesslLogiclLayer.BookAuthor_BLL;
using BookProject.BusinesslLogiclLayer.Models;

namespace BookProject.PresentationLayer.Author_PL
{
internal class AuthorPL : IAuthorPL
{
IAuthorBLL authorBLL;
IBookAthorBLL bookAthorBLL;

public AuthorPL(IAuthorBLL authorBLL, IBookAthorBLL bookAthorBLL)

{
this.authorBLL = authorBLL;

this.bookAthorBLL = bookAthorBLL;
}
public int CreateAuthor()
{

68

69

string firstName = Helper.StringInputCheck("CreateAuthor Author FirstName?:
", 30);
string lastName = Helper.StringInputCheck("CreateAuthor Author LastName?: ",
30);
return authorBLL.CreateAuthor(firstName, lastName);
}
public int AuthorCreate(int bookId)
{
int athorId = CreateAuthor();
return bookAthorBLL.CreateBookAuthor(bookId, athorId);
}
public void GetAllAuthors()
{
List<Author> authors = authorBLL.GetAllAuthors();
foreach (Author author in authors)
{
Console.WriteLine(Cauthor);

}

}
namespace BookProject.PresentationLayer.Author_PL
{
internal interface IAuthorPL
{
int AuthorCreate(int bookId);
int CreateAuthor();
void GetAllAuthors();

}

using BookProject.BusinessLogiclLayer.AuthorServiceBLL;
using BookProject.BusinesslLogiclayer.Book_BLL;

using BookProject.BusinesslLogiclLayer.Models;

namespace BookProject.PresentationLayer.AuthorService_PL

{

internal class AuthorServicePL : IAuthorServicePL
{

IAuthorServiceBLL authorServiceBLL;
IBookBLL bookBLL;

public AuthorServicePL(IAuthorServiceBLL authorServiceBLL, IBookBLL bookBLL)

{
this.authorServiceBLL = authorServiceBLL;
this.bookBLL = bookBLL;

}

public void GetAuthorsByBook()

{

List<Book> books = bookBLL.GetAllBooks();
foreach (Book b in books)
{
Console.WriteLine(b);
}
int id = Helper.IntInputCheck("GetAuthorsByBook Book Id?: ");
List<Author> authors = authorServiceBLL.GetAuthorsByBook(id);
foreach (Author a in authors)
{

Console.WritelLine(a);

}
}
}
}
namespace BookProject.PresentationLayer.AuthorService_PL
{
internal interface IAuthorServicePL
{
void GetAuthorsByBook();
}
}

using BookProject.BusinesslLogiclLayer.Book_BLL;

using BookProject.BusinesslLogiclLayer.BookAuthor_BLL;
using BookProject.BusinessLogiclLayer.Models;

using BookProject.PresentationLayer.Author_PL;

namespace BookProject.PresentationLayer.Book_PL
{
internal class BookPL : IBookPL
{
IBookBLL booKBLL;
IAuthorPL authorPL;
IBookAthorBLL bookAthorBLL;

public BookPL(IBookBLL bookBLL, IAuthorPL authorPL, IBookAthorBLL bookAthorBLL)

{
this.bookBLL = bookBLL;
this.authorPL = authorPL;
this.bookAthorBLL = bookAthorBLL;
}
private bool CheckBookAvailability(string title, DateTime issueDate)
{
return bookBLL.CheckBookAvailability(title, issueDate);
}
public void CreateBook(bool addAuthor)
{

string title = Helper.StringInputCheck("Create Book Title?: ", 50);
DateTime issueDate = Helper.DateTimeInputCheck("Issue Date?: ");

bool isAvailable = CheckBookAvailability(title, issueDate);

if (lisAvailable)

{
string summary = Helper.StringInputCheck("Summary?: ", 150);
int bookId = bookBLL.CreateBook(title, issueDate, summary);
while (addAuthor)
{
int authorId = authorPL.CreateAuthor();
bookAthorBLL .CreateBookAuthor(bookId, authorId);
Console.WriteLine("Add more authors?(y/n): ");
if ("y" != Console.ReadLine())
{
addAuthor = false;
}
}
}

else { Console.WriteLine("The book is Available"); 1}

70

}
public void GetBookById()
{
int id = Helper.IntInputCheck("Get Book by Id. Id?: ");
Book book = bookBLL.GetBookById(id);
if (book != default(Book))
{
Console.WriteLine(book);
}
else
{
Console.WriteLine("Not found");
}
}
public void DeleteBook()
{
int id = Helper.IntInputCheck("Delete Book by Id. Id?: ");
Book book = bookBLL.GetBookById(id);
if (book != default(Book))
{
Console.WriteLine(book);
Console.WriteLine(" Delete?(y/n): ");
if ("y" == Console.ReadLine())
{
if (bookBLL.DeleteBookByBook(book))
{
Console.WriteLine("Deleted");
}
else
{
Console.WriteLine("Not Deleted");
}
}
}
else
{
Console.WriteLine("Not found");
}
}
public void GetAllBooks()
{
foreach (Book book in bookBLL.GetAllBooks())
{
Console.WriteLine(book);
}
}
3
}
namespace BookProject.PresentationLayer.Book_PL
{

internal interface IBookPL
{
void CreateBook(bool addAuthor);
void DeleteBook();
void GetAllBooks();
void GetBookById();

71

}

using BookProject.BusinessLogiclLayer.Author_BLL;
using BookProject.BusinesslLogiclLayer.BookService_BLL;
using BookProject.BusinesslLogiclLayer.Models;

namespace BookProject.PresentationLayer.BookService_PL

{

internal class BookServicePL : IBookServicePL

{

}

IBookServiceBLL bookServiceBLL;
IAuthorBLL authorBLL;

public BookServicePL(IBookServiceBLL bookServiceBLL, IAuthorBLL authorBLL)
{

this.bookServiceBLL = bookServiceBLL;

this.authorBLL = authorBLL;

}
public void GetAllBooksAuthors()
{
List<BookAuthorVM> bookAuthorVMs = bookServiceBLL.GetAllBooksAuthors();
foreach (BookAuthorVM ba in bookAuthorVMs)
{
Console.WriteLine(ba);
}
}
public void GetBooksByAuthor()
{
List<Author> authors = authorBLL.GetAllAuthors();
foreach (Author a in authors)
{
Console.WriteLine(a);
}
int id = Helper.IntInputCheck("Get Books By Author Id?: ");
List<Book> books = bookServiceBLL.GetBooksByAuthorId(id);
foreach (Book b in books)
{
Console.WriteLine(b);
}
}
public void GetBooksByYear()
{
int year = Helper.IntInputCheck("Get Books By Year Year?: ");
List<Book> books = bookServiceBLL.GetBooksByYear(year);
foreach (Book b in books)
{
Console.WritelLine(b);
}
}

namespace BookProject.PresentationlLayer.BookService_PL

{

internal interface IBookServicePL

{

void GetAllBooksAuthors();
void GetBooksByAuthor();
void GetBooksByYear();

72

}

using BookProject.PresentationLayer.Author_PL;

namespace BookProject.PresentationLayer.Menu

{
internal class AuthorCRUDMenu : IMenu
{
IAuthorPL authorPL;
public AuthorCRUDMenu(IAuthorPL authorPL)
{
this.authorPL = authorPL;
}
public void Run()
{
bool flag = true;
while (flag)
{
Console.WriteLine("1 - Create Author");
Console.WriteLine("2 - Get All Authors");
Console.WriteLine("3 - Get Author by Id");
Console.WriteLine("4 - Delete Author");
Console.WriteLine("5 - Update Author");
Console.WriteLine("6 — Exit");
int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber)
{
case 1:
authorPL.CreateAuthor();
break;
case 2:
authorPL.GetAllAuthors();
break;
case 3:
Console.WriteLine("Get Author by Id");
break;
case 4:
Console.WriteLine("Delete Author");
break;
case 5:
Console.WriteLine("Update Author");
break;
case 6:
flag = false;
break;
default:
Console.WriteLine("Error");
break;
}
}
}
}
}

using BookProject.PresentationLayer.AuthorService_PL;

namespace BookProject.PresentationLayer.Menu

{

internal class AuthorServiceMenu : IMenu

73

}

}

74

IAuthorServicePL authorServicePL;

public AuthorServiceMenu(IAuthorServicePL authorServicePL)

{
this.authorServicePL = authorServicePL;
}
public void Run()
{
bool flag = true;
while (flag)
{
Console.WriteLine("1l - Find Authors By Book");
Console.WriteLine("2 - Exit");
int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber)
{
case 1:
authorServicePL.GetAuthorsByBook();
break;
case 2:
flag = false;
break;
default:
Console.WriteLine("Error");
break;
}
}
}

using BookProject.PresentationLayer.Book_PL;
using BookProject.PresentationLayer.BookService_PL;

namespace BookProject.PresentationLayer.Menu

{

internal class BookCRUDMenu : IMenu

{

IBookPL bookPL;
IBookServicePL bookServicePL;

public BookCRUDMenu(IBookPL bookPL, IBookServicePL bookServicePL)
{

this.bookPL = bookPL;

this.bookServicePL = bookServicePL;

}

public void Run()
{
bool flag = true;
while (flag)
{
Console.WriteLine("1 - Create Book");
Console.WriteLine("2 - Create Book and Author");
Console.WriteLine("3 - Get A1l Books");
Console.WriteLine("d - Get All Books and Authors");
Console.WriteLine("5 - Get Book by Id");

}
}

Console.WriteLine("6 - Delete Book");
Console.WriteLine("7 - Update Book");
Console.WriteLine("8 - Exit");
int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber)
{
case 1:
bookPL.CreateBook(false);
break;
case 2:
bookPL.CreateBook(true);
break;
case 3:
bookPL.GetAl1Books();
break;
case 4:
bookServicePL.GetAllBooksAuthors();
break;
case 5:
bookPL.GetBookById();
break;
case 6:
bookPL .DeleteBook();
break;
case 7:
Console.WriteLine("Update Book");
break;
case 8:
flag = false;
break;
default:
Console.WriteLine("Error");
break;

using BookProject.PresentationLayer.BookService_PL;

namespace BookProject.PresentationLayer.Menu

{

internal class BookServiceMenu : IMenu

{

IBookServicePL bookServicePL;

public BookServiceMenu(IBookServicePL bookServicePL)

{
}

this.bookServicePL = bookServicePL;

public void Run()

{

bool flag = true;

while (flag)

{
Console.WriteLine("1 - Find books by author");
Console.WriteLine("2 - Find books by year");

75

}

Console.WriteLine("3 - Exit");
int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber)
{
case 1:
bookServicePL.GetBooksByAuthor();
break;
case 2:
bookServicePL.GetBooksByYear();
break;
case 3:
flag = false;
break;
default:
Console.WriteLine("Error");
break;

namespace BookProject.PresentationLayer.Menu

{

internal class CRUDMenu : IMenu

{

IMenu authorCRUDMenu;
IMenu bookCRUDMenu;

public CRUDMenu(IMenu authorCRUDMenu, IMenu bookCRUDMenu)
{
this.authorCRUDMenu = authorCRUDMenu;
this.bookCRUDMenu = bookCRUDMenu;
}
public void Run()
{
bool flag = true;
while (flag)
{

Console.WriteLine("1 - Author CRUD menu");
Console.WriteLine("2 - Book CRUD menu");
Console.WriteLine("3 - BookAthor CRUD menu");
Console.WriteLine("d - Exit");

int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber)

{

case 1:
authorCRUDMenu.Run();
break;

case 2:
bookCRUDMenu.Run();
break;

case 3:
Console.WriteLine("BookAthor CRUD menu");
break;

case 4:
flag = false;
break;

default:

76

Console.WriteLine("Error");

break;
}
}
}
}
}
namespace BookProject.PresentationLayer.Menu
{
internal class MainMenu : IMenu
{
IMenu bookServiceMenu;
IMenu authorServiceMenu;
IMenu crudMenu;
public MainMenu(IMenu bookServiceMenu, IMenu authorServiceMenu, IMenu crudMenu)
this.bookServiceMenu = bookServiceMenu;
this.authorServiceMenu = authorServiceMenu;
this.crudMenu = crudMenu;
}
public void Run() {
bool flag = true;
while (flag)
{
Console.WriteLine("1l - Book Service Menu");
Console.WriteLine("2 - Author Service Menu");
Console.WriteLine("3 - CRUD Menu");
Console.WriteLine("d - Exit");
int menuNumber = Helper.IntInputCheck("-> ");
switch (menuNumber) {
case 1:
bookServiceMenu.Run();
break;
case 2:
authorServiceMenu.Run();
break;
case 3:
crudMenu.Run();
break;
case 4:
flag = false;
break;
default:
Console.WriteLine("Error");
break;
}
}
3
3
}
namespace BookProject.PresentationLayer.Menu
{
internal interface IMenu
{
void Run();
}
}

namespace BookProject.PresentationLayer

{

78

internal static class Helper
{
public static string StringInputCheck(string message, int messagelength)
{
string str = "";
bool flag = true;
while (flag)

{
Console.Write(message);
str = Console.ReadLine();
if (str.Length < messagelLength)
{
flag = false;
}
else
{
Console.WriteLine("No enough capacity please enter less characters");
}
}
return str;
}
public static int IntInputCheck(string message)
{
int result = 0;
bool flag = true;
while (flag)
{
Console.Write(message);
string str = Console.ReadLine();
flag = !int.TryParse(str, out result);
if (flag)
{
Console.WriteLine("It must be digits try again");
}
}
return result;
}
public static DateTime DateTimeInputCheck(string message)
{
DateTime result = DateTime.Now;
bool flag = true;
while (flag)
{
Console.Write(message);
string str = Console.ReadLine();
flag = !DateTime.TryParse(str, out result);
if (flag)
{
Console.WriteLine("It must be date try again");
}
}
return result;
}
public static void AddMore(Action action)
{

bool flag = true;
do
{

action();
Console.WriteLine("Add more?(y/n): ");

if ("y" != Console.ReadLine())
{

flag = false;
}

} while (flag);

}

using BookProject.BusinessLogiclLayer.Author_BLL;
using BookProject.BusinesslLogiclLayer.AuthorServiceBLL;
using BookProject.BusinesslLogiclLayer.Book_BLL;

using BookProject.BusinesslLogiclLayer.BookAuthor_BLL;
using BookProject.BusinessLogiclLayer.BookService_BLL;
using BookProject.DataAccesslLayer;

using BookProject.PresentationLayer.Author_PL;

using BookProject.PresentationLayer.AuthorService_PL;
using BookProject.PresentationLayer.Book_PL;

using BookProject.PresentationLayer.BookService_PL;
using BookProject.PresentationLayer.Menu;

IDB db = new DB();

IBookAthorBLL bookAthorBLL = new BookAthorBLL(db);
TAuthorBLL authorBLL = new AuthorBLL(db);

IAuthorPL authorPL = new AuthorPL(authorBLL, bookAthorBLL);
IMenu authorCRUDMenu = new AuthorCRUDMenu(authorPL);

IBookBLL bookBLL = new BookBLL(db);

IBookPL bookPL = new BookPL(bookBLL, authorPL, bookAthorBLL);
IBookServiceBLL bookServiceBLL = new BookServiceBLL(db);

IBookServicePL bookServicePL = new BookServicePL(bookServiceBLL, authorBLL);
IMenu bookCRUDMenu = new BookCRUDMenu(bookPL, bookServicePL);

IMenu crudMenu = new CRUDMenu(authorCRUDMenu, bookCRUDMenu);

IMenu bookServiceMenu = new BookServiceMenu(bookServicePL);
TIAuthorServiceBLL authorServiceBLL = new AuthorServiceBLL(db);
TAuthorServicePL authorServicePL = new AuthorServicePL(authorServiceBLL, bookBLL);
IMenu authorServiceMenu = new AuthorServiceMenu(authorServicePL);

IMenu mainMenu = new MainMenu(bookServiceMenu, authorServiceMenu, crudMenu);
mainMenu.Run();

db.DbSerialize();

Console.ReadKey();

	INTRODUCTION
	1 ACCOUNTING OF THE BOOK COLLECTION AS A COMPONENT OF THE COLLECTION PROCESS
	1.1 Organization of accounting in the modern collection process
	1.2 Accounting in conditions of digitization of life

	2 ANALYSIS OF AVAILABLE TOOLS AND TECHNOLOGIES FOR ORGANIZING ACCOUNTING OF BOOKS IN THE COLLECTION
	2.1 Analysis of existing programs for accounting of books in the collection
	2.2 Selection of software development technologies and tools
	2.2.1 C# language
	2.2.2 Visual Studio integrated development environment
	2.2.3 The .Net Framework platform
	2.2.4 Online UML diagram editor UMLetino
	2.2.5 JSON format

	3 INFORMATION SYSTEM MODELING AND DESIGN
	3.1 Vision of the system
	3.1 Analysis of the subject area model
	3.1.1 Electronic tables for displaying the subject area

	3.2 Model of precedents
	3.3 Design model
	3.3.1 Activity design
	3.3.2 Designing the sequence of method calls and object interaction
	3.3.3 Object states
	3.3.4 Designing classes and relationships between objects
	3.3.5 State design
	3.3.6 System deployment design

	3.5 Architecture

	4 TESTING
	CONCLUSIONS
	REFERENCES
	ANNEX A
	ANNEX B

